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Salem Numbers and Pisot Numbers via
Interlacing

James McKee and Chris Smyth

Abstract. We present a general construction of Salem numbers via rational functions whose zeros and

poles mostly lie on the unit circle and satisfy an interlacing condition. This extends and unifies earlier

work. We then consider the “obvious” limit points of the set of Salem numbers produced by our

theorems and show that these are all Pisot numbers, in support of a conjecture of Boyd. We then show

that all Pisot numbers arise in this way. Combining this with a theorem of Boyd, we produce all Salem

numbers via an interlacing construction.

1 Introduction

A Pisot number is a real algebraic integer θ > 1 all of whose other (algebraic) con-

jugates have modulus strictly less than 1. A Salem number is a real algebraic integer

τ > 1, whose other conjugates all have modulus at most 1, with at least one hav-

ing modulus exactly 1. It follows that the minimal polynomial P(z) of τ is reciprocal

(i.e., zdeg PP(1/z) = P(z)), that τ−1 is a conjugate of τ , that all conjugates of τ other

than τ and τ−1 have modulus exactly 1, and that P(z) has even degree. The set of all

Pisot numbers is traditionally denoted S, with T being used for the set of all Salem

numbers.

In [17], we constructed Salem numbers via rational functions associated with cer-

tain rooted trees (the quotients of rooted Salem trees). In this paper we abstract the

essential properties of these rational functions and give a much more general con-

struction of Salem numbers (Theorems 3.1, 5.1, and 5.2) via rational functions whose

zeros and poles mostly lie on the unit circle and satisfy an interlacing condition. In

addition to extending the work of [17], this construction also extends the interlac-

ing construction of [16]. We then consider the “obvious” limit points of the set of

Salem numbers produced by our theorems and show that these are all Pisot numbers

(Theorems 4.2 and 5.3). This supports a conjecture of Boyd [4, p. 327]. We then

show that all Pisot numbers arise in this way (Theorem 6.4). Combining this with a

theorem of Boyd, we show that all Salem numbers can be produced via interlacing.

We conclude the paper with some applications to the study of small Salem numbers

and negative-trace elements of S or T.

It is our hope that these ideas will lead to further improvements in our under-

standing of the set of Salem numbers, and may give a way to attack some outstanding
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problems: (i) Is there a least Salem number, and, if so, what is it? (ii) Is the set of

Salem numbers below (say) 1.3 finite, and, if so, what are its members? (iii) What is

the derived set of the set of Salem numbers?

For dealing with Pisot numbers one has the trivial but extremely useful observa-

tion that if f (z) is a monic polynomial with integer coefficients having a simple real

root θ > 1 such that all roots other than θ have modulus strictly less than 1 and the

constant term of f (z) is not 0, then f (z) is irreducible and is therefore the minimal

polynomial of θ. (If f (z) split into two nontrivial factors, then the factor that does

not have θ as a root would have as its constant term something that on the one hand

is a nonzero integer and on the other hand is a product of numbers all with modulus

strictly less than one, which is absurd.) For Salem numbers, the analogous statement

is not as pleasant: if g(z) is a monic polynomial with integer coefficients having a

simple real root τ > 1 such that all the other roots of g(z) have modulus at most

one, with at least one having modulus equal to 1, and if the constant term of g(z) is

not zero, then g(z) = t(z)u(z), where t(z) is the minimal polynomial of τ , and u(z)

is a cyclotomic polynomial (for us, following [4], this means simply that all its roots

are roots of unity: it need not be irreducible). It is the possibility that u(z) might

not equal 1 that renders explicit constructions of the minimal polynomials of Salem

numbers more difficult. For Pisot numbers it is enough to find a polynomial that

has all its roots in the right place; for Salem numbers one also has to deal with the

possibility of cyclotomic factors. A further annoyance is that t(z) might have degree

2, in which case one has that τ is a reciprocal quadratic Pisot number rather than a

Salem number.

With these thoughts in mind, it is convenient to define a Pisot polynomial to be

a polynomial of the form zk f (z), where k ≥ 0 and f (z) is the minimal polynomial

of a Pisot number. And we define a Salem polynomial to be a polynomial of the

form t(z)u(z), where u(z) is a cyclotomic polynomial and t(z) is either the minimal

polynomial of a Salem number or is the minimal polynomial of a reciprocal quadratic

Pisot number.

The plan for the remainder of the paper is as follows. In Section 2 we define the

various interlacing conditions that will subsequently be exploited. Section 3 shows

how Salem numbers can be produced from pairs of polynomials that satisfy a simple

circular interlacing condition; then Section 4 considers the obvious limit points of the

set of Salem numbers produced and shows that these are all Pisot numbers. In Section

5 we prove analogous results for other naturally-arising variants of interlacing. In

Section 6 we show that all Pisot numbers are generated by one of these interlacing

constructions, and in Section 7 we show that all Salem numbers are produced, and

we put Salem numbers into four (overlapping) subsets according to the flavour of

interlacing used to produce them.

Several other interlacing constructions appear in the literature. Most notably,

Bertin and Boyd [1] classify all Salem numbers in a way that involves interlacing. In

Section 8 we briefly compare their results with ours before giving some concluding

applications and remarks in Section 9. Other interlacing constructions have appeared

in [6, Proposition 4.1], [11, 16]. For an encyclopaedic account of real interlacing, see

[8].

We use T to denote the unit circle, T = {z ∈ C

∣

∣ |z| = 1}.

https://doi.org/10.4153/CJM-2011-051-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-051-2


Salem Numbers and Pisot Numbers 347

2 Flavours of Interlacing

Several variants of interlacing will arise naturally as we study Salem numbers. We are

concerned with interlacing on the unit circle, but the different flavours of interlacing

are perhaps most easily understood when one moves to the real line via a Tchebyshev

transformation. In Subsection 2.1 we recall this transformation; in Subsections 2.2–

2.4 we describe interlacing in the complex world, and in Subsection 2.5 we view it

from the real, post-Tchebyshev, perspective.

