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Abstract

We study the numerical Adomian decomposition method for the pricing of European
options under the well-known Black–Scholes model. However, because of the
nondifferentiability of the pay-off function for such options, applying the Adomian
decomposition method to the Black–Scholes model is not straightforward. Previous
works on this assume that the pay-off function is differentiable or is approximated by
a continuous estimation. Upon showing that these approximations lead to incorrect
results, we provide a proper approach, in which the singular point is relocated to
infinity through a coordinate transformation. Further, we show that our technique can
be extended to pricing digital options and European options under the Vasicek interest
rate model, in both of which the pay-off functions are singular. Numerical results show
that our approach overcomes the difficulty of directly dealing with the singularity within
the Adomian decomposition method and gives very accurate results.

2010 Mathematics subject classification: 35E15.

Keywords and phrases: Adomian decomposition method, European option, digital
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1. Introduction

The Adomian decomposition method (ADM) was developed by George Adomian in
the 1970s to yield series solutions for ordinary differential equations (ODEs). Since
then, the method has been used to determine analytic solutions not only to the linear
ODEs [4], but also a wide class of nonlinear ODEs [2, 7, 23] and even partial
differential equations (PDEs) [3, 18, 24, 29], which arise from many fields, such as
physics, engineering as well as finance. In this paper, we investigate the application of
the ADM to the European option pricing problem.

A European option is a contract between the writer and the holder of the contract,
which gives the holder the right but not the obligation to buy or sell a prescribed asset
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(called the underlying asset) at a specified price (called the strike price or exercise
price) on a given date in the future (called the expiry date). The option to buy an asset
is known as a call option, while the option to sell an asset is known as a put option. In
general, the underlying asset is a risky stock with price S . By assuming that there is
no transaction fee and no arbitrage opportunity, the stock price S follows the process

dS = (r − q)S dt + σS dWt,

where r is the risk-free bank rate, q is the dividend yield rate, σ is the standard
deviation of the return of the asset and Wt is a Wiener process. The value of the
European put option with expiry date T and exercise price K can be obtained by
solving the well-known Black–Scholes (BS) model [11, 25, 31],

Pt + 1
2σ

2S 2PS S + (r − q)S PS − rP = 0, (1.1a)
P(S ,T ) = max(K − S , 0), (1.1b)

P(0, t) = K e−r (T−t), (1.1c)
lim

S→∞
P(S , t) = 0. (1.1d)

Under the same assumptions, the value of a corresponding European call option
satisfies the following problem.

Ct + 1
2σ

2S 2CS S + (r − q)S CS − rC = 0, (1.2a)
C(S ,T ) = max(S − K, 0), (1.2b)

C(0, t) = 0, (1.2c)
lim

S→∞
C(S , t) = S e−q(T−t). (1.2d)

The connection between a put option and a call option, which have the same expiry T
and the same strike price K, is called the put-call parity [22]. This relationship allows
us to get the solution of (1.2) once we obtain the solution of the PDE system (1.1). The
solution to the system (1.1) can be found in a number of ways, for example, using a
Mellin transform [28] or Green’s function [22, 31], and is generally known as the BS
formula [31].

Since the BS formula for European options is in a closed form, one may argue that
there is no need to find an approximation to the solution using the ADM. However,
we believe that it is an essential step to apply the method to a well-known system
in order to gain insight into more complicated option pricing problems. It is also
important to investigate how to apply the ADM to this very special PDE problem that
is characterized by the presence of singularities in the initial (or terminal) condition,
but has a wide application in mathematical finance.

Although some authors have already attempted to apply the ADM to solving the BS
model, their methods have some shortcomings and limitations. Bohner and Zheng [14]
obtain an explicit price formula for both European puts and calls, which require
the terminal condition to have derivatives of all orders. However, as the terminal

https://doi.org/10.1017/S1446181117000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000438
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conditions of the European put and call, respectively, are (1.1b) and (1.2b), both of
which are nondifferentiable at S = K, their formula is not appropriate to price these
options. Bohner et al. [15] try to deal with the nonsmooth condition (1.2b), and
they find an approximation for the condition. Using Theorem 2.1 of Bohner and
Zheng [14], they obtain the price for European call options. While they give several
numerical examples, they only consider the situation where S � K. Although the
approximation of the condition (1.2b) is differentiable, there exists a singular point
at S = K in the derivatives of the approximation. In Section 3, we take a closer
look at this approach. The other works in the literature consider some differentiable,
possibly contrived, pay-off functions. For example, González-Gaxiola et al. [21] use
S + 10(

√
S + 1/4) and S + 200

√
S + 100; El-Wakil et al. [18] use S + 1/S 7/5; and

Eric et al. [10] only consider the linear pay-off, that is, K − S for the puts and S − K
for the calls. Unfortunately, for a standard option, such pay-off functions of (1.1b)
or (1.2b) already exist as they represent the simplest and yet still meaningful way to
design an option financially. However, mathematically, that means we have to deal
with the singularity at S = K in (1.1b) or (1.2b) if the ADM is used to price options.
Therefore, how to resolve the incompatibility between the suitability of the ADM and
the financial reality is a key challenge we face.

With the ADM, one can use Fourier series expansions to deal with the
nondifferentiability in the boundary or initial conditions of a problem defined on a
finite domain (see, for example, [33, Example 4.1] and [6, Section 1]), or one can,
instead, develop a rapidly convergent decomposition series of such conditions [6].
Unfortunately, in our problem, the stock price S is defined in a half-infinity domain,
and thus the condition (1.1b) (or (1.2b)) cannot be expanded into a Fourier series.
Therefore, for our specific problem, we are required to find another way to deal with
the singularity at S = K in the pay-off function.

