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Introduction

We shall consider a Hermitian #n-vector bundle E over a complex
manifold X. When X is compact (without boundary), S.S. Chern defined
in his paper [3] the Chern classes (the basic characteristic classes of E) C;(E),
i=1+++,n, in terms of the basic forms ¢, on the Grassmann manifold
H(n,N) and the classifying map f of X into H(n, N). Moreover he proved
([3],[4]) that if E, denotes the k-general Stiefel bundle associated with E, the
(n —k+ 1)-th Chern class C,_1(E) coincides with the characteristic class
C(Ey) of E, defined as follows: Let K be a simplicial decomposition of X
and K2»=+1 the 2(n — k) + 1 — shelton of K. Then there exists a section s
of E;|K¥»®+*1 g0 that one can define the obstruction cocycle ¢(s) of s. The
cohomology class of ¢(s) is independent of such a section s. Thus one de-
notes by C(E,) the cohomology class of ¢(s) which is called the characteristic
class of E,. The above fact is well known as the second definition of the
Chern classes ([3]).

On the other hand, in case when X is with boundary, R. Bott and S.S.
Chern established the so-called Gauss-Bonnet theorem ([1]), which gives an
integral formula for the above second definition of the n-th Chern class
C.(E), that is, if C,(E) denotes the n-th Chern form induced by a norm on
E (ct. Prop. 2.1),

[,caB) = {520 + Sy zero (25 9)

where the p; are the zero points of a section s of X into E, the zero (p;; s)
denote the zero-numbers of s at p; and 7, is the n-th boundary form of E
(cf. Def. 3.1).
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The main purpose of this paper is to generalize their theorem to give
an integral formula (Theorem 4.1) for the i-th Chern form C,E)(1<i<n)
induced by a norm on a Hermitian #n-vector bundle E over a complex
manifold X of a complex dimension m, according to [1] and the obstruction
theory [3] and [4].

Roughly speaking, our main theorem 4.1, which is called the genera-
lized realtive Gauss-Bonnet theorem, is as follows: Let E, be the k-general
Stiefel bundle associated with E and zfE the induced bundle of E under
the projection =, of E, onto X. Suppose there exisit a real 2(m—n + k—1)-
dimensional oriented submanifold A (with smooth boundary 9A4) of X (here
m = dim¢X), and a smooth section s of (X— A) into E. Then for any
interior point g of A we can define the k-th complement obstruction number
obst(g, s, A) (cf. Def. 4.2). Let V be a real 2(n — k + 1)-dimensional oriented
manifold and D a compact domain with smooth boundary 8D. Now
given a smooth map f of V into X, we obtain the intersection numbers
n(ps f, A) of the singular chain f:D—X and A at the points p,eDnf!
(A)(G=1,--,10).

Then our integral formula is given by

[, rrCosni®) = s 0nsniatE)

+ 2151 0bsi(f(D1), 8, A) - (D5 S5 A).

As an application of our theorem, we obtain Levine’s “The First Main
Theorem [7]” concerning holomorphic mappings f from a non-compact
complex manifold V into the n-complex projective space P"(C) (c.f. §5).

Finally we note that technics in [2] are used in the proof of Theorem
4.1.

In Section 1 we review the theory of the Chern forms as described in
[1]. In Section 2 we refine this theory for the case of complex analytic
Hermitian bundles and state the duality formula according to [1]. In Sec-
tion 3 we define an (n,k)-trivial bundle and its boundary form (c.f. Def. 3.1
and 3.2). Furthermore we study the boundary form 7, ...(z¢E) of the (n,k)-
trivial bundle z¢(E) associated with a Hermitian n-bundle E over a complex
manifold X, which plays an important role in our theorem. In Section 4
we define the k-th obstruction number (c.f. Def. 4.1 and 4.2), and prove
the generalized relative Gauss-Bonnet theorem.
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In preparing this paper, I have received many advices from Dr. N.
Tanaka. I would like to express my cordial thanks to him.

§1. The Chern forms

1.1 The Chern forms. Let E be a C=-vector bundle of fibre dimension
n over a C~-manifold X. We denote by T* = T*X) the cotangent bundle
of X and by A(X)= X,;A’(X) the graded ring of C®-complex valued differ-
ential forms on X. More generally we write A(X; E) for the differential
forms on X with values in E. Thus if I'(E) denotes the smooth sections of
E, then it follows that A(X; E) = A(XL@QF(E).

DeriniTION 1.1, A connection on E is a differential operator D: I'(E) —>
I(T*® E) satisfying the following rule:

(1.1) D(f-s)=df-s+ f+Ds
for feAYX), seI'(E).

Suppose now that E has a definite connection D. Let s= {s;},<;<. be

a frame of E over V, where V is an open subset of X. Then there exist
1-forms 6;; on V which satisfy the following relations:

(1.2) Dsi = 21}=1 0113]' ) i = 1, ce,m

These 1-forms 6;; define a matrix of 1-forms on V, denoted by 4(s, D) = ||6;,1,
which is called the connection matrix relative to the frame s. From 6(s, D) we
now define a matrix K(s, D) = [[K;l of 2-forms on V by K;; = df;; — 30u ;.
In matrix notation:

(1.3) K(s,D) = db(s,D) — 6(s, D)\b(s, D).

K(s,D) is called the curvature matrix of D relative to the frame s,

Let us consider any two frames s and s’ of E|V. Then there exist
elements A;;€A%V) such that s;= 3};A;;s; and in matrix notation we write
simply s’ = As. Then we have the following transformation law

(1.4) AK(s,D)= K(s,D)A s = As.

From this and the fact that even forms commute with one another, we
have

DerntTiON 1.2, The Chern form of E relative to D, denoted by C(E, D),
is a global form on X defined as follows: Let us cover X by {V,} which
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admit frames s* over V,: Let det{l, + iK(s, D)/2z} denote determinants of

matrices 1, + iK(s%, D)/2r, where i =¢/—1 and 1, is the unit matrix. Then
we set

(1.5) C(E,D)|V, = det {1, + K (s, D)/2x}.

Moreover in terms of the transformation law (1.4), the curvature mat-
rices K(s4, D) = ||K,;|| determine a definite element K[E, D= A¥X: Hom(E, E))
as follows: Let ¢ be any elemet of I'(E). Then for each open set V, there

exists elements fieA%V,) such that = 31", f¢s%, s*= {5%},<;<n. Here we
put

(1.6) K[E,D]-t = 33} ;-1 f1K3;-85 on V..
K[E, D] is called the curvature element of E relative to D.

1.2. Reformulation of the Chern forms. We observe that by
using the curvature element K[E,D], we can reformulate the Chern form
C(E,D) in the following manner.

DeriniTion 1.3. Let M, denote the vector space of »nx#n matrices over
C. A Fk-linear function ¢ on M, is called invariant if for any BEGL(n: C),

(1.7 o(Ayy * + oy A = 9(BAB™Y, -« -, BAB™) for A,eM,.

We denote by I\M,) the vector space of all the k-linear invariant functioons.
Now given ¢=I*(M,) and an open set V of X, we ixtend ¢ to a k-linear
mapping, denoted by ¢,, from M, ® A(V) into A(V) by putting

oy (Awy, « » o, Agoy) = (A - - Ao A - s Aoy

for A,eM,, o,cAV).

On the other hand if ¢4 (X: Hom (E,E)) and if s= {s;} is a frame of
E|V, then ¢ determines a matrix of forms &(s)= |&(s)yll € M, ® AV) by
S1E(s);;8 = €+5;,, and under the substitution s’ = As. these matrices transform
by ' &(s") = A&(s)A"'. Hence given ¢,€A(X:Hom (E,E)) (i=1,+-+,k) and
peI*(M,); we can define a form ¢(&, . +,&)eA(X) as follows: Let s be a
frame of E|V. Then set

(1.8) @€+ + 5 8V = @u(€uls)y + + +, Euls))

where the &,(s) are matrices of &; relative to s.
For simplicity we put ¢(&, - - +, &) = ¢((§)).
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Now let D be a connection on E and let C(E,D) and KI[E,D] denote
the Chern form and the curvature element of E relative to D respectively.
Then we want to construct k-linear invariant functions 7= I%(M,) (k=1, - - -, n)
such that

C(E,D) =1+ 23, b; («K[E, D)) &= i[2m.

For this purpose let L be a k-tuples (iy, - - -, 4,) of integers from {1, - - -,n}
such that i; < «+.< 4. Then we define linear mappings L, on M, (I =1,
+,k) as follows: For any A = |la;|leM,, we put

%4,
: ) I=1,-+,k

$ixty

Lz(A) =

If A,=l|a},leM,, (a=1,---,k), then det{L,(A), ---,L(A)} denotes the
determinant of the matrix a3, li<s.r<e.  With this notation k-linear functions

by are defined as follows: For any A,eM, (@=1, -+ -,k)
(1-9) bZ(AI, R} Ak) = Ea.L’Ell_det {Ll(Aa(l))’ M ’9Lk(Aa(k))}a

where the summation is extended over all permutations ¢ of {1, - . -,k} and
all k-tuples L = (44, - - -, ;) of integers from {1, - + -, n} such that ;<. - <.

It is clear from definition that the 5} are symmetric, that is, for any
permutation ¢ of {1, . - -, k},

be(Ayy » v vy Ap) = D5(Asys * + +5 Auy)  AEM,.
Therefore in a case of A;= .. = A, = A, it follows that
(1.10) bi((A)) = Xy det {Ly(A), « « -, L(A)}
Hence we find that
(1.11) det (1, + A) = 1+ 2%, bi((A) A€M,
where 1, is the unit matrix of M,.
Lemma 1.1, The k-linear function b2 is invariant, i.e., bye I"(M,).