2.1 Moving to the Real World

Our ultimate objective is to understand Salem numbers and Pisot numbers, and these

are firmly rooted in the world of complex numbers. We shall give constructions that

involve reciprocal polynomials. Moreover, most (perhaps all) of their roots will be in

T, and other roots will be real and positive. It will be extremely convenient for the

proofs to transform such polynomials to totally real polynomials. The transforma-

tion that we shall use is

(2.1) x =

√
z + 1/

√
z .

It is a matter of historical accident (growing out of [14], where this particular trans-

formation was essential) that this variant of the Tchebyshev transformation is used

rather than the more familiar x = z + 1/z, which would serve just as well, but with

many small differences in detail. In applying (2.1), a fixed branch of the square-root

is used throughout the right-hand side, but since there is a choice of branch, we gen-

erally find two possible values of x. If z ∈ T or if z is real, then the corresponding one

or two values of x are real.

The transformation (2.1) is generally a 2-to-2 map, with a reciprocal pair z, 1/z

mapping to a pair x, −x. The exceptions are important for us: the single point z = −1

corresponds to the single point x = 0, and the single point z = 1 corresponds to

the pair x = 2, x = −2. The inverse correspondence involves solving a quadratic

equation, but we shall never have need for it explicitly.

2.2 CC-interlacing

Suppose that P(z) and Q(z) are coprime polynomials with integer coefficients and

positive top coefficients. We say that Q and P satisfy the CC-interlacing condition, or

that Q/P is a CC-interlacing quotient if:

• P and Q have all their roots in T;
• all their roots are simple;
• their roots interlace on the unit circle, in the sense that between every pair of roots

of P(z) there is a root of Q(z) and between every pair of roots of Q(z) there is a

root of P(z).

Extending to real coefficients, one recovers the circular interlacing condition of [16].

If P and Q satisfy the CC-interlacing condition, then they must have the same degree.

Moreover, both 1 and −1 must appear among their roots. One of P and Q is a recip-

rocal polynomial; the other is antireciprocal (z − 1 times a reciprocal polynomial).
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Figure 2.1: CC-interlacing. The roots of (z − 1)(z + 1)(z2 + z + 1)(z4 + z3 + z2 + z + 1) [•]

interlace on T with those of z8 + z7 − z5 − z4 − z3 + z + 1 [◦].

The nomenclature is a shorthand for “cyclotomic-cyclotomic interlacing”, which in

turn is a slight abuse of terminology: the two polynomials have all their roots in T,

but need not be cyclotomic, since they need not be monic.

As an example (derived from the quotient attached to Ẽ8(8) in [17, p. 220]) to

which we shall return later, take

P(z) = (z − 1)(z + 1)(z2 + z + 1)(z4 + z3 + z2 + z + 1),

Q(z) = z8 + z7 − z5 − z4 − z3 + z + 1.

(2.2)

Thus Q(z) is the thirtieth cyclotomic polynomial, and P(z) is the product of the first,

second, third, and fifth cyclotomic polynomials. The roots of P and Q interlace on

the unit circle as shown in Figure 2.1: Q/P is a CC-interlacing quotient.

Our definition is symmetric in P and Q: if Q/P is a CC-interlacing quotient, then

so is P/Q.

Note that the definition of the CC-interlacing condition does not require either P

or Q to be monic. When both are monic, then by a theorem of Kronecker [10] they

are cyclotomic. In this case, all interlacing examples have essentially been classified

by Beukers and Heckman [2].

2.3 CS-interlacing

Now we turn to another flavour of interlacing, where one polynomial has all its roots

in T, and the other has all but two roots in T, with these two roots being θ and 1/θ
for some real θ > 1. Here “CS” is short for “cyclotomic-Salem”, with the same caveat

as before that the polynomials need not be monic. One will be reciprocal, and the

other will be antireciprocal.

Suppose that P(z) and Q(z) are coprime polynomials with integer coefficients and

positive top coefficients. We say that P and Q satisfy the CS-interlacing condition and

that Q/P is a CS-interlacing quotient if:

• P is reciprocal, and Q is antireciprocal;
• P and Q have the same degree;
• all the roots of P and Q are simple, except perhaps at z = 1;
• z2 − 1 | Q;
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• Q has all its roots in T;
• P has all but two roots in T, with these two being real, positive and 6= 1;
• on the punctured unit circle T\{1}, the roots of Q and P interlace.

Notice the strange interlacing condition. On the unit circle, Q has two more roots

than P, and necessarily Q(1) = 0. The interlacing condition implies that either Q has

a triple root at 1, or it has a pair of simple roots that are closer to 1 on the unit circle

than any of the roots of P.

A couple of pictures should clarify this; see Figures 2.2 and 2.3.
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Figure 2.2: CS-interlacing with simple roots. The roots of Q = (z2 −1)(z2 − z + 1) [◦] interlace

on T\{1} with those of P = (z2 + z + 1)(z2 − 3z + 1) [•].
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Figure 2.3: CS-interlacing with a triple root at 1. The roots of Q = (z + 1)(z − 1)3 [◦] interlace

on T\{1} with those of P = (z2 + z + 1)(z2 − 3z + 1) [•].

There is no symmetry in the CS-interlacing conditions: if Q/P is a CS-interlacing

quotient, then P/Q is not.

2.4 SS-interlacing

For our third flavour of interlacing, “SS” suggests “Salem-Salem” with the usual

caveats.

