
7

Stanley Corrsin
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7.1 Early years

On 3 April 1920, a few years after G.I. Taylor’s far-reaching observations of
turbulent diffusion aboard the SS Scotia (Taylor, 1921), and at the time Lewis
Fry Richardson was imagining vast weather simulations of atmospheric flow
by human ‘computers’ (Richardson, 1922), across the Atlantic in the city of
Philadelphia, Stanley Corrsin was born. His parents, Anna Corrsin (née Schorr)
and Herman Corrsin had both emigrated to the United States only 13 years be-
fore. They came from Romania, where many Russian Jews had settled after
leaving Russia in the late 19th and early 20th century. Following further hos-
tilities in Romania, many emigrated again, this time to America. Anna and
Herman Corrsin arrived separately at Ellis Island in 1907, Anna in July, and
Herman in October. After brief stays in the New York and New Jersey area,
where they met and married in 1912, they settled in the city of Philadelphia,
in a mixed middle-class neighborhood, not far from the University of Philadel-
phia. They went into business in the clothing industry and raised their children.
Their first son Eugene died young and their second, Lester, was born in 1918.
Stan was their third and youngest son.

As a child, Stan Corrsin attended school in Philadelphia and, showing early
signs of a highly gifted analytical mind, went on to skip two grades. He en-
joyed following the ups and downs of his favorite baseball team, the Philadel-
phia Athletics. An appreciation for the game would accompany him through-
out his life, including a keen interest in the subtle aerodynamic effects that
can determine how balls fly through the air. Young Stanley enjoyed frequent
visits to Philadelphia’s Leary, a large used books store, and to Wanamaker’s,
Philadelphia’s main department store. On these outings to downtown, he would
have witnessed rapid developments thanks to mechanization and engineering.
Like many American cities, Philadelphia in the 1920s saw ambitious projects
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of modernization with erections of steel and concrete skyscrapers, electrifica-
tion of old buildings, widening of streets and construction of bridges, such as
the Benjamin Franklin bridge over the Delaware river. The 1930s brought the
Great Depression, and Philadelphia only began to recover with the massive
further industrialization triggered by World War II and the expansion of giant
shipyards that would – in time – supply the war effort.

After graduating from West Philadelphia High School in 1936, a bright
and ambitious 16-year-old Stan Corrsin decided to study mechanical engi-
neering. He had always been interested in how things work, and study in
a technical field would allow an ambitious son of immigrants to make his
mark. A ‘mayor’s scholarship’ from the city of Philadelphia enabled his enroll-
ment at the prestigious University of Pennsylvania located nearby in downtown
Philadelphia. As a student, he distinguished himself with outstanding marks.
And, presaging an unusual facility with the pen, it is said that he was the first
engineering student at the University of Pennsylvania to receive the prize for
a freshman essay in English. At some point he even considered becoming a
professional writer. In his last year at U. Penn, he participated in a technical
lecture competition organized by the American Society of Mechanical Engi-
neers. His presentation entitled An Optical Method for Visualizing Low Velocity
Air Flow earned him first prize. A proud headline from the 2 May 1940 univer-
sity newspaper The Daily Newsletter proclaims “Corrsin dethrones Princeton
as Pennsylvania takes first prize in engineer’s Tourney”.

In 1940, at the age of 20, Stan Corrsin graduated from U. Penn with a bach-
elors degree in mechanical engineering. Being drawn to the fundamentals un-
derlying the engineering practice, he chose to continue his education and apply
to graduate school in engineering. At the time, however, many top institutions
still placed limits and quotas on students of Jewish heritage. It is said that Clark
B. Millikan at Caltech heard of young Corrsin’s promise and decided on the
spot to offer him admission to Caltech. Thus Corrsin was accepted into the Cal-
tech graduate program in aeronautics and he traveled to Southern California to
begin graduate studies, just as the US war effort was ramping up.

7.2 First contributions at Caltech

Corrsin arrived at Caltech during what has come to be known as the golden age
of aeronautics. Caltech was the US epicenter of aerodynamics at the time. The
United States had found itself challenged to manufacture, on very short order,
a massive fleet of war planes and needed to develop a basic understanding of
the fluid dynamics of flight to aid in the design of modern aircraft. A vigorous
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Figure 7.1 A 22-year-old Stan Corrsin in 1942 at the Graduate Aeronautical Lab-
oratories, Caltech (GALCIT). The verso of the photograph states, in Corrsin’s
handwriting “Man doing research”. The note is addressed to his mother, and adds
for reassurance: “I’m really not so thin, it’s just the light”. Photograph courtesy of
Dr. Stephen D. Corrsin.

program in fundamental and applied fluid dynamics research had been devel-
oping at Caltech’s Guggenheim Aeronautical Laboratory (GALCIT), under the
direction of Theodore von Kármán and Clark B. Millikan. Hans Liepmann,
who in 1939 had just been hired by von Kármán after finishing his PhD in
Zürich, became Corrsin’s main academic adviser. At the time, Liepmann had
begun experimental studies on boundary layers, transition to turbulence, and
various turbulent shear flows. Corrsin began working in Liepmann’s laboratory
and distinguished himself for his dexterity in experimental science.

His first project at Caltech, which became his thesis in partial fulfillment of
the requirements of Aeronautical Engineer, dealt with measurements of the de-
cay of turbulence behind various grids. The subject of isotropic turbulence was
in the air: on a visit to Caltech in 1936 and 1937, Leslie Howarth had collab-
orated with von Kármán and developed the equation for two-point correlation
functions in decaying isotropic turbulence (von Kármán and Howarth, 1938).
Corrsin’s initial experiments provided data on the decay of standard devia-
tions of two of the three turbulent velocity components behind three types of
grids. More will be said later about ingenious measurement techniques of the
time. In a photograph taken in the laboratory (Figure 7.1), he is seen reading
a manometer, pencil tucked behind his ear. The results of the experiments, it
turns out, were rather inconclusive. It was unclear whether turbulence was, or
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was not, observed to be sufficiently isotropic, or what the decay rate was. At the
end of the thesis, which was never published in journal format, Corrsin writes:
“The [. . . ] conclusions are rather tentative; it is hoped that more certain results,
and in particular the reasons for them, will come out of further investigation”.
Thus were laid the early seeds for Corrsin’s work elucidating the fundamen-
tals of isotropic turbulence. He completed the Masters thesis in 1942 (Corrsin,
1942) but, as further described in §7.6, his definitive experiments on decaying
isotropic turbulence would have to await over two decades to become reality.

Corrsin then began to work in earnest towards his doctoral research and this
work led to important, and no longer tentative or uncertain, results. The 1930s
had seen initial developments in documenting basic properties of what are now
known as the ‘canonical’ turbulent shear flows. By applying Prandtl’s bound-
ary layer concept to turbulent shear layers, thus assuming that they become
asymptotically thin (although many never do), simplified parabolic equations
had been developed describing the mean velocity in plane and round wakes and
jets, in mixing layers, and in turbulent boundary layers along walls. The use
of similarity variables and the eddy-viscosity assumption with local velocity
and length-scales led to further simplifications. A series of experiments, most
notably the measurements of mean velocity profiles in wakes by Townsend,
had already begun to establish the validity and limitations of this approach.
The popular textbooks by Townsend (1956), Hinze (1959) and Tennekes and
Lumley (1972) provide excellent accounts of the accomplishments of that era.

By the early 1940s, after several of the canonical shear flows had been mea-
sured and documented in terms of mean velocity and Reynolds stresses, at-
tention began to turn to the distribution of scalar fields. Examples of scalar
fields include the temperature or the concentration associated with species
being transported by turbulence. They are termed ‘passive scalars’ if they
do not affect the motion, which therefore excludes cases with buoyancy ef-
fects that often occur in geophysical flows, or with strong volumetric expan-
sion that accompany combustion. In the early 1940s, not much was known
about distributions of passive scalars in turbulent shear flows. Of natural im-
portance to propulsion and mixing, the turbulent jet was of great interest to
von Kármán, Millikan, and the National Advisory Committee for Aeronau-
tics (NACA). Thus, Corrsin’s doctoral research project was on detailed mea-
surements of the velocity and temperature fields in round jets. The work was
closely followed by von Kármán, Millikan and supervised by Liepmann.
Financial support was provided by NACA.

Corrsin went to work and designed and, with helpful laboratory techni-
cians, built the experiment out of an existing, open-return 6 1/2 feet diameter
wind tunnel. It was retrofitted with a contracting nozzle unit near its exit, thus
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creating a jet. Electrical units upstream would provide heating for the air, and
warm air was also ducted outside the nozzle to improve uniformity of the tem-
perature profile exiting the jet. In characteristic style, he writes:

That this scheme was not completely successful can be seen from the temper-
ature distribution measured at the mouth. It did represent, however, a distinct
improvement over the wooden nozzle first tried.

The mean velocity and temperature readings were photographically recorded
on automatically traversing photo-sensitive paper illuminated by a light beam.
The latter was continually being deflected by a mirror mechanically connected
to a Pitot pressure line for mean velocity measurements, and by a galvanome-
ter connected to a thermocouple for mean temperature. Fluctuating velocity
was measured using a platinum hot wire. In the second part of the report, an
oscilloscope was used and the screen photographically recorded.