Proof. Let 2, + -+, be indeterminates and let A,, - + -, A; be any fixed
elements of M,. Then it follows from (1.10) and (1.11) that
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(1.12) det (Ln + Zai2eda) = 1+ 2000 31 > iy As,

L=(i1,%**,u)1, 2%, §r=1
det {Ly(4;,)+ + - L,(A;.)}]
Since both sides of (1.2) are considered smooth functions of k wvariables
A+ A we operate 3/62,+ -84, on each side of (1.12) at the origin

_ _ e
(g * +520) = (0, ,0)=0. Then from i A b (25 Ajr)

{1 ifr=kand {jy++*,j,} =1{1,++,k}

0 otherwise,

k
(1. 13) a—ll.Ta:_:a—xk—o det (17,, + 2£=1ZaAu) 12 “giet {L ( 0(1))’ cet Lk(Aa(k)
Thus it follows from (1.9) and (1.13) that
(1.14) B (A -y A = 2| det(, + T¥2.4.)
. k 1y y L1k k! 321"'62]; o n a=1lalla/.
It is clear from (1.14) that 57 is invariant. Q.E.D.

Now let C(E,D) and K[E, D] be as before. Then in views of Lemma
1.1 and (1.11), we find that the b} are invariant and satisfy the next relation:

(1.15) C(E, D) = 1 + 23%-.0% («K[E, D])).

Notice that &% («K[E, D])) becomes a global form of degree 2k on X because
of K[E,D]e A*(X: Hom (E, E)). Here we have

DerFiniTION 1.4. Let K[E, D] be the curvature element of E relative to
D. Let b7 denote the k-linear invariant function defined by (1.9). Then the
2k-form b7((kK[E, D)) is called the kth Chern form of E relative to D, denoted
by CE, D).

With this notation the relation (1.15) becomes

(1.15)’ C(E,D) =1+ 25-.CE, D), CJE, D)= bi((«K[E, D])).

Moreover, applying the next proposition to the invariant functions b5}, it
follows that

(1.16) dC(E,D)=0 k=1,+-+,n

so that

https://doi.org/10.1017/5S0027763000014306 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014306

INTEGRAL FORMULA FOR THE CHERN FORM 141

(1.17) dC(E,D)=0

ProrosiTiON 1.2. [1]. Let E be a C -vector bundle of fibre dimension n over
a C*-manifold X with a connection D. Let K[E,D] be the curvature element. Given
any o€ IM,), then we obtain

(1.18) dy((K[E, D])) = 0.

Next we introduce notations used in the later sections, For ¢eI*(M,)
we abbreviate >%_ (4, +-+, B, +++, A) to ¢'((A:B)). We put for any
A,Be M,

det ((4)) = 1 4+ X%.,0%((4)) and det’'((A: B)) = Xi..b%((A: B)).

Then it follows that

(1.19) det’ ((A: B)) = % det (L, + A + 1B),
(1.20) det (:K[E, D])) = C(E, D).

In order to prove (1.19) it is sufficient to notice that det(l, + A+ 1B)=1
4+ > b%(A + 2B)). (1.20) is trivial.

REMARK. A connection D on E is extended uniquely to an antideri-
vation of the A(X) module A(X: E), so as to satisfy the law:

(1.21) D(@-s)=d@-s+ (—1)*0-Ds 0= A*(X), sel'(E).
Then from the definition (1.6) of the curvature element K[E,D], we find
that

(1.22) D®s = K[E,D]-s for any serl[E).

§2. The duality formula

2.1. The canonical connection of a Hermitian bundle. Let E be a
holomorphic vector bundle over a complex manifold X. Then a norm N
on E is a real-valued function N: E——> R such that the restriction of N to
any fibre is a Hermitian norm on that fibre. Thus for each xeX, a posi-
tive definite Hermitian form, denoted by <u,v)y, or simply <u,v), is defined
by putting for any u,veE,,

{uy Wy = % {N(u + v) — N(u) — N(v)} + i—é- {N(u + iv) — N(u) — N(v)}.
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Moreover this Hermitian form <, >y is extended as follows: For any sec-
tions s and s/, we define <s, s’ as the function s,s’y (z) = {s(%), s’(z)> and
we set in general <f-s, 8'-s'> = OA0'<s,s"> 0,0/ A(X). A holomorphic vector
bundle with a norm is called a hermitian vector bundle. Let E be a Her-
mitian vector bundle. Then we will find from the following Proposition 2.1
that E has a canonical connection induced by a norm on E. It is our
aim to study the Chern form of E relative to this canonical connection.
Now let X be a complex manifold. The complex valued differ-
ential froms A(X) split into a direct sum >A?%X) where A?4X) is generated
over A%X) by forms of the type dfiA- -« AdfpAdfpriA+++ Adfpsp the f;

being local holomorphic functions on X. Therefore 4 spilts into d’ + d"’
where

dl: Ap,q )Ap+1,q and d”! Ap,q )Ap,tnl.

If E is a vector bundle over X, then A(X: E) split into the direct sum
AP (X; E) = SAPYX)Q®T(E) according to the decomposition of A(X).
Hence any connection D on E is decomposed into D'+ D'’:

D': I'E)—> A¥X: E) and D": I'(E)—> A"Y(X: E).

With these preliminaries we obtain

ProposiTioN 2.1, [1]. Let N be a norm on a Hermitian vector bundle
E. Then N induces a canonical connection D= D(N) on E which is
characterized by the two conditions:

(2.1) D preserves the norm N, i.e., for any s,s'eI'(E)
d{s,s’y = {Ds, s’y + s, D">.
(2.2) If s is a holomorphic section of E|V, then D'’s=0 on V.

This proposition shows that if s= {s;} is a holomorphic frame of E|V
and if N(s) denotes the matrix of functions N(s)= |[<s; s>|l, then the con-
nection matrix 4(s, N) of D(N) relative to the frame s is given by

(2.3) 4(s, N) = d'N(s)- N(s)™* on V,
and the curvature matrix K(s, N) is expressed as follows:

(2.4) K(s,N)=d"6(s,N), whence K(s,N) is of type (1,1)
and d"’K(s,N) = 0.
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It follows from (2.4) and Definition 1.4 that the kth Chern forms C,
(E,D(N)) are of type (k,k).

Suppose now that E is a line bundle. Then a holomorphic frame is a
nonvanishing holomorphic section s of E|V, so that, relative to s,

0(s, N) = d’' log N(s) and K[E,D(N)]-s = d''d’ log N(s).

Thus if £ admits a global nonvanishing holomorphic sections s, then

(2.5) C\(E, D(N)) = —— d""d" log N(s).
(Note that the invariant function 5! defining C,(E, D(N)) becomes the identity
mapping of M, = C.)
2.2. Homotopy lemma. We state the homotopy lemma on which the
duality formula is based.

DerFmviTION 2.1. A connection D on a holomorphic bundle E over X,
is called of type (1,1) if

(1) For any holomorphic section s of E|V, D"s =0

(i1) The curvature matrix K(s,D) relative to a holomorphic frame s
over V, are of type (1,1), i.e., K[E,Dl€A"Y(X: Hom (E, E)).

It is obvious from (2.4) that a cannonical connection D(N) is of type (1.1).

DeFmviTiON 2.2. A family of connections Dt of type (1,1) will be called
bounded by L,=A*(X:Hom (E, E)) if for any frame s,

dDy(s)[dt = d'Ly(s) + {L(s) - 0(s, D;) — (s, Ds)Ls(8)}.
Then we obtain the following homotopy lemma.
ProrositioN 2.2. [1]. Let D, be a smooth family of comnections of type (1,1)

on a holonorphic vector bundle E. Suppose that D, is bounded by L,cA (X:Hom
(E,E)). Then for any o=I®(M,), n= dimE,
(2.6) P((KLE, Dy])) — ¢(K[E, D.])
b
= d"d’{ ¢'(KIE, DJ: L)dt
2.3. The duality formula. Now let us consider an exact sequence of
holomorphic vector bundles:
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(2.7) 0—>E,—>FE—E,;,—>0

over a complex manifold X. We twrite & for the homomorphism from E
onto E;; defining (2.7). Let N be a norm on E. Then the norm N on E
iinduces norms N; on E; and N;; on E,;; as follows: Let E}. be the ortho-

complement of E,, i.e., if for each zX, we put (E}l), = {a€E,: {a,b)y=0,
for all b€E,}, then E} = U,ex(E}),.
Hence E/ becomes the C™-vector bundle over X. The restriction of & to
EL is the C=-isomorphism of E} and E;;. Let £ denote the inverse map-
ping of £]EL. Then the norm N;; on E;; is defined by

Ni(@)= N(é-a’) for any d/€E,.

On the other hand, the norm N; on E; is the restriction of N to E;.

To the exact sequence (2.7), there correspond the canonical connec-
tions D(N)=D(on E), D(N;) (on E;) and the Chern forms C(E)=C(E, D((N)),
C(E;, D(NV;)).

Now let Pi = I, II) be the orthogonal projections

(2.8) P;:E—>E; and P;;: E—>E}L.

Since Py(i = I, II) are elements of I'(Hom (E, E)), these are interpreted as
degree zero operator, that is, Py(6-s)= 0-P;+s, 0 A(X), seI'(E). Then the
connection D = D(N) is decomposed into four parts

(2.9) D=3, ,P.DP, ji=1, IL

With these preliminaries we obtain
Lemma 2.3, [11.  In the decomposition

(1) P,DP; (i # j) are degree zero operators of type (1.0) and (0,1) respectively :
(2.10) P;D"P; =0, PD'P;; =0.

(ii) P,DP; induces the comnection D(N;) on E;-i =1, IL

Proof. The first statement is already proved in [1]. We shall prove
only (ii). Let & & be as above. Then ¢ and £ are considered as degree
zero operators. Therefore it is clear that &Dé defines a connection on E;;.
We show that ¢D£ is the canonical connection D(N;;). In order to prove
this, it is sufficient to check the conditions (2.1) and (2.2) in Proposition
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2.1. At first, (2.1) follows directly from the definition of N;; and the fact
that D preserves the inner product <, >y:
Let ¢,t’ be sections of E;;. Then it follows that

d<t, t">x,, = d<€t,Et'> = (DEt, ét'>y + <Et, Dét'>y
= (EDEt, t'yy,, + <8, EDEt >y ,,.

