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Inverse Semigroups and Sheu’s Groupoid
for Odd Dimensional Quantum Spheres

S. Sundar

Abstract. In this paper, we give a different proof of the fact that the odd dimensional quantum spheres
are groupoid C*-algebras. We show that the C*-algebra C (Sé“l) is generated by an inverse semigroup
T of partial isometries. We show that the groupoid Gy, associated with the inverse semigroup T by
Exel is exactly the same as the groupoid considered by Sheu.

1 Introduction

Quantization of mathematical theories is a major theme of research today. The the-
ory of Quantum groups and Noncommutative geometry are two prime examples.
The theory of compact quantum groups was initiated by Woronowicz in the late
eighties in [8—10]. A main example in his theory is the quantum group SU,(n) and its
homogeneous spaces. One of the problems in noncommutative geometry is under-
standing how these groups fit under Connes’ formulation of NCG. Thus it becomes
necessary to understand the C*-algebra of these quantum groups.

Vaksman and Soibelman studied the irreducible representations of C*-algebra of
the quantum group SU,(n) in [7]. Exploiting their work, Sheu in [5] used the the-
ory of groupoids and obtained certain composition sequences that are useful in un-
derstanding the structure of the C*-algebra of SU,(n). Then in [6] the question of
whether C*-algebras of these quantum homogeneous spaces are in fact groupoid C*-
algebras was raised. In [6], an affirmative answer is given for the odd dimensional
quantum spheres Sé”fl := SU,(n)/SU4(n — 1). The purpose of this paper is to give
an alternative proof of the same result. We use the theory of inverse semigroups de-
veloped in [1] to reconstruct the groupoid given in [6]. We believe that the proof
is constructive, as the groupoid in [6] is reconstructed from a combinatorial data
naturally associated with S3"~".

The paper is organized as follows. In the next section, we recall the basics of inverse
semigroups and the groupoid associated with it without proofs. We refer the reader
to [1] for proofs. In Section 3, we recall the definition of the C*-algebra of the odd
dimensional quantum sphere Séf“ and associate a natural inverse semigroup with it.
In Sections 4-6, we work out the groupoid associated with the inverse semigroup and
show that the groupoid is isomorphic to Sheu’s groupoid constructed in [6].
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2 Inverse Semigroups and their Groupoids

In this section, we briefly recall the construction of the groupoid associated with an
inverse semigroup. We refer the reader to [1] for proofs and details.

Definition 2.1 An inverse semigroup T is an associative semigroup such that for
every s € T, there exists a unique element denoted s* for which s*ss* = s* and
ss*s = 5. Then x* is an involution that is antimultiplicative. We say that an inverse
semigroup has 0 if there exists an element 0 such that 0.s = 5.0 = 0 for every s € T.

2.1 The Unit Space of the Groupoid

Let T be an inverse semigroup with 0. We denote the set of projections in T by E,
ie,E:={e€ T:e=e" = ¢*}. Then E is a commutative semigroup containing 0.
Consider the set {0, 1} as a multiplicative semigroup.

Definition 2.2 Let T be an inverse semigroup with 0 and let E be its set of projec-
tions. A character of E is a nonzero map x: E — {0, 1} such that:

(i) the map x is a semigroup homomorphism;

(i) x(0) = 0.

We denote the set of characters of E by Eo. The set of characters E, is a locally com-
pact Hausdorff topological space where the topology on Ej is the subspace topology
inherited from the product topology on {0, 1}£.

The set of characters can also be described in terms of filters by considering its
support. For a character x, let A, := {e € E : x(e) = 1}. Then A, is nonempty and
has the following properties:

(i) 0¢Ag
(ii) ife€ Acand f > e, then f € A,;
(iii) ife, f € Ay, thenef € A,.

A nonempty subset A of E having properties (i), (ii), and (iii) is called a filter.
Moreover, if A is a filter then the indicator function 1, is a character. Thus, there is a
bijection between filters and characters. A filter is called an ultra filter if it is maximal.
By Zorn’s lemma, ultra filters exist. Define

o i={x€ Ey: A, isan ultrafilter }

and denote its closure by E,-ght.

2.2 The Partial Action of T on E,

The inverse semigroup T acts naturally on Eo as partial homeomorphisms, which we
now explain. We let T act on Ey on the right as follows. For x € Eyands € T, define
(x.5)(e) = x(ses*). Then

(i) the map x.s is a semigroup homomorphism;

(i) (x.5)(0) = 0.
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But x.s is nonzero if and only if x(ss*) = 1. For s € T, define the domain and range
of s as

D,:={x¢€ Ey: x(ss*) = 1}, Ri:={x¢€ Ep : x(s*s) = 1}.

