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Improved classical limit analogues for
Galton-Watson processes with or

without immigration

C.C. Heyde and J.R. Leslie

It has recently emerged that the central limit theorem and

iterated logarithm law for random walk processes have natural

counterparts for Galton-Watson processes with or without

immigration. Much of the work on these counterparts has

previously involved the imposition of supplementary moment

conditions. In this paper we show how to dispense with these

supplementary conditions and in so doing make the analogy with

the random walk results complete.

1. Introduction

Let ZQ = 1 , Zj, Z2, ... denote a super-critical Galton-Watson

process with 1 < EZ\ = m and 0 < varZj = a 2 < °° . It is well-known that

there exists a non-degenerate random variable W such that lim W = W

almost surely, where W = m~ Z (for example, Harris [2], p. 13).

Furthermore, some central limit analogues have been established in this

context by Heyde [5] and Bilhler [I]. These results are that

(m2-m)2a~1Z^mn(f/-&^) conditional on Z > 0 and

[m2-ni)'zo~1m"'> [nf-l)~2Z~ 2 Z + .-nPz conditional on Z > 0 (fixed 3 )

are both asymptotically normal /l/(0, l) . See [5] for an explanation of
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why these results can be regarded as central limit analogues.

Under the further restriction that EZ1 < °° , rates of convergence in

the central limit analogues cited above have been given in [7]. These have

been used in [6] to obtain almost sure convergence results for the

Galton-Watson process which are analogues of the law of the iterated

logarithm for random walks. In this paper we shall show how the

restriction that ffZj < °° may be removed. In Section 2 we shall obtain

convergence rates in the central limit analogues and also iterated

logarithm analogues under the basic condition that ffZj < °° .

In Section 3 of this paper we shall deal with the Galton-Watson

process with immigration. The development of the corresponding limit

results in this case has followed the pattern described previously for the

case without immigration. Heyde and Seneta [£] have obtained central limit

analogues under EZ1 < °° and rate results and iterated logarithm analogues

under EZ\ < °° . We shall again show how to dispense with the moment

restriction and will obtain the rate results and iterated logarithm
2

analogues under EZ j < °° .

2. The process without immigration

We shal l establ ish the following theorems. The reader i s referred to

the papers [ 5 ] , [6] and [7] for background d e t a i l s .

THEOREM 1. Let 1 < m = EZ1 and 0 < varZj = a2 < « . Then

sup
X

< x \ Z > o] - 4>(x) s a

and

sup r Z n n+r n
Z -ml 5 i I Z > 0 -n+r n' ' '

where {a }, {d } are certain sequences of positive constants satisfying

£ c < °° and J d < °° . Here
n=l n=l n

a2 = varZ = o2mr [m'-i)[m2-m)~1 ,
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r any fixed integer,

u =
n

v = [ x2dp{a~1{z -mr] s x

and $(x) is the distribution function of N{0, l) .

Explicit forms for c and d can be found by applying the lemma

below. We note also that u + 1 and v + 1 as n -»• °° .
n n

THEOREM 2. Suppose that 1 < m = EZX and 0 < varZj = a 2 < °° .

Then, on the non-extinction set {W > 0} we haue almost surely

Z -mrZ Z -rrfz
lim sup = 1 , lim inf = -1 ,

[ 2 V « l o g T [2arzn loe "J2

and

mnW-Z mnW-Z
lim sup = 1 , lim inf = -1

[ ] \ n™ [zo2{m2-m)-\ log n]

where r is any fixed positive integer.

Theorems 1 and 2 extend the scope of results given in Heyde and Brown

[7] and in Heyde [6] respectively under the additional condition that

EZi < °° . The form of the bounds obtained in Theorem 1 is however, of

necessity, much more complicated in the general case. An explanation of

this is not difficult to deduce from results given in [3] and [4]. Our

Theorem 2 preserves exactly the form of the Theorem of [6] under the more

general conditions.

In order to establish the above results we need the following key

lemma. The result of the lemma is given in two parts; the first is needed

in the present section and the second to obtain corresponding results for

the process with immigration in Section 3.

LEMMA. Let £• , i = 1, 2, 3, . . . be independent and identically
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distributed random variables with E(E, ) = 0 and var£ = a2 < «> . iet

N
n be a positive integer valued random variable which is independent of

the {£..}. Then,
1r

(1) sup
X

where A, B are positive constants and

If n with E\r\ I < °° i s a random variable which is independent of

the {£.} and of N , then for any sequence {e } of positive constants

with e •* 0 as n -*• <*>,

(2) sup
x

p[a~%y?[k + - + v nJ -x) -Hx)

Proof. Let

We have

(3) sup
a:

— sup
X

"n =

+ sup
X

; ] < * ! * „ - * ) - •(*)

Also, using the mean value theorem,
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(k) sup
x

|x|>/k

5 °±°±bk '

c, e, being positive constants. Furthermore, from (22) of Heyde [4] we

find that

(5) sup
X

so that using (3), {h) and (5),

(6) sup
x

- *(x)

1 1

The result (l) follows readily from (6) using the argument of the lemma in

§U of Heyde and Brown [7]. (2) is obtained using exactly the method of

Lemma 2.1 of Heyde and Seneta [8] with the aid of (l) instead of the

Berry-Esseen bound.

Proof of Theorem 1. Suppose that Z* has the distribution of Z

conditional on Z > 0 . We firstly note that (see [5], [7]), conditional

on Z > 0 , mnZ~2(w-W ) has the same distribution as

*]~tf + ... + VnA , where the U. are independent of Z* and arenJ [1 Z*J ^ * n

independent and identically distributed, each with the distribution of

W - 1 . Also, conditional on Z > 0 , Z"'2 Z -m Z has the same

distribution as (z*)~ \V + ... + VnA where the V. are independent of
<• n> [ 1 Z*J i
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Z* and are independent and identically distributed, each with the

distribution of Ẑ  - m . We can thus apply the lemma in both cases and

obtain bounds which we call o , d respectively. I t remains to show that

CO CO CO

I c
n
 < °° > I &n

 < °° • W e s h a 1 1 indicate the proof for J a ; that
M=l n=l n=l n

CO

for \ d follows similarly.