In this paper, we provide an appropriate way to apply the ADM to the BS model
for European options, which can deal with the singularity problem without requiring a
differentiable approximation of the terminal condition. We relocate the singular point
to ±∞ through a variable transformation. Through our approach, the solution to (1.1)
is obtained, and is, in fact, equivalent to the BS formula. Moreover, we apply our
technique to pricing digital options, which also have a nonsmooth pay-off condition at
expiry, as well as to the two-dimensional problem of pricing a European option under
the stochastic Vasicek interest rate model [27, 30, 31]. Numerical results show that in
all of these examples our method is efficient and accurate.

This paper is organized into seven sections. Section 2 gives a brief review of the
ADM algorithm, and Section 3 highlights the inaccuracies of Bohner et al. [15] in the
approximation of the nonsmooth terminal condition. We detail our approach on the
use of the ADM for pricing European options in Section 4 and then, in Section 5, we
show how our approach can also be used to price digital options and European options
under the stochastic Vasicek interest rate model. In Section 6, we compare the prices
obtained by our method with those from the numerical techniques of the binomial
method (BM) and the Monte–Carlo (MC) simulation method. Finally, in Section 7,
we present our conclusions.
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2. The Adomian decomposition method

We briefly recall some general notation and formulae of the ADM that will be used
frequently henceforth. First, consider the general differential equation

F u = g,

where F is a general differential operator involving both linear and nonlinear terms,
so that the above equation can be decomposed as

Lu + Ru +Nu = g.

Here L is a linear invertible operator, R is the remainder of the linear operator and N
is a nonlinear operator. As L is invertible, the equivalent expression is

L−1Lu = L−1g − L−1Ru − L−1Nu. (2.1)

Solving (2.1) for u yields

u = φ +L−1g − L−1Ru − L−1Nu, (2.2)

where φ is the integration constant and satisfies Lφ = 0. In many PDE problems, there
are several invertible linear operators with respect to different variables to choose.
For a specific variable direction, one can obtain a solution which is called “partial
solution” [5]. With the ADM [4], the unknown function u is decomposed into a sum
of components

u =

∞∑
n=0

un, (2.3)

and the nonlinear term Nu is also decomposed into a series

Nu =

∞∑
n=0

An, (2.4)

where An (n = 0, 1, 2, · · · ) are called Adomian polynomials and are obtained by the
formula

An =
1
n!

dn

dλnN

( ∞∑
i=0

uiλ
i
) ∣∣∣∣∣
λ=0

for all n = 0, 1, 2, . . . .

A simple algorithm for calculating the Adomian polynomials is provided by Biazar
and Shafiof [13]. The programming codes for matlab are given by Fatoorehchi and
Abolghasemi [20], and the codes for maple are presented by Biazar and Pourabd [12].
We substitute equations (2.3) and (2.4) into (2.2) to obtain

∞∑
n=0

un = u0 − L
−1R

∞∑
n=0

un − L
−1

∞∑
n=0

An,

where

u0 = φ +L−1g,
un+1 =−L−1Run − L

−1An for all n ≥ 0.
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All the un are calculable, and thus the n-term approximate series solution can be
obtained using

Ψn =

n−1∑
i=0

ui ∼

∞∑
i=0

ui = u.

The decomposition of the solution series converges, in general, very quickly. The
convergence of the ADM was studied by Cherruault [16, 17, 26] and, more recently,
by Abdelrazec [8].

3. A review of the paper by Bohner et al. [15]

Bohner et al. [15] apply the ADM directly to the BS model for a European call
option (1.2), whereas the terminal condition (1.2b) is replaced by an approximate
function

g(S ) = 1
2 (S − K) + 1

2

√
(S − K)2 + (2

√
2 − 1)/n2,

where n is a parameter. It is easy to verify that the above function has the property,
limn→∞ g(S ) = max(S − K, 0), which indicates that the larger n will give us more
accurate results. With the standard ADM, defining the linear invertible operator Lt
as ∂/∂t and the remaining operator LS as

σ2

2
S 2 ∂2

∂S 2 + (r − q)S
∂

∂S
− r,

the equation (1.2a) can be written as LtC = −LS C. Then, we apply the inverse
operatorL−1

t =
∫ T

t (·) dt and substitute C =
∑∞

k=0 uk to both sides ofLtC = −LS C. After
some simplification, Bohner et al. [15] found that each uk (k ∈ N0) satisfies

uk =
(T − t)k

k!

( 2k∑
m=0

( m∑
v=0

(−1)m−v

v!(m − v)!
ρk

v

)
S mg(m)(S )

)
, (3.1)

where ρm = (σ2m/2 + r)(m − 1) − qm for all m ∈ N0.
Since larger n makes g(S ) closer to max(S − K, 0), a large n will essentially give us

more accurate option values. However, as n gets larger, there is a singularity at S = K
in the derivatives of g(S ). The first order derivative

g′(S ) =
1
2

(
1 +

S − K√
(S − K)2 + (1/n)2(2

√
2 − 1)

)
,

so
lim
n→∞

g′(S ) =
1
2

(
1 +

S − K
|S − K|

)
.

Also, it is simple to verify that the higher-order derivatives of g(S ) also have a
singularity at S = K, as n→ ∞. From (3.1), this singularity leads to a large error
in the value of the European call option near S = K. Moreover, if S < K,

lim
n→∞

g(S ) = 1
2 (S − K) + 1

2

√
(S − K)2 = 1

2 (S − K) − 1
2 (S − K) = 0,
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Table 1. Comparison of the values of European call options on a nondividend-paying asset and a dividend
paying asset [15] (denoted by “BMR”) with corresponding V∗ and the BS values when S > K. Model
settings are K = 40, S = 65, σ = 0.324366, r = 0.05, q = 0, q = 0.02, n = 100 and T = 1/4, 1/6, 1/12.
Relative errors of the results in Bohner et al. [15] are, respectively, measured against the V∗ values (the
6th column) and the BS values (the last column).