Suppose that P(z) and Q(z) are coprime polynomials with integer coefficients and

positive top coefficients. We say that P and Q satisfy the SS-interlacing condition and

that Q/P is an SS-interlacing quotient if:

• P and Q have the same degree;
• all the roots of P and Q are simple;
• P or Q is reciprocal, the other is antireciprocal;
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• P and Q have all but two of their roots in T, with these two being real, positive,

and 6= 1;
• on the unit circle, the roots of Q(z) and P(z) interlace.

The behaviour of the real roots of P and Q gives us two possible types of

SS-interlacing. If Q/P is an SS-interlacing quotient then we say that it is a type 1

interlacing quotient if the largest real root of PQ is a root of P, and it is a type 2 in-

terlacing quotient if the largest real root of PQ is a root of Q. There is symmetry in

the conditions for SS-interlacing, but between the two types: Q/P is a type 1 SS-

interlacing quotient if and only if P/Q is a type 2 SS-interlacing quotient. Again it is

helpful to see a picture; see Figure 2.4.
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Figure 2.4: Type 1 SS-interlacing. The roots of Q = z6 − z4 − z3 − z2 + 1 [◦] interlace on T

with those of P = z6 − 2z5 + 2z − 1 [•]. For type 2 SS-interlacing, interchange P and Q.

Swapping the roles of P and Q in the example in Figure 2.4 gives an example of

type 2 SS-interlacing. Notice that we do not insist that the roots on the positive real

axis interlace (although in this particular example they do).

2.5 Real Interlacing Quotients

From any of the above flavours and types of interlacing pairs, we shall consider trans-

forming the pair to a rational function with only real zeros and poles. These zeros

and poles will generally interlace (though the interlacing is not always perfect), and

for convenience we shall refer to the rational function as a (real) interlacing quotient.

If P and Q satisfy the CC-interlacing condition, the CS-interlacing condi-

tion, or either type of SS-interlacing condition, then we transform the function√
zQ(z)/(z − 1)P(z) via the map (2.1) to get a quotient q(x)/p(x), with q and p

coprime polynomials in Z[x] and xq(x)/p(x) a rational function in x2. Suppose P

and Q have degree d. If z−1 | Q(z) (which must be the case for CS-interlacing), then

when considering Q(z)/(z − 1)P(z) we have pulled out a root of Q, and the remain-

ing roots of P and Q transform in a 2-to-2 or 1-to-1 manner, so that q has degree

d − 1 and p has degree d. If z − 1 | P(z), then the factor (z − 1)2 in the denominator

of Q(z)/(z − 1)P(z) transforms to x2 − 4. We conclude that q has degree d and p

has degree d + 1. We call q(x)/p(x) the (real) interlacing quotient corresponding to

Q(z)/P(z). The conditions on the roots of P and Q are sufficient to ensure that the

roots of p and q are all real.
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For CC-interlacing, CS-interlacing, and type 1 SS-interlacing, the roots of p and q

interlace perfectly: the zeros and poles of the interlacing quotient interlace. The quo-

tient q(x)/p(x) is decreasing wherever it is defined and has partial fraction expansion

(2.3)

deg p
∑

i=1

λi

x − αi

,

where the αi are the roots of p and the λi are all positive.

For type 2 SS-interlacing, there is perfect interlacing of the zeros of q and p within

the interval [−2, 2], but there is a blip to the right of x = 2 (and to the left of x = −2)

with the top (and bottom) zeros of p and q being in the wrong order for perfect

interlacing. The derivative of the quotient q(x)/p(x) changes sign twice, and the

partial fraction expansion (2.3) has two of the λi negative.

Note that a real interlacing quotient q(x)/p(x), as defined, is always an odd func-

tion: one of p and q is an even polynomial and the other is an odd polynomial. The

degree of the denominator is one more than the degree of the numerator, and the top

coefficients are positive. As x → ∞, q(x)/p(x) → 0 from above.

Proposition 3.3 of [16] extends to this setting.

Lemma 2.1 (a) If Q1/P1 and Q2/P2 are CC-interlacing quotients, then so is their

sum.

(b) Suppose that Q1/P1 is either a CS-interlacing quotient or an SS-interlacing quo-

tient and that Q2/P2 is a CC-interlacing quotient. Then Q1/P1 + Q2/P2 is either a

CS-interlacing quotient or an SS-interlacing quotient.

Proof Part (a) is just [16, Proposition 3.3].

For (b), we transform to the real world, where it easy to see that everything is of

the right shape. Let q1/p1 and q2/p2 be the corresponding real interlacing quotients.

Then the partial fraction expansions of q1/p1 and q2/p2 as in (2.3) will have all the

λi positive, except in the case of type 2 SS-interlacing, when the λi corresponding to

the largest and smallest αi are negative; these correspond to the roots of p1 outside

[−2, 2]. The sum q1/p1 +q2/p2 will be of the same form; either all the numerators in

the partial fraction expansion will be positive, or there will be precisely two negative

numerators corresponding to the roots of p1 outside [−2, 2]. This is the right shape

for CS/SS-interlacing. For type-2 SS-interlacing we know that q1(x)/p1(x) → −∞
as x approaches the largest pole from above, so the same is true for the sum. Also,

both q1(x)/p1(x) and q2(x)/p2(x) are positive for all sufficiently large x, so the sum

has a zero to the right of this pole.

3 Salem Numbers via CC-interlacing

We now show how to produce Salem numbers from CC-interlacing quotients. The

first construction, which is essentially that of [16], uses a single quotient. We then

consider a product construction combining two interlacing quotients in a multiplica-

tive manner, inspired by (but greatly generalising) a formula for the quotients of cer-

tain Salem trees [17].
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3.1 A Single Pair

Our first interlacing construction is a translation of [16, Proposition 3.2(a)]. This is

also a special case of our second construction, Theorem 3.2.

