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Abstract
On low-input smallholder farms of Kenyan upland landscapes, erosion of nutrient-rich topsoil strongly affects
crop yields. Where maize (Zea mays) is intercropped on erosion-prone slopes, intercropping can potentially
reduce soil erosion. The objective of this research was to quantify the contribution of crops and cropmixtures of
different growth habits to erosion control and their influence on above-ground biomass and earthworm abun-
dance as indicators of soil function in smallholder farming systems under a bimodal rainfall pattern inWestern
Kenya. The experiment involved five treatments, namely maize (Z. mays)/common bean (Phaseolus vulgaris)
intercrop (maize intercrop), maize/common bean intercrop plus Calliandra (Calliandra calothyrsus) hedgerows
and Calliandra mulch (Calliandra), sole Lablab (Lablab purpureus), sole Mucuna (Mucuna pruriens) and
groundnut (Arachis hypogaea) intercropped with maize (during the short rains). The experiment was con-
ducted over three consecutive cropping seasons and the cropping system had significant effects on soil loss,
runoff, water infiltration, earthworm abundance and above-ground biomass and crop grain yield. The
Calliandra treatment had the lowest runoff (11.6–17.2mm ha−1) and soil erosion (31–446 kg ha−1 per season)
in all the seasons, followed by theMucuna treatment. Lablab was affected by disease and showed the highest soil
erosion in the last two seasons. Infiltration was highest in Calliandra treatment, and earthworm abundance was
higher under Mucuna and Calliandra treatments (229 and 165 earthworms per square metre, respectively) than
under other crops. Our results suggest that including sole crops of herbaceous species such as Mucuna, or tree
hedgerows with mixtures of maize and grain legumes has the potential to reduce runoff and soil erosion in
smallholder farming. Additionally, these species provide a suitable habitat for earthworms which stabilise soil
structure and macropores and thus potentially increase infiltration, further reducing soil erosion.
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Introduction
Land degradation is a major problem in sub-Saharan Africa (SSA) leading to low agricultural pro-
ductivity and a need for increased inputs and ultimately leading to land abandonment and loss of
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land for food production (FAO, 2010). It has been estimated that approximately 30% of land in
SSA is degraded due to erosion, nutrient mining, overgrazing and deforestation (Bindraban et al.,
2012). Apart from being a threat to food security and human nutrition, surface runoff and soil
erosion are major environmental concerns (Fenta et al., 2017). Estimates of crop yield loss caused
by erosion in SSA vary but may be substantial on severely eroded soils. For example, maize
(Zea mays) yield reductions related to erosion have been estimated at up to 59 and 66% in
Tanzania and Kenya, respectively (Okoba and Sterk, 2010). Yield losses result not only from loss
of soil organic matter and nutrients but also from reductions in moisture availability and rooting
depth. The rate of erosion from conventionally ploughed land has been estimated to be 1–2 orders
of magnitude greater than both rates of erosion under native vegetation and rates of soil formation
(Montgomery, 2007) suggesting an urgent need to look for alternative practices that reduce ero-
sion rates. Rates of soil erosion depend on the interaction of several variables (Verheijen et al.,
2009), such as erosivity or energy of the eroding agent (wind and water), ground cover and
management, slope characteristics and soil properties (erodibility). Control methods for water-
induced erosion, therefore, aim to manipulate both ground cover and soil structure to reduce
surface-water flow rates and increase infiltration rates. Methods include covering the soil as much
as possible, minimum tillage, contour ploughing, use of grass strips planted on contours, inclusion
of shrubs/trees (agroforestry) and use of cover crops (Salako et al., 2006).

