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Abstract

Suppose that an elliptic curve E over Q has good supersingular reduction at p. We prove that Kobayashi’s
plus/minus Selmer group of E over a Zp-extension has no proper Λ-submodule of finite index under some
suitable conditions, where Λ is the Iwasawa algebra of the Galois group of the Zp-extension. This work
is analogous to Greenberg’s result in the ordinary reduction case.
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1. Introduction

Let p be a prime number, and Zp be the set of p-adic integers. Let F be a number field
in which the prime p is unramified, and F∞ be a Zp-extension of F. We suppose that
F∞,q is abelian over Qp for any prime q above p. This is obviously true in some cases
such as when F∞ is contained in F(µp∞), or when p splits completely over F/Q. Let
Λ be the Iwasawa algebra Zp[[Gal(F∞/F)]], which may be identified with Zp[[X]] by
choosing a topological generator γ of Gal(F∞/F) and identifying γ = 1 + X.

Let E be an elliptic curve over Q, and assume that E has good reduction at p. In
other words, assume that its reduced curve Ẽ modulo p is smooth. Let ap denote
1 + p − |Ẽ(Z/pZ)|.

We recall the definition of the Selmer group of E over a field L/Q (see [12, Ch. X,
Section 4]):

Selp(E/L) = ker
(
H1(L, E[p∞])→

∏
v

H1(Lv, E[p∞])/E(Lv) ⊗ Qp/Zp

)
where v runs over every place of L, E[p∞] is the set of every torsion point of E(Q)
whose order is some power of p, and E(Lv) ⊗ Qp/Zp is regarded as a subgroup of
H1(Lv, E[p∞]) through the Kummer map.
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Suppose that we want to study the Selmer group Selp(E/F∞). When E has
good ordinary reduction at p (that is to say, p - ap), Selp(E/F∞) has been studied
extensively. On the other hand, when E is supersingular at p (in other words, when
p|ap), Selp(E/F∞) lacks certain crucial properties. For example, there is a missing
link between the Selmer group over F∞ and the Selmer group over Fn for each n, and
Selp(E/F∞) is never Λ-cotorsion.

In recent years Kobayashi [8] showed that the plus/minus Selmer group theory
holds great promise in this regard, and its connection with Pollack’s plus/minus p-
adic L-function has been widely studied. Many people consider them as a plausible
alternative (in the area of supersingular primes) to the conventional Selmer groups and
p-adic L-functions. See [8, 11].

Thus, it stands to reason that we should further investigate the properties of the so-
called plus/minus Selmer groups. Throughout this paper, we assume that ap = 0 just as
in the papers of Kobayashi and Pollack. This is not as restrictive as it seems because
if p is supersingular, ap is divisible by p, and by Hasse, |ap| ≤ 2

√
p, thus ap = 0 for all

supersingular p with p > 3. (It should be noted that the same argument does not work
for elliptic curves defined over other fields.)

T 1.1 (See Theorem 3.14). If Sel+p(E/F∞) (respectively, Sel−p(E/F∞)) is
Λ-cotorsion, then Sel+p(E/F∞) (respectively, Sel−p(E/F∞)) has no proper Λ-submodule
of finite index. For the statement for Sel+p(E/F∞), we require an additional condition
that p splits completely over F/Q, and is totally ramified over F∞/F.

See the discussions before and after Propositions 2.2 and 2.3 where we discuss why
we need the additional condition for Sel+p , and our current effort to lift this condition.

A similar result for ordinary primes has already been obtained in [2], from which
we freely borrow many ideas. To put it simply, [2] is a deep study on various arithmetic
dualities in connection with Iwasawa theory.

Theorem 1.1 was already used in the author’s other paper [7], published in 2009,
to prove that the lambda invariants of the plus/minus Selmer groups can be arbitrarily
large. Also, following [2], we prove the following: by the Weierstrass preparation
theorem, the Pontryagin dual of the plus/minus Selmer group

Sel±p(E/F∞)∨
def
= Hom(Sel±p(E/F∞), Qp/Zp)

is pseudo-isomorphic to
∏

i∈I± Λ/( f ±i ) for some finite index set I± and some f ±i ∈ Λ.
(A pseudo-isomorphism is a homomorphism with finite kernel and cokernel.) Let

f ±(X)
def
=

∏
i∈I±

f ±i ∈ Λ � Zp[[X]].

