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GEOMETRIC APPLICATIONS OF CRITICAL POINT THEORY
TO SUBMANIFOLDS OF COMPLEX PROJECTIVE SPACE

THOMAS E. CECIL

Section 0—Introduction.

In a recent paper, [6], Nomizu and Rodriguez found a geometric
characterization of umbilical submanifolds M™ C R**? in terms of the
critical point behavior of a certain class of functions L,, p € R**?, on M™.
In that case, if pe R"*?, x € M, then L,(x) = (d(x,p))’, where d is the
Euclidean distance function.

The result of Nomizu and Rodriguez can be expressed as follows.
Let M™ (n > 2) be a connected, complete Riemannian manifold isometri-
cally immersed in R™"*?, Suppose there exists a dense subset D on R"*?
such that every function of the form L,, p e D, has index 0 or n at any
of its non-degenerate critical points. Then M* is an umbilical submani-
fold, that is M" is embedded in R**? as a Euclidean subspace, R", or a
Euclidean n-sphere, S™.

Since the set of all points p € R"*? such that L, is a Morse function
is a dense subset of R"*?, the above theorem could also have been stated
in terms of Morse functions of the form L,.

In this paper, we prove results analogous to those of Nomizu and
Rodriguez for submanifolds of complex projective space, P™(C), endowed
with the standard Fubini-Study metric.

Let M® be a complex nm-dimensional submanifold of P**?(C). For
p € P**?(C), x e M", the function L,(x) which we define is essentially the
distance in P**?(C) from p to x. In section 2, we define the concept of
a focal point of (M",x). We then prove an Index Theorem for L, which
states that the index of L, at a non-degenerate critical point = is equal
to the number of focal points of (M",x) on the geodesic in P**?(C) from
x to p.
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In the process, we find that if L,(x) = #/2, then L, has a degenerate
critical point at xz. Because of this, it is impossible to state the follow-
ing result in terms of Morse functions of the form L,.

Our main result is the following. Let M* (n >2) be a connected,
complete, complex n-dimensional Kéhlerian manifold which is holomor-
phically and isometrically immersed in P**?(C). Assume there exists a
dense subset D of P**?(C) such that every function of the form L,, pe D,
has index 0 or = at any of its non-degenerate critical points. Then M~
is P(C) or Q™C). Here P*(C) denotes a totally geodesic submanifold of
Pr+2(C), and Q"(C) is the standard complex quadric hypersurface of a
totally geodesic P**Y(C) C P*?(C).

In section 3, we prove the above result for co-dimension p =1;
and in section 4, we extend the result to arbitrary co-dimensions. Section
5 is devoted to a detailed study of the interesting special case Q*(C)
c P*Y(C). We find, among other things, that the set of focal points
is P**(R), a real (n + 1)-dimensional projective space naturally embedded
in P**Y{((O).

The author would like to express his sincere gratitude to his adviser,
Katsumi Nomizu, for his assistance in his work.

Section 1—Preliminaries.

We first recall the construction of the Fubini-Study metric on P™(C)
(see [4], vol. II, p. 273-78 and [7], p. 514-515, for more detail). We
consider P™(C) endowed with the Fubini-Study metric of constant
holomorphic sectional curvature 4 (we choose 4 instead of 1 for the
curvature to make calculations easier).

Consider C™*' with natural basis ¢, --,e,. The natural Hermitian
inner product on C™*! is defined by

m
(z,w) = >, 2*w*
k=0
where
m m
2= Y 2%, and w = >, wke,.
k=0 k=0

The Euclidean metric ¢ on C™*! is given by

g(z,w) = Re (z,w) for z,weC™*,
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The unit sphere
SZm+1 = {z e Cm+1|(z’ Z) — 1}

is a principal fibre bundle over P™(C) with structure group S' and
projection z. With the natural identification between vectors tangent to
Sm+1 and vectors in C™*!, one can show that for ze S™*!, the tangent
space to S’™*! at z, which we denote as T,(S*™*'), is given by

T, (S = {we C™*'|g(z, w) = 0} .
If we define T, by
T, ={weC™"|g(z,w) = giz, w) = 0},

then T is a subspace of T,(S*™*') whose orthogonal complement is {iz},
the 1-dimensional subspace spanned by the vector 4z. The distribution
T’ defines a connection in the principal fibre bundle S*™*(P™(C), SY), in
that T is complementary to the subspace {iz} tangent to the fibre
through z, and 7" is invariant by the action of S'. Thus the projection
7 induces a linear isomorphism =z, of T; onto T, (P™(C)), and x, maps
{iz} into 0 for each ze S*™*!,

We define the Fubini-Study metric, g, of constant holomorphic sectional
curvature 4 by the equation

§X,Y) = 9(X", Y")

where X,Y e T,(P™(C)) and X’,Y’ are their respective horizontal lifts at
2z where n(2) = p. Since g is invariant by the action of S!, the definition
is independent of the choice of z. The complex structure on 7% defined
by multiplication by ¢ induces the canonical complex structure, J, on
P™(C) by means of the isomorphism r,. Finally, =, induces the Kéhlerian
connection, ¥, on P™(C) in the following way. Let X,Y be vector fields
on P™(C), and let X’,Y’ be their respective horizontal lifts. Then for
P’ the covariant derivative on S*™*!, the equation

VzY =, V%Y
defines the Kihlerian connection on P™(C).

Section 2—Focal points, the functions L,, and the Index Theorem.

Let M™ be a connected, complex n-dimensional Kéihlerian manifold,
and let f be a holomorphic and isometric immersion of M” into P**?(C).
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Let N(M™) denote the normal bundle of M*. Any point of N(M™)
can be represented by a pair (x,7&) where x € M*, r ¢ R, and & is a unit-
length vector in Ti(M™), the normal space to M" at f(x).

We define y(x,§,7), —oo <r < oo, to be the geodesic in P**?(C)
parametrized by arc-length parameter r such that

7®,£,0) = f(x) and 7(x,£0)=¢.