In much of east Africa, effective erosion control practices have been poorly implemented
(Okoba and Sterk, 2010). Two reasons for poor implementation of erosion control measures
in Kenya are lack of evidence of their technical efficiency and social acceptability in different areas
(Sigunga and Wandahwa, 2015). Another suggested reason for low uptake of erosion control
measures is high initial costs relative to economically beneficial yield gains in the short term
(Nyangena and Köhlin, 2008). One method of erosion control, which does not require large
investments, is increasing crop diversity potentially through utilising species mixtures within a
single growing season and in increasing diversity within crop rotations. Legume species (herba-
ceous, grain and tree legumes) are among candidates for increasing crop diversity due to their high
nutritional value as food and fodder and their ability to biologically fix nitrogen. Herbaceous
legumes are plants with non-woody stems above ground (Mongkhonsin et al., 2019) and in this
paper, we refer to them as crops mainly used as cover crops and/or fodder crops. Farmers in east
Africa generally practice intercropping, for example, maize (Z. mays) and common bean
(Phaseolus vulgaris), which increases soil cover and improves resource use efficiency compared
to sole cropped maize (Himmelstein et al., 2017). Herbaceous and tree legumes may also be used
in cropping systems to reduce soil erosion while also providing other products and services. They
have the potential to contribute to soil erosion control because they have fast growth rates, high
biomass production and some of them are drought-tolerant (Kaspar et al., 2011). Rapid growth
rates provide ground cover that helps reduce the impact of raindrops and direct sunlight hence
improving soil and water conservation (Kaspar et al., 2011). High biomass productivity also
increases soil organic matter content which improves soil structure as well as earthworm density,
which contributes to water infiltration and holding capacity (Jordán et al., 2010). Additionally,
legumes provide a series of other functions potentially useful to smallholder farmers including
provision of food, livestock feed, income and soil fertility improvement through biological nitro-
gen fixation (BNF) and addition of organic matter. Tree legumes also have other purposes within
smallholder farms including providing a source of fuel or construction material. Different legume
types can be incorporated into smallholder farming systems through intercropping, in crop rota-
tions, and planted on farm boundaries and as hedgerows. Livestock is important in east Africa and
contributes 20–30% of national gross domestic product; hence, they play a significant role in farm-
ing livelihoods (EAFF, 2012). The use of herbaceous legume species such as Mucuna (Mucuna
pruriens) and Lablab (Lablab purpureus) and grain legumes such as cowpea (Vigna unguiculata)
and groundnut (Arachis hypogaea) could thus play a useful role in providing fodder, as well as
improving and protecting the soil.
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There is little research that has focused on the ability of different legume types to contribute to the
control of soil erosion in smallholder farming systems in east Africa. Thus, the main objective of this
study was to assess the efficiency of integration of different crop types (represented by herbaceous,
grain or woody legumes) in preventing surface runoff and soil erosion compared to maize–common
bean intercropping that represents the typical cropping system in the region. Soil erosion measure-
ments using runoff plots have been successfully used in several recent papers and that method was
applied in this study (e.g. Thierfelder and Wall, 2009). We also assessed the effect of different crop
types and crop mixtures (with legumes) on water infiltration and earthworm abundance as indica-
tors of soil function, and total above-ground biomass produced. The hypotheses tested were (i) the
introduction of herbaceous or woody species can reduce soil erosion compared to maize–common
bean intercropping and (ii) herbaceous species and mulching enhance water infiltration and earth-
worm populations compared to annual grain legumes intercropped with maize.

Materials and Methods
Site description

The experiment was conducted on farm in Rongo district, Migori County (00°77 0 S, 34°60 0 E; 1474m
above sea level), in Western Kenya. The area is characterised by a sub-humid climate and receives
rainfall in a bimodal pattern, with approximately 1000mm per annum (Figure 1). In general, the rainy
seasons last from March to July (long rain [LR]) and from September to December (short rain [SR]).
Annual average temperature is about 20 °C. Predominant soils are Acrisols according to FAO classifi-
cation and the land is generally sloping. The soil at the experimental site is a sandy clay loam (Table 1)
and the slope is around 20%. Common crops in the region include maize (Z. mays L.), sugarcane
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Figure 1. Cumulative rainfall for all cropping seasons. LR 2016 x-axis is in days after planting (25 May 2016), for SR 2016
(planted 8 September 2016) and LR 2017 (planted 1 March 2017) is in days after the first day of the month when season
starts.