For (2.2), let s be a holomorphic section of E|V. Then, D satisfying
the condition (2.2), it follows that D’s = 0 on V. Hence from (2.9) we have

0=D"s = (P[D”P]I + PID”P[)'S -+ PIID,PIIS + PIIDI'PIS.
Thus we find from (2.10) that if s is a holomorphic section of E|V, then
(2. 11) P[[D”PIIS =0 on V.

Now let ¢ be a holomorphic section of E;;|V. Then for each x=V, there
exist a neighborhood V(x)cV of x and a holomorphic section s of E|V(x)
such that &-s=¢ on V(z). On the other hand, it is clear that (¢Dé) =
eD"E, £ =¢£P;; and €& = P;;. Therefore we have

(EDE)"+t = ED"E+t = D&+ &s = P D"'Pyys.
From (2.11) it follows that (D)t =0 on V(x). Thus we have proved that
(eD€)"t =0 on V. Therefore ¢Dé is the canonical connection D(N;;).
Hence if we identify E} and E,;; under the isomorphism £, then we
can zalso identify P;,DP,, and £éDE. Therefore, as we have proved, P;;DP;,
is regarded as the connection D(N;;) on E;;. Similarly it is proved that

P,DP; induces the connection D(N;) on E;. Q.E.D.
Now a family D, which we need for the duality theorem is given by

(2.12) D, =D + (¢' —1)P;,DP, for all teR.

From (i) in Lemma 2.3 and the fact that D is the connection of type (1.1),
D, is a connection of type (1,1) for every t€R. We have further

LemMA 2.4, [1].  The family D, defined by (2.12) is “‘bounded” by the element
P,er (Hom (E, E)).

Using the identifications P,DP, = D(N,) (i = I, II), we obtain the fol-
lowing decompositions of K[E, D;] according to P; (i = I, II), [1]: Let P,K
[E, D;JP; be denoted by K;[E,D,]. Then we have

(2.13) K. [E,D;] = K[E;,D(N;)1+ ¢'d;
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(2.14) K1 1ilE, D] = K[E 1, DIN; )1+ ¢'is
(2.15) K; 1ilE, D] = e'K; ([[E, D), K [E,D]= K, ,[E,D]

where [J; = P,DP;,DP, and [;; = P;,DP,DP,,.

Notice that éK[E, Difc A*}(X; Hom(E,;, E,;)) is identified with K, ;,[E, D]
under the isomorphism & E,; —— E}. Under this identification, [J;; is also

considered as the element of A¥X: Hom (E;;, E;;)), that is, from (2.14),

Clrr = Kyr 11[E, D1 — K[E;;, D(N;;)]le AXX: Hom (E;,, E;p)).
We are now in a position to state the duality theorem. Let us suppose

that dim E=# and let "eI*(M,). (k=1, .- -,n) and let c/l\e/t be as defined in

§1. Then from Lemma 2.4 we can apply Proposition 2.2 to D,, P, and det.
Here it follows that

(2.16) C(E, D)~ C(E, D)) = d"d’ || det’ ((¢«K[E, D,J; «Py).

In the case of dim E; =1, we calculate (2.16). Let us take a frame u =
{u;}1<i<n of E over an open set V of X such that #, and v = {u;}s<;<n, res-
pectively, form frames of E;|V and EL|V. Then v = {u;}.<;<. is considered

as the frame of E,;|V. As, relative to the frame u, P,(u) = 10 ------ ) we

find from (1.19), (2.13), (2.14) and (2.15) that det’' ((+K[E,D,]: kP))|y = .

2 _ 8
ﬁ_'lﬂ{ln + kKLE, Dl(u) + 2xPr()} = 2| det

1+ sK[E;, DIN)Yu,) + xe'[I(uy) + 2x | we'K; 1,[E, D] (u) )
£Krr [LE, D)(u) l 1oy + eK[E;, DN )I(0) + et ;:(v)

]

wdet {1, + eK[E;;, DIN; ;)] (v) + €'x[1;:(v)}
w{l + 252108 (¢ KLE 11, D(N; 1) + xe’[;:(v))}
e{l 4+ 302108 (kK[E 1, D(N;: )] + e’ [0}V,

i

I

so that, dev («K[E, D;]: £Pp))=x{l + 232165 (kK[E 1, DIN; )1+ €'511)) on X.

a1 1

For simplicity put &2°*((A: (/)B)) = b2 Y4, ++,4,B,--+,B) A,BEM,_, and
set b7 ((A)) =1, A€M, Then in terms of the symmetry of 57! and
K[E;;, DIN;)1,[1;,€ AYX: Hom[E,,;, E;;)), it follows that 67 (¢ K[E;;]+e"c[1;;)
= 2-1(D)etby ((«KLE [1: ()s;;)) where K[E;;]= K[E;;,D(N;;)] and (§) =1
for [ = 0. Therefore it follows that
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det’ (:K[E.D,]: £P;))
= k30Cibr (kK[E 7)) + & 300t 2o (H)ettdr (kK[E; 1: (e [;r). Hence as
d"d' (i (kK[E; ]) = d"’d'C(E ;) = 0, we have

lim d”d’ S“ det’ (¢K[E, Di1: £Py))

t=—c0
= k2301 2= % (1) be (kK [Err, D(N; )12 (1)xl11)).

On the other hand, it is obvious that

lim C(E,D,) = C(E;)+ C(Eyy).

t=—oco
Thus we obtain from (2.16) the dﬁality formula for the case of dimE; = 1:
(2.17) C(E) — C(E;) - C(Ey))

= xd"d' 25120 %—(?)bﬁ"((ch[Em D(N;)1: (D&ldr1)).

Here we put, in general,
CyE)=1 and C(E)=0 if a>dimkE.
Then using 077 ((«K[E;;, D(N;1)]: (0)s[1;1))€ A%(X), we obtain from (2.17) the

following

ProposiTioN 2,5. Let 0—> E;—> E——> E;; —>0 be an exact sequence of
holomorphic vector bundles over a complex manifold X, and let C(E), and C(E))
i =1, II be the Chem forms induced by a norm N on E. Suppose now dim E=n.
Then if dem E; =1, we obtain

(2- 18) Cn—k+1(E) - CI(EI) * Cn-k(Eu) - Cn-k+1(EII)
=rd"d 22% % (37)br=i(«K[E 1 D(N; 1)1 (0)kd11)),
k= 1, - -,n,

where [, = P K[E,D(N)IP;; — K[E 1, D(N;;)]le AXX: Hom (E;, E;;)).
Here we require explicit representations of K[E,;, D(N;;)] and [;;.

LemmA 2.6. Notations being as above, let u = {u;}1<;<n be a frame of E|V
such that u, and v = {u;}s<;<n, respectively, are frames of E(|\V and EL|V. Then,
relative to the frame v,
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(2.19) K[E;;, DIN; )1 (v) = Hdﬁ:,j - 2:=20ik/\0kj‘!2éi,j3n
(2.20) Orr(v) = 1| — 0i1/\01j”2$i.jén .
Proof. 1t is trivial from assumptions that
Py DP;;-u, = 23756, u; 1 =2, 9,1,
Therefore it follows from (1.22) and P;;DP;; = D(N;;) that
K[E;1, D(N;)]1-u, = (P;/DP;;)? - u,
= 2Va2(d0;; — 2ealu NOxtty;, 2<i=<m.

Thus (2.19) is proved. On the other hand, it follows that; for each integer
1 (2<i=<n), )

P, K[E,DIP;; - u; = P;;D?Pru; = P;D?u,
= 207-2(d0;; — 2%=105 N Ois)uts
Then, relative to the frame v,
P KLE, DIP1;(v) = |d6;; — 2310 A Oislla<i, 350
Therefore (2.20) follows immediately:
;1(v) = P KLE, DIP;;(v) — K[E;;, D(N;;)] (v).
= || — 0 Abyjlla<s,5<ne Q.E.D.

Using these relations (2.19) and (2.20), we shall apply Proposition 2.5
to the case when E is the product bundle X x C™ over X. Let (,) be
the inner product of C" defined as follows: Let ¢y, -+ -,e, be the natural
basis of C™ and let 2!, - - -, 2" denote the complex coordinates corresponding
to this basis. Then put

(2.21) (u,v) = 312 (u)Z'(v) u,vsC",

We take a norm N, on the product bundle E to be one induced by the
inner product (, ) of €®. Then we have

COROLLARY 2.7, Lot 0—>E;,—>E—>E;;—>0 be as in Proposition
2.5. Suppose that E s the product bundle X x C™ over X and that dim E; = 1.
Then @t follows that

(2-22) Ck(EII) = (- CI(EI))k 1<k
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Proof. Let s = {s;}i<i<n be a global holomorphic frame of E deﬁned
by si(x) = (2, ;) xeX, i=1,---,n

¥ Further let E, denote the orthocomplement to E; and let us take a frame
u = {#;}1<,<n Of E|V as defined in Lemma 2.6. Then there exist elements
a;;€AV) such that v, =3"_,a;-5; i=1,---,n. Let A be the matrix of
functions |la;;ll, and let put A-'=|b;]l. Then from D(N,)-s;=0 (i=1,+-+,n)
we have

D(Ny)+u; = D=1 (Xk=1dayby;) - ;.

