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ABSTRACT. Flowing snow is a cohesive granular material. Snow temperature and moisture content
control the strength of the cohesive bonding between granules and therefore the outcome of granular
interactions. Strong, cohesive interactions reduce the free mechanical energy in the avalanche core and
therefore play a significant role in defining the avalanche flow regime. We introduce cohesion into
avalanche dynamics model calculations by (1) treating cohesion as an additional internal binding
energy that must be overcome to expand the avalanche flow volume, (2) modifying the Coulomb stress
function to account for the increase in shear because of cohesive interactions and (3) increasing the
activation energy to control the onset of avalanche fluidization. The modified shear stress function is
based on force measurements in chute experiments with flowing snow. Example calculations are
performed on ideal and real terrain to demonstrate how snow cohesion modifies avalanche flow and
runout behaviour.
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INTRODUCTION
The cohesive properties of snow play an important role in
the formation and movement of avalanches (Bozhinskiy and
Losev, 1998). When the snow cover collapses and starts
moving, it is the cohesive bonding of ice grains that
facilitates the formation of hard, compact snow clods and
granules that eventually compose the avalanche core
(Fig. 1). The strength of the cohesive bonding is determined
by the snow temperature and humidity, which therefore
control the granule properties (Voytokskiy, 1977; Bartelt and
McArdell, 2009) and subsequently the avalanche flow
regime (Gauer and others, 2008; Issler and Gauer, 2008;
Bartelt and others, 2012a; Naaim and others, 2013). Wet
snow avalanches exhibit pronounced cohesive, visco-plas-
tic-type flow behaviour (Fig. 1), in contrast to the non-
cohesive and dispersive granular motion of dry snow
avalanches, which are often accompanied by a powder
cloud of suspended ice-dust. Although fundamental to a
consistent understanding of avalanche motion, cohesion is
rarely included in avalanche dynamics calculations (Naaim
and others, 2003; Wang and others, 2004; Pudasaini and
Hutter, 2007; Christen and others, 2010).

In this paper we introduce one additional model par-
ameter to account for cohesion in avalanche flow. The
model is based on actual shear and normal stress measure-
ments with both wet and dry snow performed on the Swiss
Weissfluhjoch experimental chute (Platzer and others,
2007a,b). The model combines two classical definitions of
cohesion (Rowlinson, 2002). Firstly, it acts as an additional
shear stress in excess of the normal stress-dependent
Coulomb shear resistance. This definition is common in
soil mechanics applications, where cohesion is considered
to arise in particle ensembles from either capillary stresses or
discomfited granular geometries and packings (Mitchell,
1993). Cohesion then acts on the shearing processes in the
avalanche core, especially in dense flows at low shear rates.
Secondly, cohesion acts as an additional bonding potential
to hinder volume expansion of the core. Cohesion therefore
controls the avalanche flow density and thus, indirectly, the

shear resistance and the flow height. These definitions of
cohesion are based not only on the chute experiments, but
also on the wide range of runout features found in avalanche
deposits, especially in wet snow avalanche deposits, which
often exhibit steep, cohesive side-walls and pile-ups (see
Fig. 1) (Jomelli and Bertran, 2001; Miller and others, 2003;
Bartelt and others, 2012b).

In the next section we introduce the concept of a
representative volume V� in the avalanche core � (Fig. 2).
Model equations, presented in the following section,
describe how the volume V� changes under the actions of
the basal shear and normal forces. Only then is it possible to
describe how cohesion modifies the shear resistance of the
volume to changing boundary conditions, such as rough-
ness. We then highlight some of the important character-
istics of actual shear and normal stress measurements of
both dry and wet snow flows. Of special importance is the
slope, dS=dN, of the measured shear S versus pressure N
diagrams, which often exhibit a sharp transition at low
pressures, similar to yielding-type phenomena. This property
has been observed in other experimental investigations with
snow (Dent and Lang, 1983; Nishimura and Maeno, 1987;
Nishimura, 1990; Salm, 1993; Bartelt and others, 2005).
Therefore the relationship between S and N cannot be
described by a simple Coulomb relation, as is typically
assumed in avalanche models. To demonstrate how the
model works, we simulate snow-chute experiments and
investigate the role of cohesion in both theoretical and real
case studies. The model describes cohesion in both dry and
wet avalanche flows.

AVALANCHE MASS, VOLUME AND ENERGY
We consider the avalanche core � to consist of represen-
tative volumes V� (Fig. 2). The height of the volume is the
avalanche flow height h�. The volumes contain particulate
snow mass in the form of granules or snow fragments.
The amount of mass in the volume is M�. As we model the
granular ensemble as a continuum, the self-weight of the
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granules is Ng. The interactions between particles can be
frictional, typical of dense flows, or collisional, typical of
mixed powder snow avalanches. Because the volume
contains mass in granular form it can shear and expand
under the action of forces. The volume expansion is
upwards, because of the free upper surface of the flow
and because the granules are hindered by the hard basal
boundary. The centre-of-mass of the volume is located at
k� ¼ h�=2, which implies, we assume for now, a homo-
geneous mass distribution. If the volume was not moving the
granules would quickly settle to the co-volume V0 with
height h0. We specifically employ the terminology ‘co-
volume’, as it is commonly used to describe how cohesion
and molecules of finite size influence the behaviour of ideal
gases (Rowlinson, 2002). The density of the co-volume

depends on the size and internal arrangement of the
granules. We postulate that this density of the co-volume
is known, or can be approximated accurately. The flow
density �� is defined by the ratio of the avalanche volume
V� to the avalanche co-volume V0:

�� ¼ �0
V0

V�

: ð1Þ

The snow is moving through the volume parallel to the slope
with a mean speed of u�. The location of the centre-of-mass
k� can change, either by adding more material to the
volume element (mass flux from neighbouring volumes), or
because of pressures arising from the interaction of the
granules with the basal boundary, which cause the centre-
of-mass to move upwards or downwards. We term this
additional pressure the dispersive pressure NK (Bagnold,
1954), and denote the acceleration of the centre-of-mass
associated with the dispersive pressure €k�. The dispersive
pressure can only exist with a corresponding acceleration of
the centre-of-mass. The total normal pressure N at the basal
surface is therefore given by the sum of the weight Ng and
the dispersive pressure NK:

N ¼ Ng þNf þNK: ð2Þ

Centripetal pressures Nf arising from terrain undulations will
also increase or decrease the total pressure N at the
avalanche base (Fischer and others, 2012). Because Nf is
the reaction at the avalanche base from the centrifugal
acceleration, it is the centripetal pressure.