Table 1. Soil properties at the experimental site in Rongo district, Migori County, Western Kenya

Depth (cm) pH Org C (%) Total N (%) C/N ratio
BD

(g cm−3)
Avail P

(mg kg−1)
Avail K

(mg kg−1) Sand (%) Silt (%) Clay (%)

0–20 4.8 1.0 0.1 9.9 1.3 0.9 61.0 63 12 25
20–40 4.9 0.9 0.1 10.0 1.4 0.1 77.0 56 13 31

pH (measured in 0.01 M CaCl2 extraction with soil to extraction solution ratio of 1:2.5); Org C= organic carbon, N= nitrogen, BD= bulk
density, available phosphorus (P) and potassium (K). Available P was determined by Bray 1 with Beckman coulter Du, UV – Du 640
spectrophotometers, USA. Available K was analysed by Calcium–Acetate–Lactate–extraction method.
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(Saccharum officinarum), tea (Camellia sinensis), coffee (Coffea arabica), banana (Musa L.), groundnut
and common bean (Rapsomanikis, 2015). Themain livestock species are cattle, goats, sheep and chick-
ens. Farmers utilise both cropping seasons and generally prefer to intercrop maize and common bean
for food security and efficient land utilisation, and the average farm size is approximately
2 ha (Rapsomanikis, 2015). Land preparation and weed management are usually done with ox-drawn
mouldboard plough or hand hoes (Rapsomanikis, 2015). The study farm had been cultivated for more
than 10 years with mainly cassava, maize, common bean and groundnuts.

Experimental design

The experiment was established early in 2016 during the long rain (LR 2016) season and was
continued during the subsequent 2016 short rain (SR 2016) and long rain (LR 2017) cropping
seasons. It was arranged according to a randomised complete block design with five treatments
and three replicates.

The treatments were as follows: maize/common bean intercrop (maize intercrop); groundnut
as sole crop during LR and intercropped with maize during SR (groundnut) (following farmer
practice); Lablab (L. purpureus) as a sole crop (Lablab); Mucuna (M. pruriens) as a sole crop
(Mucuna) and maize/common bean intercrop plus Calliandra calothyrsus hedgerow and leaf
mulch (Calliandra).

Soil samples were collected with a soil auger (internal diameters 7 cm) at two depths (0–20 cm
and 20–40 cm) just before planting in April 2016. Ten soil samples from each depth were bulked
to give one sample per block, and sub-samples of 500 g were saved for further analysis. Soil pH was
determined in 1:2.5 soil and 0.01 M CaCl2 suspension using a Labor-pH-meter (WTW GmbH,
Germany). Total N and C were analysed using dry combustion (Flash EA 1112 Elemental
Analyser, Germany). Soil texture was determined using the pipette method, after having removed
the organic matter using 35% hydrogen peroxide. Available K was extracted using Calcium–
Acetate–Lactate solution and measured by Inductively Coupled Plasma Optical Emission
Spectrometry (Agilent 5100 ICP-OES, Germany). Available P was extracted using Bray No 1
extractant and analysed on spectrophotometer (Beckman UV/Vis Spectrophotometer DU®-
640, Germany). For bulk density determination, 110 cm3 undisturbed cylinder cores were taken,
the soil oven-dried at 105 °C, and the bulk density was calculated using the volume of the core.