The results were reported in a NACA Wartime Report (Corrsin, 1943). The
report contains 43 figures with profiles of mean velocity and temperature at
various downstream distances, profiles of standard deviation of velocity fluc-
tuations, log-log plots for downstream scaling, calibration curves, etc. Rather
than simply showing experimental results, much of the effort was spent in
detailed comparisons with profiles predicted using several variants of eddy-
viscosity models. Based on the measurements, Corrsin reached conclusions
about limits of validity of the similarity assumption and commented on dif-
ferences between the scalar and momentum diffusivities (he confirmed in his
measurements that the turbulent Prandtl number is less than unity). Notably, his
first conclusion was “In a fully developed turbulent jet with axial symmetry, a
completely turbulent flow exists only in the core region . . . ”. The conclusion
was based on his observations of hot-wire signals on the ‘oscillograms’, with
fully turbulent signals when the probe is located in the centerline of the jet,
but showing spotty turbulent regions interspersed with smooth, quasi-laminar
portions of the signal when the probe was located off-center of the jet axis.
This observation and conclusion already point to his keen interest in the de-
tailed fundamental structure of turbulence. Corrsin would maintain interest in
the phenomenon of what became known as ‘outer intermittency’ for several
decades to come; some of this work addressing the geometry and intermit-
tency of turbulence will be described in §7.7. A second experiment, on an array
of plane jets, and a second NACA Wartime Report (Corrsin, 1944) soon fol-
lowed. All the while, he contributed to important developments of the hot-wire
anemometer.

According to Liepmann (1989), by 1943 Corrsin had completed the bulk of
his PhD research. With the Second World War in full swing, however, he was
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charged with the instruction of Navy pilots and other military personnel on the
basics of aerodynamics, and thus he remained actively involved in teaching
at Caltech even after the end of the war, all the while writing his doctoral
dissertation. His doctoral degree was awarded in May 1947, for his two-part
dissertation entitled I. Extended Applications of the Hot-Wire Anemometer; II.
Investigations of the Flow in Round Turbulent Jets (Corrsin, 1947).

At Caltech Corrsin had met a young woman, Barbara Daggett, who would
become his wife. She was originally from the Los Angeles area, and worked
as part of the Caltech administrative staff. They were soon married. Then
came the call from Johns Hopkins University to join its faculty as Assistant
Professor.

7.3 Arrival in Baltimore

The end of the Second World War and the transformative GI bill that provided
college support for returning servicemen brought a renewed sense of direc-
tion that was felt on many campuses across the United States. At the Johns
Hopkins University, located in the east coast city of Baltimore, there was talk
of creating a department that would focus on the new science of aeronautics.
This would be a new and forward-looking department, part of the university’s
School of Engineering. Johns Hopkins had been founded in 1876, at first oc-
cupying temporary spaces downtown, and only between 1914 and 1916 did
classes move to the university’s definitive seat on the Homewood campus –
in what not too long before had been farmland but was fast becoming a leafy
suburb of the city. The School of Engineering had existed as part of the uni-
versity almost since its inception, and counted the traditional departments of
Mechanical, Electrical, Civil, Chemical, and Sanitary Engineering. The addi-
tion of Aeronautical Engineering would develop synergies with laboratories in
the area such as the Applied Physics Laboratory, Aberdeen Proving Ground,
and the Naval Ordnance Laboratory that all pursued research and development
in the rapidly developing field of aerodynamics.

The department began in 1946, under the direction of Francis H. Clauser,
who was brought in as the department chair. Clauser, an earlier Caltech grad-
uate who had worked under von Kármán, became well known as the devel-
oper of the ‘Clauser plot’ method to determine skin friction coefficients from
measurements of mean velocity in turbulent boundary layers (Clauser, 1954).
He began to hire faculty and among the first two was recently graduated Stan
Corrsin who, together with his wife Barbara, thus moved across the country
back to the East Coast. He began his work at the Johns Hopkins University
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in 1948, and would remain at the same institution for the rest of his life. The
Corrsins lived several miles north of the Johns Hopkins campus in the subur-
ban, almost rural, Towson area, in a house they bought in 1953. They had two
children, Nancy E. Corrsin and Stephen D. Corrsin. Meanwhile, his parents
Anna and Herman would retire to the state of Florida.

The Johns Hopkins Aeronautics Department continued to grow in the fol-
lowing years. In 1950 Leslie G. Kovasznay was appointed to the faculty, fol-
lowed by Mark Morkovin and Robert Betchov who were appointed as re-
search scientists (Hamburger Archives, JHU, 2009). In one of the most visible
early contributions of the department, the faculty participated in a number of
episodes of the critically acclaimed television series The Hopkins Science Re-
view. Episodes included Flight at Supersonic Speeds, which aired on 2 Febru-
ary 1949, and a series Man Will Conquer Space, that aired in October 1952
and featured Wernher von Braun as the guest.

With him from Caltech, Corrsin brought Mahinder Uberoi, who had re-
ceived his Masters degree there in 1946. Uberoi moved to Baltimore to be-
come Corrsin’s first doctoral student. They also brought along a hot-air jet
unit that they had built at Caltech (Corrsin and Uberoi, 1950). It was more
compact than the original wind tunnel add-on facility Corrsin had used earlier
(Corrsin, 1947). The unit consisted of a centrifugal blower pushing air through
a horizontal chamber with heating coils. A 90 degree elbow then turned the
flow upward and, after passing through further screens and a smooth contrac-
tion, the 1 inch diameter heated jet emanated up into the laboratory. They also
brought hot-wire anemometry from California. The experiment was set up in
a laboratory in the Aeronautics Building (later known as Merryman Hall), an
unassuming, grey concrete block building next to a wooded hillside at the edge
of campus.

The velocity and temperature measurements from this experiment are de-
scribed in some detail in a new NACA report (Corrsin and Uberoi, 1951).
While this report was in press, Corrsin had performed initial analysis of the
velocity data and published a rather remarkable brief communication in the
Journal of the Aeronautical Sciences (Corrsin, 1949). This would be his third
publication in 1949 and since joining Johns Hopkins. [He had written two other
short notes published earlier in 1949, with Kovasznay on a hot-wire length
correction (Corrsin and Kovasznay, 1949) and on transformation formulae be-
tween one and three-dimensional scalar spectra (Kovasznay et al., 1949).] He
begins the short Journal of Aeronautical Sciences note with the statement that
“The most significant idea contributed to the problem of turbulent shear flow in
many years is the hypothesis of local isotropy due to Kolmogorov” (a statement
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of remarkable longevity still valid, some would say, to this day). He goes on to
present a plot of the correlation coefficient between band-pass filtered signals
of stream and cross-stream components (the normalized cross-spectrum). The
data were taken at the maximum shear region in the jet using X-hot wires and
the voltage readings from both wires were band-pass filtered using analog filter
banks. The difference of their mean-square voltages, evaluated using vacuum
thermocouple units, are proportional to the co-spectrum. The correlation coef-
ficient as function of frequency decays rapidly to zero at the high frequencies
characteristic of small-scale motions. Statistical isotropy demands that the two
fluctuating components be uncorrelated at high frequencies. Corrsin’s obser-
vation, therefore, gave significant and direct support to the notion that small
scales in turbulence are isotropic, in a flow where the large scales clearly are
not isotropic. This would be his first of many direct experimental examinations
of theories pertaining to the small-scale structure of turbulence.

7.4 Structure of scalar fields in isotropic turbulence

Having begun to ponder the fine-scale structure of turbulence and having now
temperature and velocity data available from the experiments with Uberoi,
Corrsin turned his attention to the expected forms of the temperature two-point
correlations and spectra in isotropic turbulence. In Corrsin (1951a), he applied
the methodology of von Kármán and Howarth (1938) to derive the equation
for scalar correlations 〈θ(x + r)θ(x)〉 = 〈θ2〉m(r). He also used the von Kármán
and Howarth (1938) argument about the vanishing pressure–velocity correla-
tions in isotropic turbulence to reason that the temperature–velocity correlation
vanishes, and established the dimensionless third-order scalar-variance veloc-
ity correlation and its cubic behavior with distance at small displacements. He
went on to define integral and Taylor micro-scales appropriate for the scalar
field, namely

Lθ =
∫ ∞

0
m(r) dr, and λ2

θ = −2/m′′(0, t), (7.1)

respectively. He also examined various possible consequences of assuming
self-preserving solutions and discussed the role of the invariant,

N = 〈θ2〉
∫ ∞

0
r2m(r) dr, (7.2)

during the decay of scalar fluctuations.
In parallel, he examined the spectral structure of the scalar fluctuations by

repeating the arguments presented by Kolmogorov (1941) using Fourier space.
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Taking the Fourier transform of the equation for scalar correlations, Corrsin
(1951b) derived the spectral equation for the temperature spectrum, G(k). He
derived the solution in the case of small Péclet number, where the nonlinear
transfer terms are negligible. In this case the problem reduces to the heat equa-
tion with its characteristic exponential decay as ∼ exp(−2γtk2), where γ is
the scalar diffusion coefficient and k is the magnitude of the wavenumber. At
low wavenumbers, Corrsin showed that the spectrum grows as k2, a result in-
timately related to the existence of the invariant N mentioned above. For the
intermediate range of wavenumbers, he went on to generalize the Kolmogorov
(1941) approach using dimensional arguments.

Of crucial relevance are the rates of dissipation of kinetic energy

ε = 2ν
∫ ∞

0
k2E(k)dk

and of scalar variance

εθ = 2γ
∫ ∞

0
k2G(k)dk.