In other words, f ±(X) is a generator of the characteristic ideal of Sel±p(E/F∞)∨.

T 1.2. If Selp(E/F) is finite, then

| f ±(0)| ∼ |Selp(E/F)|
∏

l

cl

https://doi.org/10.1017/S1446788713000165 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000165


[3] The plus/minus Selmer groups for supersingular primes 191

where l runs over every prime, cl is the Tamagawa number cl = [E(Ql) : E0(Ql)] and ∼
means equality up to units of Zp.

2. Notations and plus/minus universal norms

Let k be a local field of residue characteristic p such that k/Qp is unramified, k∞
be a Zp-extension of k (in other words, Gal(k∞/k) � Zp), and kn be its unique subfield
such that Gal(kn/k) � Z/pnZ. We assume that k∞ is totally ramified over k, and k∞ is
abelian over Qp. Where F is a formal group (or formal group scheme), the universal
norm is the group of points

∞⋂
n=0

Nkn/kF (kn)

(or rather, the set of inverse limits lim
←−−n

xn, where xn ∈ F (kn) and Nkn+1/kn xn+1 = xn,
n = 0, 1, 2, . . .). In this context, Nkn/k means the trace map.

Hazewinkel’s computation implies that when F is a one-parameter formal group of
height greater than 1 and k∞/k is totally ramified, its universal norm is trivial [3, 4].
One implication is as follows. Let E be an elliptic curve over Qp, and suppose that
it is a minimal model over Zp and its reduced curve over Z/pZ is smooth. If E
has supersingular reduction (equivalently, its associated formal group has height 2),
its universal norm is trivial. This phenomenon seems to explain why, for example,
critical theorems like the control theorem [10, Section 1(a)] are difficult to establish for
supersingular primes. (See also Mazur’s comment on the matter in [10, Section 1(d)].)

Instead, following Kobayashi, we define the following groups.

D 2.1 (Plus/minus norm groups). For notational convenience, let k−1 be k.
We define

E+(kn) = {x ∈ E(kn)| Trkn/km+1 (x) ∈ E(km) for every 0 ≤ m < n, m even},

E−(kn) = {x ∈ E(kn)| Trkn/km+1 (x) ∈ E(km) for every − 1 ≤ m < n, m odd}.

This definition has to do with the series of points called plus/minus universal norms
that we will now explain.

First, consider an infinite extension L∞ = k∞(µp), and let Ln be its unique subfield
such that Gal(Ln/k) � (Z/pnZ)× for n > 0 (so Ln is simply kn−1(µp)), and let L0 be k.

Suppose that ap = 1 + p − #E(Z/pZ) = 0. As in [6, Section 3.2], we can construct
the points b(i)

n ∈ E(Ln) for n ≥ 0 and i = 1, . . . , d, where d = [k : Qp], which satisfy

NLn+1/Ln b(i)
n+1 = b(i)

n−1, n > 0.

We can produce points defined over kn by

c(i)
n = NL∞/k∞b(i)

n+1, n ≥ −1.
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It is clear that c(i)
n is contained in E+(kn) if n is even, and in E−(kn) if n is odd.

Accordingly, we define

c(i),+
n =

c(i)
n if n is even,

c(i)
n−1 if n is odd,

c(i),−
n =

c(i)
n if n is odd,

c(i)
n−1 if n is even,

for n = −1, 0, . . . .
When k = Qp and k∞ ⊂ Qp(µp∞), it is known that {(c(i),±

n )σn}i=1,2,...,d,σn∈Gal(kn/k)

generates E±(kn) for each n ≥ 0 [8, Proposition 8.12(ii)]. To the best of our knowledge,
it is not yet proven for every k and k∞, but we know enough to prove the following.
Let E±(k∞) = ∪E±(kn).

P 2.2 ([8, Proposition 8.23], [6, Propositions 3.17 and 4.9]).

(E−(k∞) ⊗ Qp/Zp)∨ � Λd

where d = [k : Qp].

P 2.3 ([8, Proposition 8.24], [5, Proposition 4.16]). If k = Qp,

E+(k∞) ⊗ Qp/Zp
∨ � Λ.