Note that both D; and R; are compact and open. Moreover, s defines a homeomor-
phism from D; to R with s* as its inverse. Also observe that E;g, is invariant under
the action of T.

2.3 The Groupoid Gz

Consider the transformation groupoid ¥ := {(x,s) : x € D,} with the composition
and the inversion given by:

(x,8)(p, 1) := (2, st) if y = x5, (x,5) 7" == (x.5,5%)

Define an equivalence relation ~ on X as (x, s)~(y,t) if x = y and if there exists an
e € E such that x € D, for which es = er. Let § = X/~. Then § is a groupoid, as
the product and the inversion respect the equivalence relation ~. Now we describe a
topology on G that makes G into a topological groupoid.

For s € T and U an open subset of D;, let 8(s,U) := {[x,s] € §:x € U}. We
refer to [1] for the proof of the following proposition. We denote (s, D;) by 6;.

Proposition 2.3 The collection {0(s,U) : s € T,U openin D} forms a basis for a
topology on G. The groupoid G with this topology is a topological groupoid whose unit
space can be identified with Ey. Also, one has the following:

(i) fors,t €T, 0.0, = Oy
(i) forse T, 07! =0y;
(iil) theset {1y, : s € T} generates the C*-algebra C*(9).

We define the groupoid G;;gr, to be the reduction of the groupoid § to Eight.

3 The Odd Dimensional Quantum Spheres

Before we proceed let us fix some notation. Throughout we assume that g € (0, 1)
and / is a positive integer. We denote the set of non-negative integers by N. Let the
Hilbert space £2(N)® ® ¢2(Z) be denoted by 3. The left shift operator on ¢*(N) is
denoted by S, and the right shift on £2(7) is denoted by t. The letter N stands for the
number operator on ¢*(N), i.e., on the standard orthornormal basis {e, : n € N}, N
is defined by N(e,,) := ne,.

In this section, we recall a few well-known facts about the C*-algebra of the odd
dimensional quantum spheres. The C*-algebra C (Sfi“l) of the quantum sphere S;Z“
is the universal C*-algebra generated by elements z, z,, . . ., zs4; satisfying the fol-
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lowing relations (see [2]):
zizj = qzjz;, 1< j<i<l+1,
zizj=qzjz;, 1<i#j<(l+]1,
ziz; —z'zi + (1 —qz)szz,f =0, 1<i</(+1,

k>i

+1

E zizi = 1.
i=1

Note that for £ = 0, the C*-algebra C(Sé“l) is the algebra of continuous functions
C(T) on the circle and for £ = 1, it is C(SU4(2)).
Let Yy 4 be the following operators on H;:

N N .
V- @ Ie--oI, ifl<k<l,
q° & ®q & q ®I1I® &® Hls<k=<
k—1 copies t+1—k copies
Yig =
qN®...®qN®t7 ifk=/0+1.
—_———
¢ copies
Then 7: z; > Yj 4 gives a faithful representation of C (S%”) on H, forg € (0,1)
(see [2, Lemma 4.1 and Remark 4.5]). We let Y, to denote the limit of the operators
Y} 4 as q tends to zero. The formula for Y} ¢ is again the same as that of Y ; where a

stands for the rank one projection p = |eg)(eo|.
Consider the unitary operator U on H; defined by

Ulems) = €pavst m

Define Zy ; := UY ,U* for g € [0, 1). The representation zx — Z ofC(Séf“) is the
one considered in [5,6]. Let A¢(g) be the image of C (Sé“l) under this representation,

i.e, Ay(q) is the C*-algebra generated by Z;,. We refer to [4] for the proof of the
following proposition.

Proposition 3.1 Foranyq € (0, 1), one has A;(0) = Ai(q).

From now on, we simply denote Z; o by Z;. Note that Z;’s are in fact partial isome-
tries. Let us introduce more notations. For m,n € N and r € 7Z, let Bi(r, m, n) be
defined as

Bk(r7 m7 n) =

S*mlpsm ® S*mzpsnz QR ® S*mk—lpsnkfl RSMHS © 1 ® t(Ef{zl(mi_ni))

k—1 copies ifl1 <k</,
S*mlpsnl ® S*mzpsnz Q- ® S*M;:psm ® tr+2§/71(m17”i)7 ifk=¢+1.

https://doi.org/10.4153/CMB-2011-191-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-191-x

634 S. Sundar

Note the following commutation relations.
Ifi < j,then

B,‘(?‘, m, n)B]-(r ,ym,n ) = 6(111,nz,u.,ng,l),(mll,mzl.,.“milfl)1[”i’00)(mi )Bj(r ,ym o ,n )7