Quoting directly from Corrsin (1951b):

The dimensions of the pertinent quantities are:

k = L−1

G = LT 2

εθ = T 2T−1

ε = L2T−3,

where L=Length, T=temperature, and T=time. Hence, the only possible ar-
rangement is

G(k) = Aεθε
−1/3k−5/3, (7.3)

where A is a dimensionless constant.

Thus Corrsin arrived at the −5/3 spectral scaling in the inertial-convective
range of wavenumbers. Unbeknownst to him, on the other side of the iron cur-
tain Obukhov (1949) had undertaken very similar steps and arrived at the same
form for the spectrum of scalar fluctuations. Consequently, the dimensionless
constant A in (7.3) is now called the ‘Obukhov–Corrsin constant’ Cθ.

Having produced this well-known prediction for the power-law decay of the
scalar spectrum, the experimental evidence for it in Corrsin’s papers from that
time is, however, not overwhelming. The NACA report (Corrsin and Uberoi,

https://doi.org/10.1017/CBO9781139018241.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139018241.008


7: Stanley Corrsin 247

Figure 7.2 One-dimensional power spectra of velocity (circles) and temperature
(squares) measured in a jet near the peak shear off-center position, adapted from
Corrsin and Uberoi (1951).

1951) is only one of the very few publications where measured scalar spectra
are reported. Figure 7.2 shows a reproduction of the measured spectra in the
maximum shear region in the heated round jet. The velocity and scalar spectra
display similar decay, not inconsistent with −5/3; but with the scatter of the
data, as well as slightly different results obtained on the jet centerline where
the scalar spectra were a bit flatter, Corrsin never argued that the data really
supported his predictions of −5/3 scaling. The subject of the scaling of power
spectrum continued to elicit many further studies over the subsequent decades,
including several by his students and junior collaborators (Kistler et al., 1954;
Mills et al., 1958; Sreenivasan et al., 1980; Sreenivasan, 1996).
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7.5 Scalar transport and diffusion

Have you ever stopped to watch smoke billowing out of a chimney? On a calm
day it moves generally upward; but there is much irregular meandering in its
small-scale motions. On a windy day the wind overshadows this slow buoyant
rising and washes the smoke along. Again, the smoke-cloud motion, now chiefly
due to the wind, shows not only a gross pattern but also a thoroughly chaotic
motion of various parts relative to each other.

Thus opens Corrsin’s general interest article ‘Patterns of Chaos’ published in
the Johns Hopkins Magazine (Corrsin, 1952). He wrote the article to introduce
his research to the university community just a few years after arriving on
campus. Ever since his PhD thesis in his study of the heated turbulent jet, a
central theme of his research was the turbulent transport of scalars, e.g. smoke,
temperature, and chemical species. He continued work on this topic throughout
his career, making a number of major contributions.

In his thesis research (Corrsin, 1947), in addition to his important observa-
tions of the turbulent velocity field, he was – for the first time – able to measure
the turbulent heat flux and, therefore, to present data to test some of the exist-
ing theories for turbulent heat transfer. This was followed, in particular, by a
detailed study of diffusion of heat from a line source in isotropic turbulence
(Uberoi and Corrsin, 1953), another piece of work he completed with Uberoi
after they had moved to Johns Hopkins. The line source experiment was meant
to address Taylor’s theory of ‘diffusion by continuous movements’ (Taylor,
1921). In the paper were listed the following important statistical measures of
the diffusive powers of turbulence:

(1) average rate of dispersion of particles from a fixed point;
(2) average rate of increase of the spacing between different fluid particles;
(3) the average rate of transport of particle concentration under a given mean

concentration gradient;
(4) the average rate of increase of the length of a fluid line;
(5) the average rate of increase of the area of a fluid surface.

These and closely related topics were to consume the attention of much of
Corrsin’s future research.

In addressing the first of these topics, Uberoi and Corrsin realized the ap-
proximate correspondence between the average temperature, Θ, downstream
from a heated wire, stretched perpendicular to the flow direction, and the prob-
ability density of Y , the fluid particle displacement in the direction normal
to both the wire and the flow direction. Using this correspondence the mean-
square displacement Y ′2 versus downstream distance was measured, and com-
pared with Taylor’s theory. The data offered one of the first consistency checks
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of Taylor’s theory, and an estimate for the turbulent heat transfer coefficient
(turbulent diffusivity) from the Lagrangian analysis. In addition Eulerian and
Lagrangian micro-scales were measured, and a correction and generalization
of a theoretical expression of Heisenberg (1948) relating them was made.

After these ground-breaking results obtained in the late 1940s and early
1950s, institutional challenges called on Corrsin to lead the Mechanical En-
gineering Department. Thus in 1954 he moved from the Aeronautics Depart-
ment in Merryman Hall on the campus periphery, to the more centrally located
Maryland Hall where Mechanical Engineering was housed. As chairman of
ME, he would be expected to devote some part of his time to administrative
duties such as dealing with faculty hirings, teaching assignments, and manag-
ing the departmental infrastructure. There were teaching laboratories and halls
containing large machinery, steam engines and, as remarked by John Lum-
ley, other “examples of man’s ingenuity” (Lumley and Davis, 2003). Lum-
ley had arrived at Johns Hopkins in 1952, and would become Corrsin’s third
PhD student after Uberoi and Kistler. He recalls that one of Corrsin’s major
efforts was to modernize the department by removing the old machines and
replacing them with wind tunnels. This did not occur without some resistance
by more tradition-bound alumni and administrators in the Dean’s office at the
time.

A move away from engineering towards engineering science was to become
one of the hallmarks of mechanics at Johns Hopkins. This move culminated
with the closure of the engineering school altogether and the creation of the
Mechanics Department in 1960. As recalled by Phillips (1986), Corrsin hap-
pily relinquished the chairmanship to George Benton and had a rubber stamp
made that said “let George do it”. He would use it with gusto on the incessant
paperwork that could now proceed to be dealt with somewhere else.

With his family, he would continue to live in their house in Towson, the calm
suburban area north of the city. Every morning he would drive the children to
their school along tree-lined Charles Street, on his way to the Homewood cam-
pus. He never left Baltimore for extended periods of time. He did not absent
himself for sabbatical leaves, preferring to host extended visitors rather than
being a visitor himself. More will be said in §7.9 about the extraordinary en-
vironment at Johns Hopkins at that time, and about Corrsin’s role in shaping it.

He and his students continued to work on the diffusive properties of tur-
bulence through the next three decades. Taylor’s theory, which gives a pre-
diction of the Eulerian heat transfer coefficient, is expressed only in terms of
Lagrangian quantities, namely, the Lagrangian mean-square displacement Y ′2

and the Lagrangian velocity time autocorrelation RL(τ) = V(t)V(t + τ), where
V is a Lagrangian velocity and τ the time separation. Almost all data are taken,
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however, in an Eulerian frame. This led Corrsin to carefully define and then
address the so-called Euler–Lagrange problem. That is, given the statistical
properties of the Eulerian velocity field, say u(x, t), what are the statistical
properties of interest of the Lagrangian field, in particular the mean-square
displacement and velocity time autocorrelation. Corrsin (1959; and later in
more detail, 1962b) pointed out the exact relationship between the Lagrangian
velocity time correlation, RLi j(τ), the joint Lagrangian displacement/Eulerian
velocity probability density, and the Eulerian space-time velocity autocorre-
lation, REi j(ζ, τ) = ui(x, t)u j(x + ζ, t + τ). Assuming that, for large time sep-
arations, the Eulerian velocity field becomes independent of the Lagrangian
displacements ζ field, he then obtained

RLi j(τ) =
∫∫∫

pY (ζ, τ)REi j(ζ, τ) dζ , (7.4)

where pY (ζ, τ) is the Lagrangian displacement probability density. This result
has been utilized by many turbulent dispersion model developers, and is widely
known as the ‘Corrsin independence hypothesis’.

Corrsin (1963) made some of the first estimates of the relationship between
various Eulerian and Lagrangian length and time scales. Assuming high Rey-
nolds numbers and the existence of inertial ranges for both the Eulerian veloc-
ity spatial spectrum and the Lagrangian velocity frequency spectrum, he
concluded that, for homogeneous turbulence, v′1T11/L11 ∼ 1 where v′1 is the
Lagrangian root-mean square velocity in a flow direction of interest (which
equals the Eulerian rms velocity u′1 for a homogeneous flow; Lumley, 1962),
T11 is the Lagrangian integral time scale for the velocity v1, and L11 is the Eu-
lerian integral spatial scale for u1. He found this result surprising, given the
complex relationship between the Eulerian and Lagrangian autocorrelations;
see, for example, equation (7.4) above. Continuing with this same reasoning,
he concluded that T11/Θ11 ∼ 1, where Θ11 is the integral time scale of u1. Fi-
nally, he also concluded, using similar arguments, that θ11/α11 ∼ 1, where θ11

and α11 are temporal Taylor microscales corresponding to u1 and v1, respec-
tively. Corrsin expressed doubts about this last relationship, reasoning that this
estimate disagrees

with a plausible intuitive expectation: since the Eulerian time autocorrelation
involves new fluid continuously wandering past the observation point, while the
Lagrangian one follows along a material point, we might expect the latter to be
more persistent.

