THE DEGREES OF RADICAL EXTENSIONS

BY
H. D. URSELL ${ }^{(1)}$

The results obtained here must have been known and settled centuries ago. However, they have proved impossible to locate in the available literature. H. K. Farahat has asked for proofs of the linear independence over the rationals of certain infinite sequences of real numbers such as $\sqrt{ } 2, \sqrt{ } 3, \sqrt{ } 5, \ldots$ He also raised the general question of determining the degree of the field extension generated over the rationals by a family of positive irrational numbers of the form $x=a^{1 / m}$ where a, m are positive integers. We shall call such numbers radical. The exponent of a radical x is the least positive integer m such that x^{m} is a positive integer. We shall prove the following.

Theorem. Let x_{1}, \ldots, x_{n} be radical numbers with exponents ${ }^{(2)} m_{1}, \ldots, m_{n}$. If the positive integers $x_{1}^{m_{1}}, \ldots, x_{n}^{m_{n}}$ are coprime then x_{1}, \ldots, x_{n} generate a field extension of the rationals of degree $m_{1} m_{2} \cdots m_{n}$.

Proof. As usual, $[E: F]$ denotes the degree of the field extension E over F, $F\left(t_{1}, \ldots, t_{r}\right)$ denotes the field generated over F by the elements t_{1}, \ldots, t_{r}, and \mathscr{Q} denotes the field of rational numbers. In addition, we set, for $\nu=1,2, \ldots, n$, $x_{v}^{m}=a_{v}$ and $K_{v}=\mathscr{Q}\left(x_{1}, \ldots, x_{v-1}, x_{v+1}, \ldots, x_{n}\right) ; K=\mathscr{Q}\left(x_{1}, \ldots, x_{n}\right)=K_{v}\left(x_{v}\right)$.

We shall prove that

$$
\begin{equation*}
\left[K_{v}\left(x_{v}\right): K_{v}\right]=m_{v} \tag{1}
\end{equation*}
$$

The theorem itself follows immediately from this by induction on n. Firstly, let us establish formula (1) in the case $n=1$. We have to see that the degree d of $\mathscr{Q}\left(x_{1}\right)$ over \mathscr{Q} is equal to m_{1}. The d roots of the minimum polynomial $\mu(X)$ of x_{1} over \mathscr{Q} are roots of $X^{m_{1}}-a_{1}=X^{m_{1}}-x_{1}^{m_{1}}$, and consequently have absolute value x_{1}. Hence the absolute value of their product is $x_{1}^{d}= \pm \mu(0)$ which is a positive integer. Thus $d \geq m_{1}$, the exponent of x_{1}. But $\mu(X) \mid\left(X^{m_{1}}-a\right)$ implies that $d \leq m_{1}$. Hence $d=m_{1}$.

We prove (1), for general n, by contradiction. Suppose that (1) is not true in general, and choose a minimal counter-example $\left\{x_{1}, \ldots, x_{n}\right\}$ where minimality

[^0]is understood in the sense that n cannot be reduced and that no exponent m_{v} can be reduced either. Note that therefore $n \geq 2$, and that
\[

$$
\begin{equation*}
\left[K_{v}: \mathscr{Q}\right]=\prod_{\alpha \neq v} m_{\alpha} \tag{2}
\end{equation*}
$$

\]

because (1), and hence the theorem, holds for all smaller sets of radical elements. Furthermore, there exist values of $v(1 \leq \nu \leq n)$ such that

$$
\begin{equation*}
\left[K_{v}\left(x_{v}\right): K_{v}\right]<m_{v} \tag{3}
\end{equation*}
$$

Let ν be one such value and denote the degree of x_{v} over K_{v} by d_{v}. By considering the constant term of the minimum polynomial of x_{v} over K_{v} we deduce, in a manner similar to a preceding argument, that $x_{v}^{d_{v}} \in K_{v}$. But we have also that $x_{v}^{m_{v}}=a_{v} \in K_{v}$, and consequently $x_{v}^{h} \in K_{v}$, where h is the highest common factor of d_{v}, m_{v}. If we replace x_{v} by x_{v}^{h} we obtain another counter-example where the exponent of x_{v}^{h} is m_{v} / h. By minimality of m_{v} in our original counter-example we deduce that $h=1$, hence that $x_{v} \in K_{v}, d_{v}=1$ and $K_{v}=K$. By (2) we see that

$$
[K: \mathscr{Q}]=\prod_{\alpha \neq v} m_{\alpha}
$$

It follows that (3) holds for all values of v, because any value of v yielding equality in (3) leads to $[K: \mathscr{Q}]=m_{1} m_{2} \cdots m_{n}$. Furthermore we now have

$$
\begin{equation*}
K_{1}=K_{2}=\cdots=K_{n}=K \tag{4}
\end{equation*}
$$

We can now deduce from (2) that $m_{1}=m_{2}=\cdots=m_{n}=m$ (say). The exponents in our minimal counter-example are therefore all equal. Let q be a prime factor of m and $m=q m^{\prime}$. Then $\left\{x_{1}^{m^{\prime}}, x_{2}, \ldots, x_{n}\right\}$ is also a counter-example with $x_{1}^{m^{\prime}}$ having exponent $q \leq m$. Equality must hold by minimality, and consequently each x_{v} has prime exponent q. Write $E=\mathscr{2}\left(x_{1}, \ldots, x_{n-2}\right)$. Then