In terms of the vector representation of P**?(C), r(x, &, ) can be described
as follows. Let we S*»*»*! guch that z(w) = f(x), and let & e T, such
that z,(¢) = & Then

r(@,&,7) = a(cosrw + sinré) .

Of course, y(x,&,7) does not depend on the choice of w.
We define a map F: N(M™) — P**?(C) by

F(.’L‘,r&) = T(x’$97') .
We note that for any values of z,& and r the following holds,
F(x,(r + n)¢) = F(x,7r8) .

Thus we may restrict the range of values of r to —z/2 <r < =x/2.

For ¢ e TH(M™), let A, denote the symmetric endomorphism of 7,(M")
corresponding to the second fundamental form of M at x in the direction
of £&. We first prove the following proposition.

PROPOSITION 1. Let (x,76) e N(M™). Then F,, the Jacobian of F, is
degenerate at (x,r€) in precisely the following cases:

(i) If r= x=n/2, then F is degenerate.

(ii) For —r/2<r <x/2, there is a contribution of v>0 to the
nullity of F, at (x,7r8) if

cotr ==k

where k is an eigen-value of multiplicity v of A..

Proof. Fix the point (z,7&) e N(M™); we want to examine the nullity
of F, at (z,78). We assume for the moment that » = 0, and by replac-
ing & by —¢& if necessary, we may assume 7 > 0.

Let U be a local co-ordinate neighborhood of x in M” with local co-
ordinates ', ?, ---,u. Choose orthonormal normal vector fields &, - - -

’
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&p,JE, ---,J&, on U such that &(x) = & For ease in notation, we let
&pj=J& for 1<j<p. For ueU, peTi(M"™), we can write

7 =u((1 - ]}'j; ) & + b+ oo+ E78,,)

where 0 < p< oo, 0<|t/|<1 for all §, and >3%2,(t7)* <1. The ¢/ are
the direction cosines of » and # = ||3||. The co-ordinates !, - - -, u*", u, t?,
-+, t*® are local co-ordinates for N(U).

Let weS*»*»+1  To avoid confusion, we will denote the map
wye: Ty — Ty (P**2(C)) by (m,),, When such precision is required.

Now let we S*»*»+! guch that z(w) = f(x). We define z¢e S¥»+»*!
by the vector equation

z=-cosrw + sinr ¢’

where (z,),(§) = & Then F(x,r8) = n(2). For any j, 2<j<2p, the
definition of F' implies that

9
F*( ot )

where 7(t?) is a curve on S***»*! defined by

= @G|,

(z,78)

7(t?) = cos 7w + sinr(1 — F))"*g], + t/¢) ,

where &],&; are the horizontal lifts of &,,&, respectively to T,. We see
that 5(0) = z for any j.

If r = +#/2, we will show F,(3/9t**") |, e, = 0. In that case, &,,, =
J& and for r = z/2

(AP | o4, = 19(0) = 1z,

]
F*( atw)

The case r = —x/2 is handled similarly. This proves ().
For |7l <=x/2, a straight-forward calculation which we omit shows,

P
Fo5r)
*\ at!

and

= (2).i) = 0.

(z,7€)

=sinr (@), (&) +0, for2<7<2p,

(z,78)

and
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"{5)

In fact, these computations show that if

= (z,),(sinrw + cosr &) + 0.

(z,7¢)

Jj=2

V=a(Z ) + Bo(-5r) e Tern@@)
then F (V) = 0 only if a; = 0 for all j. If we let
X = 36, (-2) e Taro@ @),

we shall next compute F,(X). That computation and the above will
show that

FX+V)=0 only if V=0.

(We remark that if » = 0, we must choose a slightly different co-ordinate
system to obtain the same result.)

Consider a vector X = >, 0,00/0u?) € T, ,ey(N(U)). If r=0, one
easily shows F (X) = X and so F, is non-degenerate at (x,0). Assume
again, then, that » > 0. Considering 7T, ,,(N(D)) as T,(U)@® R**, we
can write X = (Y,0) where Y ¢ T, (U). To facilitate the computation of
F. (X), we assume that the vector field &, defined above has been chosen
so that

V"Yfl:()

where VL is the connection in the normal bundle.

Locally, i.e. for some ¢ > 0, there is a curve g(t), —e <t <e, in M®
such that B(0) = 2 and B(0) = Y. Let a(t) be the lift of B(t) to Sre+m+1
so that «(0) = w, and =n(a(t)) = f(B(H) for —e <t <e.

If we define the curve y(f) in S*™+»+1 py

7(t) = cos ra(t) + sinr &(x(?)) ,
then 7(0) = 2, and
(1) F . (X) = (7).0)(0) .

We need to find the component of 7#(0) in T;. Considering 5(t) as a
curve in C**?*, we find

(2) () = cos r a(t) + sinr Dg,&1
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where D is the Euclidean covariant derivative in C**?*!, Since g(a(t),
Ela®) =0 for —e<t<e we have D, & = V5,8, Thus we have by
evaluating (2) at ¢ = 0,

(3) 7(0) = cos r @(0) + sinr V&1 .
One can show by a straight-forward calculation that
9G(0),2) = 0 = 9(5(0),2) ,
and hence 7(0) € T;. Since (z,) is an isomorphism on 7T}, we have shown
(4) (z,)7(0) =0 if and only if %(0) = 0.

To find when 7(0) = 0, we proceed as follows. We displace the vector
7(0) € T, by Euclidean parallelism and consider 7(0) e T,,(S*"*»*1),  Equa-
tion (3) shows that, in fact, 7(0) € T, since a(t) and &j(«(t)) € T%,, for all
t. Now, applying the isomorphism (r,), we have

(5) (7 )0(@(0)) = B(0) = Y

and

(6) (r)uTh0sD) = Vyé, .

But Fye, = —A.Y + P&, and since &(x) = & and Vg = 0, we have
(7) Pre,= —A.Y .

Thus, using (5),(6),(7) and applying (z,), to (3) we have
(8) (7 )w(0) = cosrY — sinr A, Y .