Therefore if we put w;; = Y. dayb; (i,7 =1, - - -, n), it follows that, relative
to the frame u«,

0(u, D(N,)) = ”winISi.an-

Thus if N,;; denotes a norm on E;; induced by N, we find from (2.19)
and (2.20) that, relative to the frame v = {u;}s<;<n,

(2.23) KI[E;7, DINy:)1(v) = lldoy; — 25300 Aoyl
(2.24) L) = | — o Aoyl
On the other hand, it is proved that
(2.25) dogj— Yhaoghoy =0, i,7=1,+++,n.
We obtain from (2.23), (2.24) and (2.25),
(2.26) KIE;1, D(Nor)1 = — s

Hence the right hand side of (2.17) equals zero. Indeed it follows that, for
each k, A1<k=<n),

brZi(«KLE 11, D(Nyy )]s (Dx11)) = (—=1)' 034 (kKLE 1, D(Nor1)1)
= (—'1)lcn—k(EII)-

From dC,_(E;;) =0, we find that d”d’bi-(«K[E;1: ()e1;7)) =0 Thus we
have from (2.17)

(2.27) Crookii(E) — CUE[)+ Coc(Err) = Crcpir(Erg)y k=1, +,m.

It is trivial that C(E) =1, that is, C,(E) =1 and C(E) =0, if k=1. There-
fore from (2.27)

(2.28) C(E;;) = — Cy(E;) Cii(Eyy) l=1,+-,n.
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By noting C.(E;;) =0 and C,(E;;) =1, (2.22) follows directly from (2.28).
Q.E.D.

§3. The (n, k)-trivial bundle

3.1. Let E be a Hermitian vector bundle of fibre dimension # over a 7
complex manifold X, which admits % linearly independent holomorphic
sections, say Sy, + ¢ +,8, (L<k=<mn). At first, let us introduce the next no-
tation: Let V be a complex vector space and let v, - - -,v, be k vectors
of V. Then we denote by [v,, - + -, 0] the linear subspace of V spanned by
the vectors v, « « «, 0.

Since sy, + + +, 5, are k linearly independent holomorphic sections of E,
we can define, with the notation above, the following holomorphic vector
bundles over X:

(3.1) Ef = xEUX[&(oc)]
(3.2) E! = Y [sse1(@)1s1(2), = =+, s5(2)] i=1.,k—1
(3.3) Ell = Y E l[sy(®), + + «,s;(2)] i=1 ¢,k

For convenience sake put E}’ = E. Then one notes that each EI is a
subbundle of EI* of fibre dimension 1, and that E!7 is of fibre dimension
(n—i) for i =0,---,k. Now let &: EIL, — E! ({=1,+--,k be homo-

morphisms defined by setting, for each zeX

&i(e) = el[s\(x)] and &(e/[six), « « «,s:(x)]) = ellsy(x), * + +, Sexa(@)],
7 = 2, PR ,k,

for any eE,. Then there exists a system of exact sequences:
(3.4) 0—>El_,—>FEIIL, —>El'—0 (i=1,+-,k

over X. Let N be a norm on E. First of all, in terms of the exact
sequence: 0—> Ef— E}! —> E1’—— 0, the norm N on E = E{’ induces
norms NI on EI and NI’ on EI’ as defined in §2. Next NIf induces
norms NI’ on E! and NI’ on E}' from 0—> E!—> EIT —> EIT—0.
Thus the norm N on E induces norms NI_, on EI., and NI! on EI’ in-
ductively. Here we write C(E), C(Ef_,) and C(E!") (i =1, .- +,k) for the
Chern forms induced by the norm N. We shall now apply the duality
formula (2.17) to each exact sequence of (3.4). Let 0—> Ei_, —> Ell, —>
EI’——>0 be as in (3.4). Let (EI.,)L denote the orthocomplement to EI_,
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and let PII,: FII, — (EI_,)L be the projection. Then we define an element
[1,€A¥X: Hom (E{!, EIT)) by

(3.5) O = P{LKIEL, DIN{I)IP{L, — K[ET', D(N{")]

where K(EL',D(NIN)] is the curvature element of the cannonical connection
D(NZ?) induced by N{’ (e« =i —1,i). Then noting that dim E{L,=(n—i+1),
we have from (2.17)

(3-6) Cn—k+1(E{£1) - Cl(‘Ez{—l) ‘ Cn—k(E{I) - Cn—k+1(EzU)

= fd" @S0z < IO (KEY, DINTOL: (D6), i =1+« « k.

Let §:X—FEl_, (i=1, -+, k) be holomorphic sections defined as
follows: For each zeX,

(3.7 5i(x) = sy(x), and §(x) = sy@)/[si(x), + + +,s(@)] for i =2, - -,k

Then these sections become global nonvanishing holomorphic sections, so
that from (2.5)

(3.8) Cy(EI.,) = xd"d log NI_,(s;) i=1,---,k

As 3 {Cuoprt(EiL) ~ Cogsr(ET)} = Crpn(E) and d'Crf(EIN)=0 i=1, « -,k
it follows from (3.6) and (3.8) that

(3.9) Crpii(E)
= xd"d' 2.1 {log N{_.(5,)Cas(E]T) + 2020 % (3 F)bnzi
(eKEYT, DN{DT: «[0).
Put
(3.10) Dn-rri(E, N, {S:}i<i<i)

= — a3, [log NILy(5) - Co BIF) + S5 - (7983

(<K LE!, DINE): (D).

where d° = i(d' — d’).
Then from dd° = —2id"d’, Cn_s1(E) = djn_i(E, N, {5;}1<i<). One notes
that 9, xs1(E, N, {s;}1<;<) 18 an element of An-0+1(X),

Dermnrrion 3.1. Let E be a holomorphic vector bundle of fibre di-

mension # with a norm N, over a complex manifold X. Suppose further
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E admits k linearly independent holomorphic sections s;, + - -,s,. Then E
is called the (u,k)-trivial bundle with the norm N and the k-frames = {s;}1<s<p
over X, or simply the (un,k)-trivial bundle with (N,s) over X. Moreover
the 2(n —k) 4+ 1-form 7,41(E, N;s) on X defined by (3.10) is called the
boundary form of the (n,k)-trivial bundle E.

With this definition, we resume discussions above as

ProposITION 3.1. Let E be an (n,k)-trivial bundle with (N,s), over a
complex manifold X, and let 7,_4.i(E, N, s) be the boundary form of E. If Cu_iri(E)
denotes the (n —k + 1) th Chern form induced by the norm N on E, then

(3.11) Cooiti(E) = d9n_per (E, N, 5).

3.2. The properties of boundary forms. We shall next study a local
expression of the boundary form 7,-.:(E,N,s). Let E be an (#,k)-trivial
bundle with (&, s = {s;}) over X. Then a frame u = {u;};<;<. of E over an
open set V of X, is called a compatible frame with the k-frame s if:

(i) u is an orthonormal frame of E|V.

(11) For eaCh .’,UEX, [ul(x)y M °’ui(x)] = [sl(x)’ ) sz(x)] = 19 "ty k:
l.e., #, + * +,u; are global orthonormal sections constructed from
the k-frame s, in terms of Schmidt’s orthogonalization.

Let 0—>E{_1—+E§£1—5—;E{’—>0 be as defined in (3.4) and put & =
identity mapping of E. Let u = {u,;}:<;<» be a compatible frame of E|V
with the k-frame s. Then for each i, (1<<i=<Fk), {&_1+ - Ets}ici<n Dbe-
comes an orthonormal frame of EIf, such that &,_;---&mu; and {&...
&} ie1<e<n form orthonormal frames of FEI_,|[V and EI’|V respectively.
Moreover if §&;: E!—(EI_,)L denotes the inverse mapping of &|(EI_,)L,
i=1,+++,k then from (i) in Lemma 2.3 it follows that D(N{) =¢;. ..
gDE .. &, i=1,+-++,k. Combining these facts with Lemma 2.6, we can

prove inductively

LemMA 3.2. Let u be a compatible frame of E|V with the k-frame 6 and let
O(u, D(N)) = 0,4l be the connection matrix of the connection D(N) relative to the
Srame w. Let us put, for each i, (i =1, +++,k),

(3.12) O, = ldg,: — 7=i+1ﬁsz/\0zc”i+1sx.;sn
(3.13) 0,=|~— asi/\ﬁiz“iuSs,zSn
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(3.14) S; = 2y Gty 9;€A°(X).

Then relative to the frame {&;_1« + - E1ts}ir1<6<ny

(8.15) K[E{',DIN{")]1= 6y
(3.16) =6,
(3.17) NI_(5) = lgul% f07‘ i=1,+++<,k

Therefore we obtain jfrom (3.10)
(3.18) Dn-r1(E, N, 8) [V

= - a5, [log | 9ic 03 ((6010) + Bt L ("BTH(0: (16600,

From this lemma we have
CoRrOLLARY 3.3. The boundary form n,_1+1(E, N, s) is a real jform on X.

Proof. At first, let u = {u;},<;<» be a compatible frame of E|V with s
and put 6(u, D(N)) = [l6;;l. Then since D(N) preserves the inner product
<, >y and u,udy =8, i,j=1,+++,n, we observe that §,;, = — 0, i,7=1,

- «,n. Therefore if 6,, and ©, are as defined by (3.12) and (3.13) res-
pectively, then €, = —*‘@,;, and 6, = — ‘0, for each i. On the other hand,
from the definition (1.9) of &2,

bZ(Als M "Ak) = b;cl(tAla b '9tAk) AiEMn-

Hence, 532} (10y;)) = biZi (£°0,,)) = b3zt (x0,,)), and b3zf (k0,5 (1)&6;)) = bizi
(kB4 (1)x6,)). Further, as d° = d° this corollary is proved. Q.E.D.

3.3 Naturality of boundary forms. We shall next state the naturality
of the boundary form. For this purpose, in general, let E be a Hermitian
vector bundle over a complex manifold X, and let ¥ be a complex mani-
fold. Now given a holomorphic mapping f:Y —> X, we have the induced
bundle, denoted by f*E, of E under f defined as follows: Let II: E—>X
be the projection. Then

FE = {(y,e)€Y x E: fly) = Il(e)}.

If ter(E), then t.f is considered as an element of I'(f#E). Let N be
a norm on E. Then a norm f*N on f*E is denfined by, fiN(y,e) = Nle),
(y,e)e fE. This norm f*N is called the induced norm of N under f. It is

https://doi.org/10.1017/50027763000014306 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014306

154 HIDEO OMOTO

trivial from definition that
(3.20) Xt 'y = Syt fon, ' El(E).

