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Reliable prediction of the erosion rate of sediment beds is important for many applications
in coastal and river engineering. Theoretical understanding of empirically derived scaling
relations is still lacking. This applies in particular for the scaling anomaly between low
and high Shields number conditions. In this work, the erosion process is studied from
the perspective of the phase-averaged turbulent kinetic energy (TKE) equations. The
multi-phase TKE equations are written in a form that allows for a direct comparison with
the TKE equation that appears for a stratified single-phase flow under the Boussinesq
approximation. This reveals that next to buoyancy destruction, several other TKE
modulation mechanisms become important at high Shields numbers and concentrations.
Two scaling laws are derived for both moderate and high Shields numbers, and are tested
against a wide range of experimental data.
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1. Introduction

Reliable prediction of the erosion of non-cohesive sediment is important for assessment
of the safety level of levees, prediction of coastal erosion, and optimization of dredging
methods and equipment. Also, this information is important for the understanding of river
systems and fluvial landforms. Although there exist several theoretical attempts to address
the erosion problem (Cao 1997; Zhong, Wang & Ding 2011), understanding is still far from
satisfactory, and the proposed scaling relations are mainly empirical.
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The vertical particle flux from a sediment bed is defined as F( y) = ρp 〈αvp〉, where
ρp is the density of the solid particles, α is the instantaneous solid phase fraction, vp is
the instantaneous vertical velocity of the particle phase obtained by volume averaging,
and the brackets 〈·〉 denote the Reynolds average, i.e. an ensemble average over multiple
realizations of the flow (Pope 2000). It is helpful to decompose F( y) into a pick-up flux
Ep( y) � 0 and a settling flux S( y) � 0:

F = Ep − S. (1.1)

Figure 1 illustrates the pick-up process of particles from an erodible bed. It is assumed
that a horizontal flow profile of the fluid, 〈uf 〉, has been established before it reaches
the erodible bed. As a result of particle entrainment, a solid phase fraction profile 〈α〉
develops, while the interface gradually moves downwards with the erosion velocity ve. It
is also possible to consider a co-moving frame of reference that translates vertically with
ve. By mass conservation, ve can be related to the pick-up flux and settling flux at a given
reference height yr according to

ve = Ep( yr)− S( yr)

(1 − ni − 〈α( yr)〉) ρp
, (1.2)

where ni is the in situ porosity of the bed, and 〈α( yr)〉 is the mean solid phase fraction
at the reference height. The reference height can be considered as the seabed boundary
of a large-scale sediment transport model that typically incorporates turbulent suspension
and particle settling, but strategically ignores near-bed transport phenomena. It is assumed
that the pick-up flux is governed by the stress exerted on individual grains at the bed τ , a
critical stress required for the initiation of motion of particles τcr, the particle size dp, the
viscosity of the fluid νf , gravity g, the density of the solid particles ρp, and the density of
the carrier fluid ρf , such that

Ep( yr) = f1(τ, τcr, dp, νf , g, ρp, ρf ). (1.3)

It is also assumed that the settling flux can be related to the terminal settling velocity of a
single grain in stagnant water v∞

p , and 〈α( yr)〉 and ρp:

S( yr) = f2(v∞
p , 〈α( yr)〉 , ρp). (1.4)

A very frequently used pick-up function was proposed by Van Rijn (1984):

φ = Ep( yr)

ρp (Δgd50)
0.5 = 0.00033D0.3

∗ fD

(
θ − θcr

θcr

)1.5

, (1.5)

where Δ = ρp/ρf − 1, D∗ is a dimensionless particle size defined as D∗ = d50
3
√
Δg/ν2

f ,
i.e. the square root of the ratio between the submerged weight of the particle and viscous
stresses (Galileo number), θ = τ/(ρp − ρf )gd50 is the Shields parameter (ratio of shear
stress and submerged weight of particles), θcr is the critical Shields parameter related
to the minimum shear stress that is required for the initiation of particle motion, and fD
is a correction factor, with fD = 1.0 in the original formulation for θcr � θ < 1.0. The
normalization of the pick-up flux with velocity scale

√
Δgd50 originates from Einstein

(1950). The critical Shields parameter θcr can be determined from the empirical Shields
diagram (Shields 1936). Buffington & Montgomery (1997) presented an overview of
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different techniques to determine θcr. There exists quite some scatter in the measurement
data that can be attributed to the preparation of the bed, particle size distributions and the
degree of exposure of the particles at the top of the bed to the fluid flow (Miedema 2012).
The criteria for initiation of motion have also been defined in terms of other parameters.
For example, Kudrolli, Scheff & Allen (2016) considered a critical shear rate condition,
and Maldonado & de Almeida (2019) studied the impulse acting on the particles at the
bed. In the regime θ � θcr, (1.5) implies that the pick-up flux becomes proportional to
θ1.5 or in terms of the friction velocity, u∗ = √

τ/ρf , Ep ∝ u3∗, i.e. linearly proportional
to the power of the eroding flow. The fact that the critical Shields number θcr is present
in the denominator of the term in parentheses on the right-hand side of (1.5) suggests
that the critical Shields parameter remains important in the limit of high Shields numbers,
θ � θcr. Other pick-up relations were proposed that do not reflect this behaviour in the
limit of high Shields values (Fernandez Luque & Van Beek 1976; Nakagawa & Tsujimoto
1980). The pick-up model of Einstein (1950) does not contain a critical shear stress, but
contains a probability function P(θ) that describes the fraction of time that the lift force
on a particle at the bed exerted by the turbulent flow is sufficient to overcome the weight
of the particle. The normalized pick-up flux according to Einstein (1950) is

Ep

ρp
√
Δd50g

= β P(θ), (1.6)

where β is a non-dimensional parameter. The probability function P(θ) decays rapidly
in the limit θ → 0 and converges quickly to unity for θ � 0.15. Yalin (1977) followed a
similar approach but considered the friction velocity u∗ as the relevant velocity scale for
sediment pick-up instead of the velocity scale

√
Δd50g as considered by Einstein (1950):

Ep

ρpu∗
= β2 P2(θ), (1.7)

where P2 is a modified probability function. The value θ = 0.15 can be considered as a
reasonable separator between the regime for which the probability function is smaller than
1 and the regime for which the probability function is equal to 1, since P(θ = 0.15) ≈ 0.9
in the model of Einstein (1950) and P2(θ = 0.15) ≈ 0.99 in the model of Yalin (1977).
Based on force measurements on a single grain near a smooth bed, Schmeeckle, Nelson
& Shreve (2007) showed the resemblance of the measured force with the Saffman lift
force, which supports the analysis of Einstein (1950) and Yalin (1977). Also, Garcia &
Parker (1993) proposed a scaling law that does not contain a critical Shields condition;
their pick-up relation contains the terminal settling velocity of the particles, the friction
velocity and the particle Reynolds number. They observed a very steep scaling of the
pick-up flux with the friction velocity Ep ∝ u5∗. In addition, Cheng & Emadzadeh (2016)
proposed an alternative scaling relation without a critical Shields parameter.

Winterwerp et al. (1992) executed experiments with hyper-concentrated flows over an
erodible bed (θ > 1.0). They observed a significant deviation from the scaling relation
(1.5). Based on their data, they proposed a scaling law Ep ∝ θ0.5. The deviations were
attributed to the high near-bed concentrations that are absent in the experiments of Van
Rijn (1984). Bisschop (2018) conducted experiments at extremely high Shields parameters,
up to θ = 329, and high near-bed concentrations. Recently, van Rijn, Bisschop & van Rhee
(2019) performed a re-analysis of these data and proposed a correction of scaling (1.5) by
setting fD = 1/θ for θ > 1. According to van Rijn et al. (2019), this factor takes three
processes into account that are relevant for the high Shields range: damping of turbulence
in the near-bed region where the solid concentrations are extremely high, the increase of
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Figure 1. Definition sketch of pick-up flux Ep, settling flux S, and total particle flux F.

the mixture kinematic viscosity, and the increase of apparent shear resistance as a result
of dilatancy of the sand bed near the interface. Van Rhee (2010) demonstrated that this
dilatancy effect can become important for a large ratio between the erosion velocity and
the hydraulic conductivity of the bed, ve/k � 1, in combination with densely packed beds
(low porosity ni).

To elucidate the key difference in the observations, it is helpful to reconsider the
studies mentioned above in more detail. First, the erosion experiments of Van Rijn (1984),
Okayasu, Fujii & Isobe (2010), Cheng & Emadzadeh (2016) and Bisschop (2018) cover
a wide range of flow conditions, sediment sizes and measurement techniques (table 1).
Van Rijn (1984) and Cheng & Emadzadeh (2016) used sediment lifts to keep the bed
aligned with the floor of the flumes. The equilibrium speed of the lifts can be interpreted
as the erosion velocity ve, defined in (1.2). Okayasu et al. (2010) constructed a flume with
two sections. In the first section, particles were fixed to the flume floor, and in the second
section, a sand bed could freely erode. The position of the bed was tracked near the starting
point of the erodible section with a laser pointer. The bed shear stress was derived from
velocity measurements in the first section and the application of standard boundary layer
theory for rough walls. Bisschop (2018) used a closed-circuit flume where the flow velocity
can be increased up to 10 m s−1. The position of the bed was measured at approximately
3 m from the starting point of the erodible section using a set of conductivity probes
mounted in the side wall of the flume and high-speed camera images. The conductivity
probes were calibrated to obtain the absolute concentration profiles above the bed. The
shear stress was estimated by measuring the pressure difference over the erodible section
(over a length ≈6 m), which was corrected for acceleration effects and the wall shear stress
contributions from the side and top walls of the flume.