Acting against the slope-parallel movement of the
representative avalanche volume is the shear, S� (Fig. 2), a
vector quantity as it acts in the direction opposite to the flow
directions, u�. The shear stress S� depends on the total
pressure N as well as on the flow density. To describe the
density of the representative volume V� we use two
mechanical energies: (1) the kinetic energy associated with
random particle movements RK (Bartelt and others, 2006)
and (2) the potential energy associated with the z-location of
the centre-of-mass RV (Luca and others, 2004; Buser and
Bartelt, 2011). The kinetic energy RK is calculated from the
difference between the individual particle velocities and the
mean slope-parallel speed of the avalanche. The potential
energy RV is calculated from the position of the individual

Fig. 2.Definition of model parameters. The avalanche core is divided
into volumes V� (representative volume). A volume is located at a
fixed position with a constant basal area. The avalanche flows
through the volume. The volume has height h� and contains mass
M�. At rest the mass fills the co-volume V0 with height h0. The at-rest
density of the ensemble is �0; the flowing density is ��. The centre-of-
mass is located at h�=2 (homogeneous distribution of mass in the
avalanche core). The slope-parallel velocities are denoted u�. The
kinetic energy of the velocity fluctuations isRK. Granular interactions
at the basal boundary induce a dispersive pressure NK and changes
in the ensemble configuration and therefore potential energy RV of
the granular ensemble.

Fig. 1. The granular deposition field of a wet snow avalanche that occurred near Verbier, Switzerland, 13 March 2014. Many features of the
deposits indicate the cohesive character of avalanche flows. These include the levee side walls at the edge of the forest (a), deposition steps
in the flow interior (b), basal shear planes exposed by plug-like glide movements (b) and sintered particle agglomerates (a). Photographs:
Francois Dufour and Cesar Vera Valero, SLF.
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particles with respect to the co-volume height as the
reference. RV describes the flow configuration in the
volume. Both RK and RV are connected with the random
position of the particles. The sum of RK and RV is denoted
the free mechanical energy, R,

R ¼ RK þ RV: ð3Þ

The primary role of cohesion is to limit the free mechanical
energy in the avalanche. Shearing in the slope-parallel
direction S� will produce random particle movements and
therefore RK. However, the random particle movements in
the slope-perpendicular direction are inhibited by the basal
boundary, and subsequently cause the location k of the
centre-of-mass to change. Moreover, shearing of the volume
V� produces both kinetic energy at a rate _PK and volume
(density) changes at a rate _PV. The sum of _PK and _PV defines
the production of total free energy _P of the volume V�:

_P ¼ _PK þ _PV: ð4Þ

The partitioning of _P is governed by the interaction with the
basal boundary, as the kinetic energy of the random particle
movements is transformed into potential energy at the
boundary. The change in potential energy _PV with respect to
the total _P is the dimensionless quantity �:

_PV ¼ � _P, _PK ¼ ð1 � �Þ _P: ð5Þ

AVALANCHE MODEL EQUATIONS
To model snow avalanche flow we apply the equations
developed by Buser and Bartelt (2015). This model
formulation predicts not only the slope-parallel velocities
u� of the avalanche in three-dimensional terrain (Fig. 3) but
also streamwise density variations �� in the avalanche core,
that are induced by terrain roughness and granular inter-
actions with the basal boundary. As we employ a depth-
averaged approach, the model provides no information on
the variation of density in the slope-perpendicular direction.

The general system of seven differential equations
describes the mass, momentum and energy balances in a
representative avalanche volume V� (Fig. 2). We consider
two masses: the mass of solid particles M� and the mass of
air in the volume V�. Because the density of air is constant
we need only consider the height h� in the balance
equations. We do not consider the self-weight of the air,
as it is much smaller than the weight of the avalanche. The
mathematical description of mountain terrain is defined
using a horizontal ðX,YÞ coordinate system. The elevation
ZðX, YÞ is specified for each ðX, YÞ coordinate pair. We
introduce a local surface ðx, y, zÞ coordinate system with the
directions x and y parallel to the metric geographic
coordinates X and Y. The grid of geographic coordinates
defines inclined planes with known orientation; the
z-direction is defined perpendicular to the local x-y plane.
The equations can be written in vector form as

@U�

@t
þ
@�x

@x
þ
@�y

@y
¼ G�, ð6Þ

with the seven unknown state variables

U� ¼ M�,M�u�,M�v�,Rh�,h�,M�w�,NKð Þ
T
: ð7Þ

The components of U� include the mass M� per unit area
and the avalanche momentum in the directions parallel to
the slope, M�u� and M�v�. The velocities u� and v� are
defined in the x- and y-directions, parallel to the avalanche
slope (Fig. 3). The remaining state variables are the non-
directional kinetic energy associated with granule velocity
fluctuations R (Bartelt and others, 2006), the flow height of
the core,h�, the slope-perpendicular momentum M�w� and
the dispersive pressure NK. The derivation of this system of
equations is given by Buser and Bartelt (2011, 2015). The
flux components (�x, �y) are:

�x ¼

M�u�

M�u2
� þ

1
2 M�g0h�

M�u�v�

Rh�u�

h�u�

M�w�u�

NKu�

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

, �y ¼

M�v�

M�u�v�

M�v2
� þ

1
2 M�g0h�

Rh�v�

h�v�

M�w�v�

NKv�

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

:

ð8Þ

The driving forces G� are

G� ¼

_M�!�

Gx � S�x
Gy � S�y

�ðS� � u�Þ � �Kð1 � �ÞRh�

w�

NK
2� _P � 2Nw�=h� � _Wz

f

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

: ð9Þ

The term _M�!� represents the snow influx by entrainment
(Christen and others, 2010). We do not consider the
influence of cohesion on entrainment in this paper. The
parameters � and �K control the production of free
mechanical energy R (Buser and Bartelt, 2009).

The flowing avalanche is driven by gravitational accel-
eration in the tangential directions G ¼ ðGx,GyÞ ¼

ðM�gx,M�gyÞ. The acceleration in the slope-perpendicular
direction is denoted g 0 and is composed of three accelera-
tions, gravity gz, dispersive acceleration €k� and centripetal

Fig. 3. Definition of the model coordinate system. The elevation of
the model domain Z is defined in an (X,Y) coordinate system.
Gravity is given by the vector g ¼ ðgx, gy, gzÞ. The avalanche flows
in the three-dimensional terrain with slope-parallel velocity u�.
Acting against the flow is the shear stress vector S�, which depends
on the cohesion N0.
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acceleration fz:

g 0 ¼ gz þ €k� þ fz: ð10Þ

These accelerations are associated with normal pressures

Ng ¼ M�gz NK ¼ M�
€k Nf ¼ M�fz: ð11Þ

The bed normal pressure N ¼ Ng þNK þNf assumes that
the material is continuous and therefore that the particles are
in continual contact. As in all depth-averaged models, the
pressure Ng is calculated from the total mass of particles in
the volume. Snow particles that become detached will lead
to smaller pressures Ng. However, as we model the flow of
particles inside a defined volume, it is possible to define a
centre-of-mass and therefore it is not necessary to track
individual particle trajectories.