Theorem 3.1 Let Q/P be a CC-interlacing quotient, with the additional constraint

that P is monic. Let q/p be the corresponding real interlacing quotient. If

(3.1) lim
x→2+

q(x)

p(x)
> 2 ,

then the only solutions to the equation

(3.2)
Q(z)

(z − 1)P(z)
= 1 +

1

z

are a Salem number (or a reciprocal quadratic Pisot number), its conjugates, and possi-

bly one or more roots of unity.

This is proved in [16] using the transformation x = z + 1/z. It also follows from

Theorem 3.2, taking P1 = P, Q1 = Q, P2 = z + 1, and Q2 = z − 1. Nevertheless we

give a proof here, using the transformation x =

√
z + 1/

√
z, as this provides a model

for later generalisations.

Proof Suppose P and Q have degree d. Since the real interlacing quotient q/p is

decreasing (except for jumps at poles), the equation q(x)/p(x) = x has exactly one

(simple) root between each pair of consecutive roots of p (these all lie in the inter-

val [−2, 2]). The condition (3.1) implies the existence of exactly one solution to

q(x)/p(x) = x in the interval (2,∞). We have now accounted for all the roots of

xp(x) − q(x), which is a monic polynomial (given that P is monic) of degree d + 1 or

d + 2 (according as z − 1 |Q or z − 1 | P). Transforming back to the complex world,

we see that all but two of the solutions to (3.2) lie in T, and these two are a reciprocal

pair {τ , 1/τ} with τ > 1. Clearing denominators in (3.2) gives a monic polynomial

with integer coefficients and degree d + 1 or d + 2 as appropriate, so we are done.

The condition on q/p at x = 2 translates to limz→1+ Q(z)/(z − 1)P(z) > 2, which

amounts to either P(1) = 0 or (Q(1) = 0 and) Q ′(1) > 2P(1). Thus this condition

can be checked readily without computing q and p.

As an example, take P and Q as in (2.2). We have CC-interlacing, and also P(1) =

0, and P is monic. Solving (3.2) gives the famous Lehmer polynomial

z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1.

To see that cyclotomic factors may appear, consider P(z) = z10 + z7 − z3 − 1 and

Q(z) = 2z10 + z8 + 2z7 + z6 + 2z5 + z4 + 2z3 + z2 + 2. Again we have P monic and

P(1) = 0. Now (3.2) gives the four primitive eighth roots of unity as solutions as well

as the degree-8 Salem number with minimal polynomial z8−2z7−z6−3z4−z2−2z+1.
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3.2 A Product Construction

The following extension of Theorem 3.1 exploits two CC-interlacing pairs (P1,Q1)

and (P2,Q2). Of course, after Lemma 2.1, one possible way of combining two such

pairs is to write P1/Q1 + P2/Q2 = P3/Q3, giving a third pair (P3,Q3) that could be

used in Theorem 3.1. Instead of the sum, we now consider the product. This will no

longer give CC-interlacing, but we can still squeeze out Salem numbers.

Theorem 3.2 Let Q1/P1 and Q2/P2 be two CC-interlacing quotients, with P1 and P2

both monic. Let q1/p1 and q2/p2 be the corresponding real interlacing quotients.

(i) Suppose that

lim
x→2+

( q1(x)

p1(x)
− 2

)( q2(x)

p2(x)
− 2

)

< 1.

Then the only solutions to the equation

( Q1(z)

(z − 1)P1(z)
− 1 − 1

z

)( Q2(z)

(z − 1)P2(z)
− 1 − 1

z

)

=

1

z

are a Salem number (or a reciprocal quadratic Pisot number), its conjugates, and

possibly one or more roots of unity.

(ii) Suppose that

lim
x→2+

q1(x)q2(x)

p1(x)p2(x)
> 1.

Then the only solutions to the equation

Q1(z)Q2(z)

(z − 1)2P1(z)P2(z)
=

1

z

are a Salem number (or a reciprocal quadratic Pisot number), its conjugates, and

possibly one or more roots of unity.

Part (i) extends an explicit formula arising from a certain family of Salem trees

[17, Lemma 7.1(ii)]. The proof makes use of the following lemma.

Lemma 3.3 Let ψ1(x) and ψ2(x) be rational functions in Z(x), strictly decreasing on

the real line (over intervals for which they are defined), with simple zeros and poles.

Write ψ1(x)ψ2(x) = f (x)/g(x), where f (x) and g(x) are coprime polynomials with

integer coefficients. Suppose that g(x) has real zeros at a and b (with a < b). Then,

counted with multiplicity, the number of solutions to the equation ψ1(x)ψ2(x) = c for

x ∈ (a, b) is independent of real c ≥ 0.

It will be evident from the proof that all relevant solutions to ψ1(x)ψ2(x) = c are

simple, except perhaps when c = 0. It is possible that ψ1ψ2 has one or more double

zeros, but it cannot have zeros of higher order. The application of interest to us will

use only that the number of solutions when c = 1 is the same as when c = 0.
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Proof In intervals where ψ1ψ2 is positive, it is strictly monotonic: decreasing if both

ψ1 and ψ2 are positive, and increasing if both are negative. As x passes through a zero

x = α of ψ1ψ2, the function either decreases from ∞ to 0 as x approaches α from

below, or ψ1ψ2 increases from 0 to ∞ as x increases from α (or both, in which case

ψ1ψ2 has a double zero at α; note that if both ψ1 and ψ2 vanish at α, then necessarily

both have the same sign in a punctured neighbourhood ofα). For any c ≥ 0 it follows

that between any successive poles of ψ1ψ2 the number of solutions to ψ1(x)ψ2(x) = c

is independent of c. The result follows.

The proof of Theorem 3.2 now follows. We take for ψ1 and ψ2 the rational func-

tions q1/p1 − ax and q2/p2 − ax, where a = 1 for part (i) and a = 0 for part (ii).