The crops were sown after the first effective rains in all seasons, except for the LR 2016 season
when crops were established a bit later. Establishment was delayed by a long dry spell after the
runoff plot structures were constructed (at the beginning of the rainy season). Land was prepared
using an ox-drawn mouldboard plough to a depth of approximately 20 cm, at the onset of the
experiment to remove Cynodon nlemfuensis Vanderyst (African Bermuda-grass) which was com-
mon on the site and to loosen the soil for improved seed establishment. In the following seasons
(September 2016 SR andMarch 2017 LR), land preparation was carried out with hand hoes (tilling
depth approximately 20 cm) 2 weeks after harvesting the preceding crops. From the SR 2016 crop-
ping season, 50% of the harvested leaf and stem biomass in all treatments was retained in the
respective plots and was uniformly spread soon after sowing the following crop, following recom-
mendations from Mupangwa and Thierfelder (2014) and allowing the remaining crop residues to
be used for feeding livestock or other purposes. Each main plot measured 12 m× 6 m (72 m2) and
consisted of a bounded runoff plot measuring 12 m× 4 m (48 m2) in the centre with a 1 m buffer
zone on both sides of the aluminium sheets (Muoni et al., 2018). At the start of the experiment,
aluminium sheet boundaries were buried 0.20 m into the soil around the runoff plots to prevent
water flow from adjacent plots or outside of the experimental area. At the bottom of each runoff
plot, a triangular cross-section was constructed with a 5-cm diameter iron pipe outlet connected to
two 100-L tanks to collect runoff and soil sediments. The first tank had six equidistant levelled
splitter outlets. One splitter outlet was then connected to a second tank (splitter tank), to account
for the overflowing water from the splitter on the first tank.
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All crops and the Calliandra hedgerows were planted across the slope. Maize was sown at
0.75m× 0.30m to achieve 44 444 plants ha−1. Common bean was sown in between the maize rows,
spaced at 0.20m between plants giving 66 666 plants ha−1. Mucuna and Lablab were sown at 0.50m
between rows and 0.20m between plants (100 000 plants ha−1). Sole groundnut was spaced
0.45m× 0.15m to achieve 148 148 plants ha−1, for intercropping they were sown between the maize
rows at the same in-row spacing (74 074 plants ha−1). Fertiliser applications in all crops followed the
recommended application rates in the region. All maize plots received 100 kg ha−1 of diammonium
phosphate (DAP) (18 kg N: 46 kg P2O5 (20 kg P) ha−1) fertiliser at sowing. Sole legumes received 45 kg
ha−1 of DAP (8 kgN: 21 kg P2O5 (9 kg P) ha−1). Thus, intercrops received 145 kg ha−1 DAP. Reseeding
in places of poor germination (‘gap filling’) was done approximately 2 weeks after initial sowing. All
maize crops were top dressed, at 4 and 7 weeks after sowing in two equal splits, using calcium
ammonium nitrate fertiliser (26 kg N ha−1). Hand weeding was carried out at least twice in each crop-
ping season, and the first and second weeding was carried out at 4 and 7 weeks after sowing in each
season followed by a third weeding when deemed necessary. Aphids and leaf-eating caterpillars were
controlled using Karate (active ingredient (a.i) Lambda-cyhalothrin), and fungal diseases on legumes
were controlled using Redomil (a.i. metalaxyl-M plus mancozeb) at recommended application rates.

The Calliandra hedgerows were established using small seedlings spaced at 4 m× 0.50 m
(19 August 2016) in the beginning of the SR 2016 cropping season (seedlings were not available
in LR 2016). Each plot had three hedgerows that were placed at the top, middle and bottom of the
plot. The seedlings received supplementary watering for the first 3 weeks to prevent wilting.
The seedlings grew naturally until the end of the LR 2017 when they were cut at 0.60 m height.
Calliandra mulch was imported from the nearby farms in the LR 2016 before the hedgerows were
established, and also in the following seasons because the seedlings in the plots were too small to
provide sufficient quantities of plant material. The mulch was applied at 5 Mg ha−1 soon after
sowing in all seasons.

Field measurements

Runoff and soil erosion
Runoff and soil erosion measurements were carried out after each rainfall event that resulted
in accumulation of water in the tanks. The second tank accounted for 1/6 of the overflow from
first tank. The total overflow was then added to the volume of water in the first tank. The total
volume from all the rain events was added and converted to give runoff in cubic metre per
hectare.

All soil sediments collected from each tank were weighed on each sampling occasion.
Thoroughly mixed soil sediments sub-samples weighing approximately 500 g were collected from
both tanks for oven-drying. In cases where the soil sediments collected were below 500 g, the
whole sample was used. Soil sediments sub-samples were oven-dried at 105 °C until a constant
weight was reached. The quantity of soil sediments from the splitter tank was also multiplied by
six as in the case of runoff. Soil erosion is reported on a dry weight basis in kilogram per hectare.

