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Inverse Semigroups and Sheu’s Groupoid
for Odd Dimensional Quantum Spheres

S. Sundar

Abstract. In this paper, we give a different proof of the fact that the odd dimensional quantum spheres
are groupoid C∗-algebras. We show that the C∗-algebra C(S2`+1

q ) is generated by an inverse semigroup
T of partial isometries. We show that the groupoid Gtight associated with the inverse semigroup T by
Exel is exactly the same as the groupoid considered by Sheu.

1 Introduction

Quantization of mathematical theories is a major theme of research today. The the-
ory of Quantum groups and Noncommutative geometry are two prime examples.
The theory of compact quantum groups was initiated by Woronowicz in the late
eighties in [8–10]. A main example in his theory is the quantum group SUq(n) and its
homogeneous spaces. One of the problems in noncommutative geometry is under-
standing how these groups fit under Connes’ formulation of NCG. Thus it becomes
necessary to understand the C∗-algebra of these quantum groups.

Vaksman and Soibelman studied the irreducible representations of C∗-algebra of
the quantum group SUq(n) in [7]. Exploiting their work, Sheu in [5] used the the-
ory of groupoids and obtained certain composition sequences that are useful in un-
derstanding the structure of the C∗-algebra of SUq(n). Then in [6] the question of
whether C∗-algebras of these quantum homogeneous spaces are in fact groupoid C∗-
algebras was raised. In [6], an affirmative answer is given for the odd dimensional
quantum spheres S2n−1

q := SUq(n)/SUq(n − 1). The purpose of this paper is to give
an alternative proof of the same result. We use the theory of inverse semigroups de-
veloped in [1] to reconstruct the groupoid given in [6]. We believe that the proof
is constructive, as the groupoid in [6] is reconstructed from a combinatorial data
naturally associated with S2n−1

q .

The paper is organized as follows. In the next section, we recall the basics of inverse
semigroups and the groupoid associated with it without proofs. We refer the reader
to [1] for proofs. In Section 3, we recall the definition of the C∗-algebra of the odd
dimensional quantum sphere S2`+1

q and associate a natural inverse semigroup with it.
In Sections 4–6, we work out the groupoid associated with the inverse semigroup and
show that the groupoid is isomorphic to Sheu’s groupoid constructed in [6].
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2 Inverse Semigroups and their Groupoids

In this section, we briefly recall the construction of the groupoid associated with an
inverse semigroup. We refer the reader to [1] for proofs and details.

Definition 2.1 An inverse semigroup T is an associative semigroup such that for
every s ∈ T, there exists a unique element denoted s∗ for which s∗ss∗ = s∗ and
ss∗s = s. Then ∗ is an involution that is antimultiplicative. We say that an inverse
semigroup has 0 if there exists an element 0 such that 0.s = s.0 = 0 for every s ∈ T.

2.1 The Unit Space of the Groupoid

Let T be an inverse semigroup with 0. We denote the set of projections in T by E,
i.e., E := {e ∈ T : e = e∗ = e2}. Then E is a commutative semigroup containing 0.
Consider the set {0, 1} as a multiplicative semigroup.

Definition 2.2 Let T be an inverse semigroup with 0 and let E be its set of projec-
tions. A character of E is a nonzero map x : E→ {0, 1} such that:

(i) the map x is a semigroup homomorphism;
(ii) x(0) = 0.

We denote the set of characters of E by Ê0. The set of characters Ê0 is a locally com-
pact Hausdorff topological space where the topology on Ê0 is the subspace topology
inherited from the product topology on {0, 1}E.

The set of characters can also be described in terms of filters by considering its
support. For a character x, let Ax := {e ∈ E : x(e) = 1}. Then Ax is nonempty and
has the following properties:

(i) 0 /∈ Ax;
(ii) if e ∈ Ax and f ≥ e, then f ∈ Ax;
(iii) if e, f ∈ Ax, then e f ∈ Ax.

A nonempty subset A of E having properties (i), (ii), and (iii) is called a filter.
Moreover, if A is a filter then the indicator function 1A is a character. Thus, there is a
bijection between filters and characters. A filter is called an ultra filter if it is maximal.
By Zorn’s lemma, ultra filters exist. Define

Ê∞ := {x ∈ Ê0 : Ax is an ultrafilter }

and denote its closure by Êtight .