$$
E\left(x_{n}\right)=K=E\left(x_{n-1}\right),[K: E]=q .
$$

For each element u of K we have its trace ${ }^{(3)}$ in E, denoted by $T(u)$, and defined as usual as the trace of the E-linear mapping

$$
z \in K \rightarrow u z \in K .
$$

Since $\left\{1, x_{n-1}, x_{n-1}^{2}, \ldots, x_{n-1}^{q-1}\right\}$ and $\left\{1, x_{n}, x_{n}^{2}, \ldots, x_{n}^{q-1}\right\}$ are E-bases of K, there must exist j such that

$$
T\left(x_{n}^{j} x_{n-1}\right) \neq 0, \quad 0 \leq j \leq q-1
$$

But the trace of a linear transformation is also equal to the sum of roots of the characteristic polynomial. Now $x_{n}^{j} x_{n-1}$ is a root of the equation $X^{q}=a_{n}^{j} a_{n-1}$, and hence the roots of the corresponding characteristic polynomial are of the form

[^1]$\omega x_{n}^{j} x_{n-1}$ where ω is a q th root of unity. Thus E contains the element $T\left\{x_{n}^{j} x_{n-1}\right\}=$ $\lambda x_{n}^{j} x_{n-1} \neq 0$ for some $\lambda \in E\left(e^{2 \pi i / q}\right)$. Consequently:
$$
E\left(x_{n}^{j} x_{n-1}\right) \subseteq E\left(e^{2 \pi i / q}\right)
$$

Now the right hand side has degree at most $q-1$ over E, because $e^{2^{\pi i / q}}$ is a root of $X^{q-1}+X^{q-2}+\cdots+X+1=0$. Hence $E\left\{x_{n}^{j} x_{n-1}\right\}$ has degree less than q over E, and, since $a_{1}, \ldots, a_{n-2}, a_{n}^{j} a_{n-1}$ are again coprime, we have a counter-example $\left\{x_{1}, \ldots, x_{n-2}, x_{n}^{j} x_{n-1}\right\}$ of $n-1$ radical elements. This contradiction completes the proof.

Corollary. Let a_{1}, \ldots, a_{n} be coprime positive integers such that $\sqrt{ } a_{1}, \ldots, \sqrt{ } a_{n}$ are irrational. Then $\mathscr{Q}\left[\sqrt{ } a_{1}, \ldots, \sqrt{ } a_{n}\right]$ has degree 2^{n} over $\mathscr{2}$.

We can give a simple proof ${ }^{(4)}$ of this Corollary independently of the main theorem. Write $F_{v}=\mathscr{2}\left(\sqrt{ } a_{1}, \ldots, \sqrt{ } a_{v}\right)(\nu \geq 0)$. Let n be the least positive integer, if such exist, for which a situation arises whereby $\sqrt{ } a_{n} \in F_{v}$ for some $v, 0 \leq \nu<n$ and choose v minimal. Plainly $n \geq 1$, and we cannot have $\nu=0$ because $\sqrt{ } a_{n}$ is irrational. We can find $\alpha, \beta \in F_{v-1}$ such that

$$
\sqrt{ } a_{n}=\alpha+\beta \sqrt{ } a_{v}
$$

and, since v is minimal, $\beta \neq 0$. Squaring the equation shows that $\beta \alpha \sqrt{ } a_{v} \in \mathscr{Q}$. But $\sqrt{ } a_{v} \notin F_{v-1}$. Thus $\alpha=0$, and $\sqrt{ } a_{n}=\beta \sqrt{ } a_{v}, \sqrt{ }\left(a_{n} a_{v}\right) \in F_{v-1}$. This contradicts minimality of n because $a_{1}, \ldots, a_{v-1}, a_{v} a_{n}, a_{v+1}, \ldots, a_{n-1}$ are coprime. This contradiction proves that $\left[F_{i}: F_{i-1}\right]=2$ for all i and the result follows.

Appendix (H. K. F. 9 Feb. 1973)
I have recently run into several references dealing with the subject, and these are listed below.

1. A. Besikovitch, J. London Math. Society 15 (1940), 3-6.
2. L. J. Mordell, Pacific Journal of Math. 3 (1953), 625-630.
3. I. Kaplansky, Fields and Rings, Chicago University Press (1969) (page 60 et seq.).
4. R. L. Roth, American Mathematical Monthly, Vol. 78, No. 4, (1971), pp. 392-394.
5. L. Gaal, Classical Galois Theory with examples, Markham Publishing Co., Chicago (1971) (page 234).
6. American Mathematical Monthly (Comments) Vol. 78, No. 10, p. 1106 and Vol. 79, No. 10, p. 1102.
${ }^{(4)}$ This is due to P. Vamos.

[^0]: ${ }^{(1)}$ This paper was written by H. K. Farahat during March 1972, and is based on letters from H. D. Ursell, dating back almost exactly three years. The letters represent successive attempts at the problem amounting to the proofs given here. The facts established in this paper appear to be 'known' to many people. However their proofs do not seem to be readily available.
 ${ }^{(2)}$ Ursell's proof requires the exponents to be prime powers. The present version yields this stronger result (H. K. F.).

[^1]: ${ }^{(3)}$ Ursell does not make explicit use of the trace in his argument (H. K. F.).