What we have to demonstrate is that \ E\[z*) ^a-

n=\ *• n n

I E (Z*)*Z>ZJ < » and ^ £• Z*ez J < « w h ere a , i , a are defined

in the lemma with £ . having the distribution of W - 1 . The proofs of

the convergence of these three series are identical in form. They depend

on results of [4] where it is, in essence, shown in the proof of Theorem k

that under the conditions of the theorem and if {"J.J ̂  = 1 » 2 , 3>-..} is
2k

a sequence of integers with n, ̂ Ka as k-*-°° (K > 0, a > l) , then

no « X

for certain K , K , K independent of K .

For u > 0 , let

a = [ \x\3'dp[a~1{m2-m}\{U-\) 5 x)
U \ \ \ . r- ' I v ' J

We have
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= I [
am

1 1 1 _

k~m~na P\k £ m~ n Z* < fc+1

f I
P k < m~nZ*\ ,

k=0 [(k+l)mn+l] [ n>
where a is a suitable positive constant and [x] denotes the integer

part of x . Then using Chebyshev's inequali ty, P\m Z* * k\ £ ak~ , and

n = l >• n Z ^ -1 n = l
00 j

• £ c . J [mn+l]"2a
1 n=l [mn

+

n=l

k=2
(k-l)~2 < co ,

required. That £ S (Z*)2fc J
n=l *• n n'

< <=" and I E\Z*e A < <*> follow in

w=l *• n n'

the same fashion.

Proof of Theorem 2. This follows the same lines as the proof of the

theorem of [6]. We just make use of Theorem 1 and the inequality (6)

instead of the results based on the Berry-Esseen inequality employed in

[6]. We then obtain

Z ~mrZ Z -mrZ
lim sup = 1 , lim inf = -1

n
„]*

almost surely on {W > 0} . The required results for

ZM+r~m
rZ 20 Z log n\ then follow since v + 1 as n •* ~ . We

have, for example, since Z -»• °° almost surely on {W > 0} ,
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Z —7n Z Z —xti Z
_, n+r n . . n+r nsup — s lim sup

- 2 " iog«|2 » - | ^ y z z n l o g n

Z -mrZ n

£ lim sup — lim sup

log n

= lim supn-"" I 2

on {W > 0} . The remainder of the proof goes through exactly as in [6].

We show

|Z -mV|
lim sup 5 1 ,

^ 12a2(m2-m)~Xu^ Z^ log nU

from which it follows that

|Z -mnW\
lim sup 5 1

and the remainder of the argument of [6] can be repeated word for word.

3. The process with immigration

Let Xo = 1, Xi, X2, ... denote a Galton-Watson process with

immigration whose offspring distribution has the distribution of Z\ with

1 < EZi = m and 0 < varZj = O2 < °° . We shall also suppose that the

immigration distribution has a finite mean. We refer the reader to Seneta

[9] for a detailed description of the process. Under the present

conditions, the theorem of [9] ensures that m~ X converges almost surely

to a proper random variable V with finite mean EV and such that

P(7 = 0) = 0 . We shall here obtain the following theorems which extend

results presented in Heyde and Seneta [S].

THEOREM 3. Let 1 < m = EZX and 0 < varZj = a2 < °° . Then
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and

sup
X

o] -

sup
X

where {a }, {3 } are certain sequences of positive constants satisfying

a < °° and < °° . ffere a , u , v are as defined in the
fL JL ft ftn=l

statement of Theorem 1.

Explicit forms for a and 6 can be found by applying the lemma.

THEOREM 4. Suppose that 1 < m = EZ1 and 0 < varZx = a2 < °° .

Then, with probability one,

X -mvx
2 ± 2 n

s u p

log n

X -mrX
n + r n

log M

lim sup

a2[m2m)-2a2[m2-m)-\ log n

= 1 , lim inf

2o2{m2-m)-\ log n

where r is any fixed positive integer.

= -1 ,

Theorems 3 and It extend the scope of results given in Theorems 2 and

3 of [S] under the additional condition that EZ1 < » . The form of the

bounds obtained in the present Theorem 3 is however, of necessity, much

more complicated in the more general case. The present Theorem h preserves

exactly the form of Theorem 3 of [S] under the more general conditions.

The proofs of Theorems 2 and 3 follow the same lines as those of

Theorems 1 and 2, again using the lemma and (6). We make use of the

representations

mv - xn - M)

and
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V. y>J

X M - mr

n+r X = Z U ; - m + . . . + Z n -mr\ + J

of [£] and the points noted in the proof of Theorem 3 of [8]. The only

real point of difference in the proofs involves showing that we can choose

CO

a sequence {e } with e -• 0 as n •* °° such that £ e < °° and
n=l

\ e~ E\x"w~ I X > Ol < <*> where w i s e i ther u or u
n = l ^ w •*

We know tha t u + 1 , u + 1 so tha t W t 1 as n •*• °° . Thus,

condi t ional on X > 0 , wv 2 w and hence
n Xn 1

n=l

tw-1 I C^IEIX-1 I X >o\\2 .

Now, using Lemma 2.3 of [g] we have e = Qn with 0 < y < 9 < 1 ,

x

Thus, with this choice of e , \ e < °° and
" n=l n

as required.f e'^f-yw"1 | AT > o] < » ,
n=l *• n '
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