Water infiltration
Infiltration measurements were carried out during the SR 2016 and LR 2017. Water infiltration
was measured on 14 November 2016 (67 days after planting) and 5 May 2017 (65 days after plant-
ing) during the SR and LR, respectively, using a single ring infiltrometer measuring 5.08 cm in
diameter and 12.70 cm in depth. The ring was driven 5 cm into the soil in an area cleared of plant
material. The infiltration was measured by pouring 107 mL of water into the ring and recording
the time taken for the water to infiltrate the soil. The procedure was repeated at three random
positions in each plot.
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Earthworms
Sampling of earthworms was carried out at three sampling points in each plot on two occasions, in
November 2016 (SR 2016) and May 2017 (LR 2017), that is, approximately 60 days after sowing
when there was adequate soil moisture. The sampling was done in the buffer zone outside the
main runoff plot to avoid soil disturbance that may have affected soil loss results. A metal frame
measuring 0.25 m× 0.25 m was randomly placed in the plot and all crop residues in the area were
removed. The soil was extracted to a depth of 10 cm and hand sorted for earthworms. Both earth-
worms and soil were returned to the sampling point after counting the earthworms.

Above-ground biomass and crop grain yield
Biomass data were collected from eight central rows, each crop measuring 3 m long. The total
fresh weight of biomass from the net plot was weighed and a sub-sample (500 g) was oven-dried
at 80 °C for 48 hours. The sub-sample dry weight and fresh weight ratio was used to determine
biomass dry weight in kilogram per hectare. All three Calliandra hedgerows were pruned during
the LR 2017 season at 0.60 m from soil surface in each plot, and the leaves and stems in each plot
were weighed separately. The average weight of leaves and stems in the three rows was calculated
to give fresh weights of each plot. Stem and leaf sub-samples of approximately 200 g were collected
at each weighing. The sub-samples were oven-dried at 80 °C for 48 hours. In intercropping treat-
ments, total biomass included all harvested crop material including Calliandra in the appropriate
treatment.

The maize grain yield was harvested on eight central rows, each measuring 3 m. The fresh
weight of all cobs in the eight rows was measured immediately after harvesting, and a sub-sample
of 10 randomly selected cobs was taken for air-drying. The fresh and air-dry weights of the sub-
samples were measured, and grain yield was calculated at the recommended 12% moisture
content. For common bean and groundnut intercropped with maize, the crops were harvested
between eight central maize rows, each measuring 3 m. Total fresh weight of the pods was mea-
sured in the field and a pod sub-sample of approximately 500 g was collected for air-drying. The
grain yield for legumes was calculated at 9% moisture basis. Sole Mucuna and Lablab grain data
were collected using the same procedure as for common bean and groundnuts.

Statistical analysis

All data collected were subjected to heterogeneity of variance and normality tests and then the
analysis of variance was carried out, using Statistix 9 statistical package for personal computers,
to assess the treatment effects on soil loss, runoff, water infiltration, earthworm populations, and
total above-ground biomass and grain yield (both maize and legumes) produced. The means of the
three sampling points for earthworms and infiltration per plot were used in statistical analysis.
Mean separation was carried out using the least significance difference test at p ≤ 0.05 on all sig-
nificant data.

Results
Runoff, soil erosion and water infiltration

Cropping season had a significant effect on runoff. Runoff was higher during the LR 2017 and SR
2016 seasons than in the LR 2016 season (Figure 2). Also, runoff differed significantly between
crop treatments in all three cropping seasons (Figure 2). The treatment Calliandra showed the
lowest runoff in all seasons. Mucuna was the second most efficient crop in reducing surface runoff
across the seasons, while the effects of the other crops were inconsistent. During the LR 2016
cropping season, runoff from the groundnut treatment was as low as from the Calliandra treat-
ment, whereas in SR 2016 and LR 2017, runoff under groundnuts was as high as with the worst
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performing crops. In the LR 2016, Lablab and Mucuna treatments had similar and intermediate
runoff, whereas during the SR 2016 and LR 2017, Lablab was diseased and did not differ signifi-
cantly from the maize–common bean (control) and the groundnut treatments. Both LR seasons
had an extended mid-season dry spell when compared to the SR season (Figure 1).