Since 7(0) € T, we know (x,),%(0) = 0 if and only if 7(0) = 0. From
(8) we see that %(0) = 0 if and only if & = cotr is an eigen-value of A4,
and Y is an eigen-vector of k. From (1) and (4) we see that this also
gives necessary and sufficient conditions under which F,(X) =0. If
cot r is an eigen-value of multiplicity », then it is clear that F', vanishes
on a y-dimensional subspace of T, ,N(M"), i.e. F', has nullity v.
Q.E.D.

Since the degeneracies of F', of type (i) in Proposition 1 depend
only on r = +£x/2 and not on M" or the point x e M", they provide no
information about M* itself. Thus such degeneracies will not be included
in the following definition of a focal point of (M”,z). In the definition
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it is understood, as above, that & is a unit vector in Ti(M®) and
—n/2<r<n/2

DEFINITION. A point p e P**?(C) is called a focal point of (M”, x) of
multiplicity v if p = F(x,78) and cotr is an eigen-value of multiplicity
v>0of A,. (We say p is a focal point of M if p is a focal point of
(M,x) for some xe M=.)

We now proceed to define the functions L,. For p,qe P**?(C), and
z,w e S¥*+»+l guch that #(z) = p, =(w) = q, we define

L,(q) = cos™' ((z,w)P) ,

where 0 < cos™'( ) <x/2. One easily checks that the definition of L,(q)
is independent of the choice of z,w.

We remark that L,(¢) is essentially d(p,q) the distance in P"*?(C)
from p to ¢ which is given by

d(®, @) = cos™' ((z, w)) .

We use L,(q) rather than d(p, ¢) to gain differentiability at points ¢ such
that L,(q) = n/2. i.e. (z,w) = 0.

For p € P**?(C), x € M, we define L,(x) = L,(f(x)). If p e f(M"), then
the restriction of L, to M is a differentiable function on M". From
this point on, we will only consider L, such that pe¢ f(M™). For such
a point p, the following proposition describes the critical points of the
function L, on M*.

PROPOSITION 2. Let peP"?(C), and x,€ M™ such that f(x,) # .
Then z, may be a critical point of L, in precisely the following 2 ways.
(i) If L,(x) = =/2, then L, has a degenerate maximum at x,.

(ii) If Ly(x)-<=z/2, L, has a critical point at x, if and only if p can
be expressed as F(x,, &) where & is a unit vector in Tt (M™) and 0 <r <z/2.
In this case,

(@) =z, is a degenerate critical point if and only if cotr is an eigen-
value of A,.

(b) The indexr of L, at a non-degenerate critical point x, equals the
number of eigen-values, k;, of A, such that k; > cotr. Each k, is counted
with its multiplicity.

Proof. Fix x,e M, and let p ¢ P**?(C). Fix z,e S***P*! guch that
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n(2,) = p. Let X be a vector field on M", and let X’ be the horizontal
lift of X. For xe M» and w e S¥*»*»+! guch that n(w) = x, we have

XL, (%) = (z,X)L,(x) = X'(L, o z)(w)
= X'(cos™ (|(z5, W) P)) = X'(cos™ (9(z,, w)* + 9(2,, 1w)*)

—[29(zy, W) X' (g(2,, w)) + 29(2,, tw) X' (9(2,, Tw))]
A — [g(zg, w)* + g(24, tw)* V2

But X’(9(2,, w)) = 9(2y, X,), and we obtain

(9) XL,,(x) — —2[9(zy, w)9(2,, X,,) + 9(2,, '.i'w)g(zov 1X,,)]
A — [9(zg w)* + 9(2p, 1w P

In particular, to find XL,(x,), we can choose w,e S*»*»+! guch that
n(wy) = %, and such that g(z,iw,) = 0 and 0 < g(z, w,) <1. We know
9@z, wy) <1 since p # f(x,). From (9) we then obtain,

_ —2[g(z,, w9 (2y, X:ao)]
4o Ao = 1 G 0y

From (10) we see that to have XL,(x,) = 0, we must have either,

(i) 9@yw) =0  or

(i) g(z, X3,) = 0.

In case (i) z, is obviously a maximum of L, since L,(x,) = =/2 which
is the maximum value L, attains on P"*?(C). A direct calculation of
the Hessian of L, at z, would show that the Hessian is degenerate,
and hence x, is a degenerate maximum of L,. We omit that argument
here and appeal instead to the following geometric argument. The set
of points

Pr+27H(C) = {q e P**?(C)| L,(q) = =/2}

is a totally geodesic hypersurface of P**?(C) given by the image under
the projection n of S*»+»-1 where

Sz(n+p)—l — Sz(n+p)+1 m {wecn+p+ll(zo’ ,w) = 0} .

This P**?-(C) is the set of zeroes of an analytic function on P**?(C).
If f(x,)e f(M™) N P**»-1) then in a neighborhood U of z, in M", the set
f(U) N Pr*?1 is the set of zeroes of an analytic function on U. It
follows essentially from the Weierstrass Preparation Theorem (see [1],
p. 37-43) that f(U) N P**?~}(C) is a sub-variety of U of dimension j,
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where j >n — 1. For n > 2, this illustrates that z, is not an isolated
maximum of L, on M"; clearly then, x, is a degenerate maximum. This
proves (i).

Now we assume ¢(z,, w,) > 0, i.e. L,(x) <=/2. Since L,(z,) # 0, we
know g(z, w,) <1; and so there exists r, 0 <r <=z/2, so that cosr =
9(2y, wy). Then it is easy to show,

(11 2y = COS T W, + sinr &
where & e T, and ||§'|| =1. Then,
9z, X3,,) = sinr g(¢', X3,)

for X, the horizontal lift of X e T, (M"™). This and (10) imply that if
Ly(z) <x/2, then z, is a critical point of L, if and only if #, (&) =
£eTL(M™); in that case, p = F(x,,7&) and we have proven (ii).