Figure 2 shows the normalized pick-up flux versus the Shields parameter of all the
experimental studies mentioned above. It is seen that the scaling at relatively low Shields
values differs markedly from the high near-bed concentration regimes addressed by
Winterwerp et al. (1992) and Bisschop (2018). Hence it is useful to distinguish clear-water
flow (CWF) and hyper-concentrated flow (HCF), with a maximum near-bed concentration
<0.01 and much larger than 0.01, respectively. The normalization of the pick-up flux as
suggested by Einstein (1950), φ = Ep/ρp

√
gdpΔ, does not collapse all the data onto a

single master curve f (θ). For Shields parameters lower than unity, a power-law trend with
exponent 1.5 seems acceptable even though not perfect. In the HCF case, a power law
with exponent 0.5 better describes the experimental trend. The fact that (i) the data do not
collapse perfectly on master curves, and (ii) the power law exhibits an abrupt modification
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d50 v∞
p u∗ h θ D∗ Flow αr

(mm) (cm s−1) (cm s−1) (cm)

Van Rijn (1984) 0.13–1.5 1–15 2.9–5.7 25 0.056–0.74 3.3–37.9 CWF <0.01
Okayasu et al. (2010) 0.31 3.6 3.4–8.2 30 0.24–1.36 7.6 CWF <0.01
Cheng &
Emadzadeh (2016)

0.23–0.86 2.5–10 1–4.5 4.4 0.023–0.33 5.8–21.7 CWF <0.01

Winterwerp
et al. (1992)

0.125, 0.225 1–2.5 6–37 7 2.0–37 3.0–5.7 HCF 0.3–0.4

Bisschop (2018) 0.05–0.56 0.2–8 10–105 20 8.7–329 1.29–14.2 HCF 0.1–0.3

Table 1. Parameter ranges in the erosion experiments (d50, v∞
p , u∗), corresponding dimensionless numbers

(θ , D∗), entry flow at erosion measurement section being either clear-water flow (CWF) or hyper-concentrated
flow (HCF), and typical concentrations in the near-bed region αr.

between CWF and HCF cases, indicates that some physical processes are not captured by
the scaling law φ = f (θ), and that further analysis is needed to explain and understand the
pick-up flux. This work addresses the observed scaling behaviour of the pick-up flux from
the perspective of the turbulent kinetic energy (TKE) budgets of the particle phase and
the fluid phase. The main focus is to explain the striking difference in the scaling of the
pick-flux in the CWF and HCF regimes by expected changes in the relative contributions
of various turbulence modulation terms in the TKE equations. To analyse the CWF case,
we model the fluid–particle system as a stratified single-phase flow under the Boussinesq
approximation. The HCF case is analysed by using the phase-averaged TKE equations
for fluid–particle systems. New scaling laws are retrieved from this analysis, which are
compared with existing experimental data.

2. Analysis of CWF experiments at moderate Shields numbers

For the experimental cases with CWF over erodible beds at moderate Shields numbers
0.15 < θ < 1, the near-bed concentration is relatively low. The Stokes number in the
near-bed region can be defined as St = tp/tf , with a fluid time scale tf = κyr/u∗, that
is, the ratio between the characteristic length scale of eddies in the near-bed region and
the friction velocity, with κ representing the von Kármán constant, and tp the particle drag
time scale; see Appendix A. A basic estimate for tp can be obtained by considering the
terminal settling velocity of a single particle in stagnant water v∞

p (Greimann & Holly
2001):

tp = v∞
p ρp

|g| (ρp − ρf )
. (2.1)

Using this estimate, we found that for the CWF experiments, the Stokes number is
typically smaller than 1 for yr > 2dp. This implies that the relative velocity between the
phases is negligible, and it suffices to consider a single-phase formulation. Because the
concentrations are low, the Boussinesq approximation holds.This means that the effect of
density differences can be modelled by source terms that appear on the right-hand sides of
the momentum and TKE equations, while the density in the inertia terms is considered to
be constant. For more details, see Appendix A.

To study the effect of self-stratification, three local characteristic numbers need to
be examined: the flux Richardson number, buoyancy Froude number and buoyancy
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Figure 2. Scaling anomaly in the normalized pick-up flux and Shields number between CWF and HCF cases.
CWF experiments: Van Rijn (1984), Okayasu et al. (2010) and Cheng & Emadzadeh (2016). HCF experiments:
Winterwerp et al. (1992) and Bisschop (2018).

Reynolds number. First, the local flux Richardson number (Turner 1979) is defined as
the ratio between the buoyancy destruction and the shear production of TKE:

Rif ( y) = − |g| 〈v′ρ′〉
ρ0 〈u′v′〉 ∂〈u〉/∂y

= − Δ |g| 〈v′α′〉
〈u′v′〉 ∂ 〈u〉 /∂y

, (2.2)

where 〈u〉 is the mean horizontal velocity, u′ and v′ are the velocity fluctuations in the
horizontal and vertical directions, respectively, ρ′ is the density fluctuation of the mixture,
α′ is the fluctuation of the particle phase fraction, and ρ0 ≈ ρf in the dilute limit.

The gradient of the mean velocity can be modelled by the Monin–Obukhov similarity
theory (Monin & Obukhov 1954)

∂〈u〉
∂y

= u∗
κy
ψm(ζ ), (2.3)

where ζ = y/L is the non-dimensional height above the bed, L is the Obukhov length
(Obukhov 1946)

L = u3∗
Δ |g| 〈v′α′〉 κ , (2.4)

and ψm is the stability function for the momentum flux. The Obukhov length is
a profile-dependent parameter that characterizes the strength of the stratification. It
represents the theoretical height where Rif = 1 based on a neutrally stratified ψm = 1
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velocity profile. Substitution of (2.3) in (2.2) gives

Rif (ζ ) = Δ |g| 〈v′α′〉 κy
u3∗ ψm(ζ )

= ζ

ψm(ζ )
. (2.5)

The second control parameter is the buoyancy Froude number (Lesieur 1990)

Fr =
(

lB
le

)2/3

, (2.6)

where le = u3∗/ε is a turbulent flow scale associated with the most energetic eddies in
the boundary layer at height y, and lB = (ε/N3)1/2 is the Osmidov length scale (Osmidov
1975), with ε = u3∗ ψm(ζ )/κy the turbulent dissipation, and N the Brunt–Vaïsala frequency
(Turner 1979; Lesieur 1990) given by

N2 = −|g|
ρ0

d〈ρ〉
dy

. (2.7)

Parameter N is also known as the buoyancy frequency, which is the frequency of an
internal wave in a stably stratified fluid. The Osmidov scale lB is a local scale for the
stratification, and it represents the maximum eddy length scale that can develop in the
presence of internal waves such that the turnover time of the eddies at that scale equals
1/N.

The density profile 〈ρ〉 = 〈α〉 ρp + (1 − 〈α〉) ρf is a function of the local phase fraction
such that

d〈ρ〉
dy

= ρfΔ
d〈α〉
dy

. (2.8)

The gradient of the phase fraction can also be described by the Monin–Obukhov similarity
theory:

∂〈α〉
∂y

= 〈v′α′〉
u∗

ψα(ζ )

κy
, (2.9)

where ψα is the stability function for α. Since for the clear-water case ρ0 ≈ ρf , it follows
that

N2 = |g|Δ 〈v′α′〉ψα(ζ )
κyu∗

. (2.10)

This implies that the local buoyancy Froude number and local flux Richardson number can
be related by

Fr = 1√
Rif

√
ψm

ψα
, (2.11)

where it is expected that ψm ≈ ψα . This signifies that self-stratification in the near bed
region can be interpreted in terms of both buoyancy destruction of TKE and stability
constraints imposed by internal waves associated with the vertical density gradient above
the bed.
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lB dp
(ρp – ρ f)g

lη

Figure 3. Constraint on the ratio between the Osmidov length scale lB and the Kolmogorov scale lη. Increasing
the pick-up flux results in a reduction of lB by buoyancy until a critical value lB/lη (i.e. Reb) is reached. This
argument corresponds to scaling (2.14).