The model assumes that the lateral stresses are equal to
the bed normal stress. However, the bed normal stress is no
longer hydrostatic and equal to the avalanche weight, Ng.
The bed normal stress can increase or decrease depending
on the dispersive pressure NK. An increase in the bed
normal stress is associated with compressive (passive)
granular flow states, in which the centre-of-mass of the
granular ensemble is increasing; a decrease in the bed
normal stress corresponds to extensive (active) flow states, in
which the centre-of-mass of the granular ensemble is falling.
The model therefore accounts for lateral active/passive flow
states by adjusting the height of the flow by the dispersive
pressure. Note that this approach differs from any approach
that includes lateral stress coefficients (e.g. Salm, 1993;
Bartelt and others, 1999; Pudasaini and Hutter, 2007).

Frictional resistance is given by the Voellmy-type shear
stress S� ¼ ðS�x, S�yÞ, with

S� ¼
u�

ku�k
S� þ S�
� �

, ð12Þ

with

S� ¼ �ðRÞN ð13Þ

and the speed-dependent part of the friction

S� ¼ �gg
ku�k

2

�ðRÞ
: ð14Þ

We define the functional dependency of the friction
parameters (�, �) on the configurational energy RV as

�ðRVÞ ¼ �0 exp �
RV

R0

� �

ð15Þ

and

�ðRVÞ ¼ �0 exp
RV

R0

� �

: ð16Þ

With this frictional model �0 and �0 are the static friction
coefficients associated with non-fluidized flowing snow,
R ¼ 0. The model parameter R0 defines the activation
energy required to fluidize the core (Bartelt and others,
2012a). As we shall see, the activation energy increases with
the cohesive bonding of the granules. Free mechanical
energy is produced from the shear work rate in the slope-
parallel ðxyÞ flow direction _Wxy

f (see Bartelt and others,
2006; Buser and Bartelt, 2015):

DðRh�Þ

Dt
¼ � _Wxy

f � �KRKh�, ð17Þ

where the total frictional work rate is

_Wf ¼ _Wxy
f þ

_Wz
f : ð18Þ

The dissipation of energy in the z-direction is defined by the
work rate _Wz

f . The model parameter � describes the
production rate of random energy from the shear work
_Wxy

f in the slope-parallel direction

_Wxy
f ¼ S� � u�: ð19Þ

Because the snow granules are inelastic, granular inter-
actions will cause the fluctuation energy to decay to heat at
a rate �K (Buser and Bartelt, 2009). All free energy must
decay eventually to internal energy E; all work that does not
produce random energy is dissipated immediately to heat at
a rate _Q. Therefore,

DðEh�Þ

Dt
¼ _Qh� ¼ ð1 � �Þ _Wxy

f þ �KRKh� þ _Wz
f : ð20Þ

The system of governing differential equations is energy-
conserving (Bartelt and others, 2006; Buser and Bartelt,
2015) since balance equations are written for the free
mechanical energy,

DðRKh�Þ

Dt
¼ _PKh� ð21Þ

DðRVh�Þ

Dt
¼ _PVh�, ð22Þ

and therefore

_Wf ¼
DðRKh�Þ

Dt
þ

DðEh�Þ

Dt
: ð23Þ

This fulfils the requirement that the sum of the changes in
kinetic energy _K, the change in random kinetic energy _PK

and change in heat energy _Q (dissipation) is equal to the
work done by gravity _Wg:

_K þ _PKh� þ _Qh� ¼ _Wg: ð24Þ

We apply second-order HLLE schemes (Harten and others,
1983) to solve Eqn (6) on general quadrilateral grids
(Christen and others, 2010). Cohesion modifies the shear
S�, the expansion of the flow volume and the activation
energy R0. Each will be discussed in the following sections.

COHESION N0 AND SHEAR STRESS S
Cohesion operates on both the directional kinetic energy
and on the non-directional free energy of the avalanche. The
effect of cohesion on the directional kinetic energy, i.e. the
mean slope-parallel velocity, is introduced by modifying the
shear stress S. In depth-averaged models, the shear stress S
represents the total resistance to the driving force of gravity.
Because we model avalanche flow from initiation to
deposition, the shear stress function must be able to model
conditions of static equilibrium and zero avalanche velocity.
In this case, the total shear force is in balance with the total
driving force acting on the avalanche. The shear is the
reaction to the driving force. The direction of the shear stress
is therefore always defined in the direction opposite to the
direction of the slope-parallel flow, given by the avalanche
velocity components (see Eqn (12)). Although cohesion is a
non-directional force, in the sense that all bonds are
randomly distributed, the direction of the shear gives the
cohesion a directional character.
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Shear S and normal N stresses of flowing snow have been
measured at the Weissfluhjoch (Davos experimental chute;
Fig. 4a). The measurement plate is embedded in the basal
surface of the chute and measures the shear and normal
reactions. Therefore N is positive upwards and S is positive
when it acts against the flow. The normal pressure N is the
total pressure and consists of the self-weight Ng, the
dispersive pressure NK and the centripetal pressures Nf
(Eqn (2)). The total pressure can be negative, zero or positive.
In case of negative N the avalanche has no contact with the
basal surface and the shear stress is zero, S ¼ 0. Platzer and
others (2007a,b) provide further details of the experiments.

The experiments with both dry and wet snow exhibit a
nearly linear relationship between S and N (Fig. 4b and c).
This suggests that a function of the form

S ¼ cþ �N ð25Þ

would be appropriate to model the experimental results. The
coefficient c is defined by the y-intercept in the N-S plane
and is typically denoted as the cohesion or yield stress
(Mitchell, 1993), i.e. the shear stress independent of the
normal stress N.