Moreover we can define a connection f#D on f*E as follows: Let teI'(f#E).
For each zeX, we take a neighborhood V of z such that there exists a
frame s = {s;} of E|V. Then there exist elements such f,eA°(f V) that
t=3Lf;(s-f)on £ V). If 6(s, D(N)) = ||6;;]| the connection matrix relative
to the frame s, then put

(3.21) Dt = 25d o (i) + 2055 e f*0:5(s,f) on V.,

That this definition is well-defined need not the assumption that f
is holomorphic. However the next Lemma 3.4 follows from the facts that f
is holomorphic and that D(N)= D is the cannonical connection induced
by the norm N on E.

LemMa 3.4.  The connection f*D is equal to the canonical connection D(fEN),
i.e., fAD(N) = D(f*N).

This is proved as (ii) in Lemma 2.3. Let u = {«;} be a frame of E|V.
Then we denote by ftu = {u;-f} the induced frame of f*E|f~'(V). Then
we observe from Lemma 3.4 that

(3.22) S*6(u, D(N)) = 6 (f*u, D(f*N)).

If C(E) and C(f*E) denote the Chern form induced by norms N and f#N,
respectively, then

(3.23) S*C(E) = C(f*E).

Now let E be an (n,k)-trivial bundle with (N,s) over a complex mani-
fold X. Let Y be a complex manifold and let f:Y —> X be a holomorphic
mapping. Then the induced bundle f¥E becomes the (u,k)-trivial bundle
with (f%N, f#s) over Y. Hence if 7, .,(E, N, s) and 9,-.+1(f*E, fiN, f¥s) denote
the boundary forms of E and f*E respectively, then we obtain

ProrosiTioN 3.5. (Naturality of boundary form)
(3.24) S Dnirr(Ey N, ) = 0pgs1(fEE, fEN, fts)

Proof. As d°f* = f*d°, this proposition follows directly from (3.18), (3.20)
and (3.22). Q.E.D.
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3.4. The k-general Stiefel bundle. We shall study properties of the
boundary form of an (n,k)-trivial bundle constructed from a Hermitian
vector bundle. At first let V be a complex vector space of dimension n.
Then we denote by F,(V) the k-general Stiefel manifold consisting of all the
k-frames (vy, » - -,v,) of V. Now let E be a Hermitian vector bundle of
fibre dimension # over a complex manifold X. Then let E, be a holo-
morphic bundle defined by

(3.25) E.= U F(E.).

reX

This bundle E, is called the k-general Stiefel bundle of E. Clearly E, has the
k-general Stiefel manifold F,(C™) as fibre. Let =z E,—> X be the projec-
tion. Then we obtain the induced bundle z*E of E under =z,  This

induced bundle z*E is a holomorphic vector bundle of fibre dinension #
over E,, which admits & linearly independent holomorphic sections of =#tE,

say Sy, + -+, S, defined by setting

(3.26) Si(vyy c e v = vy 2 e v, ), (v o, )EECE =1, - - ok,

Moreover let N be a norm on E. Then aztE becomes the (n,k)-trivial
bundle with the induced norm =N and the k-frame s = {s;},<;<p over Ej.
Therefore if 7,_gi(@E 24N, s) denotes the boundary form of z*E, and if
Cp-pr1 (@tE) is the (n —k+ 1)th Chern form induced by the norm ziN on
#¢E, then from Proposition 3.1, Cu_i(@2E) = d9p-gsi(@*E, atN,s). Further
let Cpxs1(E) be the (n —k + 1) the Chern form induced by the norm N on
E. Then it follows from (3.23) that z}Cp—si(E) = Cpogsi(nE). We have

(3.27) TiCrnpri(E) = dlnopir(ztE, aiN,s) on E,.

Let © be any fixed point of X, and let us take a neighborhood V of x
such that ¢:V X FC") —>=z!(V) is a trivialization of E,|V. Then we
define a holomorphic mapping ¢,: F,(C").—> E, by

(3.28) oy + 0,00 = @{®, (Vg + + 2,0} (v, + ¢ V) EF(CT).

This mapping ¢, is called the inclusion map at z. Then it is obvious
from (3.27) that a 2(n — k) + 1-form
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On-pi(@E, 72N,s) on F(C") is a closed form, i.e.,

dgo:’]n—lﬁl(ﬂ'iE’ 521\79 s), =0,

and that ¢ z*E = (m;-¢,*E is the product bundle F(C™")xE, over F(C™").
Let us consider the product bundle F(C™")xC" over FyC"). We consider
F(C™"xC™ as the (n,k)-trivial bundle with (No. s°) defined as follows: We
take a norm No to be one induced by the inner product (,) of C™ as
defined in §2, and we define a k-frame s°={sl}i<i<c DY S5y, + + -+, vp)=
{(vyy + » =y v), 0} fOr (Vg » + +,0)EFL(C™), i=1,+++,k

Then the boundary form of F(C")xC™ is also a cocycle form.

DeriniTION 3.2, Let — @, be the boundary form of the (#,k)-trivial
bundle Fi(C™)xC™ with (No, s°). Then @, is called the obstruction form of
F(C™).

ProrosiTioN 3.6. Notations being as above, let {¢¥9,_ji(ztE, 78N, s)} and
{0}y, respectively, denote the cohomology class of ¢¥p,_y(@tE, aiN,s) and .
Then

(3.29) — (D} = {950kt i(atE, N, s)}
(3.30) (@) is a generator of 2(n — k) + 1-dimensional cohomology
group of F(C"), HX» W+ (F(C™); Z) = Z.

Proof. At first we shall prove (3.29). Since ¢, is a holomorphic map,
it follows from (3.24) that

Pn-per(TEE, TN, S) = Juopri((TpaPE,  (m@2)*N, ¢4s).

There exists an element ge GL(n: C) such that the (,k)-trivial bundle
(0 *E with  {(m.)N, ots} is identified with the (n,k)-trivial bundle
F{(C™xC™ with (No, s°) under the transformation T, of F(C") defined by,
Tyvyy » = +yv) = (govy, =+ ¢, 9 0) for any (vy, + » -, 0, )€F{(C™), that is,

Tin-re (P RE,  (me2)tN, ¢is)
= Yoot THap o FE, Th(zpo)tN, Thoks)
= P i(F(C™")X C", No, s°) = — @,

However T, is homotopic to the identity mapping of F(C"). Thus, (3.29)
is proved. On the other hand, (3.30) follows from the next lemma.
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LEmmA 3.7. Let F: C* ¥ — {0}——F(C") be a mapping defined by

F(@) = (e, +++,e-,v) for any veC»*t — {0}
k—1
where C 1 is regarded as the subspace 0x - » + - xOXC*7#*1 of C», and e,, + + -, €,
is the natural basis of C™.
Then if Sp-4+1(C) is the unit sphare about the origin in C~**', it follows that the
restriction of F*®, 10 Sp_i1(C) becomes the normalized volume element of Sp-i4i(C),

ie.,
(3.31) SS _ Fo=1

Proof. For simplicity put E = F,(C*)xC". Since — @, is the boundary
form of E with (No, s°) and F:C»*1 — {0} —> F,(C") is holomorphic,
F* —@,) is the bounadry form of the (u,k)-trivial bundle F#E with (F¥ No,
F#s%), over C»*1 — [0}, In terms of the definitions of F and the k-frame

s°, we have
SIF(v) = e i=1++,k—1, and siF(v) = v for veCr*1 — {0}.

Hence F¥(—@,) is equal to the boundary form of the (n —k+ 1,1)-trivial
bundle E(C)= (C***! — {0})x C**! with the norm No and the 1-frame s,
defined by s,(») = vxv, veC»*1 — {0}. Here let us consider the following
exact sequence:

0—> E(C)} —> E(C)—> E(C)IT—>0
where E(C)] = U [s(v)] and E(C)IT = U C 1[5 (v)]. Then
ve Cni1—{0} ve C k1 {0}
C(E(C)}) = _2’7Td"d' log No(s;), so that, from Corollary 2.7, C,_(E(C)!T) =
( — —Zi;t—d"d’ log No(sﬂ)n—k. Let 2z - - -, z77%! be complex coordinates of
Cc»#+1, Then as No (s,v)) = (v,v) = 2124*2/(0)z/(v), we obtain
F¥(— ) = — - d"log No (s,) - Cas( E(O)Y)

—_ 1 ¢ n—k i __ i n—k J -k
= — L log S 21 (— - ad log T 2T)

Therefore F*@, is the normalized volume element of S,_..,(C), [2]. Q.E.D.
One notes that in the case of k=1, the mapping F defined in Lemma
3.7 becomes the identity mapping of C" — {0}, so that, the restriction of the
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obstruction from @, of Fy(C")=C"—{0} to the unit sphere S,_,(C™),®|S.-1c)»
is the normalized volume element of S,_,(C).

§4. The generalized relative Gauss-Bonnet formula.

4.1. In this section we shall establish an integral formula for the ith
Chern form C,E). In the case of i =dimE =dimX, Bott and Chern
established the integral formula of C,(E) as the relative Gauss-Bonnet theo-
rem. Here we want to extend this theorem.