The third control parameter of stratified flows is the buoyancy Reynolds number
(Venayagamoorthy & Koseff 2016) defined as

Reb = ε

νf N2 . (2.12)

The buoyancy Reynolds number can be related to the ratio of the Osmidov length scale
lB and the Kolmogorov length scale lη = (ν3

f /ε)
1/4 since lB/lη = Re3/4

b . If the separation
between these scales is too small, then the turbulent cascade cannot develop, which in
turn drives the flow towards a laminar state and reduces particle entrainment. Figure 3
illustrates this argument. Using (2.12), ε = u3∗ ψm(ζ )/κy and (2.10), it follows that

Reb = Reτ ( y)
Rif ( y)

κ

ψα(ζ )
, (2.13)

where Reτ = u∗y/νf is the friction Reynolds number. In the regime of minimum scale
separation between lB and lη, Reb reaches a critical value, and according to (2.13), this
will impose a constraint on the local flux Richardson number Ricf ∝ Reτ κ/ψα . By virtue
of (2.5), the definition of the pick-up flux, φ = 〈v′α′〉/√Δgdp and ψα ≈ ψm, for small ζ ,
it then follows that

φ ∝ lim
ζ→0

ψm(ζ )

ψα(ζ )
Rep θ

1.5 = Rep θ
1.5, (2.14)

where Rep = dpu∗/νf is the particle Reynolds number based on the friction velocity.
In dilute suspensions, the inter-particle distance allows enough space for TKE

dissipation events to evolve, as in CWF. However, it is possible that a finite-size effect
sets in when lB ≈ dp: the energy carrying eddies might no longer be able to induce a net
lift or drag force on the particles at the interface, at least not in a statistical-averaged sense;
see figure 4. From this constraint on the Osmidov length scale and (2.13), it follows that

Ricf ∝
(
κyr

dp

)4/3 1

ψαψ
1/3
m
, (2.15)

and for the non-dimensional pick-up flux at small ζ ,

φ ∝ ψ
2/3
m

ψα

(
κyr

dp

)1/3

θ1.5 ≈
(
κyr

dp

)1/3

θ1.5. (2.16)

This leaves a weak dependence on the choice of the reference height.
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lB dp

(ρp – ρ f)g

Figure 4. Constraint on the ratio between the Osmidov length scale lB and the particle size dp. Increasing
the pick-up flux results in a reduction of lB by buoyancy until a critical value lB/dp is reached. This line of
reasoning results in scaling (2.16).

In conclusion, in the CWF experiments at moderate Shields numbers 0.15 < θ < 1.0,
by a self-stratification argument, two scaling laws can be expected, (2.14) and (2.16) for
sub-Kolmogorov and finite-size particles, respectively. We will test the scaling relations,
as well as the empirical relation given by (1.5), in § 4. Note that they all have the same θ1.5

proportionality, but differ in the pre-factor in front of this term, notably the dependence on
the particle diameter dp.

3. Analysis of HCF experiments at high Shields numbers

For HCF over erodible beds at high Shields numbers, it is required to address more generic
equations for the TKE of dispersed multi-phase flows.

These equations appeared in various forms in literature. In this work, we use the
framework of Fox (2014) and adopt the same notations here for convenience. The two-fluid
model of Fox (2014) is restricted to drag forces only, but we think that this is not a
limitation for this study. Although the Saffman lift force is important for the pick-up of
individual particles from the bed (see § 1), we assume that it is sufficient to restrict our
near-bed flow analysis to the drag force. Jha & Bombardelli (2010) demonstrated that
adding the lift force in a two-fluid model for particle-laden channel flows modifies the
flow dynamics only marginally.

To study the departures from stratified single-phase flow under the Boussinesq
approximation, it is helpful to combine the balances for the TKE of the fluid and particle
phases. In the equations for the fluid and particle TKE as derived by Fox (2014), the
buoyancy term, as it appears under the Boussinesq approximation, is difficult to recognize.
In Appendix A, it is shown that after multiple manipulations of the equations of Fox (2014),
the combined TKE balance of the two phases can be written as follows:

∂ρf 〈1 − α〉 kf + ρp 〈α〉 kp

∂t︸ ︷︷ ︸
time change

+∇ ·
[
ρf 〈1 − α〉 〈uf

〉
f kf + ρf 〈1 − α〉 1

2

〈
u′′′

f u′′′
f · u′′′

f

〉
f︸ ︷︷ ︸

transport by mean fluid velocity and fluid velocity fluctuations

+ 〈1 − α〉
〈
p′

f u′′′
f

〉
f
−
〈
σ f · u′′′

f

〉
︸ ︷︷ ︸

transport by fluid stresses

+ ρp 〈α〉 〈up
〉
p kp + ρp 〈α〉 1

2

〈
u′′

pu′′
p · u′′

p

〉
p︸ ︷︷ ︸

transport by mean particle velocity and particle velocity fluctuations
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+ 〈α〉
〈
p′

f u′′
p

〉
p
+ ρp 〈α〉

〈
Pp · u′′

p

〉
p

]
︸ ︷︷ ︸

transport by fluid pressure fluctuations and particle stresses

= −ρf 〈1 − α〉
〈
u′′′

f u′′′
f

〉
f

: ∇ 〈uf
〉
f − ρp 〈α〉

〈
u′′

pu′′
p

〉
p

: ∇ 〈up
〉
p︸ ︷︷ ︸

shear production in both phases, conversion MKE-TKE

+
〈
p′

f ∇ · α′
(〈

uf
〉
f − 〈

up
〉
p

)〉
︸ ︷︷ ︸

compression effect, conversion MKE-TKE

+ ρp 〈α〉
tp

〈
α′u′

f

〉
〈α〉 〈1 − α〉 ·

⎛
⎝〈up

〉
p − 〈

uf
〉
f −

〈
α′u′

f

〉
〈α〉 〈1 − α〉

⎞
⎠

︸ ︷︷ ︸
drag conversion MKE-TKE, contains buoyancy via momentum equations, see (A38)

−
〈
∇u′′′

f : σ f

〉
︸ ︷︷ ︸

viscous dissipation, conversion TKE-heat

+ ρp 〈α〉
〈
Pp : ∇u′′

p

〉
p︸ ︷︷ ︸

conversion TKE-Θp

− ρp 〈α〉
tp

〈∣∣∣u′′
f − u′′

p

∣∣∣2〉
p︸ ︷︷ ︸

drag dissipation, conversion TKE-heat

, (3.1)

where kf and kp are the TKE, in kinematic units, of the fluid and particle phases,
respectively, uf and up are the velocities of each phase, 〈·〉 represents standard Reynolds
averaging, 〈·〉f and 〈·〉p are conditional averages over each phase, A′, A′′ and A′′′ denote
fluctuations with respect to the Reynolds average, particle phase average and fluid phase
average, respectively, Pp is the particle stress, σ f is the viscous stress, pf is the fluid
pressure, and tp is a constant time scale associated with drag.

The left hand-side of (3.1) contains the time change of TKE and transport of TKE by
the mean flows, turbulent fluctuations, pressure fluctuations, collisional stress and viscous
stress. Similar transport terms appear in the TKE equation for stratified single-phase flow.

The first two terms on the right-hand side of (3.1) represent the shear production of
the fluid and particle phases. Similar to single-phase flow, they describe the transfer from
kinetic energy of the mean flow (or mean kinetic energy, MKE) to TKE. The next two
terms describe the transfer from MKE to TKE by pressure coupling and drag forces. Using
the momentum balances of the fluid and particle phases, the drag contribution can be
related to the buoyancy term as it appears in the TKE equation under the Boussinesq
approximation; see (A5) in Appendix A. The last three terms describe the conversion from
TKE into heat and granular temperature. After the conversion into granular temperature,
energy can be further converted into heat by drag and inelastic collisions; see Fox (2014).
Figure 5 gives an overview of the energy flows between the different variables. In the
context of this study, the relation between the conversion of MKE to TKE by the mean
shear, the conversion of TKE to MKE via drag, and the conversion of MKE to potential
energy (PE) is important. For increasing particle concentrations, granular dissipation εp,
and drag dissipation become more relevant, next to the viscous dissipation of TKE εf .
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Mean shear

Pressure-compression

Drag

Drag

Heat

e < 1

and

Drag dissipation

Tp

Θp Θf

Tf

εf

εD

TKEMKE

PE

εp

ρp〈α〉/tp 〈|uf
′′

 – up
′′|2〉

Figure 5. Energy flows between PE, MKE, TKE, granular temperature Θp, temperature of the particles Tp,
pseudo-TKE Θf (turbulence in the wake of the particles) and temperature of the fluid Tf , where e is the
coefficient of restitution between the particles, εf is the viscous dissipation of fluid TKE, εp is the granular
dissipation of particle TKE, and εD is the small-scale viscous dissipation associated with pseudo-turbulence
(Fox 2014).

Now the TKE budget is written in a convenient form to study the departures from
the Boussinesq approximation, there is an opening to retrieve possible scaling laws
for the pick-up flux in the HCF regime at high Shields numbers. In the previous
section, it is anticipated that the pick-up flux at moderate Shields numbers and low
near-bed concentrations is controlled by the balance between the shear production, viscous
dissipation and buoyancy destruction terms. For increasing near-bed concentrations and
Shields numbers, the magnitude of each term in (3.1) will likely change. For simplicity,
we assume that although the relative contribution of each transport term will vary in the
HCF regime, the key deviations that control the pick-up flux stem from differences in the
source terms on the right-hand side of (3.1).