The testing of these predictions awaited accurate measurements of both the
Eulerian and the corresponding Lagrangian quantities. The appropriate mea-
surements of the Eulerian quantities were completed by Comte-Bellot and
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Corrsin (1966, 1971) in their landmark measurements of homogeneous,
isotropic turbulence in a frame of reference moving with the mean flow. These
experiments will be described in more detail in the next section. Shlien and
Corrsin (1974) repeated the heated wire experiments of Uberoi and Corrsin
(1953), but with greater precision. They found, in particular, that 1.25 T11 �
Θ11, verifying the first estimate. On the other hand, they found that α11 �
12 θ11, contradicting the second estimate, but consistent with his speculation.

Turbulent particle dispersion had often been modeled in a way similar to
random walks in Brownian motion (see, for example, Einstein, 1905 and Gold-
stein, 1951). An innovative extension of this idea, addressing specifically the
Euler–Lagrange problem, was Corrsin’s work with John Lumley (Lumley and
Corrsin, 1959) on random walks with both Eulerian and Lagrangian statistics.
Limiting the problem to one dimension, they defined an Eulerian grid in space
and time with specific rules of motion at each point, which defined the Eule-
rian space/time statistics. Then particles were allowed to ‘walk’ on this grid,
determining the Lagrangian statistics. Analytical expressions were obtained
for the relationships between various Eulerian and Lagrangian quantities, al-
though the results could not be immediately applied to turbulence. This work
was followed up by that of Patterson and Corrsin (1966), where more complex
Eulerian fields and rules were defined, and computer simulations were used to
obtain the various statistics. Although

. . . it was hoped that some empirical connection might be discovered between
these two kinds of functions, the results show that no single Eulerian two-point
correlation function is a good approximation to the Lagrangian function, . . .

a result that is probably true also for the turbulence case.
As mentioned earlier, in dealing with turbulent dispersion, Corrsin realized

the importance of understanding the bending and folding of iso-surfaces of
transported scalars, and hence the growth of lines embedded in these surfaces,
and the growth of the surfaces themselves. In first addressing this problem
(Corrsin, 1955), he realized that the length of a scalar iso-line in two dimen-
sions could be related to the number of crossings of that surface with a straight
line through the fluid. Then using a theorem from Rice (1944, 1945) and as-
suming the scalar, say φ(x), is normally distributed, the line length Lφ can be
related to the autocorrelation of the scalar as

Lφ =
1
π

{
−Ψ

′′(0)
Ψ(0)

}1/2

exp(−φ2
c/2Ψ(0)) , (7.5)

where Ψ(σ) is the auto-correlation φ(s)φ(s + σ), and φc is the constant value
of interest of φ. This result can easily be extended to an iso-surface in three
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Figure 7.3 Evolution of lines formed with tiny hydrogen bubbles in a turbulent
water channel flow (reprinted from Corrsin and Karweit, 1969).

dimensions. The work was further extended by Corrsin and Phillips (1961) to
include contour lengths and surface areas of multiple-valued random variables.
These results have proven very useful, in particular, in theories of turbulent
combustion, where the area of the flame surface is often directly modeled (see,
for example, Poinsot and Veynante, 2001).

Corrsin and Karweit (1969) were the first to measure the fluid line growth
in turbulence. Michael Karweit was a graduate student pursuing his Masters
degree and would remain at Johns Hopkins as a long-time junior collabora-
tor of Corrsin. Their experiment utilized a water tunnel with a test section of
dimension 8 in. square by 48 in., and approximately homogeneous turbulence
generated by a bi-plane grid of mesh size 1

2 in. The grid Reynolds number was
1360. They used the ‘hydrogen bubble’ electrolysis method, with a platinum
wire stretched normal to the flow to generate the hydrogen bubble lines. These
lines were photographed at various distances downstream from the wire, and
their lengths were determined using an analysis relating length to the num-
ber of cuts and the angle of the line with respect to a straight reference line
(Corrsin and Phillips, 1961). Photographs and movies from this experiment
are now used in many classes in turbulence throughout the world, and a pho-
tograph is shown in Figure 7.3. Unfortunately, because of the limitation of
the length of the water tunnel, only short-time growth of the lines could be
observed. This growth was consistent with short-time growth estimates, but
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the measurements could not confirm the conjectured long-time growth of the
lines.

Batchelor (1952) had conjectured that, for long times in stationary, homoge-
neous turbulence, the number of eddies of each size acting to stretch the line is
proportional to the line length. This leads immediately to the conclusion that
the line will grow exponentially. This result was proven more rigorously by
Cocke (1969) and Orszag (1970). Corrsin (1972) offered a simpler geometric
proof of this result. His conclusions were weaker than the previous ones, but
without restrictions to isotropy or constant density being required.

While pointing out the problems of a fundamental nature in the use of a tur-
bulent scalar diffusivity (see below), Corrsin made theoretical and experimen-
tal estimates of this quantity. He extended Taylor (1921)’s theory to include
a homogeneous, isotropic, stationary shear flow (Corrsin, 1953) and found,
for example, for long times, the cubic dependence on time of the streamwise
dispersion, i.e.

X′21 ∼
2
3

(du1

dx2

)2

v′22 T22t3 , (7.6)

where du1/dx2 is the uniform mean shearing of the u1 component of the veloc-
ity in the x2 direction. This result was extended by Riley and Corrsin (1974)
for the non-isotropic case. In particular, they computed the turbulent diffusivity
tensor Ki j and found it to be non-diagonal, and to depend on the mean shear
and the correlations of v′1 and v′2. For example, the K11 component was found
to be

K11(t) =
∫ t

0
RL11(τ) dτ +

dū1

dx2

∫ t

0
τRL12(τ) dτ . (7.7)

Riley and Corrsin (1971) also performed computer simulations of fluid particle
dispersion of homogeneous shear flows using an artificially constructed Eule-
rian flow field consisting of spatially and temporally varying Fourier modes,
with amplitudes defined so that the statistics of the flow were similar to the
laboratory measurements of Champagne et al. (1970). Their computed results
were consistent with the analysis.

Almost all turbulence models employ, at some point, a linear gradient model,
where the turbulent flux of a quantity (e.g. mass, heat, species concentration,
momentum, kinetic energy) is assumed proportional to the linear gradient of
that quantity. Corrsin would often express skepticism about closure models,
in particular the eddy-diffusivity, gradient-based models and their motivating
analogies to kinetic theory of gases. His arguments about the fundamental lim-
itations of these models have served as motivating force to many researchers
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who in subsequent decades have attempted to develop more general and intri-
cate closure models of turbulence.

In an influential paper entitled Limitations of gradient transport models in
random walks and in turbulence, Corrsin (1974) presented a systematic analy-
sis of closure models. Following ideas from continuum mechanics in deriving
a relationship between the molecular flux of the quantity, the properties of the
fluid, and the space and time gradients of the quantity, he assumed a general
functional relationship between the turbulent flux of a quantity in the, say, z
direction, F̄(z), and a functional of the average quantity Γ̄ and the statistical
properties of the velocity field. He then determined the assumptions required
for the turbulent flux to be linearly related to the gradient of the average quan-
tity. With �, a length scale of the turbulence, τ, the time scale, and V = �/τ the
corresponding turbulent velocity scale, the necessary conditions for the lin-
ear gradient model are found to be the following, where a subscript denotes a
derivative with respect to that quantity:

(i) |F̄zzz/F̄z|�2 � 1, i.e. the turbulent length scale should be much smaller
than the distance over which the curvature of Γ̄ changes appreciably;

(ii) τ|Γ̄tz/Γ̄z| � 1, i.e. the turbulence time scale must be much smaller than
the time over which Γ̄ changes appreciably;

(iii) |�z/� + Vz/V | � |Γ̄z/Γ̄|, i.e. the changes in the turbulence properties must
be very small over a distance for which Γ̄ changes appreciably;

(iv) |Vz/V | � |�z/�|, i.e. the turbulent velocity must be appreciably more uni-
form than �; and

(v) the relative change in Γ̄ must be very small over the turbulent time
scale τ.

Corrsin then went on to compute these inequalities for several flows, pointing
out that

the archival literature is replete with data showing, either directly or indirectly,
for both scalar and momentum transport, that the mean gradients vary consider-
ably over distances comparable to the length scales characteristic of the ‘eddies’.

He also argued that, for the turbulent flux of a scalar γui (where γ = Γ − Γ̄ is
the scalar fluctuation and ui is the fluctuating part of the velocity vector), the
turbulent diffusivity must be considered as a second-order tensor, i.e.

γui = −Ki j
∂Γ̄

∂x j
. (7.8)

He pointed out that there is no reason to assume that the diffusivity matrix is
diagonal, as assumed in many models. In fact, using estimates from various

https://doi.org/10.1017/CBO9781139018241.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139018241.008


7: Stanley Corrsin 255

sets of data, he argued that the off-diagonal terms are often comparable to the
diagonal terms.

Several years later, he and co-workers (Sreenivasan et al., 1981) revisited
these conditions and analyzed experimentally obtained turbulent heat flux and
temperature gradients across various types of homogeneous and inhomoge-
neous shear flows. They identified additional conditions and concluded that
there was a need for models based on more than just the mean field properties
of the flow.