Let E be a holomorphic vector bundle of fibre dimension » with a
norm N, over an m-dimensional complex manifold X, and let E, be the k-
general Stiefel bundle of E with the projection z;: E;,—> X. Let z!E be
the (n, k)-trivial bundle with the induced norm z*N and the k-frame defined
by (3.26). We denote by 7,4 (z¢E) the boundary form of I#E and by
Cr1+(E) the (n —k + 1) th Chern form induced by the norm N on E. Now
let A be a real 2(m — n + k — 1)-dimensional oriented submanifold of X with
boundary 34, and let s: (X — A)—> E, be a smooth section. Moreover let
V be a real 2(n — k + 1)-dimensional (non-compact) oriented manifold and
let DcV be a compact domain with the smooth boundary 8D. Then we
obtain

THEOREM 4.1. Let us suppose that there exists a smooth mapping f:V —>X
such that f~(A)ND = {py, + - +,p,} is a set of isolated points, f~(A)NaD = ¢,
and f(D)N3A = . If n(p,, f, A) denotes the intersection number at (p;; f(;) of
the singular chains f:D—> X and ¢4: A—> X (¢4 = the inclusion map), for each

7, then
(4.1) SD S*Crpri(E) = SBD f* s* n—k+1(7f§E) + 2§=10b3k(p/9 sf,D)
(4.2) Obsk(?.{’ sf,D) = ObsﬁL(f(pj), S, A)n(p.h fA), j=1,+--,
@3 [ S CasBI=( 7 ke E)+ Desobs (D)), 5, Anlp, £ A),

where 0bsy(p;, sf, D) and obs;-(f(p,), s, A) are integers defined in Definition 4.1 and
4.2, respectively.

4.2. Definition of obstruction numbers. Before the proof of this theo-
rem we define obsy(p;, sf, D) and o0bsl(f(p,),s, A). Let &, be the obstruction
form of the k-general Stiefel manifold F(C"). Let Y be a real 2(n—k+1)-
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demensional oriented manifold ¥ with boundary 3Y. Let p be any point
in (Y —3Y). Now, given a smooth mapping ¢:Y — {p} —> E, such that
=t can be regarded as the smooth mapping from Y into X, we define an
integer, denoted by obs,(p,¢,Y) as follows: Let =¢(p) =geX and choose
a neighborhood V(g) of ¢ which admits a trivialization ¢: V(g)x F(C") —>
75'(V(g)) of E;V(g). Then let ¢:=x3'(V(g)—> Fi(C™) be a holomorphic
mapping defined by

(4.4)  Peolgy(y + o)l = (v« » 00, ¢EV(), Y -+, )EF(C).

Next take a chart (Us(p), h=(yY «- -,y D)) of ¥ at p such that i(p)=0,
h(Us(p)) is the ball of raduis Us, (6 >0) and = ¢ (Us(p))cV(g). For an e-ball
U(p), 0<e<dy, let us take the normalized volume element w, of aU.(p).
Further let 7: Uy(p) — {p} —> 8U.(p) be a smooth mapping defined by

m’ y22=k D) (/)

- )
(4.5) n@)“h<5T_“_

yi(p YEITEOADT) N
e ) PEU),

where ||2(p")]| = (2% 0(y (p)?)

Then 7w, becomes a cocycle form on (U,(p) — {p}) whose cohomology class
{r*w,} is a generator of H2»®+*Y(U,(p)— {p}: Z)=Z. On the other hand as
{0,} is also a generator of H2ww+(F(C"): Z)= Z, it follows from the fact
that ¢-¢ is a smooth mapping of (U,(p) — {p}) into F,(C") that there exists
an integer » such that

(4.6) {(¢- 17D} = n{Tte), le.,

(4.6)" n= (P1)*D, .

SBU;(p)

Here put, obsdp,?,Y) = n =S (¢ 1)

U, ()

DEerINTION 4.1. The integer obsi(p,?,Y) defined by (4.6) or (4.6)" is
called the kth obstruction number of t at p relative to Y. We show that (4.6)
is independent of U,(p) and ¢. It is clear from d¥; = 0 and Stockes formula
that
(P2) Dy

4.7) ($t)*@, = lim

Sw, () —0 SBU( ()

We have

https://doi.org/10.1017/5S0027763000014306 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014306

160 HIDEO OMOTO

LeEmMMA 4.2. Let notations be as above. Then

(4.8) (- )0, = limg iy Tneni(mE), 0< <.

Sw!(g) e—0YoU,

Proof. Let ¢,: F(C")—> E, be the inclusion map at g = =t(p) defined
from the trivialization ¢:V(g)XF(C")—>=;'(V(g)). From dy, (=ztE) =

74 Crpii(E), we have
AP Nn (7t E) = Chpri(E) on V(@)X Fi(C™).

Moreover, as dC,_,+(E) = 0, we obtain a 2(n — k) + 1-form @ on U(qg) such
that C,_..(E)|V(q) = do. Then go*vyn_k,L;(rrkE)—w is a cocycle form on
Vig)x F(C™). However H»0+(V(q)x F(C™))= HX» 0+ (F(C™) = R. Therefore
there exists a real number a such that

{P*nrrr(mE) — 0} = a{®} on V(g)X F(C").
Let j,: F,(C")—> V(g)x F;(C™) be a mapping defined by
Jovss + + v =g, (vy, + = 00} (Vg 0+ 2, 0)EF(CT).
Then from (3.29), a{®} = a{ji®} = (91 In-rss(7LE) — fi0} = {@8n-rsi(=EE)}
= — {®,}. Hence a= —1. Therefore we have
(4.9) {9*n-re1(mE) — 0} = —{@} on V(g)x F(C").

Since =t is a smooth mapping of U,(p) into V(g), Lemma 4.2 follows
directly from (4.7) and (4.9) as follows:

[, Jwvro=tm{ (@tre.=tim{e11re,
U.(?) e—0 3U,(p) e—0

=1 4)\¥, —_ *, #
Elirégavl(p) (p71) (0 — ¢*Pppar(@tE))

— 1 0 __1: * ®
lel_rggam - (met)*o lelfé Sw‘(?) *Ppps1 (2t E)
_ _1; *, P
153‘,,&”‘(?) 9 a1 (22 E). Q.E.D.

Thus Definition 4.1. is well-defined. This definition is extended as follows:
Let peY —3Y. If p is an isolated singular point of a smooth mapping #,
that is, there exists a neighborhood U(p) of » such that ¢ is a smooth map-
ping of (U(p) — {p}) into E,, and =t is differentiable on U(p), then we can
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define obsi(p, t,U(p)). Then put
0bsy(p, £,Y) = obsi(p, t, U(p)).

In particular, the 1th obstruction, obs,(p,£,Y), becomes the degree of
¢ at p because @, is regarded as the normalized volume element of the unit
sphere in C€". If ¢ is a smooth mapping of ¥ into E such that

a) t+0 on Y

8) t has isolated zeroes only, say py, + -« +, Dy,

then for each point pj, 0bsi(p; ¢,Y) is the order of vanishing of #, so that
we write by zero (p;£,Y) the 1th obstruction of ¢ at p; relative to Y.

4.3. Let A be the submanifold of X as defined in Theorem 5.1. Let ¢
be a point in (A —3A). Then a complemental submanifold to A at g, denoted
by AL, is a real 2(n —k + 1)-dimensional oriented submanifold of X (with

boundary A}) satisfying the following conditions:
(4.10) AlNA={q gEAL — dAL
(4.11) There exists a chart (U, & = (21, - - -, 22w+
Yyl - - -, y2»7FD)) at ¢ in X such that, k(g) = (0, - - -,0)
ALNU = {(¢eU: 2'(g) = - - - = gn=n#-0(g’) = 0}

AnU: {qIEU: yl(q/) = e s s — y?(n—k+1)(q’) = O}
(4.12) A} is compact.

Then we choose the orientation of A} as follows: Put u=(z!, - - -, z2(m=n+-1)
and u = (y4, * . <, y¥ D) If b and # are positive coordinates systems on
U and ANU respectively, then v is also the positive coordinates system on
ALnU.

Since A is the submanifold of X, there exists, of course, such a sub-
manifold of X. Now let s: (X — A)~—> E, be the smooth cross section and
let g=(A—8A). Then taking a complemental submanifold A} to A at g,

we can define the kth obstruction number obsyq, s, A}). It will be shown

in the proof of Theorem 4.1 that obs, (g, s, A}) is independent of A}.

DerFiNiTION 4.2. For any point g=(A — 34), obsi(g, s, A) which is called
the kth obstruction number of s at q corresponding to A, is defined as follows:
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Let Al be a complemental sybmanifold to A at g. Then put

(4.13) 0bst(q, s, A) = 0bsi(q, 5, AL).

4.4. Proof of Theorem 4.1. Withoutloss of generality we can assume
that F~(A)nD = {p}, p<aD and f(p)¢dA. and that f(d) is contained in a
coordinate §,-ball U;, of f(p) which admits a trivialization ¢: U, XF(C")—>
7 (U;,) of E,|U;. Let V. (p) be an ¢;-ball of p contained completely in D
and let put D, = D—V,(p). Since s.f:D, —> E; is the smooth mapping
and #¥C,_4:1 (E) = d9p_t+1 (ztE) on E;, we obtain from Stokes formula

[, P ComsnE) = { P Aot BN =[5+ ) s LE).

eV 1(p

Here let ¢:=x;'(U;) —> F(C") be as defined by (4.4). Then from (4.7),

— lim

fim{ (5 S amE) = [ @O0 0<e<en

Therefore

|7 Con B = | 1 (5 msnmBN + [ @(sF)r00.

This relation implies (4.1) because of S (P(s ))*O, = obsy(p,s.f, D). In

V. (p)

order to prove (4.2) and (4.3), we calculate the integration SW (?)(gb(sf))*Q,,,

Let ¢ be fixed (0<e<¢,). Let us put ¢ = f(p)eX and take a complemental
submanifold A} to A at g. Then from the conditions (4.10) and (4.11) it

follows that A}NA={q} and that there exists a chart {U, h=(z}, - . -, 2@ n+D,
yl « « o,y e} in X at ¢ such that k(g) =0

AﬂU = {q/EU: yl(q') = e s & = yz(ﬂ-_k‘“)(q’) = 0}

ARNU = [ eU: 2(g) = e-rm=9(g) = 0)
Assume U = U,, and put U;(g) = U;,. Further we assume that f(V.(p))cUig)
GU;(q), 0<d<d,. Let put u=(2!,...,22@»50) and v=(yl, « - «, y2rrD),
Then let us consider a homotopy mapping H, given by

H, = h'{(1 = tuxov)f}: V. (p)—> Us(q), for all t[0,1].