First, we need to estimate the combined shear production of both phases. The
assumption is that in the flow direction, the macroscopic particle/fluid slip velocity is
small at the length scale (κy) of the mean flow and of the turbulent fluctuations in the
energy-containing range. In then follows that

〈
up
〉
p ≈ 〈

uf
〉
f and

〈
u′′

pv
′′
p

〉
p

≈
〈
u′′

f v
′′
f

〉
f
. The

combined shear production term from both phases then becomes

− ρf 〈1 − α〉
〈
u′′′

f v
′′′
f

〉
f

∂
〈
uf
〉
f

∂y
− ρp 〈α〉

〈
u′′

pv
′′
p

〉
p

∂
〈
up
〉
p

∂y

≈ ρm

〈
u′′′

f v
′′′
f

〉
f

∂
〈
uf
〉
f

∂y
. (3.2)

Next, we estimate the turbulent shear stress by

− ρm

〈
u′′′

f v
′′′
f

〉
f
= −ρm

〈
u′

f v
′
f

〉
f
≈ ρmu2

∗, (3.3)

which is expected to hold in the logarithmic (or constant-stress) layer as long as the
Reynolds number is sufficiently high. Furthermore, assuming that the fluid velocity profile
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obeys the standard logarithmic scaling as in single-phase flow, the velocity gradient
becomes equal to

∂
〈
uf
〉
f

∂y
≈ u∗
κy
. (3.4)

The validity of the logarithmic scaling for the HCF regime has been confirmed by velocity
measurements by Winterwerp et al. (1990) and Bisschop (2018). Our final estimate of the
shear production term becomes

− ρf 〈1 − α〉
〈
u′′′

f v
′′′
f

〉
f

∂
〈
uf
〉
f

∂y
− ρp 〈α〉

〈
u′′

pv
′′
p

〉
p

∂
〈
up
〉
p

∂y
≈ ρm

u3∗
κy
, (3.5)

with ρm = ρf + (ρp − ρf ) 〈α〉; for sediment-water flows, it typically holds that ρp = 2.6ρf
so ρm = ρf (1 + 1.6 〈α〉). The shear production is balanced by the other terms: viscous
dissipation, transfer to granular temperature, conversion of MKE to TKE, modified
buoyancy destruction and drag dissipation. We expect that in the HCF regime, the transfer
to granular temperature and drag dissipation will start to consume the largest portion of
the TKE production, while changes in the MKE–TKE conversion have secondary effects.

From this conjecture, let us try to find some estimates for the pick-up flux in the HCF
regime. The transfer to granular temperature term can be decomposed in two parts:

ρp 〈α〉
〈
Pp : ∇u′′

p

〉
p

=
〈
pp∇ · u′′

p

〉
−
〈
σ p : ∇u′′

p

〉
, (3.6)

where pp is the particle pressure, and σ p is the particle shear stress. The pressure dilatation
term in (3.6) can be modelled as〈

pp ∇ · u′′
p

〉
=
〈
[1 + 4α g0(α)]Θ ∇ · u′′

p

〉
p
, (3.7)

where g0(α) is the radial distribution function, and Θ is the granular temperature (Fox
2014). In the dilute case, this term is usually neglected, with the argument that Θ varies
over the integral length scales and thus does not correlate with gradients of velocity
fluctuations that live on a smaller scale. It is expected that a diverging flow field u′′

p is
associated with a lower concentration (α′ < 0). As a result, the dilation term is likely
negative at high particle concentrations. The second term on the right-hand side of (3.6)
can be recognized as the dissipation rate of particle TKE by the particle shear stress.
Combining the effect of pressure dilatation and shear provides the following definition of
the dissipation rate of particle TKE:〈

σ p : ∇u′′
p

〉
−
〈
pp∇ · u′′

p

〉
= 〈α〉 ρpεp, (3.8)

where it should be noted that this dissipation term is not a direct conversion into heat, but
the particle TKE first converts into granular temperature and then converts into heat by
particle collisions and particle–fluid drag on the level of individual granular fluctuations.
On the other hand, the drag dissipation term on the right-hand side of (3.1) is a direct
conversion into heat by particle–fluid drag; see figure 5.

To estimate the relative contribution of the drag dissipation and εp, it is helpful to
consider the viscous time scale tη, the particle-drag time scale tp and the turnover time
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of the most energetic eddies in the near-bed region te = κy/u∗. The viscous time scale can
be estimated as

tη =
(
μm

ρmεm

)1/2

, (3.9)

where the subscript m indicates variables defined for the particle–fluid mixture. Typically,
the effective shear viscosity of the mixture can be modelled as μm = μf (1 − 〈α〉/〈α〉m)

−2

(Maron & Pierce 1956; Guazzelli & Pouliquen 2018), with 〈α〉m ≈ 0.6 the maximum
flowable packing fraction. Using εm = u3∗/κy and ρm = ρf (1 +Δ 〈α〉), it follows that

tη =

⎛
⎜⎜⎜⎝
(

1 − 〈α〉
〈α〉m

)−2

1 +Δ 〈α〉

⎞
⎟⎟⎟⎠

1/2

κy
u∗

1√
κ Reτ

. (3.10)

Now if tη < tp < te, then it can be anticipated that the turbulent cascade breaks down
at the time scale tp, and drag dissipation is the most important dissipation mechanism.
If tp < tη < te, then the turbulent cascade is halted by viscous dissipation, and at high
particle concentrations it is expected that εp is at least of the same order as εf or higher
(higher for higher concentration). By using (3.10), the constraint tη < tp can be written as⎛

⎜⎜⎜⎝
(

1 − 〈α〉
〈α〉m

)−2

1 +Δ 〈α〉

⎞
⎟⎟⎟⎠

1/2

1√
κ Reτ

< St, (3.11)

which sets a lower bound on the Stokes number, and likewise the constraint tp < tη sets
an upper bound on the Stokes number. This implies that the Stokes number controls the
relative contribution of the drag dissipation (high Stokes numbers) and εp (low Stokes
numbers) in the HCF regime.

Using estimates obtained for statistically steady-state, homogeneous and isotropic
turbulence (Fox 2014), we derive in Appendix B the scaling for the dissipation of particle
TKE

εp = St
(

2
St + 2

)2 kf

tp
, (3.12)

and for the dissipation by drag forces,

1
tp

〈∣∣∣u′′
f − u′′

p

∣∣∣2〉
p

= 2
kf

tp

(
St

2 + St

)2

. (3.13)

The ratio R of (3.12) and (3.13) is

R = 2
St
, (3.14)

which indicates that at high Stokes numbers, drag dissipation is dominant, and at low
Stokes numbers, turbulent dissipation of particle TKE overcomes the drag dissipation.
This is in line with estimate (3.11) obtained from the analysis of the relevant time scales.
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For the flow in the near-bed region, the Stokes number can be estimated as St = u∗tp/κy.
Estimate (3.14) then suggests that close to the bed, drag dissipation is dominant, while the
importance of particle TKE dissipation increases when moving from the bed. At small y
and thus high Stokes numbers, St � 1, the dominant balance is between drag dissipation
and shear production, yielding

ρp 〈α〉
tp

〈∣∣∣u′′
f − u′′

p

∣∣∣2〉
p

= 2ρp 〈α〉 kf

tp

(
St

2 + St

)2

= ρm
u3∗
κy
. (3.15)

Since kf ∝ u2∗, and using St = u∗tp/κy, it follows that for St � 1,

〈α〉 ∝ (2 + St)2

St
≈ St, (3.16)

which indicates that the near-bed concentration increases with the Stokes number. At
higher regions in the profile, such that St � 1, the key balance is between dissipation
of particle TKE and shear production,

〈α〉 ρp St
(

2
St + 2

)2 kf

tp
= ρm

u3∗
κy
. (3.17)

This indicates that for St � 1,

〈α〉 ∝ (St + 2)2 ∝ St0. (3.18)

From the limiting cases (3.16) and (3.18), the following scaling can be anticipated for the
near-bed region:

〈α〉 ∝ Stξ , (3.19)

with 0 < ξ < 1, where the scaling exponent should be determined from concentration
measurements in the near-bed region.

The following scaling of the pick-up flux is then expected:

Ep ∝ ρp 〈α〉 u∗ ∝ ρp Stξ u∗. (3.20)

In the traditional non-dimensional form, this becomes

φ ∝ Stξ θ0.5. (3.21)

4. Results and discussion

In this section, we reconsider the experimental data introduced in § 1. Figure 6 shows
the Obukhov length versus the Shields parameter. A minimum in the Obukhov length is
observed for the CWF experiments conducted in the range 0.15 < θ < 1. This indicates
that stratification effects, as discussed in § 2, could be present in this range, but buoyancy
destruction is likely negligible for the other cases.

In the CWF experiments with a lower Shields number, θ < 0.15, particle contact load
is the dominant transport form; see figure 7. For this reason, it is very unlikely that
the pick-up flux for those cases is controlled by TKE budget considerations. It is more
reasonable to expect that the pick-up flux in this regime is controlled by the probability
that an individual particle is lifted from the bed by the turbulent flow that developed above
the fixed bed section upstream of the erodible bed section in the CWF experiments.
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10−2 10−1 100 101 102
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10−1
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103
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h

0 P (θ) P (θ) = 1

0.13 mm, Van Rijn (1984)

0.19 mm, Van Rijn (1984)

0.36 mm, Van Rijn (1984)

0.79 mm, Van Rijn (1984)

1.5 mm, Van Rijn (1984)

0.31 mm, Okayasu et al. (2010)

0.23 mm, Cheng & Emadzadeh (2016)

0.44 mm, Cheng & Emadzadeh (2016)

0.86 mm, Cheng & Emadzadeh (2016)

0.120 mm, Winterwerp et al. (1992)

0.225 mm, Winterwerp et al. (1992)

0.051 mm, Bisschop (2018)

0.125 mm, Bisschop (2018)

0.262 mm, Bisschop (2018)

0.562 mm, Bisschop (2018)

Figure 6. Obukhov length over channel height versus the Shields parameter. The dashed vertical line indicates
the region (θ < 0.15) where the pick-up probability of a single grain strongly influences the pick-up rate.