Although it would be possible to fit the experimental
results with Eqn (25), we adopted an alternative approach,
based on both theoretical considerations and the experi-
mental results. Firstly, Eqn (25) does not have the property
that S ¼ 0 for N ¼ 0. This point is a theoretical constraint for
the shear resistance. It is trivially satisfied when using the
standard Voellmy model. Because the shear stress is the total
resistance (reaction) at the measurement plate, the shear
stress must go to zero (S! 0) as the mass decreases
(Ng ! 0). In the limit, there can be no shear stress when
there is no mass. Equation (25) does not reproduce this
behaviour and confuses internal molecular bonding with the
shearing induced by external forces. For the sake of
simplicity, these theoretical considerations could be readily
ignored. However, a decrease in shear S at small N was
observed in several of the experiments (e.g. experiment 9,
Fig. 4c; experiment 19, Fig. 5d). Interestingly, this effect was
most noticeable in the experiments in which the S–N plot did
not exhibit a strong hysteresis. The avalanche front and tail
have different values of � (Platzer and others, 2007a,b),
indicating different flow configurations (RV) for the same
normal pressure. Hysteresis therefore suggests the presence
of large dispersive pressures that are needed to change the

avalanche flow configuration. To model the effect of the
observed hysteresis, we impose the condition that
dS=dN ¼ �ðRVÞ at the limit N!1 (Fig. 5). This constraint
on the shear function allows us to model the hysteresis and
the highly variable slope of the shear response (Fig. 5;
Table 1).

In summary, to reproduce the observed behaviour we fit
the experimental results with a function that satisfies the
following conditions:

S ¼ 0 for N ¼ 0 ð26Þ

dS
dN
¼ �ðRVÞ for N!1 ð27Þ

Table 1. Summary of snow-chute experiments. Values of N0, � and
goodness of fit with Eqn (29). Note the strong variation in both N0
and �. The dry flows had a mean N0 � 200 Pa; the cohesion of the
wet flows varied considerably, often exhibiting very high values,
N0 � 1000 Pa. In many of the wet snow experiments the location of
the transition, N0, could not be determined because of the high
friction coefficients, �. SS denotes that the avalanche reached
steady-state flow

Experiment Wet/Dry N0 � Goodness of fit Comments

w/d Pa R

1 w 556 0.44 0.9973 SS
2 w 0 0.36 0.9924 SS
3 w 0 0.46 0.9845 Negative

shear
4 w 980 0.43 0.9502 Decelerating
5 d 279 0.55 0.9741 Decelerating
6 w 1108 0.44 0.9899 Decelerating
7 d 259 0.23 0.9425
8 d 25 0.26 0.9924 SS
9 d 396 0.25 0.9939 SS
10 d 103 0.26 0.9987
11 d 125 0.22 0.9481 Decelerating
12 d 0 0.23 0.9226 Decelerating
14 w 740 0.33 0.9958 SS
15 w 0 0.50 0.9830 SS
16 w 7 0.53 0.9608 Decelerating
17 w 2257 0.23 0.9862 Decelerating
18 w 1011 0.41 0.9970 Decelerating
19 d 360 0.39 0.9902 SS

Fig. 4. Snow-chute experiments. (a) The snow chute located at the Weissfluhjoch, Switzerland. (b) Measured shear S and normal N stress for
experiment 4 with Eqn (29) fit. (c) Measured shear S and normal N stress for experiment 9 with Eqn (29) fit. Note the hysteresis of experiment
4. Platzer and others (2007a,b) provide further details of the experiments.
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and

dS
dN
¼ 1 for N ¼ 0: ð28Þ

The last condition, Eqn (28), requires that when the flow
height is small (near zero), the shear and normal stress
increase in equal proportion (dS=dN ¼ 1). This condition
facilitates a smooth but sharp transition between the two
theoretical limits. Although the slope could take other
values, we set dS=dN ¼ 1 to avoid the definition of an
additional free parameter. It ensures the steepest possible
increase in shear for small normal pressures.

A function that satisfies these conditions is

S ¼ �N � ð1 � �ÞN0 exp �
N
N0

� �

þ ð1:0 � �ÞN0, ð29Þ

where � depends on the flow state �ðRVÞ. N0 is a fit
parameter defining the location of the inflection point of the
shear curve (Fig. 5b). Fitted values of N0 for 18 chute
experiments with dry and wet snow are presented in Table 1.
When N0 ¼ 0 (no cohesion), Eqn (29) reduces to the
Coulomb friction model, S ¼ �ðRVÞN. When N0 > 0, the
shear stress is increased, accounting for the increase in shear
stress observed in the experiments (that cannot be modelled
with the standard Coulomb friction model). For large values
of N the slope of the function is dS=dN ¼ �ðRVÞ. Thus, the
function Eqn (29) runs parallel to the standard Coulomb
model (c ¼ 0), as observed in the measurements. For small
values of N the slope of the function is dS=dN > �ðRVÞ,
modelling the transition from a static coefficient of friction to
a dynamic coefficient of friction. The use of dS=dN ¼ 1 at

N ¼ 0 fits the results well. Another feature of Eqn (29) is that
the total normal pressure, N, is used (Rainer and Fellin,
2006). Because N consists of the dispersive pressure NK and
centripetal pressures Nf the effect of random fluctuations
and track curvature are taken into account. The assumption
of an exponential decay of the basal friction angle is in
agreement with the interface behaviour of cohesionless soils
(Potyondy, 1961; Tejchman and Wu, 1995).

The function has two characteristics that are important for
practical applications: (1) N0 assumes values that are
comparable to measured values of cohesion (Voytkovskiy,
1977) and (2) when N0 ¼ 0, the standard Coulomb model
(c ¼ 0) is recovered. One assumption of Eqn (29) is that the
effect of cohesion is predominant in the Coulomb friction
term. The experiments were performed at low velocity,
when turbulent effects are negligible. Thus, when fitting the
chute experiments, we did not consider the velocity-
squared-dependent friction (�) because the velocities in the
experiments are small. Shear stresses from the velocity-
dependent friction are <50 Pa for the highest velocities in
the experiments.

ACTIVATION ENERGY
The chute experiments reveal a large variation in friction �

(Table 1). The largest measured value of � is 0.55 while the
smallest measured value is 0.22. The variations cannot be
due to the surface properties of the chute, because the
surface of the chute remained the same during the
experiments. The variations are large even within the two
general sub-categories wet and dry. To model the change in

Fig. 5. Plot of the shear equation (Eqn (29)) with cohesion. (a) The difference between secant ratio S=N and the tangent ratio dS=dN. (b) The
effect of an increase in N0. (c) The activation energy R0 operates on the tangent modulus. (d) Fit of Eqn (29) to experiment 19.
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Coulomb friction � we employ the relation

� ¼ �0 exp �
RV

R0

� �

: ð30Þ

We therefore make the friction a function of the potential
(configurational) energy RV (Bartelt and others, 2012a). The
activation energy R0 scales the potential energy RV and
controls the change in friction with respect to the change in
flow configuration. It is related to the potential energy
needed to expand the volume of the core in order to
‘activate’ or allow movement. More energy is needed to
activate flows with large overburden pressures (large flow
heights). The parameter �0 defines the friction � when
RV ¼ 0, and can be considered to be the maximum friction
of the co-volume V0 (or height, h0) as the avalanche is
flowing in its most dense possible state where the friction is
the highest. Moreover, �0 can be considered the static
coefficient of friction, because RV ¼ 0 when the flow is at
rest. From the experiments, we take the maximum
�0 ¼ 0:55. The activation energy can be expressed as an
energy density (J m–3) or stress (N m–2).