To prove Proposition 2.2, it is sufficient to know that {c(i),−
0 }i=1,...,d = {c(i)

−1}i=1,...,d

generates E(k) (the Nakayama lemma and a certain plus/minus p-adic regulator map
will take care of the rest).

Similarly, to prove Proposition 2.3, it is enough to know that {(c(i),+
0 )}i=1,...,d =

{(c(i)
0 )}i=1,...,d generates E(k), which we do not yet know in general. But, under the

given condition, Proposition 2.3 was proven in [5].
We hope that our current project on the case where k is the maximal unramified

Zp-extension of Qp will help reach a more conclusive solution.

3. Λ-submodules

Recall that F is a finite extension of Q in which p is unramified. For convenience
we assume that every prime q above p is totally ramified over F∞/F. Also, we assume
that F∞,q is abelian over Qp, and additionally, when we work with Sel+p , we assume
that p splits completely over F/Q.

We let Γ denote Gal(F∞/F) and Λ denote Zp[[Γ]]. Once and for all we fix an
isomorphism κ : Γ→ 1 + pZp where 1 + pZp is a multiplicative group.

From this point on, E will be an elliptic curve over Q with good supersingular
reduction at p and ap = 0. We let T denote the Tate module Tp(E) = lim

←−−n
E[pn],

and for every s ∈ Zp we let Ts denote the twisted group T ⊗ (κs). We let V and A
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denote T ⊗Zp Qp and V/T respectively, and Vs and As denote V ⊗ κs and A ⊗ κs

respectively. We note that A � E[p∞].
We let Σ be a finite set of places of F containing all primes above p, bad primes of

E, and∞. We let FΣ denote the maximal extension of F unramified outside Σ.

D 3.1 (Plus/minus Selmer groups, [8, Definition 1.1]). We define Sel±p(E/F∞)
to be the kernel of

f : H1(FΣ/F∞, A)→
∏

w|l,l∈Σ,l-p

H1(F∞,w, A)
E(F∞,w) ⊗ Qp/Zp

∏
v|p

H1(F∞,v, A)
E±(F∞,v) ⊗ Qp/Zp

.

Our first step is to show that f is surjective.

P 3.2. For any n and a prime v of Fn above p, E(Fn,v) is p-torsion-free.

P. This is [6, Proposition 3.1], which is a slight generalization of [8,
Proposition 8.7]. �

In particular, E(F∞,v) is p-torsion-free, which implies that AGF∞,v = A
GF∞,v
s = 0.

Hence, the Hochschild–Serre spectral sequence induces the isomorphism

H1(Fn,v, As)→ H1(F∞,v, As)Gal(F∞,v/Fn,v).

We use this isomorphism to identify H1(Fn,v, As) with H1(F∞,v, As)Gal(F∞,v/Fn,v).
Similarly, for any integer k the long exact sequence

· · · → AFn,v
s → H1(Fn,v, As[pk])→ H1(Fn,v, As)

pk

→ H1(Fn,v, As)→ · · ·

allows us to identify H1(Fn,v, As[pk]) with H1(Fn,v, As)[pk].

D 3.3. For any prime w of F∞ above p, we define

H±w = E±(F∞,w) ⊗ Qp/Zp ⊂ H1(F∞,w, A).

For any s ∈ Zp and any prime v of Fn above p, we define

Hs,±
n,v = (H±w ⊗ κ

s)Gal(F∞/Fn) ⊂ H1(Fn,v, As)

where w denotes the prime of F∞ above v.

P 3.4. For every integer k and n, Hs,±
n,v [pk] is the exact annihilator of

H−s,±
n,v [pk] with respect to the Tate local pairing

H1(Fn,v, As[pk]) × H1(Fn,v, A−s[pk])→ Z/pkZ.

P. Without loss of generality we can assume that there is only one prime of F∞
above v. First we choose an integer N > n such that κ(Gal(F∞/FN)) ≡ 1 (mod pk).
Then As[pk] and A−s[pk] are just A[pk] as GFN -modules. From [6, Proposition 3.15] it
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follows that H±N,v[pk] ⊂ H1(FN,v, A[pk]) is the exact annihilator of itself with respect to
the Tate local pairing

(·, ·)N : H1(FN,v, A[pk]) × H1(FN,v, A[pk])→ Z/pkZ.