7.6 Homogeneous turbulence: decay and shear

Ever since his early experiments as part of his Masters thesis at Caltech, Corrsin
had been interested in quantifying the precise decay rate of kinetic energy in
isotropic turbulence unconstrained by boundaries. Several statistical theories
and models predicted different decay rate exponents n of kinetic energy with
time, i.e. u′2 ∼ tn for a particular component of turbulence kinetic energy. De-
pending on what quantity (invariant) was assumed to be constant during the
decay, different values of n were obtained. As discussed in Davidson (2004),
most well-known are n = −10/7 (Kolmogorov, 1941), n = −6/5 (Saffman,
1967), or n = −1 for complete self-preservation which at the time had been
discarded (Batchelor, 1948). Careful new experiments were needed to provide
accurate data. Such data could be produced in a wind tunnel with a test sec-
tion of large enough cross-section to prevent wall effects and long enough to
enable turbulence to decay significantly. Also, the turbulence should be truly
isotropic at the entrance of the test section. Many earlier attempts at generating
isotropic turbulence, including Corrsin’s own trials at Caltech, typically pro-
vided for larger velocity fluctuations in the streamwise direction than in the
cross-stream directions. In order to take advantage of the unexpected availabil-
ity of wood and of a team of carpenters who, it is said, had finished working on
a Johns Hopkins building project earlier than planned, Corrsin designed a large
closed-loop wind tunnel made almost entirely out of wood. The design called
for a very large primary contraction with an area ratio of 25 to 1, in order to
create a smooth, constant velocity air flow at the core of the test section.

Construction of the two-story facility occupying large areas of the basement
and first floor of Maryland Hall proceeded quickly. Procurement and installa-
tion of a two-stage axial fan with adjustable pitch connected to a 150 horse-
power electric motor on the first floor completed what would become a ma-
jor facility for turbulence research. Cooling was needed to prevent excessive
thermal contamination of the hot-wire probe readings. It was provided by a
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Figure 7.4 Professor Stan Corrsin in later years explaining decaying isotropic
turbulence behind a grid in a wind tunnel, including a secondary contraction.

cross-flow heat exchanger installed before the fan. Through the heat exchanger
circulated cooling water siphoned off from a pond which, at the time, graced
the east side of campus. For years, this arrangement would cause friction with
the university’s ground maintenance personnel.

The design also included a secondary contraction which would be located
downstream of the turbulence producing grid. By forcing the initially some-
what anisotropic turbulence to go through the secondary contraction, vorticity
aligned in the streamwise direction would get amplified due to vortex stretch-
ing, and the cross-stream turbulence variance would be increased relative to
the streamwise turbulence component. Corrsin settled for a 1.27:1 secondary
contraction which would greatly reduce the initial anisotropy of the turbulence.
Years later, he would often explain the principle of the secondary contraction
on a blackboard (Figure 7.4).

Geneviève Comte-Bellot arrived to Baltimore in 1963 as a Fulbright and
postdoctoral fellow, having recently obtained her doctorate from the Univer-
sity of Grenoble working with Antoine Craya. She went to work with Corrsin
and implemented various improvements in hot-wire instrumentation and ana-
log data acquisition. In two seminal papers on the decay of isotropic turbulence
that arose from their collaboration, they presented what has become one of the
most celebrated datasets of fluid mechanics. In the first paper (Comte-Bellot
and Corrsin, 1966), they documented the performance of the secondary con-
traction in promoting isotropy of the turbulence behind the grid. They also
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showed that the decay of turbulence variances proceeded according to a power
law,

u′2

U2
0

≈ v′2

U2
0

≈ C
( x − x0

M

)n
, (7.9)

where u′2 and v′2 are the variances of streamwise and cross-stream velocity,
respectively, U0 is the mean velocity in the tunnel (that ranged between 10 and
20 m/s), M is the mesh-size of the turbulence-producing grid of bars (M ranged
from 1 to 4 inches), and x− x0 is the downstream distance to a virtual origin. In
the presence of the secondary contraction, the isotropy requirement u′2 = v′2

was met to a remarkable degree. Moreover, the data yielded decay exponents
that fell mostly in the range between n = −1.2 and n = −1.3, over more than
one decade of scaling. It was the most convincing experimental result showing
that predictions from theories leading to either a t−10/7 or a t−1 decay were not
reproduced.

The second work was published sometime later (Comte-Bellot and Corrsin,
1971) and provided a detailed analysis of measured two-point correlation func-
tions and spectra at various downstream distances from the grid. Hot-wire
probes recorded velocity signals over a wide range of frequencies. Spectra for
high frequencies were obtained using an HP wave analyzer. Since it was sensi-
tive only down to 20 Hz, lower frequencies were captured by recording the sig-
nals to tape and replaying the tapes at higher speeds later on. Measuring corre-
lation functions also involved playing back the tapes with varying time-delays.
Additional analog signal processing included band-pass filters, multipliers and
an electro-chemical integrator whose output finally corresponded to the time-
converged correlation coefficients among narrow band-pass filtered signals.

The results show that correlation functions for band-pass filtered veloci-
ties decay at time-scales commensurate with the eddy-scale highlighted by the
band-pass filtering. Also, all curves could be collapsed by an appropriate time
scale, combining effects at various scales.

Comte-Bellot and Corrsin (1971) also report, in great detail, the precise en-
ergy spectra at various times (distances) during the decay. They used the mea-
sured one-dimensional energy spectrum E11(k, t) to deduce the radial three-
dimensional energy spectrum using the assumption of isotropy. The resulting
radial spectra E(k, t), carefully tabulated, have been used by many researchers
since to test and validate spectral closures such as eddy-damped quasi-normal
theories and, in recent decades, subgrid-scale models for large eddy simula-
tions (Moin et al., 1991). It has taken three decades for this ground-breaking
experiment to be replicated using direct numerical simulations (de Bruyn Kops
and Riley, 1998) as well as for a similar experiment to be remade at higher

https://doi.org/10.1017/CBO9781139018241.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139018241.008


258 Meneveau & Riley

Reynolds number in the same wind tunnel, this time using an active grid (Kang
et al., 2003).

The question of the dynamics of narrow-band effects in turbulence continued
to interest Corrsin for many years. He had been following the theoretical efforts
of R.H. Kraichnan, who at the time lived in relative isolation, north in the New
Hampshire woodlands. Once a year, Corrsin would travel to New Hampshire
to visit with Kraichnan and discuss turbulence. One of the central quantities
of the Kraichnan direct interaction approximation is the response function of
turbulence to a spectrally local disturbance. Partly motivated by the discus-
sions with Kraichnan, Kellogg and Corrsin (1980) performed an experiment in
which the wake of a fine wire stretched across otherwise isotropic grid turbu-
lence introduced a narrow-band disturbance. They recorded its decay and com-
pared it to the linear perturbation response predicted by Kraichnan, noting ‘fair
agreement’. Interest in the dynamics of Fourier modes also led Corrsin to con-
sider early uses of computer simulations. With J. Brasseur, a postdoctoral fel-
low at Hopkins in the early 1980s, they performed numerical experiments and
followed the time-evolution of individual Fourier modes and observed their
interactions within wave-number triads (Brasseur and Corrsin, 1987).

Towards the late 1970s and early 1980s Corrsin directed a concerted ef-
fort to study the most elemental non-isotropic turbulent flow, namely homoge-
neous shear flow in which the mean flow has a linear profile. Champagne et al.
(1970) and Harris et al. (1977) produced such a mean velocity profile by forc-
ing air flow through a set of parallel plates, each channel being associated with
a screen of different solidity. The side with larger solidity corresponds to lower
speeds due to the increased head losses suffered by the flow there. The evo-
lution of turbulence, the growth of length-scales, and the resulting anisotropy
were measured and to this day form a dataset used to calibrate turbulence mod-
els and compare to simulations.

Returning to the question of scalar transport, Tavoularis and Corrsin (1981a)
made direct measurements of the turbulent diffusivity in a homogeneous shear
flow. They used an experimental setup similar to that used in the homogeneous
shear flow experiments of Harris et al. (1977), but with the exit turbulence-
generating rods replaced with heating rods. This produced a uniform temper-
ature gradient in the cross-stream (x2) direction, to go along with their uni-
form velocity gradient across the same direction. Detailed measurements were
made of the velocity field and temperature field statistics, including joint tem-
perature/velocity statistics, spectra, autocorrelations, microscales and integral
scales. In particular, with dT̄/dx2 = constant, and dT̄/dx1 = dT̄/dx3 = 0,
from measuring u1θ and u2θ they were able to determine K12 = −u1θ/

dT̄
dx2

and K22 = −u2θ/
dT̄
dx2

. The result was that K12/K22 � −2.2. In re-examining
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existing data for heated turbulent boundary layers and heated pipe flows, they
found approximate values of −2.4 and −2.1, respectively.

This work was extended by Tavoularis and Corrsin (1981b), using the same
flow field, to the case with the mean temperature gradient transverse to the
direction of the mean flow and the mean shear, i.e. dT̄/dx3 = constant, and
dT̄/dx1 = dT̄/dx2 = 0. The only significant heat flux component was u3θ (the
other two components were approximately zero by symmetry), and gave the
results that K33 = −u3θ/

dT̄
dx3
� 1.6K22.

7.7 The geometry and intermittency of turbulence

In his PhD thesis on the circular turbulent jet, Corrsin (1947) computed many
of the statistical properties of the turbulent velocity and temperature field. But
in observing oscillograms of the axial velocity signal he noticed that

the ‘turbulent’ jet is completely turbulent only from the axis out to approximately
r = r0. For r > r0, there exists first an annular transition region, in which the flow
at a point alternates between the turbulent and laminar regimes.