Cohesive interactions between snow granules introduce a
binding potential that must be overcome to decrease the
value of friction �. We account for this cohesive binding by
increasing the activation energy R0 (which is associated with
gravitational potential) by the value N0 (which is associated
with cohesive potential). Equation (30) then becomes

� ¼ �0 exp �
RV

R0 þN0

� �

: ð31Þ

Thus, more energy (RV) is required to decrease the friction
for higher N0 values. Alternatively, for cohesionless flows, �
can decrease significantly, with little change in the
configurational energy. In general, cohesive flows will have
higher � values than non-cohesive flows, as more energy
(RV) is required to alter the flow configuration. However, it is
quite possible that cohesive flows have small Coulomb
friction values, depending on the energy RV. This result is in
accordance with the experiments, which reveal that flows
with high cohesion values N0 can exhibit small � values.

VOLUME EXPANSION
Cohesive bonding between snow granules hinders the
expansion of the avalanche core �. Cohesion reduces the
free mechanical energy in the avalanche and, therefore,
avalanche flows with cohesion are less disperse and exhibit
higher bulk flow densities. Random particle motions (RK)
can co-exist with cohesive granular interactions; but the
lifetime of the random energy is smaller. Because the
avalanche core cannot easily expand, active (extensive, low
density) flow states are hindered. Lateral stresses remain
high. Dense avalanche flows result as more energy is
required to break the cohesive bonds between snow
granules. Thus, cohesion operates on the non-directional,
random free energy in the avalanche core. It is this effect
that is seldom included in avalanche dynamics models.
Modelling the effect of cohesion on the free mechanical
energy of the avalanche therefore facilitates a better
description of different avalanche flow regimes, including
active and passive flow states.

We model the volume expansion by treating the cohesion
N0 as an additional pressure that must be overcome in order
to expand and deform the granular ensemble in the

slope-perpendicular direction. The approach concentrates
all stress into the slope-perpendicular movement of the
centre-of-mass. This idea is congruent with Van der Waals
modification of the ideal gas law to include cohesive
molecular interactions in a representative volume (Rowlin-
son, 2002).

Let the work done to expand the core volume V� be
defined by the total pressure N working at the base of the
avalanche

N ¼ Ng þNK ¼ M� gz þ €k�

� �
, ð32Þ

where M� is the mass of granules in volume V� and Ng is the
perpendicular component of the self-weight. The slope-
perpendicular acceleration of the centre-of-mass €k� (Fig. 2)
is induced by the dispersive pressure NK, which arises from
the granular interactions with the running surface

NK ¼ M�
€k�: ð33Þ

For the moment we consider no mass transport from
neighbouring volumes. Changes in position of snow
granules within the avalanche core are therefore associated
with changes in the mean potential energy of the granular
ensemble, which is described by the location of the centre-
of-mass k�. The total work done per unit time by the normal
pressure at the bottom of the avalanche, N, which includes
the weight Ng and the dispersive pressure NK, must be in
balance with the total working of the granular interactions
per unit volume at the boundary. We have termed this
energy the free potential energy production _PV. Therefore,

dðNV�Þ

@t
� _PVV� ð34Þ

and, with dðNV�Þ=dt= _NV�+N _V�,

_NþN
_V�

V�

¼ _PV: ð35Þ

The ratio _V�=V� physically represents the upward expansion
of the avalanche in the z-direction, expressed as a strain rate
_�:

_� ¼
_V�

V�

¼
_h�

h�

¼
_k�

k�

: ð36Þ

Therefore,

_NþN _� ¼ _PV: ð37Þ

With cohesion, N0, these relations are modified slightly. The
total pressure, N, needed to deform the volume is now

N ¼ N0 þNg þNK, ð38Þ

as we treat the cohesion as an additional pressure that must
be overcome to change the location of the centre-of-mass of
the granular ensemble:

_Nþ N0 þNg þNK
� �

_� ¼ _PV: ð39Þ

The model assumes that the strain rate _� is constant over the
entire flow height of the volume. Therefore, the effect of
cohesion is not restricted to the basal boundary. Equa-
tion (39) can be written as a third-order differential equation
in k�,

M�
€k�
€þ N0 þNg þNK

� � _k�

k�

¼ _PV, ð40Þ

or, more conveniently as a series of three first-order
equations in terms of the centre-of-mass height k�, velocity
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w� and dispersive pressure NK:

Dk�

Dt
¼ w� ð41Þ

D M�w�ð Þ

Dt
¼ NK ð42Þ

DNK

Dt
¼ _PV �

N
k�

� �

w�: ð43Þ

Equation (43) includes N0 and replaces the last line in
Eqn (9). In numerical solutions we consider control volumes
that are fixed in space and therefore must account for the
convective transport of k�, w� and NK. Hence, the use of the
substantial derivative operator in Eqns (41–43). The equa-
tions account for the change in potential energy and slope-
perpendicular acceleration due to mass flow from neigh-
bouring volumes (Buser and Bartelt, 2015).

EXAMPLE CALCULATIONS
Snow-chute experiments
As a first example we simulate the snow-chute experiments
of Platzer and others (2007a,b). The model of the snow
chute is depicted in Figure 6. The chute contains a 10 m
long acceleration zone with inclination 45°, a short 32°
transition zone and a flat 2.15 m long measurement section.
Snow is released by opening the gate to a 10 m long hopper
located above the acceleration zone. Starting volumes are
V0 < 25 m3. The flow mass typically runs past the measure-
ment section and does not accumulate. Flow is constrained
by side-walls that are spaced 2.5 m apart. Shear and normal
force plates are installed in the transition zone.

The cohesion model we propose is designed for fully
granularized avalanche flows. It does not take into account
the process of snow-cover fragmentation. The model is only
valid after the slab has displaced several metres. In most
applications this is the case, as the running distance is
considerably larger than the granularization distance, even
when considering the motion of small avalanches with
volumes V0 � 100 m3. In the snow-chute experiments the
snow placed in the release hopper at first displaces as a rigid
block of snow, before roughness elements installed on the
basal surface cause fluidization. To handle this problem we
place the starting mass 5 m downstream of the hopper for

the calculations. At this point the mass is given an initial
velocity (2.5 m s–1) corresponding to the drop height and the
slope angle.