10–2 10–1 100 101 102 103

θ

10–3

10–2

10–1

100

101

v
p∞

/u
∗

Contact load

Saltation

Suspended

0 P (θ) P (θ) = 1

Figure 7. Ratio of the terminal settling velocity and friction velocity plotted against the Shields parameter
to identify the expected transport mode. Symbols are as defined in figure 2. The horizontal lines indicate the
threshold values for the different transports (Dey 2014).

In the experiments of Bisschop (2018), where θ � 1, the near-bed concentration was
measured by conductivity probes with vertical separation 1 cm. The first measurement
point at 1 cm height above the bed shows that 〈α〉 > 0.1 for all cases; see figure 8. In
this case, the Boussinesq assumption is no longer valid. As detailed in § 3, mechanisms
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10−3 10−2 10−1 100 10−3 10−2 10−1 100

St

10−1

〈α〉

〈α〉 = 0.40St 0.20

0.051 mm
0.125 mm
0.262 mm
0.562 mm

St

10−1

〈α〉 = 0.43St 0.20

(b)(a)

Figure 8. Near-bed concentration versus Stokes number (see (2.1)), measured at (a) 1 cm and (b) 3 cm height
above the bed; data of Bisschop (2018). Symbols are as defined in figure 2. The dashed line represents a
least squares regression for both heights separately, 〈α〉 = 0.41 St0.20. The dash-dotted line is a least squares
regression for the combined measurements at 1 and 3 cm height above the bed.

other than stratification are probably controlling the scaling of the pick-up flux. This is
consistent with the observed high values of the Obukhov length in figure 6. It is expected
that the near-bed concentration depends only weakly on the Stokes number, which could
be modelled by (3.19). Figure 8 demonstrates that this type of scaling is reasonably
accurate, using a simplified Stokes number St = tpu∗/κy, with a constant tp modelled
by (2.1).

Now we will examine the scaling of the pick-up flux for both the CWF and HCF
experiments. Regarding the CWF experiments, figure 9 shows the two scaling laws for
the dimensionless pick-up flux (2.14) and (2.16), as derived from buoyancy arguments
in § 2. It is observed that (2.14) gives a reasonably accurate fit to the experimental data.
This indicates that stratification effects play an important role in the pick-up flux in the
CWF regime at moderate Shields numbers. The assumption that the Osmidov length scale
is halted by the particle size, which leads to (2.16), could be valid in some cases. The
limited quality of the scaling in figure 9(b) suggests, however, that this is not generally
true.

For the HCF experiments, the scaling of near-bed concentration as observed in figure 8
can be used to predict the pick-up flux; see figure 10. Although there is some scatter in
the data, the overall trend is quite well captured. It is also satisfying that the pick-up
flux in the Winterwerp et al. (1992) data follows the same trend as obtained from the
concentration and pick-up measurements of Bisschop (2018). These results support the
scaling hypothesis that the pick-up flux at high Shields numbers, with associated high
near-bed concentrations, is controlled by additional TKE modulation terms, instead of the
standard buoyancy destruction term, as discussed in § 3.
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0.19 mm, Van Rijn (1984)

0.36 mm, Van Rijn (1984)

0.79 mm, VanRijn (1984)

0.31 mm, Okayasu et al. (2010)

0.23 mm, Cheng & Emadzadeh (2016)

0.13 mm, Van Rijn (1984)

0.19 mm, Van Rijn (1984)

0.36 mm, Van Rijn (1984)

0.79 mm, Van Rijn (1984)

0.31 mm, Okayasu et al. (2010)

0.23 mm, Cheng & Emadzadeh (2016)

Figure 9. Measured pick-up flux versus computed pick-up flux using (a) (2.14) and (b) (2.16). The Shields
parameter falls in the range 0.15 < θ < 1.36 for the selected data points. The outer dashed lines indicate a
30 % error margin.
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0.051 mm, Bisschop (2018)
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Figure 10. Scaling of the pick-up flux at a high Shields number θ > 8.7 of Bisschop (2018) and data points
obtained from Winterwerp et al. (1992). Pick-up flux (a) evaluated at a fixed reference height yr = 3 cm above
the bed (yr/h = 0.15) as in Bisschop (2018), and (b) evaluated at a fixed non-dimensional reference height
St = 1 or yr = tpu∗/κ and 〈α〉r = 0.41. The dashed line indicates perfect correlation.
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This does not mean that other explanations are not possible, such as the dilatancy
hardening effect; see § 1. The pore pressure just below the bed and prior to pick-up is
difficult to measure and therefore not available. However, using the estimate for the critical
Shields parameter θcr corrected for the dilatancy effect by the theory of Van Rhee (2010),
it is verified that θcr � θ . This suggest that dilatancy hardening could be present, but it
is unlikely that it affected the pick-up rate in the experiments considered here. Another
explanation proposed by van Rijn et al. (2019), as discussed briefly in § 1, is that the
pick-up flux at high Shields numbers is reduced by a higher effective viscosity of the
mixture of water and particles. In the context of this study, we need to substitute the
effective mixture viscosity in (2.14). In summary, changes in the relative importance of
terms in the TKE budget under high Shields conditions are a plausible explanation for the
scaling anomaly observed in figure 2.

5. Conclusion

In this paper, the physical origin of several empirical scaling laws for the sediment pick-up
flux has been investigated by considering the turbulent kinetic energy (TKE) balances for a
stratified single-phase flow under the Boussinesq approximation and a full two-phase flow
formulation. The scaling relations derived from the aforementioned balances are tested
against existing erosion experiments.

At low Shields number, θ < 0.15, the probability of pick-up of a single particle by the
overlying turbulent flow strongly depends on the Shields number. Buoyancy destruction of
TKE is presumably not the dominant process in this regime.

In the range 0.15 < θ � 1.5, stratification effects likely dominate the sediment pick-up
process. The non-dimensional pick-up flux φ can be scaled with the particle Reynolds
number based on the shear velocity and the Shields number: φ ∝ Rep θ

1.5.
For high Shields number flow, θ � 1, a high near-bed concentration develops. Based on

the observation of the Obukhov length in this regime, the buoyancy destruction of TKE
is not the dominant process. It is anticipated that dissipation of TKE by collisions and
TKE dissipation by drag become the dominant sinks and balance the shear production
of TKE. From this hypothesis, a non-dimensional scaling relation is retrieved for the
non-dimensional pick-up flux, φ ∝ Stξ θ0.5. From the observed sediment concentrations in
the high Shields regime, a value ξ = 0.2 is found. It is observed that the non-dimensional
pick-up rate scales in accordance with this value, φ ∝ St0.2 θ0.5. This scaling is confirmed
by two independent data sets.

In order to further advance our understanding of erosion processes, new high-resolution
measurements of near-bed sediment transport phenomena as well as interface-resolving
DNS simulations of this problem are needed. These data could be used to
formulate closures for both the instantaneous and Reynolds-averaged two-phase
equations. The long-term goal would be to develop an accurate pick-up flux
formula for large-scale morphodynamical models for riverine, coastal and offshore
applications.
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Erosion

Appendix A. Derivation of the TKE balances

To study the effects of high concentrations and particle slip on the TKE budget, we
present in this appendix the TKE balances of single-phase flow under both the Boussinesq
approximation and a full two-phase flow formulation.

In the Boussinesq approximation, it is assumed that the density differences can be
ignored in the inertia terms and affect only the buoyancy of the fluid. The flow can be
described by a single velocity field u that is governed by the momentum balance

∂u
∂t

+ ∇ · (uu + P) = g + ρ − ρ0

ρ0
g, (A1)

where ρ is a variable density field, and ρ0 is a fixed reference density. The stress tensor P
is the combination of the pressure and viscous stresses:

P = 1
ρ0
( pI − σ ) . (A2)

As the density variations are negligible under the Boussinesq approximation, it is assumed
that the velocity field is incompressible:

∇ · u = 0. (A3)

Applying Reynolds decomposition, u = 〈u〉 + u′, and the standard averaging rules then
give an equation for the averaged velocity:

∂ 〈u〉
∂t

+ ∇ ·
(

〈u〉 〈u〉 + 〈
u′u′〉− 1

ρ0
〈σ 〉
)

= − 1
ρ0

∇〈p〉 + g + 〈ρ〉 − ρ0

ρ0
g. (A4)

Again applying Reynolds decomposition to (A1), multiplying this equation with u′ and
then taking the average, gives

∂k
∂t

+ ∇ ·
[
〈u〉 k +

〈
1
2

u′(u′ · u′)
〉
+ 1
ρ0

〈
p′u′〉− 1

ρ0

〈
σ ′ · u′〉]

= − 〈u′u′〉 : ∇〈u〉 − 1
ρ0

〈∇u′ : σ ′〉+ 〈
ρ′u′〉
ρ0

· g, (A5)

where k = 1
2

〈
u′ · u′〉. The terms on the left-hand side of (A5) represent the local time

change, transport of TKE by the mean flow, and transport by fluctuations of velocity,
pressure and viscous stress, respectively. The three terms on the right-hand side embody
the shear production, viscous dissipation and buoyancy modulation, respectively.