BMR [15] Relative Relative
(T ,q) value V∗ value BS value error∗ errorBS

1/4 0 25.49685 25.49689 25.49932 1.66E−06 9.71E−05
1/4 0.02 25.17260 25.17270 25.17541 3.79E−06 1.12E−04
1/6 0 25.33195 25.33195 25.33210 6.36E−08 6.14E−06
1/6 0.02 25.11564 25.11564 25.11581 1.09E−07 6.90E−06
1/12 0 25.16632 25.16632 25.16632 8.30E−08 8.19E−08
1/12 0.02 25.05808 25.05808 25.05808 3.63E−08 3.47E−08

and all the derivatives of g(S ) approach zero as n approaches infinity. That is from
(3.1), as n→∞,

∑∞
k=0 uk gives the value zero for the European call option pricing for

all S less than the strike price K. If S > K, the result of Bohner et al. [15] is, in fact,
asymptotic to S e−q(T−t) − Ke−r(T−t),

lim
n→∞

∞∑
k=0

uk(S , t) = S (1 − q(T − t) + 1
2 q2(T − t)2 − · · ·)

−K(1 − r(T − t) + 1
2 r2(T − t)2 − · · ·)

∼ S e−q(T−t) − Ke−r(T−t).

Intuitively, we use the same parameter values as used by Bohner et al. [15, Tables
4.1–4.2] to give some numerical examples for various values of S/K. Bohner et al. [15]
demonstrate excellent results only when S � K. However, as from the above analysis,
their results are, in fact, approximately V∗ = S e−q(T−t) − Ke−r(T−t). The comparison
of the results (5 terms of (3.1), equivalent to the equation below equation (2.4) in
Bohner et al. [15]) with the corresponding BS values and V∗ values is shown in Table 1.
From the table, one can see that as time to maturity T becomes smaller, the European
call option values obtained by using the method in [15] become more accurate. By
comparing the relative errors in the last two columns in Table 1, it is worth noting that
the results obtained by Bohner et al. [15] are much closer to V∗ than to the BS values.

In Table 2, we let S = 40 (= K) and S = 30 (< K), and keep the other parameters
the same. The results obtained using the method of Bohner et al. [15] are significantly
different from the BS values. When S = K, the results obtained by this method [15]
approach infinity, while, when S < K, they are very close to zero.

From both the theoretical analysis and the numerical examples, we observe that
the ADM application of Bohner et al. [15] does not properly solve the system (1.2)
for European call options. An attempt to use a differentiable approximation to the
pay-off function leads to failure, as the more accurate the approximation is, the more
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Table 2. Comparison of the values of European call options on a nondividend-paying asset and a dividend
paying asset [15] (denoted by “BMR”) with the corresponding BS values when S = K and S < K. Model
settings are K = 40, σ = 0.324366, r = 0.05, q = 0, q = 0.02, n = 100 and T = 1/4, 1/6, 1/12.

S = 40 = K S = 30 < K
(T, q) BMR [15] value BS value BMR [15] value BS value

1/4 0 −1.167E+31 2.82523 5.34E−04 0.10266
1/4 0.02 −1.98E+35 2.71416 3.77E−04 0.09497
1/6 0 3.694E+36 2.27297 −9.37E−04 0.02873
1/6 0.02 1.082E+41 2.20024 −1.32E−03 0.02674

1/12 0 −4.787E+40 1.57520 −7.58E−05 0.00112
1/12 0.02 −1.082E+40 1.53971 5.63E−05 0.00105

chance that it is singular at S = K. It is natural to ask whether the ADM can be used
to successfully solve the pricing problem. From the above analysis, a key challenge
is thus to find a way to deal with the singularity at S = K, when t = T is present in
the pay-off function. As we mentioned in the introduction, the method that combines
Fourier series [6, 33] is not suitable for the problem on an infinite domain. Therefore,
it is necessary to resolve the suitability of the ADM for the European option pricing.
Thus, the main contribution of this paper is that it presents one particular approach
with the singularity being shifted to infinity through a variable transformation, which
is shown in the next section.

4. Our solution approach

Focusing on dealing with the singularity at S = K in the pay-off function at
expiry, we consider the European put option pricing problem, since the corresponding
problem for call options can be easily obtained from the put–call parity. To simplify
and nondimensionalize the system (1.1), we apply the transformation

τ = (T − t)σ2/2, x = ln(S/K), ϕ = P/K (4.1)

to the equations to get

∂ϕ

∂τ
=
∂2ϕ

∂x2 + (k1 − 1)
∂ϕ

∂x
− k2ϕ, (4.2a)

ϕ(x, 0) = max(1 − ex, 0), (4.2b)
ϕ(−∞, τ) = e−k2 τ, (4.2c)
ϕ(∞, τ) = 0, (4.2d)

where k1 = 2(r − q)/σ2 and k2 = 2r/σ2. Hence, the nondifferentiable final condition
(1.1b) becomes an initial condition (4.2b). Further, our problem has been converted to
one with an infinite spatial domain. Then, we introduce the transformation

y =
x
√
τ
, z =

√
τ, u =

ϕ
√
τ
, (4.3)
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in order to shift the singularity in (4.2b) to infinity. Indeed, with the above variable
transformation, it is clear that the singular point at x = 0 in (4.2b), where the variable
τ = 0, has been shifted to infinity, as limτ→0 y = ±∞. By doing this, the difficulty
that was discussed in the previous section can be overcome without the need to
approximate or simplify the pay-off function, and thus apply the ADM properly.