Now for p = F(x,,18), 0<r <rx/2, we wish to prove (a) and (b).
We first compute the Hessian of L, at x,. Let X,Y be vector fields on
M™ and X’,Y’ their respective horizontal lifts. We have shown

—2[g(2,, W)9(2y, X7) + (2, 1W)9(2, 1 X,)] -
9 XL(2) =
(9) o(®) @ = [9Gz0, ) + 90an W0V T

where z(w) = .
We now find YXL,(x,). For w, as chosen above,

9@y, X)) = 9(2,1X5,) =0 and  g(z,,tw,) = 0.
We also know that
Y'(9(z4y X2)) = 9(20, Dy X")

where D is the Euclidean covariant derivative in C**?*!, Using these
facts we differentiate (9) to find YXL,(x) and then evaluate at x, obtaining

—29(24, W9(29, Dy X7) |y
12 YXL,(x,) = 0 W92 o
12) o) @ — gz, w))"

But we know g(z,, w,) = cos r so
1 — g(zp, wy)* =1 — cos*r = sin>r(1 + cos?7) ,

and we re-write (12) as
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—2cos 7 g(Zoy DY’X/) 'wo

13 YXL =
(13) o(%) (1 + cos? ) ginr

From well-known properties of the embedding of S*»+»*! jn Cr*#*,
we know that for any w e S*»+»+1,

a4 Dy Xy =V X |y — 9 X, YW .

We can also write

(15) ey X' =W + o/(X’,Y)

where = (W) = I'yX, where V is the covariant derivative on M", and
T (X, Y)) = (X, Y) ,

where a(X,Y) is the second fundamental form of the immersion f. Now
since #,(&) € T+ (M™), we have g(&’, W) = 0. Since &,WeT,,, we know

gwy, &) = 0 = glw,, W) .
Thus (11),(14), and (15) yield,
16) 924y Dy X") |y, = sinr g(&, &/ (X', Y)) |y, — €087 9(X', Y') |y, -
But

9@, (X", Y) |, = G, (X, Y)) |,
== g(AeX’ Y) Ixo .

Thus (16) becomes
9y, Dy X") |y, = sinr §(A.X,Y) — cosr §(X,Y) |,,

and (13) becomes

an YXL,(x) = -(ﬁz-%%ﬂ—g((—zae + cot 7 DX, Y) o,
where I is the identity endomorphism on T, (M™).

From this expression for the terms of the Hessian of L, at x, we
conclude that x, is a degenerate critical point of L,, if and only if cotr
=k for k an eigen-value of A,. This proves (a).

The index of L, at a non-degenerate critical point x, is defined to
be the number of negative eigen-values of the Hessian of L, at z,, For
cot r # k, for any eigen-value k, of 4,, we see from (17) that the index
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of L, at z, is the number of k; such that k; > cotr. This proves (b).
Q.E.D.

Propositions (1) and (2) yield immediately the following theorem :

THEOREM 1 (Index Theorem for L,). Let p = F(z,78) for 0 <r <=z/2.
Suppose L, has a non-degenerate critical point at x. Then the index of
L, at x equals the number of focal points of (M",x) which lie on the
geodesic in P**?(C) from f(x) to p. Fach focal point is counted with
its multiplicity.

Section 3—A Characterization of P*(C) and Q*(C).

We now proceed to the main result of this article which we state
here.

THEOREM 2. Let M™ (n>2) be a connected, complete, complexr n-
dimensional Kdhlerian manifold which is holomorphically and isometri-
cally immersed in P**?(C). If there exists a dense subset D of P"*?(C)
such that every function of the form L,, pe D, has index 0 or n at any
of its mon-degenerate critical points, then M" is embedded in P"*?(C) as

P*(C) or Q(C).

In the above statement, P*(C) stands for a totally geodesic submani-
fold of P*+2(C), and Q™(C) is the standard complex quadric hypersurface
of some totally geodesic P**{(C). In P"*(C) has homogeneous co-ordinates
(2gy +* +» 2440, then Q*(C) is defined by the equation

Zot o+ 2 =0,

In the remainder of this section we assume that M~ satisfies the
hypotheses of Theorem 2. To begin the proof of Theorem 2, we state
the following proposition. Its proof, which we omit here, depends on
Propositions 1 and 2. With minor changes, the proof is identical to the
corresponding proposition for submanifolds of R™ proven by Nomizu
and Rodriguez ([6], p. 199).

PROPOSITION 3. Let D be a dense subset of P**?(C). Assume that
for p e P**?(C), L, has a non-degenerate critical point of index j at x e M".
Then there exists qe D, ye M" such that L, has a non-degenerate critical
point of index j at y (¢ and y may be chosen as close to p and x, respective-
ly, as desired).
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Using Proposition 3 and the Index Theorem, we now prove the
following proposition which is sufficient to complete the proof of Theorem
2 for the case of co-dimension p = 1.

PROPOSITION 4. Let xe M"® and £ be a unit-length vector in TL(M™).
Then there exists A >0 such that A: = I on T, (M").

Proof. Fix xe M™ and ¢ a unit-length vector in Ti(M"). If A, has
no non-zero eigen-values, then A, = 0 and the proof is complete.

Suppose A, has at least one non-zero eigen-value. It is known that
A, must have the form

i, 0
k,

—Fk

0 - kn_

when diagonalized for k£, >0, 1<i<mn. Let i1 be the largest of the
eigen-values. If k;, =2 for 1 <i<n, then A = I and the proof is
finished. If k;# 2 for some %, let $>0 be the second largest of the
non-negative eigen-values. Choose 7,0 < r < =x/2, such that g8 <cotr <a.
For p = F(x,rf), Proposition 2 implies that L, has a non-degenerate
critical point of index j at x where 0 < j < 2n. Since 1> cotr > k,;, for
any k; # 4, Proposition 2 also implies that j equals the multiplicity of A.
For D as in Theorem 2, Proposition 3 implies that there exists ge D
and y € M" such that L, has a non-degenerate critical point of index j
at y. Since j> 0, the hypothesis on the index of L,,qe D, at a non-
degenerate critical point implies that 7 =n. Thus A2 has multiplicity
equal to », and again we conclude A} = #I. Q.E.D.