A wet (No. 4) and a dry (No. 9) snow experiment
(Table 1) were simulated with the cohesion model. The
values of cohesion N0 found from the experiments were
used in the simulations, N0 ¼ 980 and 396 Pa for experi-
ments 4 and 9, respectively. In both cases it was possible to
reproduce the measured normal pressure (Figs 7a and 8a).
This requires modelling the centripetal accelerations of the
flow at the slope deviation. The centripetal pressures are
approximately twice as large as the self-weight. The time
duration of the normal load over the force plate appears to
be modelled correctly, indicating that the calculated mean
velocity of the flow is correct. The shear response is
correctly represented in both cases (Figs 7b and 8b),
providing an accurate representation of the measured S–N
relationship (Figs 7c and 8c). In the dry experiment it was
possible to model the shear hysteresis existing between the
front and tail of the flow (Fig. 8c). Avalanches exhibit
different shear values for the same normal pressure because
of differences in velocity and free-energy content. The shear
stress at the tail of the wet flow is slightly underestimated
(Fig. 7c). The slope of the modelled S–N relationships is
correct, giving good agreement with the measured � values
(Table 1). The maximum flow heights are well represented,
although the simulations show longer, less finite-type tails
(Fig. 8d). The calculated height values at the tail are near the
dimension of a single granule. A direct comparison between
measured and calculated velocities is not possible, because
only the basal slip velocities were measured, using upward-
looking optical sensors (Fig. 8e). The model provides only
the mean velocities, which should be larger than the
measured basal slip velocities. Note that the velocities are
required to predict the centripetal accelerations and the
agreement between the measured and calculated normal
stresses implies a good agreement with the mean velocity.
The difference between the slip and mean velocities implies
large velocity gradients in the flow body. The calculated
densities are reasonable (Figs 7f and 8f), but without
experimental verification. The model predicts that both the
extreme front and tail of the flow have lower densities than
the flow bulk. The co-volume density of wet snow was taken
to be �0 ¼ 500 kg m–3 and that for dry snow to be �0 ¼

400 kg m–3. We assume lower-density granules for the dry

Fig. 6. Model domains for (a) snow chute and (b) idealized avalanche slope. The snow chute consists of three planar segments: l1 ¼ 20 m,
�1 ¼ 45�, l2 ¼ 1:6 m, �2 ¼ 32�, l3 ¼ 2:15 m, �3 ¼ 1:5�. No flux boundary conditions are used to constrain the flow within the chute side-
walls. The width of the chute is 2.5 m. The idealized avalanche slope also consists of three track segments: l1 ¼ 200 m, �1 ¼ 45�,
l2 ¼ 300 m, �2 ¼ 25�, l3 ¼ 400 m, �3 ¼ 0�. The idealized slope is not channelled and the avalanche can spread laterally.
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Fig. 8. Measured and calculated shear and normal stresses for dry snow-chute experiment 9 (Table 1). Measured and calculated
N0 ¼ 396 Pa. (a) Normal stress N. The normal stress consists of the weight, centripetal and dispersive pressures. (b) Shear stress S.
(c) Relationship between S and N. (d) Flow heights, including calculated co-volume height h0. (e) Measured slip velocity and calculated
mean velocity of flow. (f) Calculated density. The bulk density �� � 340 kg m–3. Flow parameters: �0 ¼ 0:55; �0 ¼ 2000 m s–2; � ¼ 0:10;
� ¼ 0:80 s� 1; � ¼ 0:20; R0 ¼ 0:50 kJ m–3.

Fig. 7. Measured and calculated shear and normal stresses for wet snow-chute experiment 4 (Table 1). Measured and calculated
N0 ¼ 980 Pa. (a) Normal stress N. The normal stress consists of the weight, centripetal and dispersive pressures. (b) Shear stress S.
(c) Relationship between S and N. (d) Flow heights, including calculated co-volume height h0. (e) Measured slip velocity and calculated
mean velocity of flow. (f) Calculated density. The bulk density �� � 420 kg m–3. Flow parameters: �0 ¼ 0:55; �0 ¼ 2000 m s–2; � ¼ 0:07;
� ¼ 0:80 s–1; � ¼ 0:20; R0 ¼ 0:50 kJ m–3.
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snow flows, in agreement with the density measurements
made before the experiments (Platzer and others, 2007a,b).

Idealized avalanche slope
The snow chute does not contain a runout zone and is
limited to small flow volumes of <10 m3. To demonstrate the
effect of cohesion on avalanche runout, flow density and
velocity, we replaced the experimental chute with an
idealized avalanche domain consisting of three planar slope
segments (Fig. 6b). The lengths l and inclination angles � of
the planar segments are l1 ¼ 200 m, �1 ¼ 45�, l2 ¼ 300 m,
�2 ¼ 25�, l3 ¼ 400 m, �3 ¼ 0�. Thus the slope contains a
steep starting zone, followed by a long transition zone
(similar in dimension to the Vallée de la Sionne transition
zone) and a flat runout zone. A snow volume of V0 ¼

2350 m3 with density �0 ¼ 200 kg m–3 was released from the
steep track segment. We assume that the avalanche is
granularized immediately at release. The avalanche en-
trained h� ¼ 0:25 m of snow with density �� ¼ 150 kg m–3.
All model parameters remained the same, except for
the value of the cohesion: N0 ¼ 0, 100, 200, 500,
1000, 2000 Pa. Thus, six simulations were performed
with cohesion values within the range of the measured
cohesion values of the snow-chute experiments (Table 1).
Calculated runout distances (Fig. 9), maximum calculated
velocities (Fig. 10), shear and normal stress response
(Fig. 11) and flow density (Fig. 12) are reported. In all
simulations the parameters �0 ¼ 0:55, �0 ¼ 2000 m s–2,
� ¼ 0:1, �K ¼ 0:80 s–1, R0 ¼ 2 kJ m–3 are used. These values

provide the best agreement with measured runout and
velocity of mixed dry snow avalanches captured at the
Vallée de la Sionne test site (Bartelt and others, 2012a; Buser
and Bartelt, 2015).