For higher concentrations and to account for non-negligible velocity differences between
the particle and fluid phases, we require a full two-phase formulation. In this work, we use
the equations and analysis of Fox (2014) as a starting point. The instantaneous mass and
momentum equations of the particle and fluid phase read

∂α

∂t
+ ∇ · (αup

) = 0 (A6)

and
∂αup

∂t
+ ∇ · α (upup + Pp

) = α (A + g) , (A7)
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respectively, where α is the phase fraction, up is the velocity of the particle phase, Pp is
the collisional stress tensor, g is the gravitational acceleration, and

A = 1
tp

(
uf − up

)− 1
ρp

∇pf (A8)

represents the momentum exchange between the phases via drag and pressure, where tp is
a drag time scale. The fluid phase equations have a similar form for mass,

∂(1 − α)

∂t
+ ∇ · ((1 − α)uf

) = 0, (A9)

and momentum,

∂(1 − α)uf

∂t
+ ∇ · (1 − α)

(
uf uf + P f

) = −ρp

ρf
αA + (1 − α)g, (A10)

where uf is the velocity of the fluid phase, and P f is the combination of the fluid pressure
and fluid viscous stress:

P f = 1
ρf (1 − α)

(
pf I − σ f

)
. (A11)

Reynolds averaging of the particle and fluid mass balances, (A6) and (A9), gives

∂〈α〉
∂t

+ ∇ · 〈α〉 〈up
〉
p = 0 (A12)

and

∂〈1 − α〉
∂t

+ ∇ · 〈1 − α〉 〈uf
〉
f = 0, (A13)

where 〈A〉 denotes standard Reynolds averaging of a quantity A, 〈A〉p = 〈αA〉 / 〈α〉
is a particle-phase-weighted average, and 〈A〉f = 〈(1 − α)A〉 / 〈1 − α〉 is a fluid-phase-
weighted average. These averages 〈·〉f and 〈·〉p can be interpreted as averages as ‘seen’ by
the fluid and the particle phase, respectively.

Averaging (A7) gives the Reynolds-averaged momentum balance of the particles:

∂〈α〉 〈up
〉
p

∂t
+ ∇ · 〈α〉

(〈
up
〉
p

〈
up
〉
p +

〈
u′′

pu′′
p

〉
p
+ 〈

Pp
〉
p

)

= 〈α〉
tp

⎛
⎝〈uf

〉
f − 〈

up
〉
p +

〈
α′u′

f

〉
〈α〉 〈1 − α〉

⎞
⎠− 〈α〉

ρp
∇ 〈pf

〉− 1
ρp

〈
α′∇p′

f

〉
+ 〈α〉 g, (A14)

where A′ = A − 〈A〉 is the fluctuation with respect to the usual Reynolds-averaged value,
and A′′ = A − 〈A〉p is the fluctuation with respect to the particle-phase-weighted average.
Fluctuations in the time scale tp are ignored for the sake of simplicity.
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Number Equation Follows from

1 〈A〉p = 〈A〉 + 〈
α′A

〉
/〈α〉 Definition of 〈·〉p

2 〈A〉f = 〈A〉 − 〈
α′A

〉
/〈1 − α〉 Definition of 〈·〉f

3 〈A〉p = 〈A〉f + 〈
α′A

〉
/(〈α〉 〈1 − α〉) (1) and (2)

4
〈
A′′〉 = −〈α′A′′〉/〈α〉 (1) and

〈
A′′〉

p = 0

5
〈
A′′′〉 = 〈

α′A′′′〉/〈1 − α〉 (2) and
〈
A′′′〉

f = 0

6
〈
A′′′〉

p = 〈
α′A′′′〉/(〈α〉 〈1 − α〉) (3) and

〈
A′′′〉

f = 0

7
〈
A′′′〉 = 〈

A′′′〉
p 〈α〉 (5) and (6)

8
〈
A′′′〉 = 〈

α′A′′′〉/ 〈1 − α〉 (6) and (7)

9
〈
α′A

〉 = 〈
α′A′〉 = 〈

α′A′′〉 = 〈
α′A′′′〉 〈

α′〉 = 0

10
〈
BA′′〉

p = 〈
B′′A′′〉

p = 〈
B′′′A′′〉

p

〈
A′′〉

p = 0

Table 2. Conversion relations between averages.

Averaging (A10) gives the averaged momentum balance for the fluid phase:

∂〈1 − α〉 〈uf
〉
f

∂t
+ ∇ ·

(
〈1 − α〉 〈uf

〉
f

〈
uf
〉
f + 〈1 − α〉

〈
u′′′

f u′′′
f

〉
f
− 1
ρf

〈
σ f
〉)

= ρp 〈α〉
ρf tp

(〈
up
〉
p − 〈

uf
〉
f −

〈
α′uf

′〉
〈α〉 〈1 − α〉

)
− 〈1 − α〉

ρf
∇ 〈pf

〉+ 1
ρf

〈
α′ ∇p′

f

〉
+ 〈1 − α〉 g,

(A15)

where A′′′ = A − 〈A〉f represents fluctuations of a quantity A with respect to the
fluid-phase-weighted average. Several useful relations are available to convert easily
between the different types of averages; see table 2.

The TKE of the fluid phase and TKE of the particle phase are now defined as

kf = 1
2

〈
u′′′

f · u′′′
f

〉
f

(A16)

and

kp = 1
2

〈
u′′

p · u′′
p

〉
p
, (A17)

respectively. These definitions can be interpreted as separated metrics for the TKE as seen
by the fluid and particle phases individually.

The procedure to derive equations for kf and kp from the instantaneous momentum
equations is similar to the single-phase k balance under the Boussinesq approximation
(A5): decompose the fluid velocity field uf = 〈

uf
〉
f + u′′′

f in (A10), multiply this equation
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with u′′′
f , and take the fluid average 〈·〉f :

∂〈1 − α〉 kf

∂t
+ ∇ ·

[
〈1 − α〉 〈uf

〉
f kf + 〈1 − α〉 1

2

〈
u′′′

f u′′′
f · u′′′

f

〉
f

+ 1
ρf

〈
pf u′′′

f

〉
− 1
ρf

〈
σ f · u′′′

f

〉]

= − 〈1 − α〉
〈
u′′′

f u′′′
f

〉
f

: ∇ 〈uf
〉
f + 1

ρf

〈
pf

(
∇ · u′′′

f

)〉
− 1
ρf

〈
∇u′′′

f : σ f

〉

+ ρp 〈α〉
ρf tp

⎡
⎣

〈
α′u′′′

f

〉
〈α〉 〈1 − α〉

(〈
up
〉
p − 〈

uf
〉
f

)
+
〈
u′′′

f · u′′
p

〉
p
− 2kf −

〈
α′u′′′

f · u′′′
f

〉
〈α〉 〈1 − α〉

⎤
⎦

+ 1
ρf 〈1 − α〉

〈
α′u′′′

f

〉
· ∇ 〈pf

〉+ 〈α〉
ρf

(〈
u′′′

f · ∇p′
f

〉
f
+ 1

〈1 − α〉 〈α〉
〈
α′u′′′

f · ∇p′
f

〉)
.

(A18)

Likewise, the equation for kp can be found by multiplying the instantaneous momentum
equations of the particles (A7) with u′′

p and taking the average 〈·〉p:

∂〈α〉 kp

∂t
+ ∇ · 〈α〉

(
kp
〈
up
〉
p + 1

2

〈
u′′

pu′′
p · u′′

p

〉
p
+
〈
Pp · u′′

p

〉
p

)

= −〈α〉
〈
u′′

pu′′
p

〉
p

: ∇ 〈up
〉
p + 〈α〉

〈
Pp : ∇u′′

p

〉
p

+ 〈α〉
tp

(〈
u′′

p · u′′
f

〉
p
− 2kp

)
− 〈α〉
ρp

〈
u′′

p · ∇p′
f

〉
p
. (A19)

Fox (2014) reports the kf and kp equations exactly in these forms, which served as the
starting point for a discussion on closure relations there. A buoyancy term as in (A5)
cannot be recognized in either (A18) or (A19). Fox (2014) argues that the buoyancy
is hidden in the averaged and fluctuating pressure gradient terms, thereby assuming a
quasi-hydrostatic balance

∇pf = ∇〈pf
〉+ ∇p′

f ≈ ρmg + α′(ρp − ρf )g. (A20)

However, even with this strong assumption, it is not transparent how the Boussinesq form
(A5) should appear as a limiting case of (A18) and (A19). Therefore, we try to rewrite
(A18) and (A19) to allow for a more direct comparison with (A5) in the following steps.