(Kim [6, Proposition 3.15] is proven only for H−N,v[pk], but under condition (A), the
same proof works for H+

N,v[pk].) Thus Hs,±
N,v[pk] is the exact annihilator of H−s,±

N,v [pk].
We now let Cor denote the corestriction map H1(FN,v, A−s[pk])→ H1(Fn,v, A−s[pk])

and Res denote the restriction map H1(Fn,v, As[pk])→ H1(FN,v, As[pk]). From
Propositions 2.2 and 2.3, for any m we have the identification

(Hs,±
m,v)∨ � Zp[Gal(Fm/F)]d � (Zp[X]/((1 + X)pm

− 1))d

where d = [Fv : Qp]. Thus we can identify Cor : H−s,±
N,v → H

−s,±
n,v with the surjective map

Hom(Zp[X]/((1 + X)pN
− 1), Z/pkZ)d → Hom(Zp[X]/((1 + X)pn

− 1), Z/pkZ)d

induced from the map Zp[X]/((1 + X)pn
− 1)→ Zp[X]/((1 + X)pN

− 1) given by the
multiplication by (1 + X)pN

− 1/(1 + X)pn
− 1.

By the property of the cup product we have

(Res(x), y)N = (x, Cor(y))n

for every x ∈ H1(Fn,v, As[pk]) and y ∈ H1(FN,v, A−s[pk]). Since Res(Hs,±
n,v ) ⊂ Hs,±

N,v, and
Cor : H−s,±

N,v → H
−s,±
n,v is surjective, it follows that (Hs,±

n,v , H
−s,±
n,v )n = 0. On the other hand,

by the explicit computation of the local Euler characteristic we find that the order of
H1(Fn,v, A−s[pk]) is p2k[Fn,v:Qp], thus the order of the exact annihilator of H−s,±

n,v is equal
to the order of Hs,±

n,v , thus the exact annihilator of H−s,±
n,v is Hs,±

n,v . �

We fix s. We note that Hom(As, µp∞) � T−s.

D 3.5. For any integer n and a prime w of Fn, we define the local conditions:
H1
F ±

(Fn,w, As) := Hs,±
n,w for w|p; H1

F ±
(Fn,w, As) := 0 for w - p; H1

F ±
(Fn,w, T−s) := the

exact annihilator of H1
F ±

(Fn,w, As) with respect to the Tate local pairing

H1(Fn,w, As) × H1(Fn,w, T−s)→ Qp/Zp.

We let U±−s be the Qp-subspace of H1(Fn,w, V−s) spanned by H1
F ±

(Fn,w, T−s).

D 3.6. Let H1
F ±

(Fn,w, A−s) be the image of U±−s under the map
H1(Fn,w, V−s)→ H1(Fn,w, A−s) given by A−s � V−s/T−s.

Note that all the local conditions for As and A−s are divisible. Also note that if w
is not lying above p, H1

F ±
(Fn,w, A−s) is 0 since H1(Fn,w, A−s) is finite. It is critical that

H1
F ±

(Fn,w, A−s) is H−s,±
n,w for every w|p by Proposition 3.4.
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Define the following:

Pn =
∏

w|l,l∈Σ

H1(Fn,w, As), L±n =
∏

w|l,l∈Σ

H1
F ±

(Fn,w, As),

P∗n =
∏

w|l,l∈Σ

H1(Fn,w, T−s), U∗,±n =
∏

w|l,l∈Σ

H1
F ±

(Fn,w, T−s).

In particular, we let P and L± denote P0 and L±0 , and similarly P∗ and U∗,± denote P∗0
and U∗,±0 .

D 3.7. For maps

γn : H1(FΣ/Fn, As)→ Pn,

γ∗n : H1(FΣ/Fn, T−s)→ P∗n,

induced by global-local maps, we let Gn be the image of γn, and G∗n be the image of
γ∗n. Also, for the local conditions L±n and U∗,±n , we define

S ±As
(Fn) = ker(H1(FΣ/Fn, As)→ Pn/L

±
n ),

S ±T−s
(Fn) = ker(H1(FΣ/Fn, T−s)→ P∗n/U

∗,±
n ).

P 3.8. Assume that S ±A−s
(Fn) is finite. Then the map

H1(FΣ/Fn, As)→ Pn/L
±
n

is surjective.