2.2 The Partial Action of T on Ê0

The inverse semigroup T acts naturally on Ê0 as partial homeomorphisms, which we
now explain. We let T act on Ê0 on the right as follows. For x ∈ Ê0 and s ∈ T, define
(x.s)(e) = x(ses∗). Then

(i) the map x.s is a semigroup homomorphism;
(ii) (x.s)(0) = 0.
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But x.s is nonzero if and only if x(ss∗) = 1. For s ∈ T, define the domain and range
of s as

Ds := {x ∈ Ê0 : x(ss∗) = 1}, Rs := {x ∈ Ê0 : x(s∗s) = 1}.

Note that both Ds and Rs are compact and open. Moreover, s defines a homeomor-
phism from Ds to Rs with s∗ as its inverse. Also observe that Êtight is invariant under
the action of T.

2.3 The Groupoid Gtight

Consider the transformation groupoid Σ := {(x, s) : x ∈ Ds} with the composition
and the inversion given by:

(x, s)(y, t) := (x, st) if y = x.s, (x, s)−1 := (x.s, s∗)

Define an equivalence relation ∼ on Σ as (x, s)∼(y, t) if x = y and if there exists an
e ∈ E such that x ∈ De for which es = et . Let G = Σ/∼. Then G is a groupoid, as
the product and the inversion respect the equivalence relation ∼. Now we describe a
topology on G that makes G into a topological groupoid.

For s ∈ T and U an open subset of Ds, let θ(s,U ) := {[x, s] ∈ G : x ∈ U}. We
refer to [1] for the proof of the following proposition. We denote θ(s,Ds) by θs.

Proposition 2.3 The collection {θ(s,U ) : s ∈ T,U open in Ds} forms a basis for a
topology on G. The groupoid G with this topology is a topological groupoid whose unit
space can be identified with Ê0. Also, one has the following:

(i) for s, t ∈ T, θsθt = θst ;
(ii) for s ∈ T, θ−1

s = θs∗ ;
(iii) the set {1θs : s ∈ T} generates the C∗-algebra C∗(G).

We define the groupoid Gtight to be the reduction of the groupoid G to Êtight .

3 The Odd Dimensional Quantum Spheres

Before we proceed let us fix some notation. Throughout we assume that q ∈ (0, 1)
and ` is a positive integer. We denote the set of non-negative integers by N. Let the
Hilbert space `2(N)⊗` ⊗ `2(Z) be denoted by H`. The left shift operator on `2(N) is
denoted by S, and the right shift on `2(Z) is denoted by t . The letter N stands for the
number operator on `2(N), i.e., on the standard orthornormal basis {en : n ∈ N}, N
is defined by N(en) := nen.

In this section, we recall a few well-known facts about the C∗-algebra of the odd
dimensional quantum spheres. The C∗-algebra C(S2`+1

q ) of the quantum sphere S2`+1
q

is the universal C∗-algebra generated by elements z1, z2, . . . , z`+1 satisfying the fol-
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lowing relations (see [2]):

ziz j = qz jzi , 1 ≤ j < i ≤ ` + 1,

z∗i z j = qz jz
∗
i , 1 ≤ i 6= j ≤ ` + 1,

ziz
∗
i − z∗i zi + (1− q2)

∑
k>i

zkz∗k = 0, 1 ≤ i ≤ ` + 1,

`+1∑
i=1

ziz
∗
i = 1.

Note that for ` = 0, the C∗-algebra C(S2`+1
q ) is the algebra of continuous functions

C(T) on the circle and for ` = 1, it is C(SUq(2)).
Let Yk,q be the following operators on H`:

Yk,q =



qN ⊗ . . .⊗ qN︸ ︷︷ ︸
k−1 copies

⊗
√

1− q2N S∗ ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
`+1−k copies

, if 1 ≤ k ≤ `,

qN ⊗ · · · ⊗ qN︸ ︷︷ ︸
` copies

⊗t, if k = ` + 1.

Then π` : zk 7→ Yk,q gives a faithful representation of C(S2`+1
q ) on H` for q ∈ (0, 1)

(see [2, Lemma 4.1 and Remark 4.5]). We let Yk,0 to denote the limit of the operators
Yk,q as q tends to zero. The formula for Yk,0 is again the same as that of Yk,q where qN

stands for the rank one projection p = |e0〉〈e0|.
Consider the unitary operator U on H` defined by

U (em,z) = em,z+
∑`

i=1 mi
.