Hence, through the transformation (4.3), we convert (4.2b) to

lim
z→0

u(y, z) =


1 − eyz

z
for y→ −∞,

0 for y→ +∞,

and expand the above in a Taylor series to get

lim
z→0

u(y, z) =

−y −
y2

2!
z −

y3

3!
z2 − · · · −

yn

n!
zn−1 − · · · for y→ −∞,

0 for y→ +∞.
(4.4)

Also, the PDE (4.2a) becomes

uz +
u
z

=
1
z

(2uyy + yuy + 2(k1 − 1)zuy − 2k2z2u). (4.5)

To solve equation (4.5), define the linear differentiable operator Lz [32] and its inverse
as

Lz(·) =
∂

∂z
(·) +

(·)
z
, L−1

z (·) =
1
z

∫ z

0
z(·) dz. (4.6)

It is easy to verify that

L−1
z Lz(u) =

1
z

∫ z

0
(zuz + u) dz =

1
z

(
[zu]z

0 −

∫ z

0
u dz +

∫ z

0
u dz

)
= u.

We now apply L−1
z to both sides of (4.5) and let u(y, z) =

∑∞
i=0 ui(y, z) to get

u0 + u1 + u2 + · · · =
1
z

∫ z

0
{2u0yy + yu0y + 2(k1 − 1)zu0y − 2k2z2u0

+ 2u1yy + yu1y + 2(k1 − 1)zu1y − 2k2z2u1 + · · · } dz. (4.7)

In the standard ADM, u0 is typically chosen to be the initial (or terminal) condition
or a boundary condition [4]. However, no such obvious terms appear in (4.7). To
satisfy the conditions at infinity (4.4), we want to find each ui such that the limit of
ui is equal to the i-th term in (4.4) when y tends to −∞, and 0, when y tends to ∞.
Equating terms of order O(z0) gives u0(y, z) = f0(y)z0 as the solution to

u0(y, z) =
1
z

∫ z

0
(2u0yy + yu0y ) dz,

that is,
f0(y) = 2 f ′′0 (y) + y f ′0(y). (4.8)
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Since equation (4.8) is a linear homogeneous second-order ODE, we can find the
general solution

f0(y) = C1y + C2

{e−y2/4

√
π

+
y
2

erf
( y
2

)}
,

where C1 and C2 are two arbitrary constants and erf(·) is the error function [1]. From
(4.4), u0 should satisfy

u0 =

−y as y→ −∞,
0 as y→ +∞.

Therefore, we find

u0(y, z) = −
1
2

y +
e−y2/4

√
π

+
y
2

erf
( y
2

)
.

In our approach, each successive term (u1, u2, . . .) is recursively found by solving
an ODE involving previous terms, instead of finding each term algebraically by using
the preceding ones in the standard ADM. From (4.7), we assume that ui(y, z) = fi(y)zi,
in order to find the solution to fi(y) by solving

u1(y, z) =
1
z

∫ z

0
{2u1yy + yu1y + 2(k1 − 1)zu0y} dz,

and, in general, for n ≥ 2,

un(y, z) =
1
z

∫ z

0
{2unyy + yuny + 2(k1 − 1)zun−1y − 2k2z2un−2} dz.

Thus the ODEs to solve for u1, u2, . . . ui are formed by equating terms of O(zi), and
using (4.4) these should be solved subject to

lim
y→∞

fi(y) = 0,

lim
y→−∞

fi(y) = −
yi+1

(i + 1)!
.

Solving for the first several orders yields

u1(y, z) = z
[ye−y2/4

2
√
π

+

(k1

2
+

y2

4

)(
erf

( y
2

)
− 1

)]
,

u2(y, z) = z2
[ 1
12
√
π

(2y2 + 3(k1 + 1)2 − 4(3k2 + 1))e−y2/4

+
y

12
(y2 + 6k1 − 6k2)

(
erf

( y
2

)
− 1

)]
,
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u3(y, z) =
z3e−y2/4

24
√
π

(y2 + (−k3
1 + 3k2

1 + 9k1 − 12k2 − 1))y

+
z3(erf(y/2) − 1)

48
(y4 + (12k1 − 12k2)y2 + 12k1(k1 − 2k2)),

u4(y, z) =
z4e−y2/4

240
√
π

[
2y4 +

(5
4

k4
1 − 5k3

1 +
15
2

k2
1 + 35k1 − 40k2 −

11
4

)
y2

−
5
2

k4
1 + 30k3

1 + (−60k2 + 45)k2
1 + (−120k2 − 10)k1 + 120k2

2 + 20k2 +
3
2

]
+

z4(erf(y/2) − 1)
240

(y5 + (20k1 − 20k2)y3 + 60(−k2 + k1)2y).

We denote the n-term solution as Φn, and limn→∞ Φn as Φ∞. It is easy to verify
that Φ∞ also satisfies boundary conditions (4.2c)–(4.2d). In fact, Φ∞ is equivalent to
the BS formula for European put option, which is in the scaled variables through (4.1)
and (4.3). In practice, we only use finite terms to approximate the exact solution to the
original problem (see, for example, [4, 24, 29].

5. Extension to other cases

As discussed in the previous section, the nondifferentiable pay-off function at expiry
can cause problems, and we have demonstrated an approach so that the ADM can be
applied to the option pricing problem under the BS model. However, the versatility of
the method needs to be further demonstrated in terms of pricing exotic options as well
as options under a stochastic interest rate model subject to a transform that enables
a reduction of dimensionality. In this section, we apply our approach to pricing a
digital option and a European option under the Vasicek stochastic interest rate model
[27, 30, 31]. In both cases, the pay-off functions still display singularities. The first
example focuses on a pay-off function that has a singularity which behaves worse than
the case presented in the previous section, while the second one focuses on a particular
case, in which higher-dimensional option pricing problems can still be dealt with by
the ADM through a cleverly constructed transform on independent variables.