Soil erosion differed by cropping season with SR 2016 having more soil erosion than LR 2016 and
LR 2017 (Figure 3). Soil erosion was also affected by treatments during the three cropping seasons
investigated in this study (Figure 3). Soil erosion was lowest on the Calliandra treatment in all three
seasons, and the Mucuna treatment was similarly low during the first and the last seasons (<500 kg
ha−1). During the LR 2016, Lablab, Mucuna and Calliandra caused similar and lowest soil erosion,
while the maize intercrop led to the highest erosion. Overall, there was much greater soil erosion
in all treatments during SR 2016 (up to 6000 kg ha−1) as compared to LR 2016 and LR 2017, except
for Calliandra where erosion remained low. In the SR 2016 season, maize intercrop, groundnut and
Lablab had the highest soil loss, Mucuna caused intermediate and Calliandra caused the lowest. During
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the LR 2017 season, soil erosion was relatively low overall (500–1500 kg ha−1) and similar to LR 2016.
Soil erosion was highest under Lablab followed by maize intercrop. Calliandra, Mucuna and ground-
nut showed the lowest soil loss.

Treatments had a significant effect on water infiltration during the SR 2016 only (Table 2). The
highest water infiltration was observed under Calliandra and Mucuna treatments, while the lowest
was observed in Lablab treatment. Calliandra caused 154% higher infiltration rate than Lablab and
107% higher than the maize intercrop treatment.

Earthworm population

The treatments had a significant effect on earthworm populations during the LR 2017 season
only (Figure 4). Mucuna and Calliandra caused similar, large earthworm populations com-
pared to other treatments. The earthworm populations tended to be larger in Calliandra than
in the other treatments also in SR 2016 (p= 0.28). Treatments with low earthworm popula-
tions had high surface runoff (Figure 5a) and soil loss (Figure 5b) during the SR 2016 and LR
2017 cropping seasons.

Table 2. Effect of treatments on infiltration in Rongo during the short rains in 2016 and long rains
in 2017

Treatments

Short rains 2016 Long rains 2017

Infiltration Infiltration

(mL second−1) (mL second−1)

Maize/Common bean intercrop 2.7b 1.9
Groundnut* 3.0b 2.0
Lablab 2.2b 1.3
Mucuna 5.0a 1.4
Calliandra 5.6a 2.6
Least significant differences (LSD) 1.55 NS
p-value 0.003 NS

*Groundnut was intercropped with maize during the SR 2016 season. Means with different letters are significantly
different from each other.
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Above-ground biomass and crop grain yield

The total biomass produced was larger and more affected by treatment in the SR 2016 season
than in the LR 2016 (Table 3). In the SR 2016 season, the highest biomass was observed in
groundnut/maize intercrop, Mucuna and Calliandra treatments, while Lablab produced the
smallest biomass. In the LR 2017 season, Calliandra produced the largest total biomass fol-
lowed by maize intercrop.

Treatment had a significant effect on maize and legume grain yields during the SR
2016, where Calliandra treatment was larger than maize intercrop and groundnut treatments.
Mucuna treatment produced a higher grain yield than other legume treatments
(Table 3). During the LR 2017 season, treatments had a significant effect on legume grain
yields only and the same trend was observed when Mucuna had the largest yield
(Table 3). LR 2017 season had higher crop yields than SR 2016 in all treatments except for
Lablab.
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Figure 5. Effect of earthworms in different treatments on (a) runoff and (b) soil loss during the SR 2016 and LR 2017 season.
Significance of the correlations was not tested because the data points in the regression were not independent. x- earth-
worms per square metre.
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Discussion
Soil erosion control is a critical issue in smallholder farming systems in SSA. The washing away of
organic matter and nutrient-rich topsoil, accompanied by low fertiliser use, results in low crop
yields. The use of intercrops including different types of legumes has the potential to improve
soil fertility through reduction of soil erosion and addition of nitrogen through BNF.