7’ ’ ’ ’
where m = (my,my, ..., mi_y,m; +m; —nij,my,,...,Mm,).
. ’
Ifi < /{andn; < m;,then

Bi(r,m,mBi(r',m’,n’) = §

! !
1,1 g ti—1), (M) 11y ity
I ’ ! ’
where m = (my,my, ... ,mi_y,m; +m; —n;,m,...m).
. !’
Ifi < {andn; > m;, then

Bi(rv m; n)Bi(T,, m/)n,) = 6(

nl-ﬁz»,-u,ﬂi—l)y(mll~,m2/-~--~,m,-_1) ! ’
rr ’ ’ ’ ’ 7 ’ ’
wheren = (n;,ny, ..., 0_, 1 + 1 —m; 1, ..., 10).

Finally, By (r, m, n)BgH(r', m', n')= 5n3m/B/;+1(r + r'7 m, n'). Also
Bi(r,m,n)* := B;(—r,n, m).
It is clear from the above commutation relations that the set
T:={0}U{Bi(r,m,n):1<i<(l+1,rcZmneN}

is an inverse semigroup of partial isometries.

Proposition 3.2 ThesetT := {0}U{B;(r,m,n): 1 <i<{+1,r€Z mnecN}
is an inverse semigroup of partial isometries. Moreover {Z; : 1 <i < {+1} generates T.

Proof As already observed T is an inverse semigroup of partial isometries. Let e;
be the ¢-tuple which is 1 on the i-th coordinate and zero elsewhere. Then Z; =
B(0, e, 0) for k < £ and Zy,; = Byy1(1,0,0). Thus Z;’s are in T. Moreover,
0=27z; ifi<j,
Bi(r,m,n) = ZMZ . ZM Mz 2 i <

Bpa(rym,n) = Z{" 23" - - Z}"(Z,

*T— *1yp rz kN — *1]
e+1ZZ+1 )Z[ th-1 sy

where r, and r_ denote the positive and negative parts of r. Thus every element in T
is a word in Z;’s and in Z;’s. This completes the proof. ]
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4 The Tight Characters of the Inverse Semigroup T

In this section, we describe the tight characters of the inverse semigroup T defined in
Proposition 3.2. The set of projections in T is denoted by E and the set of characters
of E by Ey. Consider the one-point compactification N := N U {co} of N. We denote
the projection from N onto the first r components by .

Let p;(m) := B;(0,m,m). Then E := {0} U {p;(m) : 1 < i < L+ 1,m € N‘}.
First observe that if A is a subsemigroup of E not containing 0, then the set

Ay ={f €E: f>eforsome e € A}

is a filter. ,

Let k € N be given. Let r be the least positive integer for which k,,; = oco. (For
an (-tuple k, we set kyy; = 00.) Define Ay = {p,41(m(k),n) : n € N~} Tt is easy
to see that Ay is a subsemigroup of E not containing 0. Then A, is a filter and thus
gives rise to a character. We denote the character associated with Ay, by ¢(k). The
following lemma gives a closed formula for ¢ (k).

Lemma 4.1 Letk € N be given. The character ¢(k) is given by

Oy (m)mi1 (k) Lo (mi) - ifi <L,
o0 (pim) = {5 ) ifi=l41.

Proof Let r be the least positive integer for which k..; = oco. Observe p;(m) >
pre1(m,(k),n) for some nif and only if i < r+ 1, m;_1(m) = m_1(k) and m; < k;.
The proof follows from this observation. ]

. . . =t =
An immediate consequence of the above lemma is that the map ¢: N — Ej is
continuous. In the next proposition, we show that the image of ¢ is exactly E..

Proposition 4.2 The image of the map ¢ is in fact Eee.

Proof First we show that the image of ¢ is contained in Eo.. Let k € N be given and
let r be the least non-negative integer for which k,,; = co. Recall that

A= {praa(m,(k),n) :n € N7}

We denote ¢(k) by x. We claim that A, is an ultrafilter. Suppose that there exists a
character, say y, such that A, C A,. Then we need to show that x = y or A, = A,.
Since x = 1 on Ay and A, C A,, it follows that y = 1 on Ay. If m.(m) # m,(k), then
pre1(m,(m),v) is orthogonal to Ay. Hence x and y vanish on p,.1(m.(m),v). Thus,
x(prr1(m)) = y(pr41(m)) for every m € N-.

Now let i > r + 1 be given. Let m € N¢. Choose an ¢-tuple n such that 7,(n) =
(k) and n,4; > m,11. Then p;(m) and p,,(n) are orthogonal, but x = y = 1 on
Pr+1(n). Thus, x and y vanish on p;(m).