5.1. Pricing digital options Digital options are often referred to as “all-or-nothing
options”. By definition, the payout is predetermined and fixed at a constant amount
B > 0. The value of a digital option at expiry can be mathematically represented as

for a call: Vc(S ,T ) =

B if S > K,
0 otherwise,

for a put: Vp(S ,T ) =

B if S < K,
0 otherwise.

(5.1)

Under the BS model, solving (1.1a) together with (5.1) gives us the value of the digital
put option, and the value of the corresponding digital call option can be found by using
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the put–call parity for digital options [31]. We now give details of the derivation of
digital put option evaluations via the ADM.

Similarly to the transformations (4.1), we now let

τ = (T − t)σ2/2, x = ln(S/K), ϕ = Vp/B.

Substituting these into (1.1a) and (5.1), we find

∂ϕ

∂τ
=
∂2ϕ

∂x2 + (k1 − 1)
∂ϕ

∂x
− k2ϕ, (5.2)

ϕ(x, 0) =H(1 − ex), (5.3)

where k1 = 2(r − q)/σ2, k2 = 2r/σ2, andH is a Heaviside step function. Again, there
is a singularity in (5.3) at x = 0. In order to shift this singularity to infinity, we let
y = x/

√
τ and z =

√
τ. Further, we use the linear differentiable operator Lz(·) as in

(4.6) and let ϕ =
∑∞

n=0 ϕn. After following the same procedure as for the European
option case from (5.2)–(5.3),

ϕ0 + ϕ1 + ϕ2 + · · · =
1
z

∫ z

0
(2ϕ0yy + yϕ0y + ϕ0 + 2(k1 − 1)zϕ0y − 2k2z2ϕ0

+ 2ϕ1yy + yϕ1y + ϕ1 + 2(k1 − 1)zϕ1y − 2k2z2ϕ1 + · · ·) dz,

with the condition

lim
z→0

∞∑
n=0

ϕn(y, z) =

1 if y→ −∞,
0 if y→∞.

Equating terms of order O(zn) gives ϕn(y, z) = fn(y)zn as the solution to

ϕ0(y, z) =
1
z

∫ z

0
(2ϕ0yy + yϕ0y + ϕ0) dz for n = 0,

ϕ1(y, z) =
1
z

∫ z

0
(2ϕ1yy + yϕ1y + ϕ1 + 2(k1 − 1)zϕ0y ) dz for n = 1,

ϕn(y, z) =
1
z

∫ z

0
(2ϕnyy + yϕny + ϕn + 2(k1 − 1)zϕn−1y − 2k2z2ϕn−2) dz for n ≥ 2,

together with the conditions

lim
z→0

ϕ0(y, z) =

1 if y→ −∞
0 if y→∞

for n = 0;

lim
z→0

ϕn(y, z) =

0 if y→ −∞
0 if y→∞

for n ≥ 1.
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Solving the first several orders yields

ϕ0 =
1
2
−

1
2

erf
( y
2

)
,

ϕ1 = −
(k1 − 1)e−y2/4

2
√
π

z,

ϕ2 =

[ (k1 − 1)2ye−y2/4

8
√
π

−
k2

2
erfc

( y
2

)]
z2,

ϕ3 = −
[(k1 − 1)3(y2 − 2) − 24k2(k1 − 1)]e−y2/4

48
√
π

z3,

ϕ4 =

[(
−

k2(k1 − 1)2

8
√
π

y −
(k1 − 1)4

384
√
π

(y2 − 6)y
)
e−y2/4 +

k2
2

4
erfc

( y
2

)]
z4,

where erfc(·) is the complementary error function [1]. It should be noted that the series
solutions for the digital options in this section and European options in Section 4 can
be used to derive solutions for other options that can be replicated in terms of these
options, for example asset-or-nothing digital options.

5.2. Pricing European options depend on a Vasicek interest rate As in the BS
framework, we again assume that the risk-neutral model for the stock price is of the
form

dS = rS dt + σ1S dW1, (5.4)

with W1 as a Brownian motion. Unlike the vanilla European option case where the
interest rate is treated as a constant, we now suppose that the interest rate is stochastic
and that the risk-neutral rate follows the Ornstein–Uhlenbeck process

dr = a(b − r) dt + σ2 dW2,

r(0) = r0. (5.5)

Here a is a constant speed of reversion, b is a constant long-term mean level, σ2 is
constant volatility and W2 is a Brownian motion. This model is commonly known as
the Vasicek model [27, 30, 31]. Under this model, the zero-coupon bond, denoted as
B(r, t), can be shown to follow the stochastic differential equation

dB(r, t)
B(r, t)

= r dt + σB dW2,

where σB = σB(t) is the volatility and is time-dependent. From equations (9) and (27)
of Vasicek [30], σB is given by σB = σ2[1 − exp{−a(T − t)}]/a. Since the bond is a
traded security, the drift rate of the bond price under the risk-neutral measure is simply
given by the risk-free rate r. We suppose that the changes in W1 and W2 are correlated
with coefficient ρ, that is, dW1dW2 = ρdt. It can be shown that when the underlying
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asset and interest rate follow (5.4) and (5.5), respectively, the value of a European
option satisfies the PDE

Vt + 1
2σ

2
1S 2VS S + 1

2σ
2
BB2VBB + rS VS + rBVB + ρσ1σBS BVS B − rV = 0. (5.6)