Runoff, soil erosion, water infiltration and abundance of earthworms

Mucuna and Calliandra caused low soil erosion and runoff during the study period. Although the
first season trial was established late, this did not affect the results since the same trend of less soil
erosion was observed from Calliandra and Mucuna treatments as from other treatments through-
out the study period. Soil erosion observed during LR seasons in this study was generally low when
compared to other studies, for example, 6.9 Mg ha−1 recorded under no-till plus legume intercrop
in Zimbabwe 2005/06 cropping season (Thierfelder and Wall, 2009), >2Mg ha−1 under different
crop and tillage management in Western Kenya (Ampofu et al., 2002) and 52Mg ha−1 year−1 on
bare soils during 2010/11 cropping season in Southern Africa (Paterson et al., 2013). Since the
general level of erosion was small compared to other experiments conducted under similar
conditions, the relatively small differences found in the present experiment can be expected to
be of greater importance in situations as in the work referred to. Thus, the experiment supported
the hypothesis that herbaceous and woody species can reduce soil erosion compared to maize–
common bean intercropping. Increased infiltration was observed under Mucuna and Calliandra
treatments, which also supports the hypothesis that herbaceous legumes and tree legumes with
mulching enhance water infiltration and earthworm populations compared to intercropping of
annual crops and sole grain legumes.

Soil erosion, runoff and infiltration were probably reduced by the high soil cover provided by
the crop canopies and residues (Montgomery, 2007; Thierfelder and Wall, 2009). Retention of
crop residues increased soil cover at the onset of the season before crop establishment, which
reduced raindrop impact, soil erosion and runoff. Raindrop energy loosens and displaces soil par-
ticles and this energy is dissipated by ground cover (Kaspar et al., 2011). Living and non-living
mulch also diminishes the velocity of runoff which reduces the dispersion of soil particles from
their original source thus reducing erosion (Kaspar et al., 2011). Mulching also increases surface
roughness and thus reduces runoff velocity and increases ponding, giving the opportunity for in-
creased water infiltration (Jordán et al., 2010). The greater above-ground biomass production in
treatments with Mucuna and Calliandra also increases litter and organic material in the soil, which

Table 3. Crop grain and above-ground biomass yield (kg ha−1) in Rongo during the short rains in 2016 and long rains in
2017

SR 2016 LR 2017 LR 2016 SR 2016 LR 2017

Treatments Crops Grain yield (kg ha−1) Above-ground biomass yield (kg ha−1)

Maize intercrop Common bean 79b 229b 3192 4336B 8532A

Maize 3071B 7260
Groundnut Groundnut 73b 418b 2411 6592A 3040B

Maize 3361B –
Lablab Lablab 209b 80b 2318 548C 176C

Mucuna Mucuna 1626a 3433a 2963 6197AB 5097B

Calliandra Common bean 108b 240b 3481 5257AB 10426A

Maize 4339A 4697

LR 2016 has no grain yield data due to poor crops/crops not reaching maturity. Groundnut was intercropped with maize during the SR 2016
season and grown as sole crop LR 2017 (following farmer practice).
Statistical significances are indicated with different letters (p < 0.05) for maize(A, B) and legume(a, b) grain yield. Above-ground biomass yield is
the total biomass of the treatment.
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improves aggregation of soil particles. The addition of mulch favoured earthworm population
build-up, and the Calliandra leaves dropping during the season increased litter which may have
improved moisture retention and feed availability for earthworms (Buchholz et al., 2017). More
soil cover protects soil from direct sunlight and thus evaporation of surface water. This improves
the retention of soil moisture, which is important for earthworm survival (Ivask et al., 2006). Both
mulching and earthworm build-up contribute to more water infiltration (Jordán et al., 2010). As
the Calliandra hedgerows grew, they provided additional ground cover which helped reduce run-
off and soil loss. This could be the effect of changes in microtopography of the hedgerows (Lin
et al., 2009) and earlier development of leaves at the beginning of the season, when the existing
shrub roots can make use of residual soil moisture.