Now let i < rand m € N’ If m; > k;, then p;(m) is orthogonal to A, but
x = y = 1 on Ay. Thus, x and y vanish on p;(m) if m; > k;. Now suppose m; < k;.

https://doi.org/10.4153/CMB-2011-191-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-191-x

636 S. Sundar

If mj_1(m) # m;—1(k) ,then p;(m) is again orthogonal to Ay and thus x and y vanish
on p;(m). Consider now the case where m; < k; and 7;_;(m) = m;_1(k). Then
x(pi(m)) = 1 by definition, and, since A, C A, it follows that y(p;(m)) = 1. Thus
we have shown that x(p;(m)) = y(pi(m)) for every/t and m. Hence x = yor in
other words, A, is an ultrafilter. This proves that (') is contained in E

Now let us prove that E.. is contained in the range of ¢. Letx € Eso be given. Let
r be the largest non-negative integer for which there exists a k' such that x = 1 on
pm(k,). Choose k such that (k) = 7r,(k,) and k41 = o0o. We claim that A, C Ayy).
Then the maximality of A, forces the equality x = ¢ (k).

Leti < r+1 be given. Consider an /-tuple m such that either m; > k; or m;_,(m) #
mi—1(k). Then p;(m) is orthogonal to pm(k/). Hence x(p;(m)) = 0 if either m; > k;
or mi_1(m) # m;_1(k). Also, x vanishes on p;(m) if i > r + 1 by the choice of r. Thus
we have shown that Aj ;) C A{. Hence A, is contained in Ay ). Since A, is maximal,
it follows that x = ¢ (k). This completes the proof. ]

Corollary 4.3 The set Eo is compact, and Etigh, = Eo..

Proof The proof follows from the fact that ¢ is continuous, Né is compact, and from
Proposition 4.2. [ |

Define an equivalence relation on N as follows:
k ~ k' if there exists r > 0 such that 7.(k) = w,(k/) and k.4 = k;+1 = 0.

In the next proposition, we show that Etig;,t is homeomorphic to the quotient space
—
N/~

Proposition 4.4 The map ¢: N - ]/E\t,»ght factors through the quotient N /~ to give
a map & NZ/N — Etight. The map disa homeomorphism.

Proof Itis clear from the definition and from Lemma 4.1 that ¢ factors through the
quotient to give a map (E Since ¢ is continuous, it follows that g is continuous. We
now show that ¢ is one-to-one.

Let k, k' be such that ok) = gb(k ) Let ri (resp. r;s) be the least non-negative
integer for which k, 4; = oo (resp. k. ,, = co). Then ry is the largest integer for
which there exists an m such that qﬁ(k)k is 1 on pr41(m). Thus rp = r,-. Moreover,
(k) is 1 on py, 41 (7, (k), u) Thus qS(k )is 1 on py,, (er(k) u). Now Lemma 4.1
implies that 7, (k) = 7rrk(k ). Hence k ~ k. This proves that ¢ is one-to-one.

Now Proposition 4.2 implies that d) is onto. As N /~ is compact and Et,ght is
Hausdorff, it follows that ¢ is a homeomorphism. This completes the proof. ]

5 Sheu’s Groupoid

In this section, we recall the groupoid for the odd dimensional quantum spheres SZI 1
described in [6]. Consider the transformation groupoid Z x (Z x Z') where 7 acts
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=l . c . . . N
on 7 by translation. Let F be the restriction of the transformation groupoid to N .

Define
i
Y= {(z,x,w) ceF:wi=00=>xy1=---=x=0andz = — E x]}
j=1
Then ¥ is an open subgroupoid of F. Define an equivalence relation ~ on ¥ as
follows:
(ZaanhWZa"'7Wi—17007*7*7"'7*) ~ (Z,X,Wl,Wz,...,W,‘_I,OO,OO,--.,OO).

Let G := X /~. The multiplication and the inversion on ¥ factors through the equiv-
alence relation making G into a groupoid. When § is given the quotient topology, it
becomes the topological groupoid that was described in [6].