For t =1, H, is the smooth mapping of V., (p) into ALNU,(q), and for each
tel0,1], Vip)nH7*(A)=¢ and H(V.(p))NA = {q}. Hence, as f= H, is ho-
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motopic to H;, we obtain

(4.14) (fsfro. =, HEgsr,

SBVE(p) v, (

If ¢, ?1": A} — X denotes the inclusion mapping, then from H, (V.(p))c ALnU,(q),
(note f(V.p))cUslg),

(4.15) HY@s)0, = | HiGseap) o,

SBVG(;A) av . (

Here if o, denotes the normalized volume element of 38(A}NUi(g), and if
7:: (AFNUs(q) — {g}) —> 8(ALNUy(g) denotes a smooth mapping as defined
by (4.5), then from {(¢s. ATzL)*q)"} = obsi(q, s, AR {75y},

(4.16) | U5 ALD, = obsilg, 5, A) [ nHro,

v ()

It follows from (4.14), (4.16) and (4.16) that

(4.17) (9. 5)"0, = obsila, s, AP (1o

SBV‘(Q) . (p)

where H; is homotopic to f.

To prove that S (7:Hy)*w, 1s equal to the intersection number at (p, Hi(p)

v ()
=q) of the singular chains H, = A7Y(0Xvf): V.(p)—> X and ¢,: A—> X, we
change the mapping v.f for a mapping ¢. V. (p)— v(Us(g)CR¥»*+D
which agrees with v.f on a neighborhood of the boundary aV.(p), which is
homotopic to v.f, and which has a maximal rank at each p’€g¢7'(0). In
terms of Thom’s Transversality Lemma [6], there exists such a mapping g,
Hence put G, = h7%0xg,). Then G, is, of course, homotopic to H,. Thus
from (4.17),

(4.18) (fsF) 0, = obsila, 5, AF)| (TG

SaV‘(p) v, ()

(4.19) G, =k 0xg,):V,(p)—>Us(g), has a maximal rank at each
p'eGT(g).

(4.20) G, is homotopic to f, and each p'€G7i*(q) belongs to V.(p)—
aV.(»)

Then we have
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LeEmMA 4.3,

(4.21) (1:G)* o = n(q, f, A).

Sav,(p)

Progf. From definition of G, it is clear that G,(V.(p)) N A= {q},
G(V.(p)NA=¢ and G(V.(p)NdA = ¢. Therefore from (4.20), n(p, f,A) =
n(V.(p), G, A). Hence, at first, we compute #n(V.(p), G, A). Let put
a=2m—n+k—1) and B=2n—k+1). Let h=(2+++,2% yl, -, yb),
u= (2% +++,2°) and v = (yl - -+,y?), respectively, be coordinate systems on
Us,(g), ANU,,(q) and ALNUs(q), as before. Assume now that 2 and # are
positive coordinate systems. Then, from the choice of the orientation of
AlL,v is also the positive coordinate system. Let (x!,---,2%) be a coordi-
nate system of V, (p) which is positive. Let us put Gi'(g) = {p{, -+, 0:},
that is, ¢7(0)={p{, - - -, p{}. Then we define a mapping ¢,xG,: (ANU,(q))x
V., (p)—> X by

2 (eax Gy (¢, 0) = 2'ealq’) i=1::,a
yi([AX GI) (qu P') = ylGl(p,) 1= 19 . 'MB

Here for each pjeGil(g), let Jy0 (64X Gy) be the Jacobian of the mapping
t4X G,y at (p},q), that is,

02 (caXGy)y * » +,2%(eaX Gy Y {cu X Gy)y * * o, Y4 X GY))

](p?.q)(leG) = a(zl’ e oo epa xl’ « o o .xﬁ)

(24 ,Q)

Then it follows from 2%(:,x G, = z* that

(4.22) ](p@,.p)(‘AXGl)z ) a(yl(g,(i;iG.l): : . -., .y'f(;%x Gy))

[€:A8)]

a(yl'gl’ M ”yﬂ'gl)
a<xl’ . .’xﬂ)

o for each pjegi*=(0)

so that, from (4.19), Jiy,.0(caXG1)#0 for each pj. Since the right hand
side of (4.22) is the Jacobian J #,(91) of the mapping g,: V.(p) —> R¥» D,

at pf, it follows from definition of the intersection number ([5]) that
(4' 23) "(Vs(P), GI’ A) = i‘-l Sign ]pf,(gl)

Thus we have: xn(p, f, A) = X5, sign J 2;(9s) where the p} are points of g7%(0).

Next we shall calculate S 7,G1)*w,.  Since o, is the normalized volume

v, (p)(
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element of 9(ALNUig), and for each p'e(V, (p) — g7%(0))

- y'o(p) ... s ya(p')
1Gim) = 10,0, o e TlgT(p’)l_|>

where |lg.(p")| = V25-.(y/(p)? ,

We can reformulate Sa (T,, V¥w;, as follows: Let y!, ---,y" be coordina

«(9)

es of R* and let S,_; be the unit sphere about the origin in R*. We
denote by o the normalized volume element of S,.,. Let 7: R*—{0}—>S,_;
be the boundary mapping defined by

Tyl - - o y™) = WIWEYR ) » - -y I ).
Further let D; be a compact domain of R". Now, given a smooth mapping
g: R*—> R” such that g7'(0)nD, = {pf, - - -, pi}, 97(0)N3D, = ¢ and for each

05 J o9 # 0.
Under this situation, we show that

(4.24) ., rguro = i, sign Ty,

Indeed, let V. (p}) be e-balls about p} in D; which are pairwise disjoint.
Put D,, =D — UV, (pj). Then, as 7-g, = g/llg.]| is differentiable on D,

we have from Stokes formula, Sa (T9)*0 = §=ISBV( )(Tgl)*co. In terms of
D (9

]p:j(gl) =0, (jy+++,5), we can assume that for each j, |lg,/l =¢& on aV.(p}),
and J(g,) %0 on V,(p}). Now let vol(S,-;) denote the volume of S,_; and

1 - 1
— S 1 PR 1 jtl, . . n _
let put z=3V_,(—1)]"yidy' A NdyT~tNdy Ady®. Then o vollSa )

t|s,,» By noting that y° (%—91) = % vi(g), G=1, -.-,n), we have: for

each j,

Savg(p'j)(rgl)*w Sav (g’)( > = Vol ( Sn ) Savs(?'j)(%fz'

®
e" VOl(Sn_l) Savi(p'j)gﬂ

”n

— * e o o n
- en VOl(Sn_l) SV‘(p’j)gl(dyl/\ /\d?/)

- sign Jayta) | d(y'g) - - - dy"g)

(¥191)2 +ee e +(Um01)2 L2

T e vol (Sat)
= sign J 1(gy).
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Tnus (4.24) is proved, so that, we have proved Lemma 4.3. Q.E.D.
Now we return to the proof of Theorem 4.1. At first it follows from
(4.18), (4.21) and ¢ = f(p) that

SBV.(Q) (¢sf)*¢k = Obsk(f(p)’ S5 A7L(:0) ) "(p, fa A)’

that is,
(4.25) 0bs(p, sf, D) = obsy(f(D), s, Af:y,) n(D, £, A).

In particular, let us take any complemental submanifold A’} to A at
ge(A —34) as a compact domain D and the inclusion mapping ¢,;1—> X.

Then clearly n(g, ¢ al1,A) =1, so that, from (4.25) we have

0bsy(g, $, AiL) = obsi(q, s, AL).

Thus obs)(q,s,A) is independent of A}. Therefore

0bsy(p, sf, D) = obsi- (f(p), s, A) - n(p, f, A).

Hence (4.2) is proved. On the other hand, (4.3) follows immediately from
(4.1) and (4.2). Q.E.D.

4.5. COROLLARY 4.4, (c.f. [1]). Let E be a Hermitian vector bundle of fibre
dimension n over an m-dimensional complex manifold X, (n<m) and let s: X—>E
be a smooth section of E which is =0 on 8X, and which is transversal to the zero
of s. Let zero (s) be the set of zeroes of s. Then zero (s) becomes a real
2m — n)-dimensional oriented closed submanifold of X and the proper homology class
of zero (s) is the Poincaré dual of C,(E).

Proof. Notice that the 1-general Stiefel bundle E, of E is the subbundle
of E, i.e.,, E;={ecE:e+0}. Let g be any point of zero(s). From g¢geX
——9X, we can take a neighborhood V in X about g, which admits a
trivialization ¢:VxC"—> E|V. Here let ¢: E[V—>C" be a holomorphic
mapipng defined by,

(4.26) g-o(d,v) =0, gV, velC”.

Then put ¢s = (sy, - - +,8,) and s; =" +y—1 sv%, i=1,--.,n. That s is
transversal to the zero section of X in E, implies that dsi A-- - Adsi' =0
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for each g’eVnzero(s). We obtain a family of charts {V., h, = (si, « - -,
sEhta, o o o, 12 ™)} of X such that {V,} cover zero(s), and for each g,

(1) V, admits a trivialization ¢.: VxC*—> E|V,, and so,

¢, E|V,—> C" defined by (4.26).
(ii) sl, - -,s2" are real-valued functions defined by ¢, and s,
ie., ¢.5=(sl4y/—1 s «+,s" 4 —1s27),

(i) V.nzero(s) = {g€V,: si{q) = -+ - = s2"(q) = 0}

(iv) k. is the positive coordinate system on V,.
Therefore zero(s) is a real 2(m — n)-dimensional closed submanifold of X,
which admits charts {V,nzero(s), (¢%, - -+, 2™ ™)}. We want to prove that

zero(s) is orientable. Let us suppose V,NV;Nzero(s) = ¢. Then there exists
a translation function g,; = |[(9.s)ill on V,NV, such that

sb= 2022 (g.,)88% i=1-+--,2n, and det(g,;) > O.

ot L. _ ot Bta ..., . 0ty
Let us put a(g) = det oty 17 S TY > asi"

atg(m—n) . at; - _atﬁ(‘m—n) L. ati(m—n)

oty ane asg 7 asp”

08e ... 0S.  8Sa ..., 08

oth P eHEm gsh * oS

9sEt ... _9set  @sit ... 9si"

T afl 0 ? TAZIm—n) FRE) ’ Pl

v olp Otgm & 05§ osg™ q

for each ¢eV,nV,. Hence, as 3sifoti(q) =0 for any ¢g&V.nV,N zero(s),
i=1,+++,20, j=1,.-+,20m—n), it follows from (iv) that a(q) = det 735%

;
det (g.,) >0 geV.NV,Nzero(s), so that, from det(g,,;) >0, we find that

det ( gié ~> >0 on V.NnV,;Nnzero(s).