Define Zk,q := UYk,qU ∗ for q ∈ [0, 1). The representation zk → Zk,q of C(S2`+1
q ) is the

one considered in [5,6]. Let A`(q) be the image of C(S2`+1
q ) under this representation,

i.e., A`(q) is the C∗-algebra generated by Zk,q. We refer to [4] for the proof of the
following proposition.

Proposition 3.1 For any q ∈ (0, 1), one has A`(0) = A`(q).

From now on, we simply denote Zk,0 by Zk. Note that Zk’s are in fact partial isome-
tries. Let us introduce more notations. For m, n ∈ N` and r ∈ Z, let Bk(r,m, n) be
defined as

Bk(r,m, n) =
S∗m1 pSn1 ⊗ S∗m2 pSn2 ⊗ · · · ⊗ S∗mk−1 pSnk−1︸ ︷︷ ︸

k−1 copies

⊗S∗mk Snk ⊗ 1⊗ t (
∑k

i=1(mi−ni ))

if 1 ≤ k ≤ `,
S∗m1 pSn1 ⊗ S∗m2 pSn2 ⊗ · · · ⊗ S∗m` pSn` ⊗ t r+

∑`
i=1(mi−ni ), if k = ` + 1.
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Note the following commutation relations.
If i < j, then

Bi(r,m, n)B j(r
′
,m
′
, n
′
) = δ(n1,n2,...,ni−1),(m

′
1 ,m
′
2 ,...m

′
i−1)1[ni ,∞)(m

′

i )B j(r
′
,m
′ ′
, n
′
),

where m
′ ′

= (m1,m2, . . . ,mi−1,mi + m
′

i − ni ,m
′

i+1, . . . ,m
′

`).

If i ≤ ` and ni ≤ m
′

i , then

Bi(r,m, n)Bi(r
′
,m
′
, n
′
) = δ(n1,n2,...,ni−1),(m

′
1 ,m
′
2 ,...,m

′
i−1)Bi(r

′
,m
′ ′
, n
′
),

where m
′ ′

:= (m1,m2, . . . ,mi−1,mi + m
′

i − ni ,m
′

i+1, . . .m
′

l ).

If i ≤ ` and ni > m
′

i , then

Bi(r,m, n)Bi(r
′
,m
′
, n
′
) = δ(n1,n2,...,ni−1),(m

′
1 ,m
′
2 ,...,m

′
i−1)Bi(r

′
,m, n

′ ′
),

where n
′ ′

:= (n
′

1, n
′

2, . . . , n
′

i−1, n
′

i + ni −m
′

i , n
′

i+1, . . . , n
′

`).

Finally, B`+1(r,m, n)B`+1(r
′
,m
′
, n
′
) = δn,m ′B`+1(r + r

′
,m, n

′
). Also

Bi(r,m, n)∗ := Bi(−r, n,m).

It is clear from the above commutation relations that the set

T := {0} ∪ {Bi(r,m, n) : 1 ≤ i ≤ ` + 1, r ∈ Z,m, n ∈ N`}

is an inverse semigroup of partial isometries.

Proposition 3.2 The set T := {0}∪{Bi(r,m, n) : 1 ≤ i ≤ `+1, r ∈ Z, m, n ∈ N`}
is an inverse semigroup of partial isometries. Moreover {Zi : 1 ≤ i ≤ `+1} generates T.

Proof As already observed T is an inverse semigroup of partial isometries. Let ei

be the `-tuple which is 1 on the i-th coordinate and zero elsewhere. Then Zk =
B(0, ek, 0) for k ≤ ` and Z`+1 = B`+1(1, 0, 0). Thus Zk’s are in T. Moreover,

0 = Z∗i Z j if i < j,

Bi(r,m, n) = Zm1
1 Zm2

2 · · ·Z
mi
i Z∗ni

i Z∗ni−1

i−1 · · ·Z
∗n1
1 if i ≤ `,

B`+1(r,m, n) = Zm1
1 Zm2

2 · · ·Z
m`

` (Zr+
`+1Z∗r−

`+1 )Z∗n`
` Z∗n`−1

`−1 · · ·Z
∗n1
1 .

where r+ and r− denote the positive and negative parts of r. Thus every element in T
is a word in Zi ’s and in Z∗i ’s. This completes the proof.
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4 The Tight Characters of the Inverse Semigroup T

In this section, we describe the tight characters of the inverse semigroup T defined in
Proposition 3.2. The set of projections in T is denoted by E and the set of characters
of E by Ê0. Consider the one-point compactification N := N∪ {∞} of N. We denote
the projection from N

`
onto the first r components by πr.