Establishing and pruning legume hedgerows for high quantities of fodder (or mulch) is labour
intensive. Although tree and herbaceous legumes are valuable feed sources for animals and have
been shown to increase milk production (Paterson et al., 2013), farmers are less willing to incor-
porate them because they lack experience in growing these crops. There is a very low interest in
herbaceous legumes since farmers prefer growing grain legumes to provide food security for their
families (Muoni et al., 2019). One way to increase interest in the inclusion of herbaceous or tree
legumes would be to stress its usefulness as fodder in addition to the soil fertility enhancing and
soil conservation aspects, but adoption is more likely in cases where livestock play an important
role in income generation.

The maize intercrop had higher runoff and soil erosion than the other treatments during the LR
2016 cropping season, probably due to the long dry spell. Due to late establishment in that season,
both maize and common bean suffered during the long dry spell and the vegetative growth period
and thus produced little ground cover that could prevent runoff and soil erosion. Maize and com-
mon bean were more affected by moisture stress than Mucuna, Lablab and groundnut. More soil
erosion and runoff were observed when the sole crop was in poor health, as we observed with
Lablab in the seasons with pest issues. In such situations, crop mixtures will generally perform
better than sole crops, because it is less likely that two or more crops will fail simultaneously,
and the additional crop helps maintain ground cover (Rapsomanikis, 2015). In addition, crops
such as Mucuna, Lablab and groundnut are all relatively drought-tolerant and can provide ground
cover even under harsh conditions.

Above-ground biomass and crop grain yield

Crop biomass is crucial in smallholder farms for livestock feed, soil improvement, fuel and con-
struction. Incorporating different crop types, for example, legumes in smallholder farms helps
provide soil cover and livestock feed of better quality that helps improve soil fertility and livestock
productivity. Groundnut intercropped with maize produced the largest biomass in SR 2016 sea-
son, while Calliandra (with maize and common beans) produced the largest biomass in LR 2017
season. Although the Calliandra treatment produced high biomass, farmers need to be aware of
the potential yield penalty resulting from competition for water, nutrients, light and space between
crops and hedgerows, which can be reduced by regular pruning of hedgerows (De Costa and
Surenthran, 2005). Biomass during the LR 2016 was lower than during other seasons because
of late planting, and a long dry spell during the vegetative growth stage. When crop residues re-
main in the field, soil organic matter can increase (Jordán et al., 2010) and this can increase bio-
logical activity and soil aggregate formation. Thus, legume crops that produce high biomass enable
dual benefits of livestock feed and soil improvement, which improve farm productivity.

The maize intercrops produced high grain yields that may help farmers remain food secure.
The Calliandra treatment had the largest maize yield during SR 2016 season due to the additional
organic matter that was added by leaf mulch from the previous season. However, the Calliandra
treatment had lower maize yield in the final season than maize intercrop treatment which may
have been due to increased competition with Calliandra hedgerows and subsequent yield loss
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(De Costa and Surenthran, 2005). Competitive crops such as Mucuna may be rotated with maize,
which can help control soil erosion, improve soil fertility, provide livestock feed and provide food
for farmers (Bonsu and Asibuo, 2013).

Conclusions
Incorporating a mixture of crop types in cropping systems has the potential to reduce runoff and
soil loss and increase earthworm populations and infiltration in smallholder farms. Based on the
results from this study, we conclude the following: use of a mixture of crop types including her-
baceous and woody species in cropping systems increases soil cover, which reduces the impact of
raindrops, as well as runoff and soil erosion. High soil cover can be attained in various ways
including intercropping (e.g. establishing Calliandra hedgerows in maize/common bean inter-
crop) or crop rotations with herbaceous legumes that produce large amounts of biomass (e.g.
Mucuna). By including a mixture of crop types, water infiltration can be improved through
increased soil cover and soil organic matter. Mucuna and Calliandra treatments produced both
high soil cover and above-ground biomass than treatments with only grain crops, which resulted
in high infiltration rates and numbers of earthworms. Large earthworm populations contribute to
increase water infiltration through soil aggregate formation and increased porosity. Inclusion of
legume crops with high biomass production allows farmers to use some biomass for protein-rich
livestock feed in integrated crop–livestock systems while improving soil fertility.
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