P. As in [2], the key technique is the duality of Poitou and Tate (see [2, Section 4],
in particular the discussion before Proposition 4.13).

We note that there is a perfect bilinear pairing on Pn × P∗n given by the Tate local
pairing for each prime. By the duality theorems of Poitou and Tate, Gn and G∗n are
the orthogonal complements with respect to this pairing. On the other hand, L±n and
U∗,±n are the orthogonal complements by definition. Thus Pn/GnL±n is isomorphic to
the Pontryagin dual of G∗n ∩ U∗,±n .

For any prime w lying above some prime of Σ, H1
F ±

(Fn,w, As) is divisible, thus it
follows that H1(Fn,w, T−s)tors is contained in H1

F ±
(Fn,w, T−s). It follows in turn that

S ±T−s
(Fn)tors = H1(FΣ/Fn, T−s)tors.

From the long exact sequence induced from 0→ T−s→ V−s→ A−s→ 0, we see that
H1(FΣ/Fn, T−s)tors = AGFn

−s /(A
GFn
−s )div, which is 0 from Proposition 3.2. Thus we obtain

S ±T−s
(Fn)tors = 0.

It is easy to check that if S ±A−s
(Fn) is finite, then S ±T−s

(Fn) is finite. Since
S ±T−s

(Fn)tors = 0, we obtain S ±T−s
(Fn) = 0. Since G∗n ∩ U∗,±n is the image of S ±T−s

(Fn),
we obtain G∗n ∩ U∗,±n = 0 and consequently, Pn/GnL±n = 0. �
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Recall H±w for a prime w of F∞ above p, and Hs,±
n,v for a prime v of Fn above p in

Definition 3.3. First, we prove a lemma analogous to the control theorem.

L 3.9. For all but a finite number of integers s, the kernel and cokernel S ±As
(Fn)→

S ±As
(F∞)Gal(F∞/Fn) are finite and bounded as n varies.

P. We study the diagram

0 // S ±As
(Fn) //

��

H1(FΣ/Fn, As) //

��

Pn/L±n

��
0 // S ±As

(F∞)Gal(F∞/Fn) // H1(FΣ/F∞, As)Gal(F∞/Fn) // P∞/L±∞

where

P∞ =
∏

w|l,l∈Σ

H1(F∞,w, As),

L±∞ =
∏
w|p

H±w ⊗ κ
s.

By the snake lemma (see [9, pages 157–159]), we only need to show that the kernel
and cokernel of the middle vertical arrow and the kernel of the right arrow are finite
and bounded.

By the Hochschild–Serre spectral sequence, we have an exact sequence

0→ H1(F∞/Fn, AGal(FΣ/F∞)
s )→ H1(FΣ/Fn, As)

→ H1(FΣ/F∞, As)Gal(F∞/Fn)→ H2(F∞/Fn, AGal(FΣ/F∞)
s ),

and by Proposition 3.2, we have AGal(FΣ/F∞)
s � AGal(FΣ/F∞) ⊗ κs = 0. Thus, the middle

arrow has trivial kernel and cokernel for every n.
For a prime v of Fn above p and a prime w of F∞ above v, the map

H1(Fn,v, As)/H
s,±
n,v → H1(F∞,w, As)/(H±w ⊗ κ

s) is injective by definition.
Lastly, for a prime v of Fn not above p and a prime w of F∞ above v, the

kernel of H1(Fn,v, As)→ H1(F∞,w, As) is H1(F∞,w/Fn,v, A
GF∞,w
s ) by the Hochschild–

Serre spectral sequence. If v splits completely over F∞, it is obviously trivial, so we
may assume that v does not split completely. Then Gal(F∞,w/Fn,v) is topologically
generated by some element γn,v, hence H1(F∞,w/Fn,v, A

GF∞,w
s ) is isomorphic to

B/(γn,v − 1)B where B = A
GF∞,w
s . Consider the exact sequence

0→ A
GFn,v
s → B

γn,v−1
−→ B→ B/(γn,v − 1)B→ 0.

For all but a finite number of integers s, A
GFn,v
s is finite for every n, thus B/(γn,v − 1)B

is finite. In other words, Bdiv is contained in (γn,v − 1)B. where Bdiv is the maximal
divisible subgroup of B, and B/(γn,v − 1)B is bounded by B/Bdiv. Thus, our claim
follows. �
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Then we have the following proposition.