Let pi(m) := Bi(0,m,m). Then E := {0} ∪ {pi(m) : 1 ≤ i ≤ ` + 1,m ∈ N`}.
First observe that if Λ is a subsemigroup of E not containing 0, then the set

AΛ := { f ∈ E : f ≥ e for some e ∈ Λ}

is a filter.
Let k ∈ N

`
be given. Let r be the least positive integer for which kr+1 = ∞. (For

an `-tuple k, we set k`+1 = ∞.) Define Λk = {pr+1(πr(k), n) : n ∈ N`−r}. It is easy
to see that Λk is a subsemigroup of E not containing 0. Then AΛk is a filter and thus
gives rise to a character. We denote the character associated with AΛk by φ(k). The
following lemma gives a closed formula for φ(k).

Lemma 4.1 Let k ∈ N
`

be given. The character φ(k) is given by

φ(k)
(

pi(m)
)

:=

{
δπi−1(m),πi−1(k)1[0,ki ](mi) if i ≤ `,
δm,k if i = ` + 1.

Proof Let r be the least positive integer for which kr+1 = ∞. Observe pi(m) ≥
pr+1(πr(k), n) for some n if and only if i ≤ r + 1, πi−1(m) = πi−1(k) and mi ≤ ki .
The proof follows from this observation.

An immediate consequence of the above lemma is that the map φ : N
` → Ê0 is

continuous. In the next proposition, we show that the image of φ is exactly Ê∞.

Proposition 4.2 The image of the map φ is in fact Ê∞.

Proof First we show that the image of φ is contained in Ê∞. Let k ∈ N
`

be given and
let r be the least non-negative integer for which kr+1 =∞. Recall that

Λk := {pr+1(πr(k), n) : n ∈ N`−r}.

We denote φ(k) by x. We claim that Ax is an ultrafilter. Suppose that there exists a
character, say y, such that Ax ⊂ Ay . Then we need to show that x = y or Ax = Ay .
Since x = 1 on Λk and Ax ⊂ Ay , it follows that y = 1 on Λk. If πr(m) 6= πr(k), then
pr+1(πr(m), v) is orthogonal to Λk. Hence x and y vanish on pr+1(πr(m), v). Thus,
x(pr+1(m)) = y(pr+1(m)) for every m ∈ N`.

Now let i > r + 1 be given. Let m ∈ N`. Choose an `-tuple n such that πr(n) =
πr(k) and nr+1 > mr+1. Then pi(m) and pr+1(n) are orthogonal, but x = y = 1 on
pr+1(n). Thus, x and y vanish on pi(m).

Now let i ≤ r and m ∈ N`. If mi > ki , then pi(m) is orthogonal to Λk, but
x = y = 1 on Λk. Thus, x and y vanish on pi(m) if mi > ki . Now suppose mi ≤ ki .
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If πi−1(m) 6= πi−1(k) ,then pi(m) is again orthogonal to Λk and thus x and y vanish
on pi(m). Consider now the case where mi ≤ ki and πi−1(m) = πi−1(k). Then
x(pi(m)) = 1 by definition, and, since Ax ⊂ Ay , it follows that y(pi(m)) = 1. Thus
we have shown that x(pi(m)) = y(pi(m)) for every i and m. Hence x = y or, in
other words, Ax is an ultrafilter. This proves that φ(N

`
) is contained in Ê∞.

Now let us prove that Ê∞ is contained in the range of φ. Let x ∈ Ê∞ be given. Let
r be the largest non-negative integer for which there exists a k

′
such that x = 1 on

pr+1(k
′
). Choose k such that πr(k) = πr(k

′
) and kr+1 =∞. We claim that Ax ⊂ Aφ(k).

Then the maximality of Ax forces the equality x = φ(k).
Let i ≤ r+1 be given. Consider an `-tuple m such that either mi > ki or πi−1(m) 6=

πi−1(k). Then pi(m) is orthogonal to pr+1(k
′
). Hence x(pi(m)) = 0 if either mi > ki

or πi−1(m) 6= πi−1(k). Also, x vanishes on pi(m) if i > r + 1 by the choice of r. Thus
we have shown that Ac

φ(k) ⊂ Ac
x. Hence Ax is contained in Aφ(k). Since Ax is maximal,

it follows that x = φ(k). This completes the proof.