Here, V(S ,B, t) represents the value of the European option [19], and B is the value of a
zero-coupon bond that matures at the same time T as the option and pays one dollar at
expiry (that is, B(r, T ) = 1). The derivation of (5.6) can be obtained by considering
a riskless portfolio containing one aforementioned option V(S , B, t), selling some
underlying stock and zero-coupon bonds and assuming that the portfolio earns the
risk-free interest rate. For more details on the derivation, we refer the reader to the
work of Fang [19]. At expiry,

V(S , B,T ) =

{
max(KB − S , 0) for a put,
max(S − KB, 0) for a call. (5.7)

The put–call parity for the aforementioned European options is given by Abudy and
Izhakian [9]. Therefore, it suffices to give details of the derivation for the put option
alone. Introducing these transformations,

x = ln
S
K
, τ = T − t, ϕ =

V
KB

, w = ln B,

into (5.6) and (5.7) yields

ϕτ =
1
2
σ2

1ϕxx +
1
2
σ2

Bϕww +

(
r −

σ2
1

2
+ ρσ1σB

)
ϕx +

(
r +

σ2
B

2

)
ϕw + ρσ1σBϕxw, (5.8)

and

ϕ(x,w, 0) = max(1 − ex−w, 0). (5.9)

Similarly to the vanilla European option case, we also use the transformation,

y =
x
√
τ
, z =

√
τ, u =

ϕ
√
τ
, v =

w
√
τ
,

in (5.8). Then

uz +
u
z

=
1
z

{
σ2

1uyy + σ2
Buvv + yuy + vuv + 2ρσ1σBuyv + 2

(
r +

σ2
B

2

)
zuv

+ 2
(
r −

σ2
1

2
+ ρσ1σB

)
zuy

}
. (5.10)

We now let ξ = y − v, so that the singularity in (5.9) is shifted to∞. Hence, from (5.9),

lim
z→0

u(y, v, z) =


−

∞∑
n=1

(y − v)n

n!
if ξ→ −∞,

0 if ξ→ +∞.
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In the following, we make use of the fact (see [30]) that σ2
1 + σ2

B − 2ρσ1σB can be
treated as a constant. This term can be replaced by its average value, that is,

σ̄2 =
1
τ

∫ τ

0
(σ2

1 + σ2
B − 2ρσ1σB) ds.

From equations (7) and (8) of Vasicek [30],

σ̄2 = σ2
1 +

[
1 −

2A
τ

+
{1 − exp(−2aτ)}

2aτ

](
σ2

a

)2
−

2ρσ1(τ − A)σ2

aτ
,

where A = (1 − exp(−aτ))/a. Following the ADM, we use the the linear differentiable
operator Lz(·) as in (4.6) and let u =

∑∞
n=0 un. Applying the inverse linear differentiable

operator L−1
z (·) to (5.10), equating terms of order O(zn) and letting un(y, v, z) =

fn(y, v)zn, we get equations for each fn (n = 0, 1, 2, . . .). For example,

f0 = σ̄2 f ′′0 + ξ f ′0 for n = 0,

f1 =
σ̄2

2
f ′′1 +

1
2
ξ f ′1 −

σ̄2

2
f ′0 for n = 1,

fn =
σ̄2

n + 1
f ′′n +

1
n + 1

ξ f ′n −
σ̄2

n + 1
f ′n−1 for n ≥ 2.

(5.11)

Solving each equation in (5.11) together with the conditions for n ≥ 0,
lim
ξ→∞

fn = 0,

lim
ξ→−∞

fn = −
ξn+1

(n + 1)!
,

and then rewriting in terms of the variables y, v, z gives

u0 =
σ̄
√

2π
exp

(
−(y − v)2

2σ̄2

)
−

1
2

(y − v) erfc
( y − v
√

2σ̄

)
,

u1 = z
[ √2σ̄

4
√
π

(y − v) exp
(
−(y − v)2

2σ̄2

)
−

1
4

(y − v)2 erfc
( y − v
√

2σ̄

)]
,

u2 = z2
[ √2

48
(4σ̄(y − v)2 − σ̄3)

exp(−(y − v)2/2σ̄2)
√
π

−
1
12

(y − v)3 erfc
( y − v
√

2σ̄

)]
,

u3 =z3
[( √2

48
σ̄(y − v)3 −

√
2

96
σ̄3(y − v)

)exp(−(y − v)2/2σ̄2)
√
π

−
1
48

(y − v)4 erfc
( y − v
√

2σ̄

)]
,

u4 = z4
[( √2

240
σ̄(y − v)4 −

11
√

2
3840

σ̄(y − v)2 +

√
2

1280
σ̄3

)exp(−(y − v)2/2σ̄2)
√
π

−
1

240
(y − v)5 erfc

( y − v
√

2σ̄

)]
.

· · ·
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Figure 1. Comparison of our result and the BS formula for the European put option.

6. Numerical results

In this section, we compare our results for vanilla European options, digital options
and European options under stochastic interest rates with those obtained using other
numerical methods. First, for the vanilla European option, we plot a five-term solution
Φ5 obtained through our approach and the difference between our Φ5 and the BS
formula in the scaled variables (x, τ and ϕ) in Figures 1(a) and 1(b), respectively,
using the parameter values r = 0.05, q = 0 and σ = 0.3. Figure 1 gives us a rough
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Table 3. Comparison of our approach with other solutions for short-term European put options:
K = 40, r = 0.05, σ = 0.324336.