Cohesion N0 has a strong influence on avalanche runout,
as shown in Figure 9. The higher the cohesion value, the
shorter the runout distance and smaller the avalanche
velocity (Fig. 10). For N0 ¼ 0 Pa, the calculated avalanche
runs the full distance of the runout zone (Fig. 9a), while for a
value of N0 ¼ 1000 Pa, the calculated avalanche stops
shortly after the transition zone, a reduction of �400 m in
runout distance (Fig. 9e). For large cohesion values,
N0 ¼ 2000 Pa, the avalanche stops in the transition zone,
almost immediately after release (Fig. 9f). Calculations with
high cohesion values also exhibit less lateral spreading. The
simulations also reveal that for modest values of cohesion,
0 � N0 � 500 Pa, it is possible to attain constant velocities in
the transition zone (Fig. 10). However, the magnitude of the
constant velocity decreases with increasing cohesion,
indicating that avalanche velocity is now controlled by both
�0 andN0. Of significance is the fact that all other parameters
remained constant and runout was controlled by a single
model parameter, N0. A feature of the model is that extreme
runout is defined by the cohesionless case N0 ¼ 0 Pa.

Shear and normal stresses were calculated in the release
and runout zones for different N0 values (Fig. 11). These S–N
relationships exhibit many features common to the experi-
mental snow-chute results, including a shear hysteresis that
is especially dominant in the release zone. This indicates
that the front and tail of the avalanche experience large
differences in shearing as the avalanche accelerates, the
front experiencing lower shear resistance. In the runout
zone, the hysteresis disappears and the S–N relationships
exhibit near-constant slopes. Again, this result is similar to
the experimental chute results, where the measured S–N
relationship is linear. For N0 ¼ 100 Pa, the slope dS=dN �
� ¼ 1=6, while for N0 ¼ 1000 Pa, dS=dN � � ¼ 1=2, in-
dicating a much higher deceleration in the runout zone for
higher cohesion values. Again, we emphasize that these
results were not obtained by changing �, but by changing
the cohesion.

We also calculated the flow height h� and the flow density
�� at a point located in the middle of the transition zone for
two different cohesion values, N0 ¼ 0 and 1000 Pa (Fig. 12).
A large difference exists in the calculated flow heights. For
the cohesionless case, N0 ¼ 0 Pa, the highest flow heights

Fig. 10. Comparison of maximum calculated velocity for five co-
hesion values on idealized avalanche slope (N0 ¼ 0, 100, 500, 1000,
2000 Pa). The higher the cohesion the lower the avalanche velocity.

Fig. 9. Calculated runout and maximum velocity for six model
calculations with (a) N0 ¼ 0 Pa, (b) N0 ¼ 100 Pa, (c) N0 ¼ 200 Pa,
(d) N0 ¼ 500 Pa, (e) N0 ¼ 1000 Pa, (f) N0 ¼ 2000 Pa. The larger the
cohesion the shorter the runout.
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and lowest densities are located at the avalanche head. The
model predicts that avalanches with cohesionless (dry) snow
will have a different front dynamic, exhibiting strong slope-
perpendicular accelerations, resulting in higher flow heights
and lower flow densities. To model the formation of powder
clouds it is necessary to have low granular cohesion (say
N0 � 200 Pa). Behind the head, flow heights decrease and
the densities increase to �� ¼ 230 kg m–3. For higher cohe-
sion values N0 ¼ 1000 Pa, the flow reaches the observation
point in two distinct surges. The second surge has the highest
flow height and larger flow density, �� � 300 kg m–3. The
avalanche with the higher cohesion deposits a thin layer of
granules at the avalanche tail. These results indicate that
cohesion has an influence on the streamwise configuration
(density, flow height and velocity) of the avalanche.

Snow avalanche near Verbier, Switzerland
An avalanche that occurred on Mont Rogneux (2600 m), near
Verbier, Switzerland, provides an opportunity to demon-
strate the role of cohesion in a real case study (Fig. 13). A
moist/wet snow avalanche released spontaneously at 17:00
on 13 March 2014, after a day of warm (>0°C) air
temperatures. Because of clear weather the location and
size of the starting zone could be documented with aerial
photographs (Fig. 13a). The avalanche did no damage, but
2 m high deposits blocked an access road leading to several
buildings (Fig. 13b). Handheld differential global navigation
satellite system (dGNSS) measurements were made in the
deposition zone (accuracy 10 cm). The avalanche released,
accelerated and stopped, essentially on a constant slope
(mean slope angle � ¼ 30�). In places it entrained the entire
snow cover, exposing the grassy slope. At slightly flatter track
sections, snow was deposited. Such avalanche events cannot
be simulated with standard Voellmy-type models (N0 ¼ 0,
� ¼ 0) because they require ad hoc manipulations of the
friction parameters (�0, �0) to reproduce the observed runout
distance, especially on tracks with constant slope.

In the snow-chute experiments (Table 1) moist/wet snow
has cohesion values N0 � 1000 Pa with � > 0:40 (experi-
ments 4, 6, 18). Higher (N0 � 2000 Pa, experiment 17) and
lower values (N0 � 500 Pa, experiments 1, 14) are possible.
Many of the wet snow experiments have N0 � 0, but these
are accompanied by high � values. The cohesion function

requires a break in the S–N response to identify the transition
point from whichN0 can be determined. The high values of �
found in the experiments indicate that �0 > 0:40, as �0
represents the highest friction associated with the movement
of the co-volume. Therefore, in a first series of numerical
experiments with the cohesion model, we took N0 ¼ 1000
Pa and �0 ¼ 0:50 to model moist/wet snow. The remaining
parameters were taken from wet snow Vallée de la Sionne
experiments (�0 ¼ 1500 m s–2, R0 ¼ 2:0 kJ m–3, � ¼ 0:05 and
� ¼ 1:00 s–1). These values provide acceptable results with
respect to avalanche runout and velocity. However, de-
position began too early and considerable amounts of snow
were deposited in the acceleration zone, leading to
deposition heights that were too small at the road. We
subsequently lowered the cohesion value to N0 ¼ 700 Pa
(similar to experiment 14). This parameter combination
provided the best fit to the observed runout and measured
deposition heights (Figs 14 and 15). Deposition heights were

Fig. 11. Calculated shear stress for three cohesion values (a) N0 ¼ 100 Pa, (b) N0 ¼ 500 Pa, (c) N0 ¼ 1000 Pa. The black curves depict the
shear stress in the upper track segment immediately after avalanche release. The shear stress exhibits a strong hysteresis. The red curves
depict the shear stress in the lower track segments. Note the strong similarity to the chute measurements.