Corollary 4.3 The set Ê∞ is compact, and Êtight = Ê∞.

Proof The proof follows from the fact that φ is continuous, N
`

is compact, and from
Proposition 4.2.

Define an equivalence relation on N
`

as follows:

k ∼ k
′

if there exists r ≥ 0 such that πr(k) = πr(k
′
) and kr+1 = k

′

r+1 =∞.

In the next proposition, we show that Êtight is homeomorphic to the quotient space

N
`
/∼.

Proposition 4.4 The map φ : N
` → Êtight factors through the quotient N

`
/∼ to give

a map φ̃ : N
`
/∼ → Êtight . The map φ̃ is a homeomorphism.

Proof It is clear from the definition and from Lemma 4.1 that φ factors through the

quotient to give a map φ̃. Since φ is continuous, it follows that φ̃ is continuous. We
now show that φ̃ is one-to-one.

Let k, k
′

be such that φ(k) = φ(k
′
). Let rk (resp. rk ′ ) be the least non-negative

integer for which krk+1 = ∞ (resp. k
′

r
k
′ +1 = ∞). Then rk is the largest integer for

which there exists an m such that φ(k) is 1 on prk+1(m). Thus rk = rk ′ . Moreover,

φ(k) is 1 on prk+1(πrk (k), u). Thus φ(k
′
) is 1 on prk+1 (πrk (k), u). Now Lemma 4.1

implies that πrk (k) = πrk (k
′
). Hence k ∼ k

′
. This proves that φ̃ is one-to-one.

Now Proposition 4.2 implies that φ̃ is onto. As N
`
/∼ is compact and Êtight is

Hausdorff, it follows that φ̃ is a homeomorphism. This completes the proof.

5 Sheu’s Groupoid

In this section, we recall the groupoid for the odd dimensional quantum spheres S2`+1
q

described in [6]. Consider the transformation groupoid Z× (Z` × Z
`
) where Z` acts
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on Z
`

by translation. Let F be the restriction of the transformation groupoid to N
`
.

Define

Σ :=

{
(z, x,w) ∈ F : wi =∞⇒ xi+1 = · · · = x` = 0 and z = −

i∑
j=1

x j

}

Then Σ is an open subgroupoid of F. Define an equivalence relation ∼ on Σ as
follows:

(z, x,w1,w2, . . . ,wi−1,∞, ∗, ∗, . . . , ∗) ∼ (z, x,w1,w2, . . . ,wi−1,∞,∞, . . . ,∞).

Let G := Σ/∼. The multiplication and the inversion on Σ factors through the equiv-
alence relation making G into a groupoid. When G is given the quotient topology, it
becomes the topological groupoid that was described in [6].

6 The Groupoid Gtight of the Inverse Semigroup T

In this section, we show that the groupoid Gtight of the inverse semigroup T is iso-
morphic to Sheu’s groupoid described in the previous section. For an `-tuple m, we
set m`+1 =∞. We define a map ψ : Σ→ Gtight as follows. Let (z, x,w) ∈ Σ be given.
Let r be the least non-negative integer for which wr+1 = ∞. Then ψ on (z, x,w) is
given by

ψ(z, x,w) :=
[

(φ(w),Br+1(t,m, n)
]
,

where t,m, n are given by t := z +
∑r

j=1 x j , m := (w1,w2, . . . ,wr, |xr+1|, 0, . . . , 0)
and n := (x1 + w1, x2 + w2, . . . , xr + wr, xr+1 + |xr+1|, 0, . . . , 0). Observe that ψ is well
defined as πr(w) = πr(m) and wr+1 =∞.

Let us introduce the following notation. For m, n ∈ N` and 0 ≤ r ≤ `, let

Ar+1(m, n) := S∗m1 pSn1 ⊗ · · · ⊗ S∗mr pSnr ⊗ S∗mr+1 Snr+1 ⊗ 1.

We consider Ar+1(m, n) as an operator on `2(N`).

Proposition 6.1 The map ψ is continuous, and ψ factors through the equivalence

relation∼. Let ψ̃ be the induced map from G→ Gtight . Then ψ̃ is a topological groupoid
isomorphism.