(Here r0 is the radial location where the mean axial velocity Ū drops to half of
its peak value.) He went on to note that

the general location of the transition region in the jet is about the same as the
location of the u′/Ū maximum. This may mean that a part of the ‘turbulence’
is not due to the usual turbulent velocity fluctuations, but to actual differences
in local mean velocity at a point, as the flow oscillates between the laminar and
turbulent states.

Corrsin had discovered the intermittent layer between a laminar and a turbulent
flow which is now known to be characteristic of any turbulent flow with a free-
stream boundary (i.e. not a solid boundary) such as turbulent boundary layers,
jets, wakes, shear layers, and other related flows.

The first definitive study of the intermittent regions between a laminar and a
turbulent flow was by Corrsin and Kistler (1955), who addressed such regions
for a turbulent boundary layer, a plane wake, and a circular jet. Although inter-
esting experimental data were obtained in this study, one of its principal con-
tributions was conceptual, in defining and clarifying the overall processes in-
volved. The first issue is how to distinguish the turbulent and the non-turbulent
regimes. Corrsin and Kistler realized that it was not the random motion that
distinguished the turbulent region, since the flow in the laminar region was also
quite random. They concluded that the characterizing feature of the turbulent
region was its high vorticity, compared to the essentially irrotational flow of
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the non-turbulent region. Thus they concluded to apply “the word ‘turbulent’
to random rotational fields only”.

They surmised that the rotational turbulent region must propagate into the
non-turbulent region, much as “a flame front propagates through a combustible
mixture”. From the vorticity equation they reasoned that

the random vorticity field . . . can propagate only by direct contact, as opposed to
action at a distance, because rotation can be transmitted to irrotational flow only
through direct viscous shearing action. This assures that . . . the turbulent front
will always be a continuous surface; there will be no islands of turbulence out in
the free stream disconnected from the main body of turbulent fluid.

Corrsin and Kistler reasoned that a very thin layer, which they called the
laminar superlayer, separated the turbulent and non-turbulent regions. The tur-
bulent side was characterized by strong vorticity amplification by vortex
stretching, while the superlayer itself was characterized by viscous diffusion
of vorticity across this layer. From simple physical/mathematical arguments,
they concluded that the superlayer was very thin, with a width on the order of
the Kolmogorov scale.

In order to address the intermittency of turbulence in the flow, Corrsin and
Kistler followed Townsend (1948) and defined the intermittency γ as “the frac-
tional time spent by the (fixed) probe in the turbulent fluid”. Experimentally
the intermittency γ was determined by electronically differentiating the hot-
wire signal for the axial component of the velocity, then rectifying, smoothing
and clipping the resulting signal. A signal discriminator was used to determine
whether the resulting signal was strong enough such that the region was tur-
bulent; this signal discriminator was set by comparing the results of the signal
output to a visual oscillogram output. In addition to the usual measurements
of the velocity statistics, they were able to measure the intermittency γ and
the position of the front Y as functions of time and downstream coordinate x.
They were thus able to determine the intermittency γ, which is, in terms of
Y , γ(y) = prob{y ≤ Y(t) ≤ ∞}. In addition, they could determine the average

position of the turbulent front, Ȳ , and its standard deviation σ = {(Y − Ȳ)2}1/2,
which is a measure of the width of the intermittent zone, which they termed
the wrinkle amplitude of the turbulent front.

From their data and using theoretical arguments, they found that the rate of
increase of the wrinkle amplitude of the turbulent front was roughly predicted
by Lagrangian analysis as σ(x) �

√
2(v′/Ū)v′TL, where v′ and TL are the local

Lagrangian velocity fluctuation and velocity integral time scale, respectively.
They also found that the downstream growth of the turbulent front, as measured
by Y , was proportional to the growth of the shear-layer thickness.
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Corrsin and Kistler drew two important additional conclusions from their
study. First, they concluded “that the presence of the turbulent front with its at-
tendant detailed statistical properties will have to be included in basic research
on turbulent shear flows with free-stream boundaries”. Secondly, they specu-
lated that, in considering a scalar (e.g. heat, mass) in the flow for Prandtl and
Schmidt numbers not much smaller than unity, “the front should apply equally
well to heat or chemical composition. Oscillographic observations . . . in a hot
jet show a temperature fluctuation intermittency, presumably coincident with
the vorticity intermittency”.

Corrsin saw indications of outer intermittency in many other fluid dynami-
cal systems. In a noteworthy interview in Sports Illustrated (Terrell, 1959), he
was asked to explain the mechanism underlying the so-called ‘knuckle ball’.
It was the hallmark of Hoyt Wilhelm, a then famous pitcher for the Baltimore
baseball team, the Orioles. Hoyt could throw a ball that would then move in
unpredictable trajectories, thus confusing the opposing team’s batter. A photo-
graph in the article shows Corrsin in front of the blackboard with a sketch of
the flow-field at the rear side of a baseball during flight. A jagged boundary
line encloses the separated turbulent region. It is used to show that the unpre-
dictable trajectories of the knuckle ball can be due to slight changes in lift and
drag forces associated with the complicated geometry of the separated region.
Quoting from the article:

If the separation line was perfectly straight, the ball would go straight, for the
pressure forces would be even. But since the separation line is highly irregular,
so is the course of the ball. And since the separation line is constantly shifting
and changing . . . the course of the knuckle ball can change direction several times
in flight.

Following Kolmogorov’s (1941) important theory of local isotropy and sim-
ilarity hypotheses regarding turbulent velocity fine-structure, and in fact his
own along with Obukhov’s (1948) theory for fine-scale scalar fields (Corrsin,
1951b), Corrsin became interested in the intermittent behavior and the ge-
ometric properties of fine-scale turbulence. Measurements by Batchelor and
Townsend (1949) indicated that the fine-structures were strongly intermittent,
localized in relatively small regions which were distributed somewhat ran-
domly in space. This led many to question Kolmogorov’s original theory (see,
for example, Landau and Lifshitz, 1959), which led to a number of attempts to
address the structure of the fine-scales as well as modifications of
Kolmogorov’s theory.

Corrsin’s interest in understanding the spatial structure associated with the
turbulent cascade of kinetic energy comes to light in a passage of his
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general-interest article published in American Scientist in 1961
(Corrsin, 1961b). Quoting from the article:

From a geometrical viewpoint, the spectral transfer process in turbulence can be
seen in the (empirical) fact that any blob of fluid momentarily having a fairly
uniform local velocity, is stretched and twisted by its own motion (and that of
neighboring fluid) into even longer, thinner and more convoluted ‘strings’ and
‘sheets’. Since it is difficult to sketch such a locally coherent velocity field, we
can illustrate this aspect via a similar phenomenon: turbulent mixing of a passive
contaminant, like dye spots in a turbulent liquid.

He earned the 1961 American Scientist Prize for this article.
Corrsin (1962c) used a simple phenomenological model and some exist-

ing data to suggest that the fine-structure was distributed into thin sheets,
with thickness on the order of the Kolmogorov scale, and separation distance
of the order of the integral scale. This suggested that the velocity derivative
flatness factor should scale linearly with the Taylor scale Reynolds number,
Rλ = u′λ/ν. On the other hand, Tennekes (1968) suggested the fine-structure
was distributed as vortex tubes, with diameters of the order of the Taylor scale
λ. This led to the prediction of the flatness factor scaling as R3/2

λ . In addition,
Obukhov (1962) and Kolmogorov (1962), attempting to take the fine-scale in-
termittency into account, assumed that the logarithm of the average energy
dissipation rate over a very small volume had a normal distribution, and from
this they were able to obtain modified expressions for the energy spectrum and
structure functions. These hypotheses remained to be tested.

Working with A. Kuo (Kuo and Corrsin, 1971) in both grid-generated, nearly
isotropic turbulence and on the axis of a round jet, Corrsin first addressed the
size of the fine-scale regions, the dependence on Reynolds number, and the
probability density of the locally averaged dissipation rate. Hot-wire anemome-
ters were employed to make the velocity measurements, and three kinds of cir-
cuits were used to extract fine-scale signals from the outputs of the anemome-
ters: differentiation circuits, band-pass filters, and high-pass filters. They found
that there was a decrease in the relative fluid volume occupied by fine-structure
of a given size as the turbulence Reynolds number Rλ increased. They also
found that, for a fixed Reynolds number, the relative volume is smaller for
smaller fine-structures. In addition, the average linear dimension of a vol-
ume of fine-structure (Lr) was found to be much larger than the size of the
fine-structure r itself. For example, at Rλ = 110, they found that Lr/r varied
from 15 to 30, decreasing with r. Finally, they found that (∂u/∂t)2 was ap-
proximately log-normally distributed, at least when probabilities fall between
about 0.3 and 0.95, in partial agreement with the assumptions of Obukhov and
Kolmogorov.
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Realizing that information about the shape of the fine-scale structures might
eventually help understand the physical processes related to energy transfer
to these scales, Kuo and Corrsin (1972) then attempted to determine the geo-
metric character of the structures. Using the measurement technique of two-
position coincidence functions for the presence of velocity fine-structure, they
tried to distinguish the structures as being ‘blobs’, ‘rods’, or ‘slabs’. Again hot-
wire anemometer measurements were made in nearly isotropic turbulence. In
order to determine the geometry of the structures, Kuo and Corrsin developed
mathematical, geometric models for each structure; these models predicted, for
each assumed structure, the simultaneous detection event rate as well as the si-
multaneous intermittency factor. Comparisons of the experimental results for
these quantities to the predictions of the models then allowed the determination
of the type of fine-scale structures.