First, focus on the transport term ∇ · 1/ρf

〈
pf u′′′

f

〉
on the left-hand side of (A18). Using

Reynolds decomposition of the fluid pressure gives

∇ · 1
ρf

〈
pf u′′′

f

〉
= ∇ · 1

ρf

〈(〈
pf
〉+ p′

f

)
u′′′

f

〉
= ∇ · 1

ρf

〈
pf
〉 〈

u′′′
f

〉
+ ∇ · 1

ρf

〈
p′

f u′′′
f

〉

= 1
ρf

〈
pf
〉∇ ·

〈
u′′′

f

〉
+ 1
ρf

〈
u′′′

f

〉
· ∇ 〈pf

〉+ ∇ · 1
ρf

〈
p′

f u′′′
f

〉

= 1
ρf

〈
pf
〉∇ ·

〈
u′′′

f

〉
+ 1
ρf 〈1 − α〉

〈
α′u′′′

f

〉
· ∇ 〈pf

〉+ ∇ · 1
ρf

〈
p′

f u′′′
f

〉
,

(A21)
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Erosion

where we used relation 8 from table 2 to convert
〈
u′′′

f

〉
.

The second term on the right-hand side of (A18) can also be rewritten using Reynolds
decomposition of pf :

1
ρf

〈
pf

(
∇ · u′′′

f

)〉
= 1
ρf

〈(〈
pf
〉+ p′

f

) (
∇ · u′′′

f

)〉

= 1
ρf

〈
pf
〉∇ ·

〈
u′′′

f

〉
+ 1
ρf

〈
p′

f

(
∇ · u′′′

f

)〉
. (A22)

The last term on the right-hand side of (A18) can be reorganized using relation 3 of table 2
and the chain rule:

〈α〉
ρf

(〈
u′′′

f · ∇p′
f

〉
f
+ 1

〈1 − α〉 〈α〉
〈
α′u′′′

f · ∇p′
f

〉)
= 〈α〉
ρf

〈
u′′′

f · ∇p′
f

〉
p

= 1
ρf

〈
αu′′′

f · ∇p′
f

〉

= 1
ρf

∇ ·
〈
αu′′′

f p′
f

〉
− 1
ρf

〈
p′

f ∇ · αu′′′
f

〉
,

(A23)

which demonstrates that it constitutes a transport term and a compression term. Likewise,
the last term on the right-hand side of the particle TKE balance (A19) can also be
expressed as the sum of a transport term and a compression term:

〈α〉
ρp

〈
u′′

p · ∇p′
f

〉
p

= 1
ρp

∇ · 〈α〉
〈
p′

f u′′
p

〉
p
− 1
ρp

〈
p′

f

(
∇ · αu′′

p

)〉

= 1
ρp

∇ ·
〈
αu′′

pp′
f

〉
− 1
ρp

〈
p′

f

(
∇ · αu′′

p

)〉
. (A24)

The contribution of the drag force in (A18) can also be written as

ρp 〈α〉
ρf tp

⎡
⎣

〈
α′u′′′

f

〉
〈α〉 〈1 − α〉

(〈
up
〉
p − 〈

uf
〉
f

)
+
〈
u′′′

f · u′′
p

〉
p
− 2kf −

〈
α′u′′′

f · u′′′
f

〉
〈α〉 〈1 − α〉

⎤
⎦

= ρp 〈α〉
ρf tp

⎡
⎣

〈
α′u′′′

f

〉
〈α〉 〈1 − α〉

(〈
up
〉
p − 〈

uf
〉
f

)
+
〈
u′′′

f · u′′
p

〉
p
−
〈
u′′′

f · u′′′
f

〉
p

⎤
⎦

= ρp 〈α〉
ρf tp

⎡
⎣

〈
α′u′

f

〉
〈α〉 〈1 − α〉 ·

⎛
⎝〈up

〉
p − 〈

uf
〉
f −

〈
α′u′

f

〉
〈α〉 〈1 − α〉

⎞
⎠+

〈
u′′

f · u′′
p

〉
p
−
〈
u′′

f · u′′
f

〉
p

⎤
⎦ ,

(A25)

where we used in the first step conversion 3 in table 2 for the definition of kf ,

〈
u′′′

f · u′′′
f

〉
p

=
〈
u′′′

f · u′′′
f

〉
f
+
〈
α′u′′′

f · u′′′
f

〉
〈α〉 〈1 − α〉 = 2kf +

〈
α′u′′′

f · u′′′
f

〉
〈α〉 〈1 − α〉 , (A26)
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and in the second step,

〈
u′′′

f · u′′′
f

〉
p

=
〈
α
(

uf − 〈
uf
〉
f

)
·
(

uf − 〈
uf
〉
f

)〉
〈α〉

=
〈
α
(〈

uf
〉
p + u′′

f − 〈
uf
〉
f

)
·
(〈

uf
〉
p + u′′

f − 〈
uf
〉
f

)〉
〈α〉

=
〈
α
[〈

uf
〉
p − 〈

uf
〉
f + u′′

f

]
·
[〈

uf
〉
p − 〈

uf
〉
f + u′′

f

]〉
〈α〉

=
〈
α
[〈

uf
〉
p − 〈

uf
〉
f

]
·
[〈

uf
〉
p − 〈

uf
〉
f

]〉
〈α〉

+
〈
αu′′

f · u′′
f

〉
〈α〉 + 2

〈
αu′′

f ·
[〈

uf
〉
p − 〈

uf
〉
f

]〉
〈α〉

=
∣∣∣〈uf

〉
p − 〈

uf
〉
f

∣∣∣2 +
〈
u′′

f · u′′
f

〉
p
+ 2

〈
αu′′

f

〉
·
[〈

uf
〉
p − 〈

uf
〉
f

]
〈α〉

=
∣∣∣〈uf

〉
p − 〈

uf
〉
f

∣∣∣2 +
〈
u′′

f · u′′
f

〉
p
+ 0

=
∣∣∣∣∣∣

〈
α′u′

f

〉
〈α〉 〈1 − α〉

∣∣∣∣∣∣
2

+
〈
u′′

f · u′′
f

〉
p
, (A27)

and from table 2 conversion 10,

〈
u′′′

f · u′′
p

〉
p

=
〈
u′′

f · u′′
p

〉
p
. (A28)

Substitution of the re-expressed terms (A21), (A22), (A23) and (A25) into the kf balance
(A18) gives

∂ρf 〈1 − α〉 kf

∂t
+ ∇ ·

[
ρf 〈1 − α〉 〈uf

〉
f kf + ρf 〈1 − α〉 1

2

〈
u′′′

f u′′′
f · u′′′

f

〉
f

+〈1 − α〉
〈
p′

f u′′′
f

〉
f
−
〈
σ f · u′′′

f

〉]

= −〈1 − α〉 ρf

〈
u′′′

f u′′′
f

〉
f

: ∇ 〈uf
〉
f +

〈
p′

f

(
∇ · (1 − α)u′′′

f

)〉
−
〈
∇u′′′

f : σ f

〉

+ ρp 〈α〉
tp

⎡
⎣

〈
α′u′

f

〉
〈α〉 〈1 − α〉 ·

⎛
⎝〈up

〉
p − 〈

uf
〉
f −

〈
α′u′

f

〉
〈α〉 〈1 − α〉

⎞
⎠+

〈
u′′

f · u′′
p

〉
p
−
〈
u′′

f · u′′
f

〉
p

⎤
⎦,

(A29)
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and substitution of (A24) into (A19) yields

∂ρp 〈α〉 kp

∂t
+ ∇ · ρp 〈α〉

(
kp
〈
up
〉
p + 1

2

〈
u′′

pu′′
p · u′′

p

〉
p
+ 1
ρp

〈
p′

f u′′
p

〉
p
+
〈
Pp · u′′

p

〉
p

)

= −ρp 〈α〉
〈
u′′

pu′′
p

〉
p

: ∇ 〈up
〉
p +

〈
p′

f

(
∇ · αu′′

p

)〉
+ ρp 〈α〉

〈
Pp : ∇u′′

p

〉
p

+ ρp 〈α〉
tp

(〈
u′′

p · u′′
f

〉
p
− 2kp

)
. (A30)

To further advance the understanding, it is helpful to compute the total TKE of the
fluid–particle system, ρf 〈1 − α〉 kf + ρp 〈α〉 kp, by summing (A29) and (A30). This
summation is straightforward for most terms except for the compressibility terms on the
right-hand sides of the equations:〈

p′
f

(
∇ · (1 − α)u′′′

f

)〉
+
〈
p′

f

(
∇ · αu′′

p

)〉
=
〈
p′

f ∇ ·
(
(1 − α)u′′′

f + αu′′
p

)〉
=
〈
p′

f ∇ · α′
(〈

uf
〉
f − 〈

up
〉
p

)〉
, (A31)

where we used from the mass balances (A6) and (A9) that

0 = ∇ · (αup + (1 − α)uf
)

= ∇ ·
(
α
(〈

up
〉
p + u′′

p

)
+ (1 − α)

(〈
uf
〉
f + u′′′

f

))
= ∇ · α′

(〈
up
〉
p − 〈

uf
〉
f

)
+ ∇ ·

(
αu′′

p + (1 − α)u′′′
f

)
. (A32)