These are decreasing where defined, since the qi/pi are real interlacing quotients cor-

responding to CC-interlacing quotients. Write ψ1(x)ψ2(x) = f (x)/g(x), after can-

celling any common factors, so that f and g are coprime polynomials with integer

coefficients. Note that, from the remarks in Section 2.5, f (x)/g(x) is an even func-

tion. The number of zeros of ψ1ψ2 between its extreme poles is equal to the degree

of f (x), since all roots are real. By Lemma 3.3, this equals the number of solutions to

f (x)/g(x) = 1; all of these lie in the interval [−2, 2]. For part (i), f /g ∼ x2 → ∞
as x → ∞; for part (ii), f /g tends to a finite non-positive number as x → ∞. The

condition at x = 2 ensures a solution to f (x)/g(x) = 1 in the interval (2,∞), and by

evenness also in (−∞,−2). Since g(x) − f (x) is monic, and we have accounted for

all its roots, we are done when we transform back to the complex world. As before,

the condition at x = 2 transforms to an easily-checked condition at z = 1.

4 Pisot Numbers via CC-interlacing

We now construct Pisot numbers by taking limits of convergent sequences of Salem

numbers. There is a conjecture of Boyd [4, p. 327] that, if true, would imply that this

process will always yield either a Salem number or a Pisot number. Our results in this

paper confirm this conjecture for all the cases considered. In this section we consider

CC-interlacing. In Section 5 we will briefly treat the other flavours of interlacing.

4.1 CC-limit Functions

We define a CC-limit function to be a rational function h(z) such that there is a se-

quence of CC-interlacing quotients (hn(z)) for which hn(z)/(z− 1) converges to h(z)

uniformly in any compact subset of the exterior of the unit disc. For example, 1/z is

a CC-limit function, as we could take

hn(z) =
(zn − 1)(z − 1)

zn+1 − 1
;

indeed, in this case we have uniform convergence in the set |z| ≥ 1 +ε, for any ε > 0.

Lemma 4.1 Take any non-negative integers A, r1, r2, r3, r4, not all zero, and positive

integers Ai , ai (1 ≤ i ≤ r1), Bi , bi (1 ≤ i ≤ r2), Ci , ci (1 ≤ i ≤ r3), Di , di (1 ≤ i ≤ r4).
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Then the rational function

A

z − 1
+

r1
∑

i=1

Ai(zai − 1)

(z − 1)zai
+

r2
∑

i=1

Biz
bi

(z − 1)(zbi − 1)
+

r3
∑

i=1

Ci(zci + 1)

(z − 1)zci

+

r4
∑

i=1

Diz
di

(z − 1)(zdi + 1)

(4.1)

is a CC-limit function.

Proof Using the Beukers–Heckman classification [2] (see also [17], where all these

terms (or their reciprocals) appear as quotients of graphs (multiplied by z − 1)) for

interlacing cyclotomic polynomials and Lemma 2.1(a), we can define for each natural

number n a CC-interlacing quotient Qn/Pn by

Qn(z)

Pn(z)
=

A(zn + 1)

zn − 1
+

r1
∑

i=1

Ai(zai − 1)(zn − 1)

zn+ai − 1
+

r2
∑

i=1

Bi(zn+bi − 1)

(zbi − 1)(zn − 1)

+

r3
∑

i=1

Ci(zci + 1)(zn − 1)

zn+ci + 1
+

r4
∑

i=1

Di(zn+di + 1)

(zdi + 1)(zn − 1)
.

(4.2)

An easy estimate shows that for any ε > 0 the sequence of functions

Qn(z)

(z − 1)Pn(z)

converges to the advertised limit function, uniformly in |z| ≥ 1 + ε.

We shall call a rational function of the shape (4.1) a special CC-limit function. For

these we can exploit their explicit form to prove that certain limit points of the set of

Salem numbers are in fact Pisot numbers.

4.2 A Single Interlacing Quotient

Given a single CC-interlacing quotient, we can take the limiting form of our Salem

number construction and attempt to prove that the limit is a Pisot number.

Theorem 4.2 Let Q/P be either a CC-interlacing quotient or zero (Q = 0, P = 1),

with P monic, and put g(z) = Q(z)/
(

(z − 1)P(z)
)

. Let h(z) be a special CC-limit

function as in (4.1). Let f (z) = g(z)+h(z)−1−1/z (if this has a removable singularity

at z = 0, then remove it). If

(4.3) lim
z→1+

(

g(z) + h(z)
)

> 2 ,

then the only non-zero solutions to f (z) = 0 are a Pisot number θ, the conjugates of θ,

and possibly some roots of unity.
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Before proving this, let us make some remarks. One possible choice for h(z) is

1/z, giving simply f (z) = g(z) − 1. The construction of Pisot numbers in [14]

is essentially that of Theorem 4.2 with h(z) = k/z for some positive integer k; the

construction in [16] uses h(z) = 1/(z − 1), which ensures that the condition (4.3) is

satisfied. An application of Theorem 4.2 with the more interesting CC-limit function

z7/(z − 1)(z7 − 1) is given in Subsection 9.1, where it is used to produce a Pisot

number that has negative trace and degree only 16, a new record (for old records, see

[12, 14, 16]).

Proof For the special CC-limit function h(z) as in (4.1), let Qn(z)/Pn(z) be as in (4.2)

and define fn(z) = g(z) + Qn(z)/(z − 1)Pn(z) − 1 − 1/z. We have that for |z| > 1

the function f (z) is the limit of the sequence ( fn(z)), with convergence uniform in

compact subsets of that region. Moreover, from Theorem 3.1 each fn(z) has a unique

root τn in the exterior of the unit disc, at least for all sufficiently large n, say n ≥ n0

(so that (3.1) holds).