Their tentative conclusion was that the fine-scale regions are more rod-like
than blob-like or sheet-like. This implies a tendency for slightly ‘stringy’ struc-
tures, which may overlap with each other. Two other classes of structures were
not eliminated by the measurements, ribbon-like structures, and a mixture of
blobs and rods. Kuo and Corrsin suggested coincidence measurements using
three or more probes to help determine among these alternatives. They also
suggested using similar models for fine-scaled scalar fields to help distinguish
the structures. These detailed results motivated many subsequent publications
by other researchers on the intermittency statistics of turbulence, as well as an
influential paper by Kraichnan (1974). He dealt with an analysis of the energy
cascade along wavenumber bands arranged in octaves in an effort to provide a
possible dynamical explanation for the spatial concentration of energy fluxes
in smaller and smaller subregions of the flow during the cascade. A number of
subsequent developments are recounted in some detail in the book by Frisch
(1995).

7.8 Turbulence and chemical reactions

Corrsin was the first to apply statistical theory to turbulent, reacting flows. In
a series of papers spanning the 1950s and 1960s he applied statistical analysis
and results from turbulence and turbulence mixing developed over the past 20
years to determine the statistical properties of simple chemical reactions in
turbulent flows. His research set the stage for much of the work on such flows
that followed.

As was usually the case for him, Corrsin idealized the problem and con-
sidered homogeneous, isotropic turbulence, and assumed negligible effects of
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heat release on the fluid properties so that, in particular, the fluid density, the
reaction-rate coefficients, and diffusion coefficients remain constant. Further-
more, he assumed that all of the reactant species concentrations but one were
in great excess, so that the concentration of only the latter, say Γ, changes sig-
nificantly in time. Finally, he assumed that the chemical reaction rates were of
simple power-law form, i.e. proportional to Γn, and considered the cases where
n = 1 or n = 2. Therefore, Γ satisfies the following convection–diffusion–
reaction equation:

∂Γ

∂t
+ ui

∂Γ

∂xi
= D∇2Γ − Φ(Γ) , (7.10)

where Φ(Γ) = knΓ
n, kn is the reaction-rate constant, D is the molecular diffu-

sivity of Γ, and n is either 1 or 2.

First-order reactions (n = 1): With the assumption of homogeneity, Corrsin
(1958) averaged equation (7.10) and obtained the solution for the average as
Γ̄(t) = Γ̄0 exp(−k1t). He then obtained the equation for the mean-square fluctu-
ation γ2(t):

dγ2

dt
= −2D ∂γ

∂xi

(
∂γ

∂xi

)
− 2k1γ2 . (7.11)

He introduced a microscale for γ, say λγ, and, based upon previous experi-

ments, assumed λγ/λ � 2D/ν and obtained solutions for γ2 for different as-
sumptions regarding λ. Here λ is the usual Taylor microscale. His solutions
were of the form

γ2(t) = γ2
m(t) exp(−2k1t) , (7.12)

where γ2
m(t) is the solution for the nonreacting case (k1 = 0). Therefore, he

found that the effect of the first-order chemical reaction is to cause exponential
decay in both Γ̄ and γ2.

In a subsequent paper (Corrsin, 1961a), he focused on the spectral behavior
of γ for first-order reactions. Using extensions of the spectral cascade argu-
ments of Onsager (1949), and the mixing theories of Batchelor (1959) and
Batchelor et al. (1959), he derived the following expressions for the energy
spectrum of γ, say G(k), for three different spectral subranges:

(i) inertial–convective subrange, k � (
ε/νD2)1/4 if ν/D � 1, or k �(

ε/D3)1/4 if ν/D � 1

G(k) � Bk−5/3 exp(3k1ε
−1/3k−2/3). (7.13)

https://doi.org/10.1017/CBO9781139018241.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139018241.008


7: Stanley Corrsin 265

(ii) viscous–convective subrange, k � (
ε/ν3)1/4

G(k) � Nk−(1+4k1ν
1/2ε−1/2) exp{−2(k/kB)2}. (7.14)

(iii) inertial–diffusive subrange,
(
ε/D3)1/4 � k � (

ε/ν3)1/4

G(k) � 1
3

ε∗θ ε
2/3

D
1

k5/3[Dk2 + k1]2
. (7.15)

Here B and N are constants determined from the analysis, and kB =
(
ε/νD2)1/4

is the Batchelor wave number. It is easy to see the effects of the reaction rate
on the spectra. For example, in the inertial–convective subrange, where the
spectrum is proportional to εγε−1/3k−5/3, the effect of chemical reaction is given
by the factor exp(3k1ε

−1/3k−2/3). Corrsin points out that, for wave numbers
above kc = k3/2

1 ε−1/2, the effect of the chemical reaction on the spectral shape
is negligible.

Having obtained results for the concentration of the reactant, Γ, Corrsin
(1962a) then addressed the concentration of the product of the reaction, say
P, for first-order reactions. The product concentration for this case satisfies the
following equation:

∂P
∂t
+ ui

∂P
∂xi
= DP∇2P − k1Γ . (7.16)

Assuming equal diffusivities for the reactant and the product, i.e.D = DP, the
equation for P̄ is closed and the solution is easily found to be P̄ = P̄0 + Γ̄0{1 −
exp(−k1t)}. The equation for the mean-square fluctuations about P̄, say p2, is
similar to equation (7.11), except that the last term is now +k1 pγ, introducing a
new unknown. Arguing that the p and γ fields are perfectly correlated, Corrsin
was then able to obtain a solution for p2 analogous to equation (7.12):

p2(t) = γ2
m(t){1 − exp(−k1t)}2 . (7.17)

He also obtained equations for the energy spectra of the product concentra-
tion for the inertial–convective, viscous–convective, and inertial–diffusive sub-
ranges, but these results will not be repeated here. These various predictions
for both mean values and energy spectra are available to the community to
guide experiments and modeling, and have been extensively utilized.

Second-order reactions (n = 2): Due to the nonlinearity of the reaction term,
k2Γ

2, the equation for mean reactant Γ̄ is no longer closed, but contains the
unknown γ2. In addition, the chemical reaction now causes a spectral flux in
γ2. Corrsin (1958) again formed the equation for γ2, which now contained, in
addition to the dissipation-rate term, the additional unknown γ3, for which he
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introduced an additional equation. Introducing microscales for the dissipation-
rate terms in the equations for γ2 and γ3, he was left with equations for Γ̄,
γ2 and γ3 with a number of additional unknowns requiring additional assump-
tions. To simplify the problem further he then addressed three separate limiting
problems:

(i) extremely low fluctuation levels, γ′/Γ̄ � 1;
(ii) very slow reactions;

(iii) very fast reactions;

and obtained solutions for each case. Corrsin (1958) also briefly addressed the
equation for the spatial autocorrelation function γ(x)γ(x + r).

Corrsin (1964) went on to consider the energy spectra for second-order re-
actions. Assuming small fluctuation levels (γ′ � Γ̄), extending the cascade
method of Onsager (1949), and again following the approach of Batchelor
(1959) and Batchelor et al. (1959), he developed expressions for the reactant
energy spectra’s inertial–convective, inertial–diffusive, and viscous–convective
subranges.

7.9 The Johns Hopkins environment

During Corrsin’s tenure at Johns Hopkins, the Mechanics Department was an
exciting environment in which to work, and was considered one of the top
centers for turbulence research in the world. Some of this is described in the
Annual Reviews of Fluid Mechanics article by John Lumley and Steve Davis
(Lumley and Davis, 2003). One of the authors of this chapter (J.J. Riley) was a
graduate student there in the late 1960s and early 1970s, so this section relates
mostly to that time period.

Owen Phillips has referred to the period in the late 1960s and early 1970s
in the Mechanics Department at Johns Hopkins as the ‘golden years’, and
much of the credit for creating and sustaining such an environment goes to
Corrsin. The fluid mechanics faculty, which he had helped to build, was very
active. Owen Phillips had completed his now classical work on surface wave
and internal wave resonances, among many other things. Robert Long had fin-
ished his pioneering studies on stratified flow over complex terrain, and was
now delving into stratified, turbulent flows. Leslie Kovasznay was continually
improving experimental methods and studying structures in turbulent bound-
ary layers. Francis Bretherton had just joined from Cambridge University and
was embarking on several studies of geophysical flows which have now be-
come famous; and Stephen Davis arrived from Imperial College London and
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immediately developed a very active program on various aspects of nonlinear
instabilities. Clifford Truesdell and Jerald Eriksen were world-renowned for
their work in theoretical continuum mechanics, and James Bell, Robert Pond
and Robert Green had well-established programs in solid mechanics.