6 The Groupoid G,y of the Inverse Semigroup T

In this section, we show that the groupoid Gy, of the inverse semigroup T is iso-
morphic to Sheu’s groupoid described in the previous section. For an ¢-tuple m, we
set myy; = 0o. We define a map 1: ¥ — Gyig as follows. Let (z, x, w) € ¥ be given.
Let r be the least non-negative integer for which w,;; = oo. Then % on (z,x, w) is

given by

¢(Z7x7 W) = [(¢(W)7Br+l(ta m, 1’1)] )
where ¢, m, n are given by t := z + Z;Zl xj, m = (Wi, Wa, ..., Wy, [X41],0,...,0)
and n:= (X + Wy, % +Wa, .., Xp + Wy, X1 + |%41], 0, . . ., 0). Observe that 1) is well

defined as 7, (w) = m,(m) and w,,; = oco.
Let us introduce the following notation. For m,n € N and 0 < r < /, let

A (m,n) == S pS" @ -+ @ S pS™ @ SIS @ 1.

We consider A, (m, n) as an operator on £2(N').

Proposition 6.1 The map 1) is continuous, and 1) factors through the equivalence
relation ~. Let 1) be the induced map from G — Gyigre. Then ) is a topological groupoid
isomorphism.

Proof First we show that ¢ factors through the equivalence relation. Let (z,x, w) ~
(z,x,w ) and let r (resp. r ) be the least non-negative integer for which w,,; = oo
(resp W, = 00). By definition, r = r and 7,(w) = 7,(w ). Then by Proposi-
tion 4.4, it follows that ¢p(w) = (ZS(W/ ). Since the definition of ¢ involves only the first
r components of w, P (z, x, w) = ¥(z, x, w'). This proves that ¢ is well defined.

The map J is one-to-one:

Suppose that 1 (z,x,w) = Pz, x ,w). Again let r and " be the least non-
negative integer for which w,,; and w,/ | are both co. Then r is the largest integer
for which there exists an m such that ¢(w) is 1 on p,.;(m). Since p(w) = qb(w/ ), we
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have r = r and m(w) = 7Tr(Wl). As Y(z,x,w) = w(z/,xl,w/), it follows that there
exists a projection e such that

pw)(e) =1 and e(t* ® Ap(m,n)) = e(tzl R Apa(m' 1),

But ¢(w)(e) = 1 implies that e > p,+1(7r,(w) 0). Hence we can choose e to be
er(T(T(W) 0). Thus it follows that z = z and Am(m n) = Am(m n ) Thus
m=m andn=rn, Wthh in turn implies x; = x fori < r+ 1. Since (z,x,w) € X,
it follows that x; = x = 0 fori > r+ 2. Thus, we have shown that (z,x,w) ~
(z x , W ) Hence w is one-to-one.

The map 1’/; is onto:

First note that if a — b = ¢ — d, then there exists a projection e = §r(bro) gbte
such that eS*?$" = S*S°. Hence in the definition of 1) we can change the r + st
components of m and n such that #n,.1 — m,1; = x,41. Let [(¢p(w), B;(s, m, n))] be an
element in ;o4 Let r be the first non-negative integer for which w,,; = oo. Then
i < r+1. By premultiplying B; (s, m, 1) by p,+1(m.(w), 0) we can assume thati = r+1
and m is such that 7, (w) = 7,(m). Now if r < £ — 1, then, for z = Zj(mj — n;), for
an x such that 7,4 (x) = w41 (n) — 7 (m) and x; = 0 fori > r+2, Y(z,x,w) =
[(¢p(w), Br41(s,m,n))]. If r = £, then with z = s+ Z?:l(mj —nj)andx; = n; — mj,
one has ¥(z, x, w) = [(¢p(w), Be+1(s, m, n))]. This proves that v is onto.

The map W is continuous:

Let (2", x", w") be a sequence in ¥ converging to (z,x,w) € 3. Let r be the least
non-negative integer for which w,4; = co. Then, eventually, (z",x", 7, (w")) coin-
cides with (z,x, m,(w)). Suppose that 6(s,U) is an open set containing ¢ (z, x, w).
Without loss of generality we can assume that s := * ® A,41(m, n), where m, n are
defined as in the definition of . Since U is an open set containing ¢(w) and as ¢ is
continuous, it follows that ¢(w") € U eventually. Let r, be the least non-negative in-
teger for whichw}! | = oo. Thenr, > r. Letm" and n" be as in the definition of ¢ for
(z,x,w"). If e, := py,+1(m"), then p(w") € D,, and e,(t* ® A, 1 (m", n")) = e,(* ®
Ay41(m, n)) eventually. Thus, eventually, (2", x", w") = [(¢(w"),s)] € 0(s, U). This
proves that QZ is continuous.

We leave it to the reader to check that J is a homeomorphism, and it is in fact a

groupoid homomorphism. This completes the proof. ]
Remark 6.2 1In [6], it was shown that C7,(5) is isomorphic to C(SZ‘“). One can
construct a faithful representation of C7;(§) onto C (Sé‘}”). We refer to (3,5, 6] for

constructing such representations.
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