Therefore zero(s) is orientable. As s#0 on §X, zero(s) has not the
boundary. We shall next prove the second statement. For simplicity
put A= zero(s). Since s is the smooth cross-section of E|(X— A). and
9A = ¢, we can define obsi(q, s, A) for any geA. Let ¢g€V.NnA. Then we
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calculate 0bsi(g,s,A). From the condition (iii) the set A} = {¢'€V.: ti(¢')=
« o = $2™™(g") =0} becomes a complemental submanifold to A at g. Then,
of course, (s}, - - +,si") is the coordinate system of A}nV,. Hence the rest-
riction of ¢,-s to A} is consider as the inclusion mapping as follows: Let
us put v,(si, -+ -,s2") and let 2!, - - -,2" be complex coordinates of C". If
x!, « - -, 2% are coordinates of R** with z*4/—1 2! =2, then from defi-
nition of s, (i =1, +-,2n),

xisﬁasv;](séy ° ',33") = sk i=1,.- -, 20,

Therefore we have from obs,(q, s, A}) = zero (g, s, A}), obsi(g,,s, AF)=1. Thus

for any geA, we obtain

(4.27) obsi(g,s,A) =1 A = zero(s).

Now let 7 be a smooth singular 2n-cycle in the interior of X such that
every singular chain ¢ in 7 which intersects zero(s), meets ¢ in an isolated
intersior point. Hence we can apply Theorem 4.1 to each singular chain
¢ in 7. Then from (4.3) and (4.27),

[ catBy =1 s*nutE) + nto, zerols))

where #(s, zero(s) is the intersection number of ¢ and zero(s). Hence

summing over ¢ in 7, we find

SrC,,,(E) = n(r, zero(s)). Q.E.D.

CorOLLARY 4.5. [1]. (The relative Causs-Bonnet theorem). Let E be a
Hermitian n-bundle over an n-complex manifold X with the boundary 3X. Now,
gien a smooth section s of E such that

1) s#0 on 60X, i) s has isolated zeroes only, then we have

Slos zero (py55) = | CulB) = {_s*nalatE)

X X

where the p; are zeroes of s.

Indeed, if we apply (4.1) to the case when k=1, dim X =dimE = »n,
D =X, and f = the identity mapping of X, then this corollary follows from
the fact that obs,(pj, s, X) = zero(p;:s) j=1,+++,1 Q.E.D.
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§5. An application to complex projective space

In this section we will inverstigate Levine’s “The First Main Theorem”
for holomorphic mappings of non-compact, complex manifolds into complex
projective space [2].

Let »"(C) be n-dimensional complex projective space of all the 1-
dimensional subspaces of C»*!, and let V be a non-compact real 2(n—k + 1)-
dimensional oriented manifold. . Let DcV be a compact domain with the
smooth boundary §D. We assume that there exists a smooth mapping f of
V into p®(C).

THEOREM 5.1, ([21). Let A be a complex (k— 1)-dimensional linear subspace
of p™(C) such that f~Y(A)ND is a set of isolated points in (D — dD). Let ¢ denoted
the inclusion mapping of A into p~(C). If n(D, f, A) denotes the intersection number
of the singular chains f: D ——> p™(C) and ¢: A—> p™(C), and if V(D) denotes the
volume of f(D), then

(5.1) VD)= n(D, f,4) = _r*4

where A is a real 2(n — k) + 1-form on (p™(C) — A), whick is given by (5.11).
The volume element of p™(C) is the one induced by the standard unitary invariant
Kihler metric, normalized so that the volume of p™(C) equals 1.
(Levine assumes in [2] that V' is a complex manifold and that f is
holomorphic.)

Proof. 1In order to prove this by using Theorem 4.1, let us consider the
canonical holomorphic vector bundles L, T, and E over p*(C), defined a
as follows, ([11):

(5.2) T is the product bundle p*(C)xC»*

(5.3) L is the subbundle of T consisting of all the pairs (/,v), where
vel.

(5.4) E is the quotient bundle T/L (Note dim E = x). Then, over
p™(C) we obtain the following exact sequence:

(5.5) 0—>L—>T—>FE—0.

Let N, be the norm on 7T induced by the inner product (,) of C**' as
before. In terms of (5.5), the norm N, on 7 induces norms N, on L and
N, on E as stated in §2. We shall apply Theorem 4.1 to this holomorphic
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n-bundle E with the norm N, over p»C). Let C(E), E, and %, 4 i(ztE)
be as defined in previous sections. Now let 2° - - .2" be homogeneous co-
ordinates of p™(C) coorresponding to the natural basis e, - - +,e, of C»*.
Here put ‘

(5.6) Q=—t_ @' d" log 3,27 .

2r

It is well-known ([5]) that £ is the real 2-form on p*»(C) induced by the
standard, wunitary invariant, Kihler metric. Then we have

LemMA 5.2. Let C[E) be the 1th Chern form of E. Then we obiain
(5.7) C(E)=2, (U=1,+++,n)

Proof. Let V; be open sets defined by V; = {Iep®(C): 2/(l)*+ 0}, i=0,
-+,n, For each j let (&, .. -,&71, &%, ... &" bhe the coordinate system
on V; defined by & =z%2), i=0,+---,7—1, j+1,---,n. Then we obtain
a holomorphic nonvanishing section s;; V;— L given by
sil) = {1, (&D), » - -, &71(1), 1, &7*2(0), - - -, E™(1))]}.
Of course, from definition of the norm N, on L,

Ni(s;(0) = 1+ (&), &(1));  for each I€V;

where (£(1), &(1); = &(DEL) 4« « « +EYDEFYT) + EH(DEH(D) 4« « - +EMDE™D).
Therefore it follows from (2.5) that C,(L)|V; = —ZZ—E d' d"”log (1+ (§68);), so

that, from (5.6) we have C(L) = — 2. However in terms of Corollary 2.7,
C(E)=(—Cy(L))*. Hence (5.7) is proved. Q.E.D.
Further we can prove
Lemma 5.3.
(5.8) [, CatB) =1

Proof. Let veC! and let §,: p*»(C)—[v]—> E,cE be a holomorphic
section defined by $,(I) = (l,v/l), l€p™C)—[v]l. Then from Corollary 4.5
we have

[ e, CalE) = zero ([0}, 5,).

It is sufficient to prove zero ([v],3,) = 1. For convernience sake we assume
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v=-e,. Then we obtain a frame ¢ = {¢;}i<;<n of E|V, given by ¢,I) =
(I, —e;]l) 1€V, Let ¢:V,x C*—> E|V, be the trivialization defined
by

o(l,v) = 2k, 2 (0)E,(0) (l,v)eVoxC™

where ¢z, - - -, 2" are complex coordinates of C”. Further let ¢: E|V,—> C"
be a holomorphic mapping defined by ¢, i.e., ¢o(l,v) = v, for (Il,v)eV,xC".
To show zero ([e,], $,,) =1, we estimate the mapping ¢-§,,:V,—>C". If
g, « .., &" denote the coordinates on V,, as before, then it is easy to prove
that

G0 = (YD), -+ +,e™1) for each €V,
Therefore zero ([eo], S.,) = 1. Q.E.D.

From Lemma 5.2 and 5.3, C,(E)= 2™ becomes the normalized volume
element of p»(C). Moreover from the fact that C(E) (or Q) is invariant
under unitary transformations it follows that: Let AL be any complex
(n — k + 1)-dimensional linear subspace of p*(C). Then

(5.9) | CoatB) = | @roemt =1,

Now let f,D,V(D) and A be as described in Theorem 5.1. Then, of
course, we have

(5.10) VD)= promet = FCap(E).

Let ! be any fixed point in A and let us take an orthonormal basis
g, + + *, 0, of C**1 such that

(@) o+ *,v.y belong to A
(8) vl

Then we denote by AL the complex (n —k + 1)-dimensional projective space
consisting of all the 1-dimensional subspace of [v;—y, + * +,v,]. Note ANAL={l}.
It is obvious that Al is a complemental submanifold to A at [ without

boundary. Moreover we define a holomorphic s section s: (p*(C) —A)—>
E; by s(I) = {1, (o1, + + -, v:-/01)} for all Ie(p*(C) — A). It is clear that s is
the well-defined section. Here put
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(5.11) A= *pp_pi(alE) on p*(C)— A.

The boundary form 9, ...(=%E) is a real 2(n—k) + 1-form, and so is. Hence,
from (4.3) we have: SA iLC,,_kH(E) = SA %A+ obsit(l, s, A)n(l, A}, A) where ¢ a IL:
Al —->p*(C) is the inclusion mapping. However Al = ¢, n(l,AL, A) =1,
and from (5.9), SA{_C,,_,,“(E):L so that, we have: for any /€A obs}(l,s, A)=1.

Again using (4.3) we have

5.12) [ reCaenst®) = | 14+ Bhinto, £, 4)
where S HAND = {py, ++ +, ).
But, from definition of =(D, f, A), 3., n(p; f, A) = n(D, f,A). (5.1) follows
from (5.10) and (5.12). Q.E.D.
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