Note that f (z) has no poles outside the unit disc and has finitely many zeros there

(it cannot be identically zero, as the condition (4.3) would then fail). The condition

near z = 1 gives limz→1+ f (z) > 0, and we plainly have limz→+∞ f (z) = −1. So

there is at least one θ in the real interval (1,∞) such that f (θ) = 0.

Take any circle, centred on θ, with radius sufficiently small that it lies outside the

unit disc and such that no zeros of f other than θ lie in or on the circle. For all

sufficiently large n, the function f dominates fn − f on this circle; hence by Rouché’s

Theorem (assuming also that n ≥ n0), there is exactly one root of fn in this circle

(for all sufficiently large n), and this root must be τn. We conclude that τn → θ as

n → ∞. Since this Rouché argument could be applied to any root of f outside the

unit disc, but the sequence (τn) has at most one limit, we conclude that θ is the only

root of f outside the unit disc.

We deduce that θ is either a Pisot number or a Salem number, and the theorem

will follow if we show that θ is not a Salem number. Suppose, for a contradiction,

that θ is a Salem number, and let z0 be a conjugate of θ that lies in T. For a rational

function k(z), write k̃(z) = k(1/z)/z. Since f (z) has all coefficients real, z0 = 1/z0

is also a zero of f (z). Thus z0 is a zero of both f (z) = g(z) + h(z) − 1 − 1/z and

f̃ (z) = g(z) + h̃(z)−1−1/z (using here that (z−1)g(z) is a CC-interlacing quotient,

so that g(z) is a quotient of reciprocal polynomials). Thus z0 is a zero of h(z) − h̃(z),

and by Galois conjugation so is θ.

For the five special cases h(z) = 1/(z − 1), (za − 1)/(z − 1)za, zb/(z − 1)(zb − 1),

(zc + 1)/(z− 1)zc, and zd/(z− 1)(zd + 1) one checks explicitly that h(z)− h̃(z) has no

roots outside the unit disc, giving the desired contradiction. For the general case, we

appeal to Salem’s theorem [18] that the set of Pisot numbers is closed. Write h(z) =

h0(z) + h1(z), where h0(z) is a single term in (4.1), and h1(z) is the rest. Then take

Qn/Pn as in the proof of Lemma 4.1 for the limit function h1 (rather than h). Now for

each sufficiently large n, we can apply our special result to conclude that the unique

root θn of g(z) + Qn(z)/(z − 1)Pn(z) + h0(z) − 1 − 1/z outside the unit disc is a Pisot

number. (Here we use Lemma 2.1(a) again to show that (z − 1)g(z) + Qn(z)/Pn(z) is

a CC-interlacing quotient.) Now another Rouché argument shows that θ is the limit

of the θn, so that Salem’s theorem gives that θ is a Pisot number.
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4.3 A Product of Two Quotients

Theorem 4.3 Let Q2/P2 and Q1/P1 each be either a CC-interlacing quotient or zero,

with P1 and P2 both monic, and define (for i = 1, 2) gi(z) = Qi(z)/(z− 1)Pi(z). Let h1

be a special CC-limit function, and let h2 be either a special CC-limit function or zero.

(i) Suppose that

lim
z→1+

(

g1(z) + h1(z) − 1 − 1/z
)(

g2(z) + h2(z) − 1 − 1/z
)

< 1.

Then the only non-zero roots of the rational function

f (z) =
(

g1(z) + h1(z) − 1 − 1/z
)(

g2(z) + h2(z) − 1 − 1/z
)

− 1/z

are a certain Pisot number θ, its conjugates, and perhaps some roots of unity.

(ii) Suppose that

lim
z→1+

(

g1(z) + h1(z)
)(

g2(z) + h2(z))
)

> 1.

Then the only non-zero roots of the rational function

f (z) =
(

g1(z) + h1(z)
)(

g2(z) + h2(z)
)

− 1/z

are a certain Pisot number θ, its conjugates, and perhaps some roots of unity.

Proof The proof is very similar to that of Theorem 4.2, so we merely spell out

the differences. We again use closure of S to reduce to the special case where

h2(z) = 0 and h1(z) is one of the five special functions 1/(z − 1), (za − 1)/(z − 1)za,

zb/(z − 1)(zb − 1), (zc + 1)/(z − 1)zc, and zd/(z − 1)(zd + 1). Any Salem number

that is a root of f (z) is also a root of f (1/z)/z2, so is a common root of

(

g1(z) + h1(z) − a(1 + 1/z)
)(

g2(z) − a(1 + 1/z)
)

− 1/z

and
(

g1(z) + h̃1(z) − a(1 + 1/z)
)(

g2(z) − a(1 + 1/z)
)

− 1/z,

so is a root of
(

h1(z) − h̃1(z)
)(

g2(z) − a(1 + 1/z)
)

, where a = 1 or 0 as relevant. As

before, h1 − h̃1 has no zeros outside the unit disc. Here g2(z)− a(1 + 1/z) may have a

single zero outside the unit disc, but we see from the definition of f that this cannot

be a zero of f .

5 Salem and Pisot Numbers via CS/SS-interlacing

Several of the results of the previous section extend to obvious analogues for CS- and

SS-interlacing quotients. We record these here briefly.

https://doi.org/10.4153/CJM-2011-051-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-051-2


358 J. McKee and C. Smyth

5.1 Salem Numbers

The analogue of Theorem 3.1 for CS-interlacing quotients is obvious from a sketch

of the graph of q(x)/p(x). Indeed, one necessarily has q(2) ≥ 0 and p(2) < 0, so that

q(2)/p(2) ≤ 0, making a single root of q(x)/p(x) = x in (2,∞) automatic.

Theorem 5.1 Let Q/P be a CS-interlacing quotient, with the additional constraint

that P is monic. Then the only solutions to equation (3.2) are a Salem number (or a

reciprocal quadratic Pisot number), its conjugates, and possibly one or more roots of

unity.