A cornerstone of the Hopkins environment was an unapologetic promotion
of fundamental aspects of research in mechanics. According to Phillips (1986),
Corrsin would say that science begins by asking simple questions about com-
plex phenomena, but advances by asking more penetrating questions about
simpler systems, whose solution could be obtained with rigor and explained
with clarity. Again, quoting Phillips (1986), if an unwary colleague commented
that some question was academic, Corrsin’s inevitable response was, “This is
an academic institution, where we consider academic questions”. According
to Michael Karweit the atmosphere was one of genuine pleasure in doing re-
search on fundamentally important problems. Perhaps it was the realization of
working on transcendental knowledge which resulted in the uniquely joyful
atmosphere at that time.

Along similar lines, Corrsin had definite views about the importance of fun-
damental science in the context of the education of engineers. He did not favor
those who would constantly clamor for an education mainly characterized by
‘applied relevance’. His strong views come into focus in a 1968 letter he wrote
to the editors of a publication that at the time reigned above all other illustrated
magazines in the United States: Life Magazine. The letter was in response
to the publication of an article advocating more “engineering relevance” in
education.

Sirs: I observe with wonder the demands of some college students and some fac-
ulty members (Professor Jerome in “The System Really Isn’t Working,” Life, 1
November) for an education characterized by ‘relevance’. The primary weakness
of the US engineering education from its inception until World War II was its
wholehearted devotion to relevance: spending more time in shop and lab than in
classroom, the students were well trained to cope with the design, operation and
repair of the world’s machinery, possibly to improve it a bit. Then along came
new machines based on scientific principles no one guessed engineers would
ever need to know. The result: many science-trained people had to be hastily re-
cruited into doing engineering work. Their weakness in engineering principles
led to mistakes – but at least they hadn’t been given tunnel vision by a totally
‘relevant’ education. Very truly yours, Stanley Corrsin, Professor.

The department seminar series was particularly interesting and lively. Both
novice and established researchers would visit and present the results of their
work, usually with much lively discussion from the faculty. Douglas Lilly
from the National Center for Atmospheric Research discussed some new
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numerical simulations of turbulence by him and his colleague, James Dear-
dorff; these happened to be the first large-eddy simulations of turbulence. Chris
Garrett discussed ideas about ocean internal waves which would later lead
to the now-famous Garrett–Munk energy spectrum for ocean internal waves.
There were always a number of visitors for extended visits. For example,
Geneviève Comte-Bellot had two long visits while engaged in her now-famous
collaboration with Corrsin on decaying grid turbulence (§7.6). Tim Pedley
was visiting from Cambridge and lectured on hydrodynamic stability. Keith
Moffatt, who was working on magnetohydrodynamic turbulence, was another
visitor from Cambridge. The Swedish oceanographer Pierre Welander was a
visiting Professor who lectured on ocean currents. James Serrin from the Uni-
versity of Minnesota was a visiting Professor lecturing on mathematical fun-
damentals of fluid mechanics. Frank Champagne arrived from Boeing to study
turbulent shear flows, while John Foss from Michigan State University worked
with Corrsin on turbulent diffusion experiments. Many postdoctoral fellows
working on various topics in fluid mechanics subsequently have had outstand-
ing careers. They included, among others, John Allen, James Brasseur, John
Dugan, Fazle Hussain, Wolfgang Kollmann, Martin Maxey, and Katepalli R.
Sreenivasan. Of the students who received their PhD degrees from the Me-
chanics Department during the late 1960s and early 1970s, many are today
well known for their research, and occupy top positions in academia and re-
search laboratories in industry and government.

There was considerable interaction with Hopkins researchers ‘off-campus’
as well. For example, Akira Okubo, from the Chesapeake Bay Institute, at
the time located on the Homewood campus, often discussed his latest ideas
on turbulent dispersion. Vivian O’Brien of the JHU Applied Physics Labora-
tory, located between Baltimore and Washington, DC, would give seminars
on her latest research, often on bio-fluid mechanics. Besides turbulence, fluid
mechanics in and around living things was another emerging area to which
Corrsin made major contributions.

The morning coffee period was legendary, always drawing a large number
of faculty, students, and visitors. The late 1960s and early 1970s were the time
period of the Vietnam war, and feelings were very strong on all sides. Many
discussions were political. At the same time, Baltimore was rife with racial
and social problems. The downtown area of the city showed signs of consid-
erable neglect. The harbor area in particular consisted of not much more than
a collection of abandoned and derelict warehouses. Racial tensions exploded
following the assassination of Martin Luther King Jr. and led to the Baltimore
riot of 1968, which lasted over a week. National Guard and federal troops had
to be called in to restore order. It was not until the early 1980s that, in a highly
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successful example of American urban renewal, the entire inner harbor area
was redeveloped.

Besides political discussions at the coffee period, the latest technical ideas
were argued at length; if the ideas could survive a discussion at coffee some-
what intact, there was some hope for them. And, the coffee period was also a
time of camaraderie and joking, especially if Corrsin were around. Many sto-
ries from this coffee period, perhaps often somewhat embellished, would be
recalled at conference meetings for many years. And if it was an especially
good, or bad, week, some students would go off and buy a supply of wine and
cheese on Friday, and the coffee period would become an even livelier party.

By the late 1970s, however, internal disagreements in the department (by
then called the Department of Mechanics and Materials Science) that had been
developing for some time finally boiled to the surface. Moreover, the recog-
nition that engineering required a separate administrative structure led to the
closing of the department and the reestablishment of a distinct engineering
school at Hopkins. It consisted of several traditional engineering departments
which continued to nurse a distinctly strong science flavor.

7.10 Final years

In 1984, Corrsin became ill with cancer. He underwent an apparently success-
ful operation followed by a none-too-aggressive therapy. Preparations for a
conference in his honor, the ‘Corrsin Birthday Symposium’, were in full swing.
It took place in Evanston, Illinois, early in 1985. The happy event celebrat-
ing his 65th birthday reunited many of his former students and postdocs. The
contributions from the symposium are recorded as a collection of papers in a
well-known book, Frontiers in Fluid Mechanics, edited by Davis and Lumley
(1985).

Soon however the illness returned, this time much worse. There were months
of treatments, extended hospital stays, and distress. Stanley Corrsin died on 2
June 1986. He was sixty-six. Another symposium that had been planned in his
honor on occasion of the award of the American Society of Civil Engineers’
Theodore von Kármán Medal took place in Minneapolis, Minnesota, on the
day after his death (George and Arndt, 1988). The medal was awarded posthu-
mously.

A memorial service was held on the Johns Hopkins campus in September
at the beginning of the Fall semester. It was attended by many of Corrsin’s
students, postdocs and collaborators from around the world, his family, and
university colleagues and staff.
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Corrsin’s impact on the field has been felt beyond his own scientific contri-
butions, through those he instructed directly and through others he inspired, di-
rectly and indirectly. He had been honored by many professional awards, such
as fellowship in the American Academy of Arts and Sciences, the American
Physical Society and American Society of Mechanical Engineers, membership
of the US National Academy of Engineering, and being named the Theophilus
Halley Smoot Professor of Fluid Mechanics.

During his lifetime, Corrsin saw turbulence research progress from rudimen-
tary single-probe hot-wire measurements in small bench-top shear flow exper-
iments, all the way to large-scale turbulence measurement campaigns in large
wind tunnels, and in the atmosphere and oceans. He saw turbulence theory
develop from simple one-point and two-point closures to path-diagrammatic
methods, and to the first several successful direct numerical and large-eddy
simulations on supercomputers. His own contributions form the backbone of
our present understanding of turbulent scalar transport, of fine-scale structure
of passive scalars in turbulence, and of the phenomenon of outer intermittency.
His contributions to homogeneous turbulence, decaying and sheared, as well
as chemically reacting turbulence, are considered pivotal. Yet, what he called
“the theoretical turbulence problem” (Corrsin, 1961b) remains to this day un-
solved. The lack of systematic methodologies to make analytical predictions
for even the simplest statistical objects continues to pose a serious challenge
to the many fields where turbulence plays a crucial role. In the absence of a
definitive theoretical framework to attack the problem, Corrsin’s approach of
joyful empiricism and fundamental analysis of canonical and carefully cho-
sen example problems remains to this day the best approach to turbulence
research.

Towards the end of his life, on occasion of Liepmann’s 70th birthday in
1984, Corrsin penned the ‘Sonnet to Turbulence’. It was read at the event by
Anatol Roshko and loosely follows the form of William Shakespeare’s Sonnet
#18 and Elizabeth Browning’s poem “How do I love thee? Let me count the
ways . . . ”. In the form received from SC by William K. George (1990), it is
reproduced below as closing words about Corrsin’s life. The sonnet evokes rel-
evant turbulence phenomena and provides insights about his views on several
new approaches that were being proposed at the time. For instance, in juxta-
posing low-dimensional strange attractors versus supercomputing, he correctly
predicted that the latter would be needed due to the very large number of de-
grees of freedom of turbulence (it is useful to recall that at the time the most
powerful supercomputer was the Cray 2).
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Sonnet to Turbulence (by S. Corrsin):
Shall we compare you to a laminar flow?
You are more lovely and more sinuous.
Rough winter winds shake branches free of snow,
And summer’s plumes churn up in cumulus.
How do we perceive you? Let me count the ways.
A random vortex field with strain entwined.
Fractal? Big and small swirls in the maze
May give us paradigms of flows to find.
Orthonormal forms non-linearly renew
Intricate flows with many free degrees
Or, in the latest fashion, merely few –
As strange attractor. In fact, we need Cray 3’s.
Experiment and theory, unforgiving;
For serious searcher, fun . . . and it’s a living!
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