Proof First we show that ψ factors through the equivalence relation. Let (z, x,w) ∼
(z, x,w

′
) and let r (resp. r

′
) be the least non-negative integer for which wr+1 = ∞

(resp w
′

r ′+1
= ∞). By definition, r = r

′
and πr(w) = πr(w

′
). Then by Proposi-

tion 4.4, it follows that φ(w) = φ(w
′
). Since the definition of ψ involves only the first

r components of w, ψ(z, x,w) = ψ(z, x,w
′
). This proves that ψ̃ is well defined.

The map ψ̃ is one-to-one:
Suppose that ψ(z, x,w) = ψ(z

′
, x
′
,w
′
). Again let r and r

′
be the least non-

negative integer for which wr+1 and wr ′+1 are both∞. Then r is the largest integer

for which there exists an m such that φ(w) is 1 on pr+1(m). Since φ(w) = φ(w
′
), we
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have r = r
′

and πr(w) = πr(w
′
). As ψ(z, x,w) = ψ(z

′
, x
′
,w
′
), it follows that there

exists a projection e such that

φ(w)(e) = 1 and e(tz ⊗ Ar+1(m, n)) = e(tz
′

⊗ Ar+1(m
′
, n
′
).

But φ(w)(e) = 1 implies that e ≥ pr+1(πr(w), 0). Hence we can choose e to be
pr+1(πr(w), 0). Thus it follows that z = z

′
and Ar+1(m, n) = Ar+1(m

′
, n
′
). Thus

m = m
′

and n = n
′
, which in turn implies xi = x

′

i for i ≤ r + 1. Since (z, x,w) ∈ Σ,
it follows that xi = x

′

i = 0 for i ≥ r + 2. Thus, we have shown that (z, x,w) ∼
(z
′
, x
′
,w
′
). Hence ψ̃ is one-to-one.

The map ψ̃ is onto:

First note that if a − b = c − d, then there exists a projection e = S∗(b+c)Sb+c

such that eS∗bSa = eS∗dSc. Hence in the definition of ψ we can change the r + 1st
components of m and n such that nr+1 −mr+1 = xr+1. Let [(φ(w),Bi(s,m, n))] be an
element in Gtight . Let r be the first non-negative integer for which wr+1 = ∞. Then
i ≤ r +1. By premultiplying Bi(s,m, n) by pr+1(πr(w), 0) we can assume that i = r +1
and m is such that πr(w) = πr(m). Now if r ≤ `− 1, then, for z =

∑
j(m j − n j), for

an x such that πr+1(x) = πr+1(n) − πr+1(m) and xi = 0 for i ≥ r + 2, ψ(z, x,w) =
[(φ(w),Br+1(s,m, n))]. If r = `, then with z = s +

∑`
j=1(m j − n j) and x j = n j −m j ,

one has ψ(z, x,w) = [(φ(w),B`+1(s,m, n))]. This proves that ψ̃ is onto.

The map ψ̃ is continuous:

Let (zn, xn,wn) be a sequence in Σ converging to (z, x,w) ∈ Σ. Let r be the least
non-negative integer for which wr+1 = ∞. Then, eventually, (zn, xn, πr(wn)) coin-
cides with (z, x, πr(w)). Suppose that θ(s,U ) is an open set containing ψ(z, x,w).
Without loss of generality we can assume that s := tz ⊗ Ar+1(m, n), where m, n are
defined as in the definition of ψ. Since U is an open set containing φ(w) and as φ is
continuous, it follows that φ(wn) ∈ U eventually. Let rn be the least non-negative in-
teger for which wn

rn+1 =∞. Then rn ≥ r. Let mn and nn be as in the definition ofψ for
(z, x,wn). If en := prn+1(mn), then φ(wn) ∈ Den and en(tz ⊗ Arn+1(mn, nn)) = en(tz ⊗
Ar+1(m, n)) eventually. Thus, eventually, ψ(zn, xn,wn) = [(φ(wn), s)] ∈ θ(s,U ). This

proves that ψ̃ is continuous.

We leave it to the reader to check that ψ̃ is a homeomorphism, and it is in fact a
groupoid homomorphism. This completes the proof.

Remark 6.2 In [6], it was shown that C∗red(G) is isomorphic to C(S2`+1
q ). One can

construct a faithful representation of C∗red(G) onto C(S2`+1
q ). We refer to [3, 5, 6] for

constructing such representations.
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