P 3.10. If Sel±p(E/F∞) is Λ-cotorsion,

H1(FΣ/F∞, A)→
∏

w|l,l∈Σ,l-p

H1(F∞,w, A) ×
∏
w|p

H1(F∞,w, A)
H±w

(3.1)

is surjective.

P. If Sel±p(E/F∞) is Λ-cotorsion, for almost all s, (Sel±p(E/F∞) ⊗ κs)Gal(F∞/Fn) =

S ±As
(F∞)Gal(F∞/Fn) is finite for every n. Thus, by Lemma 3.9, for some s, S ±As

(Fn) is
finite for every n.

Fix s such that S ±A−s
(Fn) is finite for every n. Since we can identify As with A as

GF∞-modules, our claim follows from Proposition 3.8. �

Before we proceed to the next step, we wish to mention the following corollary.

C 3.11. If Sel−p(E/F∞) or Sel+p(E/F∞) is Λ-cotorsion, then the Λ-corank of
Selp(E/F∞) is [F : Q].

P. By the local Euler characteristic computation we can check that∏
w|l H1(F∞,w, A) for l , p is Λ-cotorsion and that the Λ-corank of

∏
w|p H1(F∞,w, A)

is 2[F : Q]. From Propositions 2.2 and 2.3, it follows that the Λ-corank of the right-
hand side of the map (3.1) in Proposition 3.10 is [F : Q]. Since p is supersingular, we
have E(F∞,w) ⊗ Qp/Zp = H1(F∞,w, A). This fact has been studied in many papers (for
example, [1]), but we will briefly sketch the proof. Let Ê be the formal group over Zp

associated to E. From [4, Theorem 1.3] and, to a lesser degree, from the main result
of [3], it follows that the universal norm ∩NFn,w/Fw Ê(Fn,w) is trivial, which, by the Tate
local duality, implies that E(F∞,w) ⊗ Qp/Zp = H1(F∞,w, A) under the Kummer map.
Thus from Proposition 3.10, our assertion follows. �

The next simple proposition is another ingredient in the proof of our claim.

P 3.12. If Sel+p(E/F∞) or Sel−p(E/F∞) is Λ-cotorsion, then H2(FΣ/F∞, A) is
Λ-cotorsion, and the Λ-corank of H1(FΣ/F∞, A) is [F : Q].

P. From the global Euler characteristic formula,

corankΛ H1(FΣ/F∞, A) = corankΛ H2(FΣ/F∞, A) + [F : Q].

The Λ-corank of the right-hand side of the map (3.1) in Proposition 3.10 is [F : Q]
for the reason mentioned in the proof of Corollary 3.11, thus by Proposition 3.10, the
Λ-corank of H1(FΣ/F∞, A) is [F : Q]. Hence, our claim follows. �

We can say a little more.

P 3.13 [2, Proposition 4.9]. If H2(FΣ/F∞, A) is Λ-cotorsion, then H1(FΣ/
F∞, A)∨ has no nontrivial finite Λ-submodule and H2(FΣ/F∞, A) = 0.
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P. Although [2] assumes that the ordinary reduction throughout, the proof for
this particular proposition can be carried out quite generally, and does not require the
ordinary reduction assumption. �

We now prove our main result.

T 3.14. Assume that Sel±p(E/F∞) is Λ-cotorsion. Then Sel±p(E/F∞) has no
proper Λ-submodule of finite index.

P. As we saw in Lemma 3.9, we can choose s such that H1(FΣ/F, As)→ P/L±

is surjective. Since Γ has cohomological dimension one, from the Hochschild–Serre
spectral sequence it follows that

H1(FΣ/F, As)→ H1(FΣ/F∞, As)Γ (3.2)

is surjective. When w - p, it similarly follows that

H1(Fv, As)→
(∏

w|v

H1(F∞,w, As)
)Γ

is surjective.
If a prime v of F lies above p, (

∏
w|v H

s,±
w )∨ � Λ[Fv:Qp], thus (

∏
w|v H

s,±
w )Γ = 0. Thus

we have an exact sequence

0→
(∏

w|v

Hs,±
w

)Γ

→

(∏
w|v

H1(F∞,w, As)
)Γ

→

(∏
w|v

H1(F∞,w, As)