Remark 1. For the case when M" is a hypersurface of P**}((C),
Proposition 4 yields the proof of Theorem 2 in the following way.

The condition that A% = 21 for any &e¢ TiH(M™) and any e M" im-
plies that M* is an Einstein manifold. This is clear from the following
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equation (see [8], p. 2563). For S(X,Y), the Ricci tensor of M=, it is
true that

SX,Y) = —2¢(A:X, Y) + 2(n + DX, Y)
=2+ 1—-MJX,Y).

Since the real dimension of M" exceeds 2, a classical theorem (see [4],
Vol. I, p. 292) implies that 2(n + 1 — 2% is indeed constant on M*. Thus
M is an Einstein manifold. Theorem 2 then follows from the follow-
ing result of Brian Smyth ([8], p. 265).

THEOREM (Smyth). For n >2, PYC) and Q™*(C) are the only com-
plex hypersurfaces of P**Y(C) which are complete and Einstein.
(end of Remark 1).

Section 4—Reducing the co-dimension.

To complete the proof of Theorem 2 for arbitrary co-dimensions,
we will show that under the hypotheses of Theorem 2, M* is actually a
hypersurface of a totally geodesic P**(C) C P**?(C).

We first must introduce the concept of the first normal space of
M™ at xe M.

DEFINITION. For x € M, the first normal space, N,(x), is the orthogo-
nal complement in Ti(M™) of the set

Ny@) = {¢ e THM™) |4, = 0} .
We define a new inner product, {, >, on N,(x) by
&) = trace A4, for &,7e Ny(2) .

One easily checks that ¢, > is a positive definite inner product on N,(z),
and that for &,7e N(x),

aas) &I = L&
and
(19) & JE> =10.

For &e N,(x), Proposition 4 implies A2 = 22I for 1> 0. Then it is
eagsy to see that T.,(M™) can be decomposed as

T,M® =T T;
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where

T: ={XeT, (MM AX = 1X}
and

T: ={XeT,(M|AX = —2X}.

It is a simple matter to show that if Xe T}, then JXeT;; and if
XeT;, then /JXeT;. We employ the inner product {, > in the follow-
ing proposition to prove that N,(x) has complex dimension no larger
than 1 for all = M.

PROPOSITION 5. Let xe M™ and let k be the complex dimension of
N(x). Then k <1.

Proof. Assume k> 1. Choose &, .-, &, so that with respect to the
inner product {, >, the vectors &,---,&, J&, --,J& from an ortho-
normal basis for N,(x).

We know there is a positive function 2 on N,(x) such that A2 = 2%(¢&)]
for any £e Ny(x). If e, ---,¢, are an orthonormal basis for T+ = T},
then Je,, - --,Je, are an orthonormal basis for T- = T;. With respect
to the basis 2 for T, (M"),

Q 2{61’ “‘,emJeu ""Jen} ’

the endomorphism A, is represented by the matrix

_ eI, 0
(20) A“"[ 0 —z(e,)l,,]

where I, is an n X n identity matrix.
Fix 7,2<j< k. Consider X ¢ T*, and suppose 4, X =Y + Z where
YeT*, ZeT-. First of all, we have

21 AL X =25+ £)X .
But also we find,

Afre X = AgreAere X = ALX + (A A, + AefAel)X + 41X
(22) = 2E)X + PENX + AE)Y — 2) + A& + Z)
= (&) + F(ENX + 22(&)Y .

Then (21) and (22) yield
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(23) Y =pX,  where p= [ + &) — (&) — ¥(gpPl/22¢) .

Since we see that p does not depend on the choice of X, we have
shown that for any X e T*,

(24) A X=pX+Z  where ZeT-.
From (24) we can also compute for X e T*,
(25) AJX = —JA X = —-JuX +2Z)= —pX —JZ .

Equations (24) and (25) and the fact that A,, is symmetric imply that
with respect to the basis 2,A,, has the form

1. ‘B
2 A, = [F‘ n ]
(26) b B —ul,

where B is an n X 7 matrix.
Since &, and &, are orthogonal with respect to <, >, we know

20 trace A, A, = 0.

However, equations (20) and (26) imply that with respect to the basis 2,

(28) A A, = [2(5%“17& 2($iJ ] .

From (28) we compute trace A, A, = 2na(¢)y. Comparing this with (27),
we conclude g = 0, since 4(§,) > 0. Hence (26) becomes

wely %)

From the fact that F is a Kihlerian connection, one easily shows that
A;,=JA,. From (29), we see that as a matrix,

Aw=ta= g 3l =10 8l
This shows that A, maps T* into T* and T~ into T-. This fact
and computations similar to those leading to (23) show that for X e T+,
A, X =0X,
where

v = [2(& + J&) — X&) — F(JEP1/24(8) .
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Thus we can represent A, as,

(30) Az, = [D(I)n —gI ] .

Now equations (20) and (30) imply that A.A4,. = A(¢)vl on T, (M), and
31 trace A A, = 2na(&)y .

But <¢,J¢,> =0, and so traceA,A,, =0. Comparing this with
(31), we conclude » =0. Then (30) implies A,, = 0 which implies 4.,
=0, and §,¢ N(x). This is true for 2 < j <k, and we have obtained
a contradiction if we assume £ > 1. Thus, £ < 1. Q.E.D.

We first want to make it clear that we have no further use for the
inner product <, >. Any subsequent references to metric properties such
as orthogonality are made with respect to the metrics g or §.

We now begin to reduce the co-dimension. The argument is similar
to that used by Cartan to show that an umbilical submanifold of R™
which is not totally geodesic must be a Euclidean sphere embedded in R™
(see [2], p. 231).

Proposition 5 enables us to define a function 4 on M* in the follow-
ing way. Let a(X,Y) be the second fundamental form of M* in P**?(C).
If o(X,Y)=0 at xeM", weset A(x) =0. If o(X,Y)#0 at xe M*, then
by Proposition 5, N,(x) has complex dimension 1. We define A(x) to be
the well-defined positive number such that A% = 2%(x)] for any unit vector
& in N,(z). It is easy to show from the obvious dependence of A on
a(X,Y) that 2 is continuous on M*. We omit that proof here, however,
and next prove the following.