Summing (A29) and (A30), and using (A32), gives

∂ρf 〈1 − α〉 kf + ρp 〈α〉 kp

∂t
+ ∇ ·

[
ρf 〈1 − α〉 〈uf

〉
f kf + ρf 〈1 − α〉 1

2

〈
u′′′

f u′′′
f · u′′′

f

〉
f

+〈1 − α〉
〈
p′

f u′′′
f

〉
f
−
〈
σ f · u′′′

f

〉]

∇ ·
[
ρp 〈α〉 〈up

〉
p kp + ρp 〈α〉 1

2

〈
u′′

pu′′
p · u′′

p

〉
p
+ 〈α〉

〈
p′

f u′′
p

〉
p
+ ρp 〈α〉

〈
Pp · u′′

p

〉
p

]

= −ρf 〈1 − α〉
〈
u′′′

f u′′′
f

〉
f

: ∇ 〈uf
〉
f − ρp 〈α〉

〈
u′′

pu′′
p

〉
p

: ∇ 〈up
〉
p

+
〈
p′

f ∇ · α′
(〈

uf
〉
f − 〈

up
〉
p

)〉
+ ρp 〈α〉

tp

〈
α′u′

f

〉
〈α〉 〈1 − α〉 ·

⎛
⎝〈up

〉
p − 〈

uf
〉
f −

〈
α′u′

f

〉
〈α〉 〈1 − α〉

⎞
⎠

−
〈
∇u′′′

f : σ f

〉
+ ρp 〈α〉

〈
Pp : ∇u′′

p

〉
p
− ρp 〈α〉

tp

〈∣∣∣u′′
f − u′′

p

∣∣∣2〉
p
. (A33)

Finally, to get a good interpretation of the TKE balance (A33), it is also helpful to have a
complementary balance of the MKE:

ρp 〈α〉 Kp + ρf 〈1 − α〉 Kf = 1
2ρp 〈α〉 〈up

〉
p · 〈up

〉
p + 1

2ρf 〈1 − α〉 〈uf
〉
p · 〈uf

〉
f . (A34)
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This balance can be obtained by multiplication of (A14) and (A15) with
〈
uf
〉
p and

〈
uf
〉
f ,

respectively. Reorganization of the resulting terms using (A12) and (A13) yields

∂ρp 〈α〉 Kp + ρf 〈1 − α〉 Kf

∂t
+ ∇ ·

(
ρf 〈1 − α〉 〈uf

〉
f Kf + ρp 〈α〉 〈up

〉
p Kp

)
+ ∇ ·

(
ρf 〈1 − α〉

〈
u′′′

f u′′′
f

〉
f
· 〈uf

〉
f + ρp 〈α〉

〈
u′′

pu′′
p

〉
p
· 〈up

〉
p

)

− ∇ ·
(〈
σf
〉 · 〈uf

〉
f

)
+ ∇ ·

(
ρp 〈α〉 〈Pp

〉
p · 〈up

〉
p

)
+ ∇ ·

(
〈α〉 〈up

〉
p + 〈1 − α〉 〈uf

〉
f

) 〈
pf
〉+ ∇ ·

(〈
up
〉
p − 〈

uf
〉
f

) 〈
α′p′

f

〉
= +ρf 〈1−α〉

〈
u′′′

f u′′′
f

〉
f

: ∇ 〈uf
〉
f +ρp 〈α〉

〈
u′′

pu′′
p

〉
p

: ∇ 〈up
〉
p −

〈
p′

f ∇ · α′
(〈

uf
〉
f −
〈
up
〉
p

)〉

− ρp 〈α〉
tp

〈
α′u′

f

〉
〈α〉 〈1 − α〉 ·

⎛
⎝〈up

〉
p − 〈

uf
〉
f −

〈
α′u′

f

〉
〈α〉 〈1 − α〉

⎞
⎠− ρp 〈α〉

tp

∣∣∣〈up − uf
〉
p

∣∣∣2

+ ρp 〈α〉 〈Pp
〉
p : ∇ 〈up

〉
p − 〈

σ f
〉

: ∇ 〈uf
〉
f +

(
ρp 〈α〉 〈up

〉
p + ρf 〈1 − α〉 〈uf

〉
f

)
· g.

(A35)

The terms on the left-hand side describe the transport of MKE of both phases. The first
four terms on the right-hand side appear with opposite signs in the TKE balance (A33),
which means that they describe the transfer between MKE and TKE. The fifth term on the
right-hand side represents the dissipation of the MKE by drag forces. The sixth term on the
right-hand side appears with a minus sign in the granular temperature equation; see Fox
(2014). This means that it describes the conversion from MKE to granular temperature.
The seventh term on the right-hand side is the viscous dissipation of MKE, and the last
term is the exchange between MKE and gravitational PE.

The term in (A35) that is involved in the conversion of MKE towards TKE by drag can
be obtained by again combining (A14) and (A15), to retrieve the pressure gradient, and
then using either (A14) or (A15) to find the desired expression:

ρp 〈α〉
tp

⎛
⎝〈up

〉
p − 〈

uf
〉
f −

〈
α′u′

f

〉
〈α〉 〈1 − α〉

⎞
⎠

= 〈α〉
∂ρf 〈1 − α〉 〈uf

〉
f

∂t
− 〈1 − α〉

∂ρp 〈α〉 〈up
〉
p

∂t

+ 〈α〉∇ · ρf

(
〈1 − α〉 〈uf

〉
f

〈
uf
〉
f + 〈1 − α〉

〈
u′′′

f u′′′
f

〉
f
− 1
ρf

〈
σ f
〉)

− 〈1 − α〉∇ · ρp

(
〈α〉 〈up

〉
p

〈
up
〉
p + 〈α〉

〈
u′′

pu′′
p

〉
p
+ 〈α〉 〈Pp

〉
p

)

−
〈
α′∇p′

f

〉
+ 〈α〉 〈1 − α〉 (ρp − ρf )g. (A36)
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If gravity dominates the viscous and inertial forces, then (A36) reduces to

ρp 〈α〉
tp

⎛
⎝〈up

〉
p − 〈

uf
〉
f −

〈
α′u′

f

〉
〈α〉 〈1 − α〉

⎞
⎠ ≈ 〈α〉 〈1 − α〉 (ρp − ρf )g. (A37)

Substituting this term in (A33) (and (A35)) reveals the buoyancy destruction term as found
in the TKE equations under the Boussinesq approximation (A5):

ρp 〈α〉
tp

〈
α′u′

f

〉
〈α〉 〈1 − α〉 ·

⎛
⎝〈up

〉
p − 〈

uf
〉
f −

〈
α′u′

f

〉
〈α〉 〈1 − α〉

⎞
⎠ ≈ (ρp − ρf )

〈
α′u′

f

〉
· g =

〈
ρ′u′

f

〉
· g.

(A38)

It is important to realize that although the buoyancy term seems to be missing in the
two-phase formalism, it appears in the TKE budget via the drag forces. The physical
picture might be drawn as follows. Fluid eddies need to induce fluid velocity fluctuations
on the particles to create a net vertical drag force that balances the submerged weight
of the particles. Simultaneously, this gives a reaction force opposite to the fluid velocity
fluctuations. The work associated with this motion drains the energy contained in the fluid
eddies.

From (A35) and the latter observation, the interpretation of all terms in the TKE balance
(A33) is now straightforward.

Appendix B. Estimates for the dissipation terms

To estimate the relative contributions of εp and drag dissipation, it is helpful to use the
following estimates obtained for steady-state, homogeneous and isotropic turbulence (Fox
2014):

kfp = 1
2

〈
u′′

p · u′′′
f

〉
p

= kγp
(
β2kf

)1−γ
, (B1)

kp =
(

η

1 + η

)1/(1−γ )
β2kf , (B2)

εp = 2
η

(
η

1 + η

)1/(1−γ )
β2

tp
kf , (B3)

where

β2 =

〈
u′′′

f · u′′′
f

〉
p

2kf
, (B4)

and η is a solution of

ρr St = 2
η

(
C2 + C3η

C3 + C3η

)1/(1−γ )
, (B5)

with ρr a correlation function that relates the dissipation rate of particle–particle
variance and particle–fluid covariances, and St = tpεf /kf the Stokes number. Following
the discussion in Fox (2014), reasonable choices are C2 = C3, γ = 1

2 , ρr = 1 and β = 1,
which give directly the estimate (3.12).
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The drag dissipation term can be estimated using〈∣∣∣u′′
f − u′′

p

∣∣∣2〉
p

=
〈
u′′

f · u′′
f

〉
p
+
〈
u′′

p · u′′
p

〉
p
− 2

〈
u′′

f · u′′
p

〉
p

= 2kf +
〈
α′u′′

f · u′′′
f

〉
〈α〉 〈1 − α〉 + 2kp − 4kfp ≈ 2kf + 2kp − 4kfp, (B6)

where we used rule numbers 1 and 10 in table 2, and ignored triple correlations
〈
α′u′′

f · u′′′
f

〉
in the last step. Combining (B6) with (B1) and (B2) gives (3.13).
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