The BS Our results Binomial Monte–Carlo
formula (Φ5) method (n = 106)

S T q (n = 3000)

30

1/4
0.02 9.74770 9.74771 9.60577 9.60163

0 9.60578 9.60582 9.74770 9.74691

1/6 0.02 9.79463 9.79463 9.69677 9.70032
0 9.69678 9.69681 9.79462 9.79115

1/12 0.02 9.88469 9.88470 9.83480 9.83300
0 9.83480 9.83483 9.88469 9.88469

40

1/4
0.02 2.41677 2.41678 2.32814 2.33022

0 2.32834 2.32835 2.41656 2.41958

1/6 0.02 2.00140 2.00141 1.94086 1.93713
0 1.94102 1.94103 2.00123 1.99854

1/12 0.02 1.44000 1.44000 1.40876 1.41109
0 1.40888 1.40888 1.43988 1.44284

50

1/4
0.02 0.25047 0.25047 0.23442 0.23371

0 0.23440 0.23440 0.25049 0.25066

1/6 0.02 0.10165 0.10165 0.09566 0.09623
0 0.09569 0.09569 0.10161 0.10278

1/12 0.02 0.01102 0.01102 0.01044 0.01071
0 0.01045 0.01045 0.01101 0.01085

AAE 0.00001 0.05469 0.05479
CPU (second) 0.053 4.641 7.078

comparison to check the accuracy of our method. The figure is showing that our
approach converges fast and gives highly accurate results.

Moreover, as high computational efficiency together with high accuracy is crucial
in the financial industry, we compare our results for a five-term solution (Φ5) and a
ten-term solution (Φ10) for the European put option prices with those obtained via
the BS formula, the BM with 3000 time steps and the MC method with 106 samples,
with regard to accuracy and efficiency. Table 3 shows the results for short times to
expiry (1, 3, 6 months), while Table 4 gives the results for longer times to expiry (1,
3, 5 years). Taking the BS solution as the true solution, we give the average absolute
error (AAE) for each method. The significantly small absolute errors indicate that our
five-term solution gives very accurate approximate results in all cases: S > K, S = K
and S < K. All the experiments were performed using Matlab R2014a on an Intel
Core(TM) 2, 3.16 GHz machine.
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Table 4. Comparison of our approach with other solutions for long-term European put options: K =

40, r = 0.05, σ = 0.324336.

The BS Our results Our results Binomial Monte–Carlo
formula (Φ5) (Φ10) method (n = 106)

S T q (n = 1000)

30

1
0 9.5188 9.5196 9.5188 9.5190 9.5224

0.02 9.9502 9.9511 9.9502 9.9503 9.9536

3
0 9.5476 9.5642 9.5476 9.5473 9.5463

0.02 10.4329 10.4543 10.4329 10.4327 10.4386

5
0 9.2443 9.3159 9.2443 9.2449 9.2441

0.02 10.3980 10.4895 10.3981 10.3984 10.3974

40

1
0 4.1115 4.1120 4.1115 4.1112 4.1140

0.02 4.4185 4.4190 4.4185 4.4182 4.4124

3
0 5.7301 5.7418 5.7301 5.7299 5.7342

0.02 6.4531 6.4655 6.4531 6.4527 6.4460

5
0 6.2122 6.2659 6.2122 6.2122 6.2214

0.02 7.2072 7.2662 7.2072 7.2070 7.2067

50

1
0 1.5657 1.5659 1.5657 1.5658 1.5618

0.02 1.7293 1.7294 1.7293 1.7293 1.7283

3
0 3.4607 3.4682 3.4607 3.4610 3.4638

0.02 4.0031 4.0091 4.0031 4.0032 3.9968

5
0 4.2728 4.3117 4.2728 4.2742 4.2728

0.02 5.0910 5.1265 5.0910 5.0923 5.0871

AAE 0.02381 0.000005 0.00036 0.02460
CPU (second) 0.053 0.171 4.726 6.671

For short-term options, the numerical examples show that our approach gives the
most accurate results (with an AAE 10−5) of the numerical methods tested. With regard
to the speed in calculating the 18 different option values given in Table 3, our approach
took 0.053 seconds, which is approximately 100 times faster than the BM with 3000
steps and 150 times faster than the MC with 106 samples. Comparison of our results
with those in [15], which are listed in Table 1 of Section 3, demonstrates that our
approach proposed in this paper successfully deals with the singularity at S = K in the
pay-off of European options.

For long-term options, the results are given in Table 4. Our five-term solution
provides more accurate option values (with an AAE of the order of 10−2) compared
with those obtained via the MC with 106 samples. Our ten-term solution provides
the most accurate results (with an AAE of the order of 10−6) compared with the BM
and MC. This suggests that the more terms that are added into our solution, the more
accurate the option values will be. With regard to efficiency, comparison of the CPU
times for each method shows that our method takes the shortest time to calculate the
18 different option values: 0.053 seconds for Φ5 and 0.171 seconds for Φ10.
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Table 5. Comparison of our approach with other solutions for digital put options: K = 40, q = 0.

Our results Our results Monte–Carlo
S T r σ True value (Φ5) (Φ10) (n = 106)

30

0.25 0.05 0.30 0.9598 0.9598 0.9598 0.9598
0.50 0.05 0.30 0.8881 0.8881 0.8881 0.8879
0.75 0.05 0.30 0.8310 0.8310 0.8310 0.8315
0.25 0.10 0.20 0.9717 0.9717 0.9717 0.9716
0.50 0.10 0.20 0.9132 0.9132 0.9132 0.9130
0.75 0.10 0.20 0.8402 0.8403 0.8402 0.8402
1.00 0.05 0.20 0.8572 0.8573 0.8572 0.8571
3.00 0.05 0.20 0.6162 0.6175 0.6162 0.6166

40

0.25 0.05 0.30 0.4905 0.4905 0.4905 0.4913
0.50 0.05 0.30 0.4831 0.4831 0.4831 0.4832
0.75 0.05 0.30 0.4761 0.4761 0.4761 0.4756
1.00 0.05 0.20 0.4189 0.4190 0.4189 0.4190
3.00 0.05 0.20 0.3421 0.3437 0.3421 0.3414