PROPOSITION 6. Let xe M™ and suppose the second fundamental
form a(X,Y)#+0 at x. Then there is a neighborhood U of x in M"™ on
which the function A is constant.

Proof. Let U be a neighborhood of z on which «(X,Y) %= 0. Then
by Proposition 5, N,(#) has constant dimension 1 on U. It is easy to
show, then, that there exists a unit-length vector field &, on U such that

N (u) = span {&,J&} for every ue U .

Let &, ---,&, be unit-length normal vector fields on U such that ¢,¢&,
<oy EpyJEyy -+, JE, are an orthonormal basis for Ti(M™) for any ue U.
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Fix an arbitrary point ue U. The following equation defines the
the tensors s,; and t,; on T,(M™),

(32) rie; = z 80, (X)Ex + z t,(X)Je,  for Xe Tu (M) .

The fact that '+ is a Kéihlerian connection readily implies

(33) 8 (X)) = —s8;(X)
and
39) by (X = £(X) .

Now we know A,, = A;,, = 0 for 2 < j<p. This fact and (33) imply
that Codazzi’s equation for A,, reduces to

(35) FxA)(Y) — t,(XDJAL(Y) = (FrA)X) — tu(Y)JA(X) .

Let X,Y e T+ = T} (uw) such that X,Y are linearly independent, and
suppose

VY =X, + X, for X,eT*,X,e T,
ryX=Y,+7%, for Y, eT*,Y,eT".

Using the above equations and recalling the following equations,

A Z = iZ for ZeT+,
A7 = —1Z for ZeT-,

we find after some calculation that (35) becomes
(36) XY + 22X, + t,(XDAJY = (YDX + 22Y, + t,(V)AJX .

But X,,Y,,J/X,JY are in T, and the component of (86) in T* is,
37 XDY = (YDX .

The linear independence of X and Y implies that X2 = 0. This is
true for any X e T*. A similar calculation shows X2 =0 for any XeT".
So we have X1 =0 for any X e T,(M") for any ue U. This is implies
A is constant on U. Q.E.D.

Proposition 6 enables us to prove that N,(x) has constant dimension
on M* as follows.

PROPOSITION 7. N,(x) has constant dimension on M*.
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Proof. If the second fundamental form «(X,Y) = 0 for all ze M=,
then N,(x) has constant dimension 0; and the proof is complete.
Suppose a(X,Y) = 0 at x,e M*. Consider the set S defined by

S = {x e M*| A(z) = Axy)} .

Since 2 is continuous on M", we know S is closed. However
Proposition 6 implies S is open. Since 7,€S, we know S # ¢; so the
connectedness of M™ implies S = M". Hence 2 = A(xz,) on M", and N,(x)
has constant dimension 1 on M~*. Q.E.D.

In the case where N,(x) has constant dimension 0, M* is totally
geodesic, and hence M* = P*(C). To complete the proof of Theorem 2,
we must show that when N,(x) has constant dimension 1, we can reduce
the co-dimension to 1.

Let U be any co-ordinate neighborhood of M*. As before we choose
orthonormal vector fields ¢&,,---,&, so that &,---,§,,J&, ---,J&, span
Ti(M™) for any uwe U, and such that &,J& span N,(u) for any ue U.
We then prove, .

PrROPOSITION 8. For any xe U and X e T ,(M"™) the following equa-
tions are true:

(1) Pz& = t,(X)J§,

(i) For j>2, V'4&; and V4JE, e span {&,J&|2 < k < p}, i.e. N (x)
and N,(x) are invariant with respect to Vi,

Proof. For ease of-notation, let A;=A4,, 1<j<p. For any fixed
7,2 < 7 < p, Codazzi’s equation says the following,

72 A)(Y) — z: 80/ (X)AL(Y) — z te (DT AL(Y)

is symmetric in X and Y.
Since 4; = 0, then (FyA;) = 0 and Codazzi’s equation can be written
as:

38) 8,(X)A(Y) + £,(XDJA(Y) = 8;(Y)A(X) + t,,(Y)JA(X) .

Choose X,Y linearly independent vectors in T (x); then since A,(X)
= 2X and A,(Y) = 1Y, (38) becomes

39 8,,(X)2Y + ,;(XDAJY = 8,;(Y)AX + t,;(NAJX .
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But X,Y,JX,JY are linearly independent, so (39) implies
(40) 8/ (X) =1,,(X) =0, 2<j<p.

A similar calculation shows that (40) holds for X ¢ T; (x), and hence
(40) holds for all X e T, (M™). We recall that for 1< j<p,

(32) rig, = 2 s, (X)E, + z £ (XD Ex -

Then s;; = —s;; and &, = t;; and (40) imply that for j =1, (32) becomes
(41) V%SI = tu(X)J‘fl

proving (i). For the same reasons, for § > 1, (32) becomes

(42) PE6s = 2 8u/X08 + 3] bt
Then VyJ&; = JV£&,) and (42) prove (ii). Q.E.D.

Finally Proposition 8 and the fact that N,(x) has constant complex
dimension 1 will imply that f(M") c P**'(C) after we prove the follow-
ing proposition. We note that J. Erbacher, [3], has proven a corres-
ponding result for real submanifolds of real space forms. With minor
changes, the following proposition can be proven for submanifolds of
C"*? and the complex hyperbolic space form, H**?(C).

PROPOSITION 9. Let f:M"— P**?(C) be a holomorphic and isometric
immersion of a connected, complete, complex n-dimensional Kdihlerian
manifold M® into P"*?(C). Suppose the first normal space N,(x) has con-
stant dimension k, and is parallel with respect to the normal connection.
Then there is a totally geodesic (n + k)-dimensional submanifold, P***(C),
such that f(M™) C P***(C).

Proof. We first remark that since N,(x) is parallel with respect to
L, so is its complement N, (x). Let U be a co-ordinate neighborhood
of M* and fix z,e U.