Hs,±
w

)Γ

→ 0. (3.3)

Since AGF∞
s = 0, it easily follows from the Hochschild–Serre sequence that

H1(Fv, As)
∼
→ (

∏
w|v H1(F∞,w, As))Γ. Since H1

F ±
(Fv, As) = (

∏
w|v H

s,±
w )Γ by definition,

the surjectivity of
H1(Fv, As)

H1
F ±

(Fv, As)
→

(∏
w|v

H1(F∞,w, As)

Hs,±
w

)Γ

follows from the sequence (3.3).
Thus it follows that

P/L±→ (P∞/L±∞)Γ

is surjective. Since H1(FΣ/F, As)→ P/L± and the map in (3.2) are surjective,

H1(FΣ/F∞, As)Γ→ (P∞/L±∞)Γ

is surjective.
The exact sequence from Proposition 3.10,

0→ S ±As
(F∞)→ H1(FΣ/F∞, As)→ P∞/L

±
∞→ 0,

induces the sequence

H1(FΣ/F∞, As)Γ→ (P∞/L±∞)Γ→ S ±As
(F∞)Γ→ H1(FΣ/F∞, As)Γ.
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Since the first map is surjective, S ±As
(F∞)Γ→ H1(FΣ/F∞, As)Γ is injective. From

Proposition 3.13 it follows that H1(FΣ/F∞, As)Γ = 0. Thus S ±As
(F∞)Γ = 0, and in turn,

Sel±p(E/F∞)Γ = 0, which implies our claim. �

Now as an application, we will study the precise connection of the order of
Selp(E/F) with the characteristic ideal of the Pontryagin dual of Sel±p(E/F∞).

Let cv be the Tamagawa number for E at v, in other words, cv = [E(Fv) : E0(Fv)]
where E0(Fv) is the subgroup of local points which have nonsingular reduction at v.
We have the following corollary.

C 3.15. Assume that Selp(E/F) is finite. Let ( f ±) ⊂ Λ be the characteristic
ideal of Sel±p(E/F∞)∨. Then

| f ±(0)| ∼ |Selp(E/F)|
∏

v: every prime
cv

where ∼ means equality up to units.

P. First, we note that our assumption implies that Sel±p(E/F∞) is Λ-cotorsion
because the control theorem holds true for the plus/minus Selmer groups (see [8,
Theorem 9.3] or [6, Proposition 4.28]). Let

∏
v∈Σ

Pv =
∏
v∈Σ

H1(Fv, A)
E(Fv) ⊗ Qp/Zp

,

∏
w|v,v∈Σ

P±w =
∏

w|v,v∈Σ,v-p

H1(F∞,w, A)
E(F∞,w) ⊗ Qp/Zp

∏
w|p

H1(F∞,w, A)
H±w

(note that E(K) ⊗ Qp/Zp = 0 if K is a local field with residue characteristic prime to p).
From the definition of Sel±p(E/F∞) we have the diagram

0 // Selp(E/F) //

��

H1(FΣ/F, A)
a //

��

∏
Pv∏

gv

��
0 // Sel±p(E/F∞)Γ // H1(FΣ/F∞, A)Γ // (

∏
P±w)Γ

From the Hochschild–Serre spectral sequence, it follows that the middle vertical map
is an isomorphism. If v|p, gv is injective because E(Fv) ⊗ Qp/Zp = (

∏
w|v H

±
w)Γ (see

the proof of [6, Proposition 4.28]). Since Selp(E/F) is finite, the map a in the diagram
above is surjective by Proposition 3.8.

Thus we have

|Sel±p(E/F∞)Γ| ∼ |Selp(E/F)|
∏
v∈Σ

|ker(gv)|.
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If v|p, gv is injective as we mentioned, thus |ker(gv)| = 1 = cv (the last equality is
because E has good reduction at v). For other primes v - p, by [2, Lemma 3.3] and the
discussion following it,

|ker(gv)| ∼ cv.

From [2, Lemma 4.2] we have

f ±(0) ∼ |Sel±p(E/F∞)Γ|/|Sel±p(E/F∞)Γ|

= |Sel±p(E/F∞)Γ|.

(The last equality is from Theorem 3.14.) Since cv = 1 for v < Σ, our claim follows. �
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