50

0.25 0.05 0.30 0.0665 0.0665 0.0665 0.0666
0.50 0.05 0.30 0.1402 0.1402 0.1402 0.1397
0.75 0.05 0.30 0.1842 0.1842 0.1842 0.1836
1.00 0.05 0.20 0.0978 0.0978 0.0978 0.0976
3.00 0.05 0.20 0.1575 0.1585 0.1575 0.1577

AAE 0.0002 1.33E-08 0.0003
CPU (second) 0.063 0.203 65.148

Table 5 shows the results of a comparison of digital put option values obtained
using the explicit solution [31], our method with Φ5 and Φ10, as well as the MC with
106 samples. In these examples, both the long-term and short-term options depend on
a nondividend-paying stock, that is, q = 0. Comparison of our results (Φ5) with the
MC with 106 samples demonstrates that although they give the same accurate level of
option values (with an AAE of the order of 10−4), our approach (Φ5) is much faster
than the MC, with only 0.063 seconds to calculate 18 option values compared with
65.148 seconds by the MC. In addition, the AAE of our ten-term solution (of the order
of 10−8) shows the accuracy that can be achieved with our method.

The numerical examples for the European options under the Vasicek interest rate
model are listed in Table 6. The true values are calculated using the analytic formula
[9, 19]. Our seven-term solution (Φ7) gives option values with an AAE of the order
of 10−7. Further, it only takes 0.203 seconds to calculate 24 options listed in Table 6.
Comparison of the AAEs and CPU times of our solution (Φ5,Φ7) with the MC with
106 samples shows that, for the short- and long-term options considered, our approach
is superior with regard to accuracy and efficiency.
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Table 6. Comparison of our approach with other solutions for European put options under the Vasicek
interest rate model: K = 40, b = 0.1, q = 0.

Vasicek Our results Our results Monte–Carlo
S r0 a σ1 σ2 ρ model (Φ5) (Φ7) (n = 106)

T = 0.25

30
0.05 0.1 0.2 0.03 0 9.50018 9.4996 9.5002 9.4998
0.05 0.4 0.2 0.03 −0.8 9.48202 9.4814 9.4820 9.4809

40
0.05 0.1 0.2 0.03 0 1.34664 1.3466 1.3466 1.3515
0.1 0.4 0.3 0.05 −0.8 1.86371 1.8637 1.8637 1.8495

50
0.05 0.1 0.2 0.03 0 0.01372 0.0137 0.0137 0.0132
0.05 0.4 0.2 0.03 −0.8 0.01201 0.0120 0.0120 0.0123

T = 0.5

30
0.1 0.1 0.3 0.05 0 8.52307 8.5224 8.5231 8.5188
0.05 0.4 0.2 0.03 −0.8 8.97454 8.9739 8.9745 8.9768

40
0.1 0.1 0.3 0.05 0 2.41619 2.4162 2.4162 2.4201
0.15 0.4 0.4 0.1 −0.8 2.89367 2.8936 2.8937 2.8887

50
0.05 0.1 0.2 0.03 0 0.09909 0.0991 0.0991 0.1001
0.15 0.4 0.4 0.1 −0.8 0.80181 0.8018 0.8018 0.7983

T = 1

30
0.1 0.1 0.3 0.05 0 7.80747 7.8069 7.8075 7.7987
0.1 0.4 0.3 0.05 −0.8 7.61176 7.6112 7.6118 7.6016

40
0.05 0.1 0.2 0.03 0 2.20185 2.2018 2.2018 2.2111
0.15 0.4 0.4 0.1 −0.8 3.21130 3.2112 3.2113 3.2238

50
0.1 0.1 0.3 0.05 0 0.92397 0.9240 0.9240 0.9365
0.1 0.4 0.3 0.05 −0.8 0.75658 0.7566 0.7566 0.7483

T = 3

30
0.05 0.1 0.2 0.03 0.5 7.07033 7.0700 7.0703 7.0745
0.15 0.4 0.3 0.1 −0.8 3.51237 3.5119 3.5124 3.5024

40
0.15 0.1 0.3 0.1 0.5 3.80184 3.8019 3.8018 3.7965
0.05 0.4 0.2 0.03 −0.8 1.59110 1.5911 1.5911 1.5952

50
0.15 0.1 0.3 0.1 0.5 2.40757 2.4061 2.4076 2.4294
0.05 0.4 0.2 0.03 −0.8 0.42926 0.4292 0.4293 0.4307

AAE 0.00026 3.20E–07 0.00599

CPU (second) 0.052 0.203 24.328

7. Conclusion

In this paper, we provide a proper way to solve the BS model for European options
using ADM, and then highlight the errors in some of the current literature on the
application of the ADM to solving the BS model for European options. Through the
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analysis, we find that the singularity at S = K in the pay-off function at expiry appears
to be the major issue in the ADM, dealing with the nondifferentiability in the boundary
or initial conditions. Further, the existing method in the literature that has been used
in finite domains (that is, combining the Fourier series with the ADM [33]) is not
suitable for this most fundamental problem in quantitative finance. Therefore, it is
essential to find a proper way to resolve this issue. We adopt a different approach, in
which the singularity is shifted to infinity through a variable transformation. In such
a way, the ADM can be successfully applied not only to solving the BS model for
European options, but also to pricing digital options with a nondifferentiable pay-off

and European options with a stochastic interest rate (a (2 + 1)-dimensional problem).
For all these options, numerical tests in Section 6 show that our Φ5, Φ7 and Φ10 series
solutions outperformed the BM with 3000 time steps and the MC simulation with 106

samples, indicating that our solution is extremely accurate and efficient. Note that our
series solution can be truncated at any order, and so can achieve higher-order accuracy
if necessary.
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