Choose &, ---,&,€ T5(M™ so that the following equations hold for
T = %y,

(43) Ny(») = span {¢;,J§;|1 < j < k}

and
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49 Ny(#) = span{&;,J§,|k + 1< j < p}.

Extend ¢, ---,&, to vector fields on U by parallel translation with
respect to FL along geodesics of M"®. Then (43) and (44) hold for any
rzeU.

Let &; denote the horizontal lift to T, of &,(x(w)) where n(w)e U.
Fix w,e S*»*»*! g0 that n(w,) = x,. Let V,, be the real affine subspace
of C**?*! through w, given by

Vw, = span {&j(w,), & (w) |k + 1< j < p}.

Let W, be the real affine space through w, of real dimension 2(» + &k + 1)
which is orthogonal to V,, Since the vector —w,e W,,, we know that
the affine space W, passes through the origin in C"*?*!. Hence the set

2 B+l — 2 1
S (n+k)+ = I;Vw0 n S (n+p)+

is a great (2(n + k) + 1)-dimensional sphere in S?*®*»+!  The set P***(C)
= n(S¥*+*B+1) is an (n + k)-dimensional totally geodesic submanifold of
P 2(C). We will show that f(M™) C P***¥(C).

We first prove f(U) c P~**(C). Fix ueU, and let =(t), 0 <t < ¢,
be a curve in f(U) from f(z) to f(u). Let w(f) be the lift of x(¢) to
Sxr+p+t g0 that w(0) = w, and z(w(t)) = x(¥), 0 <t < &,

We know that for 0 <t < ¢, we have

Vit = n,Th)  for 1<j<p.

We also know
Vsnts = —AED®) + Vi .

For j > k, however, A, = 0 and

Viwés € span {&n, Jén |k + 1 <m < p},
and thus

Viwss € span {&,, Jen |k + 1 <m < p} .
A similar result holds for /;,J¢,, If we let

V, = span {§,(w®)), &, (w®) |k + 1 <m < p},

then by the isomorphism z,, we have for each ¢,

(45) Vaws; and Fg,ifieV,.
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Since g(w(t),&)) =0, for 0 <t < ¢, we have Dy,&; = Vy,&), where
D is the Euclidean covariant derivative in C»+7+!,
This fact and (45) imply that for all ¢, and for £k + 1 <7< p,

Dy&; and Dg,i&eV,.

Thus V, is a parallel Euclidean subspace along w(t), i.e. for each
t,V, is parallel to V,, in the sense of Euclidean parallelism.

For each ¢, let W, be the 2(» + k + 1)-dimensional real affine space
through w(t) which is orthogonal to V,. Since V, is parallel to V,,, for
each t, W, is parallel to W, for each ¢, in the Euclidean sense of paral-
lelism. However, for each t, —w(t) e W,, and thus W, passes through
the origin for each t. Hence we conclude W, = W,, for 0 <t < ¢,

Since w(t) is orthogonal to V, for all ¢, we have w(t)e W, = W,,.
Since w(0) e W,,, this shows that w(¢) e W,, for all ¢; and so w(t) € W,,
N §xerptl = et for 0 <t <t,. Applying z, we get 2(f) e P"*¥(C)
for all t. In particular, f(u) = z(t,) ¢ P***(C). Since u ¢ U was arbitrary,
we have shown f(U) C P***(C).

To prove the global result we use the connectedness of M». Let U,,
U, be co-ordinate neighborhoods of M" such that U, N U, # ¢. We have
shown above that there exist 2 totally geodesic (n + k)-dimensional sub-
manifolds of P**?(C), call them P»** and P7**, such that f(U) C Pp+*
and f(U, C P3+*,

Suppose Ptk =+ Pp+é,  Then, Pr+* (| Pi+k = P*+k-1 g totally geodesic
(n 4+ k — 1)-dimensional submanifold of P**?(C), and f(U,N U, C P***-1,
This implies that for z e U, N U,, the first normal space N,(z) has dimension
k — 1. This contradicts the assumption that N,(x) has constant dimen-
sion k¥ on M*. Thus we conclude Pr** = Pp+k = Pr*¥(C). Using this,
one easily proves from the connectedness of M* that f(M™) C P**¥(C).

Q.E.D.

Now Propositions 7, 8, and 9 combine to imply that under the
hypotheses of Theorem 2, f(M") C P**(C), a totally geodesic (n + 1)-
dimensional submanifold of P**?(C). The proof of Theorem 2 then fol-
lows from Remark 1.

Section 5—The Special Case Q" C P*+}(C).

In this section we make a detailed study of the case Q" C P**(C).
The main results are contained in Theorem 3. We first discuss some

https://doi.org/10.1017/50027763000016202 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016202

CRITICAL POINT THEORY 27

necessary preliminaries.
Consider C**? with natural basis e, ---,€,,,. We denote by H(z,w)
the complex bi-linear form defined by

n+l

n+l n+l
H(z,w) = > z*w* , where z = > z%e;, and w = >, wke, .
k=0 k=0 k=0

Then Q" is defined as
Q" = {z(2)|z € S*»*v*! and H(z,2) = 0},

where n is the projection from S***V*! {0 P**Y(C). We continue to as-
sume that P**}(C) has constant holomorphic sectional curvature 4.

Let ¢e Q" and & be a unit-length vector in T-(Q"). Then Smyth
([8], p. 263-265) shows that A, has the following form when diagonalized,
a=[5 9],

0 —I,
where again I, is an n X n identity matrix.

With these remarks aside, we first prove the following elementary
proposition.

PROPOSITION 10. Let z = > 2tlzbe, € S*™*V*,  Then H(z,z) =1 if
and only if 2% is real for 0 <k<n + 1.

Proof. H(z,z) = > %5 (#%)*; and if each 2* is real, then H(z,2) = ||z|}
=1. Conversely, suppose H(z,z2) = 1. Then letting z = > »f; z%e;, we
have

n+1
(46) @ 2F = |3 @) = 1= 2|2 -

The Schwarz inequality for the inner product (,) implies that (46)
can be true only if Z = ¢z for some ceC.
But then since (z,2) =1,

— k—k_n+1 kpyk — o k)2 —
1= 3 2"2%= 3 2fczF=¢c 2, (")’ =c.
k=0 k=0 k=0

Hence ¢ =1 and so zZ =z and 2z is real, i.e. 2z¥isreal for 0 < k<mn + 1.
Q.E.D.