For SS-interlacing quotients, a sufficient condition that there should be a unique

solution to q(x)/p(x) = x in the interval (2,∞) is that q(2)/p(2) ≤ 2 (type 1) or

q(2)/p(2) < 2 (type 2). For type 2 SS-interlacing the stated condition is not always

necessary: it might be possible to have q(2)/p(2) = 2, depending on the derivative

of q/p at x = 2. But it is simpler to restrict to a strong inequality.

Theorem 5.2 Let Q/P be an SS-interlacing quotient (of either type), with the addi-

tional constraint that P is monic. Suppose further that

(5.1) lim
z→1+

Q(z)

(z − 1)P(z)
< 2.

Then the only solutions to equation (3.2) are a Salem number (or a reciprocal quadratic

Pisot number), its conjugates, and possibly one or more roots of unity. For type 1

SS-interlacing, a weak inequality in (5.1) would suffice.

There is no analogue of Theorem 3.2, as the construction would give two roots

outside the unit disc.

5.2 Pisot Numbers

Certain limiting cases of Theorems 5.1 and 5.2 yield Pisot numbers. Armed with

Lemma 2.1(b), we can give the analogue of Theorem 4.2 in this setting.

Theorem 5.3 Let Q/P be either a CS-interlacing quotient or an SS-interlacing quo-

tient, with P monic, and put g(z) = Q(z)/
(

(z−1)P(z)
)

. Let h(z) be a special CC-limit

function, as in (4.1). Let f (z) = g(z)+h(z)−1−1/z (if this has a removable singularity

at z = 0, then remove it). If

lim
z→1+

(

g(z) + h(z)
)

< 2 ,

then the only non-zero solutions to f (z) = 0 are a Pisot number θ, the conjugates of θ,

and possibly some roots of unity.

Proof This is much as before, but now f , and each fn in the sequence of functions

converging to f , has a pole outside the unit disc (the same pole for each fn and for

f , corresponding to the Salem zero of P). When considering circles centred on roots

of f outside the unit disc, the radii must be sufficiently small to avoid enclosing this

pole.
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6 All Pisot Numbers via Interlacing

In this section we shall show that all Pisot numbers are produced by a special case

of Theorem 5.3 (Theorem 6.4 below). We proceed in three steps: in §6.1 we de-

fine a sequence of polynomials (Pk)k≥0, following Salem; in §6.2 we show that for all

sufficiently large k the pair (Pk, Pk+1) is an SS-interlacing quotient (that these poly-

nomials are Salem polynomials is contained in Salem’s work—the novelty here is in

establishing the interlacing property); in §6.3 we tie everything together to produce

Theorem 6.4.

For any polynomial A(z) ∈ Z[z] of exact degree d, define A∗(z) = zdA(1/z).

6.1 The Polynomials Pk

Lemma 6.1 Let A(z) be any polynomial of degree d with integer coefficients. For

k ≥ 0, define Pk(z) =
(

zkA(z) − A∗(z)
)

/(z − 1). Then for k ≥ 0 we have

(6.1) zkA(z) = Pk+1(z) − Pk(z).

If k ≥ 1, then the polynomial Pk has degree d + k − 1. If k ≥ 1, then Pk is a reciprocal

polynomial; P0 is a power of z times a reciprocal polynomial. The polynomials Pk satisfy

the recurrence

(6.2) Pk+2 − (z + 1)Pk+1 + zPk = 0

for k ≥ 0. For each k ≥ 1, the pair of polynomials (P,Q) = (Pk+1, Pk) is the unique pair

of reciprocal polynomials such that the degrees of P and Q are d + k and d + k − 1 and

such that zkA(z) = P(z) − Q(z).

Proof This is a collection of simple assertions, each of which follows directly from

the definitions. For the recurrence, its characteristic polynomial is X2−(z+1)X +z =

(X − z)(X − 1).

Suppose that A(z) is monic. If A(0) 6= 1, then the degree of P0 is d − 1, but if

A(0) = 1, then this degree is at most d − 2. We record as a lemma the observa-

tion that no further cancellation in the degree of P0 can occur if A(z) is the minimal

polynomial of a Pisot number θ, unless θ is a reciprocal quadratic Pisot number.

Lemma 6.2 Let A(z) be the minimal polynomial of a Pisot number θ. If A(z) is not a

reciprocal (and hence quadratic) polynomial, then P0(z) = (A(z)−A∗(z))/(z − 1) has

degree at least d − 2.

Thus, writing A(z) = zd + ad−1zd−1 + · · · + a0, this tells us that if a0 = 1, then

ad−1 6= a1. In this sense, Pisot polynomials are strongly non-palindromic.

Proof If a0 6= 1, then P0 has degree d − 1. If a0 = 1 and a1 = ad−1, then expanding

A(z)/A∗(z) about z = 0 gives

A(z)/A∗(z) = 1 + u2z2 + u3z3 + · · · .
This contradicts [7, Théorème 1] (which asserts that the coefficient of z in such an

expansion must be strictly positive), unless A is a reciprocal quadratic polynomial.
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6.2 A Winding Argument

Theorem 6.3 Suppose that A(z) is the minimal polynomial of a Pisot number. For

each k ≥ 0, define Pk(z) as in Lemma 6.1.

For all large enough k, both Pk+1 and Pk have all but two roots on the unit circle, with

the other roots real and positive, and the roots of Pk+1(z) and (z− 1)Pk(z) that lie on the

unit circle interlace.

For all k ≥ 1, the rational function (z − 1)Pk(z)/Pk+1(z) is an interlacing quotient

(either CC, CS, or SS).