Fig. 12. Calculated flow density �� and core height h� in the
transition zone for two cohesion values, N0 ¼ 0 and 1000 Pa. The
avalanche with N0 = 0 reaches the transition zone first, at t � 15 s.
The core height at the avalanche front is high, >3m. The avalanche
with N0=1000 Pa reaches the transition zone after t � 20 s in two
surges, a low-density first surge and a high-density second surge.
The avalanche is longer. Surge-like behaviour was often observed
with high cohesion values.
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calculated at the transects depicted in Figure 14a, where
dGNSS measurements were made. Simulations with the
standard Voellmy model using guideline values for wet snow
avalanches (�0 ¼ 0:35) result in avalanches that run too far
(Fig. 16). Interestingly, calculated maximum velocities are
similar in the transition zone; however, the cohesion model
predicts the avalanche stops, while the Voellmy model
predicts the avalanche propagates another 400 m with a
velocity of 10 m s–1. Calculated depositions in the Voellmy
model are concentrated at the avalanche front. The cohesion
model predicts not only the lobe structure of the avalanche
deposits, but also the location where the two flow arms
merged, producing the region of the largest depositions at the
north transect. The distance between the cowshed (Fig. 13c)
and the location of the smaller flow arm is reproduced. In
general the cohesion model leads to less lateral spreading.

A comparison between the Voellmy simulations (N0 ¼ 0
Pa, � ¼ 0) and cohesion model simulations (N0 ¼ 700 Pa,
� ¼ 0:05) reveals a strong difference in the streamwise
character of the avalanche core. Both models result in similar
flow velocities at the avalanche front (Fig. 17a), but the
cohesion model predicts dense, compact, flow bodies
(Fig. 17b), similar to the results found in the snow-chute
experiments. The Voellmy model predicts a slow decrease in

velocity at the avalanche tail. The calculated S–N relation-
ships are similar (Fig. 17c). However, the cohesion model
predicts lower shear stresses for equal normal stresses,
because of the decrease of � < �0 in the transition zone.

CONCLUSIONS
Friction parameters for flowing snow are notoriously difficult
to measure in experiments. In the chute experiments of
Platzer and others (2007a,b), Coulomb friction values
showed consistent, but wide-ranging values, suggesting that
avalanche friction is not governed by constants, but best
described as a frictional process. The avalanche community
has traditionally relied on avalanche back-calculations to
determine parameter ranges and ‘best-fits’ to field obser-
vations. This method has the disadvantage that frictional
parameters are too strongly linked to a model ansatz or even
the numerical implementation of a particular constitutive
law. It strongly limits the application of avalanche dynamics
models in many practical situations, because the parameters
have little or no physical foundation.

To overcome this problem, we began with a set of force
plate measurements and sought a frictional process that is
missing in the Coulomb part of the Voellmy model. Our goal
was to treat avalanche friction as a physical process
governed by material constants. The experiments showed
that the shear stress versus normal stress response of flowing
snow exhibits cohesion, represented by an increase in shear
stress S for a given normal pressure N. For small flow heights

Fig. 13. Runout and starting zone of a wet snow avalanche that
released above Verbier, Switzerland, from Mont Rogneux at 17:00
on 13 March 2014. Air temperatures were >0°C. The mean fracture
height was h � 1:2 m and the starting volume V0 � 15 000 m3.
dGNSS measurements were made on 18 March 2014 in the
runout zone.

Fig. 14. Calculated maximum velocities of the Verbier avalanche.
(a) Cohesion model with N0 ¼ 700 Pa. Runout distances and lobe-
like deposition features of the actual avalanche are reproduced.
The calculated avalanche reached peak velocities of 25 m s� 1, with
the lowest flow densities of �� ¼ 350 kg m� 3 at the avalanche front.
(b) Voellmy model using guideline value of � ¼ 0:35 for wet
avalanches. Runout distances are too far.
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(low overburden pressures), the slope of the shear response
is higher than predicted by the standard Coulomb friction
law, S ¼ �N. We attribute this effect to the cohesive
bonding between flowing snow granules. To fit the
experimental results in this region, an equation was found
that fulfils the conditions: S ¼ 0 for N ¼ 0; dS=dN ¼ 1 for
N ¼ 0. For large flow heights the relationship between shear
and normal force is linear, but the slope varies,

0:22 < dS=dN < 0:55. This strong variation in slope (fric-
tion, �) we attribute to frictional processes involving the free
mechanical energy in the core of the avalanche. We
postulate that (1) cohesive bonding between the snow
granules decreases the free-energy content of the avalanche
core and (2) cohesive bonding between snow granules
increases the activation energy required to fluidize the core.
Cohesive avalanche flows therefore have higher flow
densities and larger friction (�) values. In the model all
three effects are controlled by a single parameter, N0.

A common criticism of process-based avalanche dynam-
ics models is the increase in the number of parameters
needed to describe the process physics. In this particular
model, parameters are required to define the production and
decay of free mechanical energy that is associated with
random particle movements and positions. Breaking and
creating cohesive bonds in the avalanche core is also a
random process, similar to the production and decay of the
free energy. Cohesion is therefore a part of the randomness
in the flowing avalanche core. Bonds are created and
broken in all directions. We simulate this process with only
one parameter: N0. It is our goal to replace the myriad of
(�, �) pairs needed to simulate avalanches with a constant
set of six parameters (�0, �0, N0, �, �, �). Our task is to
replace the multitude (and many ambiguities) of � and �

of the well-established Voellmy model with material con-
stants and process physics. This cannot be done without

Fig. 17. Comparison between Voellmy model and cohesion model at the point of maximum flow velocity in the acceleration zone.
(a) Velocity. (b) Flow height. (c) Calculated S–N relation.

Fig. 15. Comparison between measured and calculated deposition heights in the runout zone, Verbier avalanche. The locations of the
measurement profiles are depicted in Figure 14a. (a) Lateral cross section. (b) Profile north. (c) Profile south. A co-volume density
�0 ¼ 450 kg m� 3 was used in the calculations.

Fig. 16. Comparison between calculated maximum velocities with
(N0 ¼ 700 Pa) and without (Voellmy, N0 ¼ 0 Pa) cohesion. The
calculated velocities are similar, but the cohesion model decel-
erates the flow in the runout zone, stopping at the road.
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parameterizing the random state of the flowing avalanche
core. This includes cohesion.

We do not exclude the possibility that the avalanche
cohesion N0 will change from initiation to runout,
especially in long-running avalanches that significantly
change their temperature, due to frictional heating or
entrainment of warm, moist snow. In real avalanches values
of N0 may vary significantly. The evolution of the avalanche
flow, often determined by boundary conditions, such as
terrain features and entrainment processes, then becomes
important to predict avalanche runout. It is also not clear
that a single N0 value represents cohesion in the avalanche
body and at the basal interface. In the present work
cohesion is a model fit parameter that needs more detailed
experimental study. How cohesion N0 varies as a function
of snow temperature and moisture content will soon be
determined in sets of independent measurements using
existing experimental facilities and equipment.
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