Let R™** denote the real vector space spanned by ¢ ---,€,,,. Then
S+t defined by S**! = R*** N S¥»*b+1  jg an (n» + 1)-dimensional Euclidean
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sphere. The projection » takes the antipodal points z and —z e S**! onto
the same point p = n(z) € P**(C). This is the only identification on S»*!
induced by =, and we see that z(S**") = P**(R), a real (n + 1)-dimensional
projective space naturally embedded in P**'(C). Let p e P**'(R), and let
ze S™*! such that z(z) = p. We define a set S; by

Sy = {7:( x&zz ) ‘x e S**, g(x,2) = 0}

One easily shows that S7 is independent of the choice of z.

PROPOSITION 11. Let p e P**(R), then S} is the image of a Euclidean
n-sphere of radius 1/4/'2 isometrically embedded in P"*?(C).

Proof. Let ze S**! such that n(z) = p. We define R**! by
R = {we R"**|g(z,w) = 0} .

Let R"**= R"*' X {iz} where {iz} is the 1-dimensional real subspace
spanned by the vector ¢z. Then

Qn+l — pn+2 2(n+1)+1
Sttt = RN S

is a Euclidean (n 4 1)-sphere of radius 1. Then

S = { xj—gzz lw e 8™, g(x,2) = 0} c St
In fact, it is easy to see that S is a small-sphere of dimension » with
center i2/4/2 and radius 1/4/2 contained in S**'. One checks that no
two points of S are identified under the projection z. Thus = is a one-to-
one isometry on S, and #(S) = S is the image of a Euclidean n-sphere
of radius 1/4/2 isometrically embedded in P**?(C). Q.E.D.

The following theorem describes the focal point behavior for
Qn C Pn+1(c).

THEOREM 3. (i) The set of focal points of Q" C P**Y(C) is P**'(R).
(ii) Let pe P**Y(R); then

{qe Q"|p is a focal point of (Q", @)} =S~ .

Proof. To prove (i), we first show that the set of focal points of
Q" is contained in P"*'(R).
Let pe P**Y(C) be a focal point of (Q% q) for some ge@". By
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Proposition 1, p = F(q,7§) where ¢ is a unit-length vector in T7(Q™) and
cot r = 2 for some eigen-value 12 of A,. As we remarked at the begin-
ning of this section, 2= +1 for any such ¢ and & Choosing the sign
of ¢ properly we may assume cotr = 1, and then

F(q,%&) = n(T?%— + 7{5,__2—) where z(w) = q and 7, (&) =¢.

It is known (see [4], Vol. II, p. 279) that there exist unique real vectors
z,y of length 1/4/'2, with g(z,y) = 0, such that w = x + 4y. Then THQ"
is spanned by r.(ix + ¥) and =, (—2 + 7y). Thus we can express ¢ as

& = cos g(ix + ¥) + sing(—x + ©y) for some 4,0 < ¢ <2z .

Thus p = =(z) where

_ 1 . L
z~—ﬁ(w+cos¢(m+y)+sm¢( x + 1Y)

oz o , Yy . ,
=75 [1 — sing¢) + ©cos ¢] + Ned [cos ¢ + (1 + sin¢)i] .

Using the defining properties of © and y, we compute
H(z,2) = —sin ¢ + i cos ¢ = et¥+=» |
Let 2/ = e~t¥+=2/2z: then =(2’) = p, but
HE,2) = e *¢*"PH(z,2) = 1.

Thus by Proposition 10, 2’ is real, and so p € P**'(R).
Conversely, suppose p = n(2) where ze S**'. Let x e S"*' such that
g(x,2) =0. Let w=(x + i2)/v¥'2. Then,

Hw,w) =0, and ¢=ara(w)e@".

One easily shows that & = (—x + 2)/v/'2 € T}, and 7, (&) e THQ™. If
we let

then by Proposition 1, z(2’) is a focal point of (Q", @). But z(z’) = z(iz) = p,
and so the proof of (i) is complete.
To prove (ii) we let p = n(2) for z¢ S**.. Let
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S ={(x+ i2)/vV 2 |xe 8", g(x,2) = 0}
and

T ={geQ"|p is a focal point of (Q", )} .

By definition S% = #(S), and in the above proof of (i) we showed that
Sy T. To complete the proof of (ii), we show T C Ss.

Suppose qgeT. Let weS*»*P*! guch that a(w) =¢. Then w =
(@ + iy)/+/ 2 for a unique choice of x,y e S"*' such that g(x,y) = 0. By
(i) we know peP***(R), so there is zeS**! such that z(z) =p. We
first show

zZ=coSax + sinay for some «,0 < a < 2r.

We know that TH(Q") is spanned by

,r(:%%ﬂ_) and x*(“ &y)

By Proposition 1, any focal point of (Q*,¢) can be expressed as m(u)
where

1 (x+zy) 1 ( (——x+iy) . (zx+y))
47 U = cos sin
@D MR e T S e A d e
for some ¢,0 < ¢ < 2r.
Since z(z) = p is a focal point of (Q”,q), we must have z = e*y for
some % as in (47), and for some B, 0 < < 2rx. This implies that z is

a real linear combination of z,¥,7x and 7y. Since xz,% and z are all real,
we must have

(48) z=co8Sax + sinay for some a,0 < a <27 .

Congider w’ = (sina + icos ®)[(x + iy)/v/2]. Then z(w’) = n(w) =
q. But from (48) we see

w = ‘/}2_ [sinax — cosay) + i(cosax + sina ¥)]
= ;2_ [(sinax — cosay) + iz] .

Thus w’' e S, and qen(S) = 8%. This is true for any ¢e T, and we have
TcCSe. Q.E.D.
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