Proof Suppose that A(z) has degree d. Note that Pk(1) = kA(1) + A ′(1) − (A∗) ′(1),

and this is negative for all large enough k, since A(1) < 0 (A(z) is the minimal poly-

nomial of a Pisot number). Hence Pk(z) has at least one real root greater than 1, for

all large enough k. Since Pk+1 and Pk are both reciprocal, each has at least two positive

real roots, for all large enough k. From now on, we assume that k is large enough (say

k ≥ k0 ≥ 1) for this to hold.

For z on the unit circle, (z − 1)Pk(z) = 0 if and only if

zkA(z) = A∗(z) = zdA(z) = zdA(z) ,

which is equivalent to zk−dA(z)2
= |A(z)|2, which is equivalent to zk−dA(z)2 being

real and positive.

Now zk−dA(z)2 winds round the origin k + d − 2 times as z winds round 0. Hence

(z−1)Pk(z) has at least k+d−2 zeros on the unit circle, and Pk(z) has at least k+d−3

roots on the unit circle. Together with at least 2 roots not on the unit circle, we have

accounted for all possible roots: Pk(z) has exactly k + d − 3 roots on the unit circle,

and two other roots, real and positive (one of them being greater than 1 and the other

between 0 and 1).

Similarly Pk+1(z) has exactly k + d−2 roots on the unit circle, and two other roots,

real and positive.

For the interlacing property, we look more closely at what happens as z winds

round 0 in the positive sense (anticlockwise), on the unit circle, starting at z = 1.

When z = 1, the argument of zk−dA2(z) is 0. As z winds round the unit circle, the

argument increases to (k + d− 2)2π, not necessarily monotonically. The argument is

an integer multiple of 2π precisely when Pk(z) = 0 (or when z = 1). The argument

equals that of 1/z (modulo integer multiples of 2π) precisely when Pk+1(z) = 0. It

is clear from Figure 6.1 that this must happen at least once (and hence, by counting,

exactly once) between each two consecutive zeros of (z−1)Pk(z), as claimed: the line

running from bottom left to top right (which need not be a straight line!) must cross

one of the short diagonals at least once between each pair of horizontal lines.

For the final assertion of the theorem, we need to consider what happens for

smaller values of k ≥ 1. The winding argument still accounts for all but two of

the zeros of each Pk . We need to pin down the other two roots and establish the

claimed interlacing property. Let θ > 1 be the Pisot root of A(z). If A∗(θ) > 0, then

Pk(θ) < 0, in which case Pk always has a real root greater than θ. In this case there is

nothing more to prove; we have SS-interlacing.
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Figure 6.1: The case d + k − 2 = 4. The zeros of (z − 1)Pk(z) [◦] and of Pk+1(z) [•] interlace.

We are left with the case that A∗(θ) < 0. Then Pk has no real root greater than

θ, for any k. In particular, for k ≥ k0 the Salem root τk of Pk satisfies 1 < τ < θ.

Then from zkA(z) = Pk+1(z) − Pk(z) we have Pk+1(τk) < 0, and hence τk+1 > τk.

If follows that (z − 1)Pk(z)/Pk+1(z) is a type 1 SS-interlacing quotient for k ≥ k0,

and the roots and poles of the corresponding real interlacing quotient pk(x)/pk+1(x)

interlace perfectly on the real line. The recurrence (6.2) translates to the real world as

pk+1(x) = xpk(x) − pk−1(x) .

Since the zeros of pk0
and pk0+1 interlace, one deduces that those of pk0−1 and pk0

interlace, and then those of pk0−2 and pk0−1, and so on. Thus Pk+1(z) and (z−1)Pk(z)

interlace for all k ≥ 1 . If pk(2) = 0, then Pk has a double zero at z = 1, and (z−1)Pk

has a triple zero there; in this case we have CS-interlacing. If Pk+1 has all roots on

the unit circle, then we have CC-interlacing (if pk+1(2) = 0, then Pk+1 has a double

zero at z = 1, and Pk+1(z)/(z − 1) interlaces with Pk(z)). If Pk+1 is Salem but Pk is

cyclotomic, we have CS-interlacing.

6.3 Theorem 5.3 Gives all Pisot Numbers

Now we are in a position to show that the interlacing construction given in Theo-

rem 5.3, with h(z) = 1/z, produces all Pisot numbers.

Theorem 6.4 Given any Pisot number θ, there exists an SS-interlacing quotient

Q(z)/P(z) satisfying the conditions of Theorem 5.3 (with h(z) = 1/z) such that the

only solutions to Q(z)/P(z) = 1 are θ, its conjugates, and 0.

Proof Let A(z) be the minimal polynomial of θ. We consider

P(z) = Pk+1(z) =
(

zk+1A(z) − A∗(z)
)

/(z − 1),

and Q(z) = (z − 1)Pk(z) = zkA(z) − A∗(z).
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We have seen (Theorem 6.3) that for all large enough k the quotient Q/P is an

SS-interlacing quotient. To apply Theorem 5.3 with h(z) = 1/z we need the condi-

tion limz→1+ Q(z)/(z − 1)P(z) < 1. But

lim
z→1+

Q(z)

(z − 1)P(z)
= lim

z→1+

Pk(z)

Pk+1(z)
=

kA(1) + A ′(1) − (A∗) ′(1)

(k + 1)A(1) + A ′(1) − (A∗) ′(1)
,

and this is less than 1 if k is large enough, since A(1) < 0.

Finally we note that Q(z)/(z − 1)P(z) = 1 is equivalent to zkA(z) = 0, which has

as its roots θ, all the conjugates of θ, and 0 (assuming k > 0).

For smaller values of k the quotient Q/P in the proof of Theorem 6.4 might be

CS-interlacing or CC-interlacing. The case k = 0 and P0(0) = 0 is exceptional, as

ever.

The proof of Theorem 6.4 uses Salem’s method to construct the Pk from A, and

then shows, conversely, how A can be recovered from Pk via (6.1) of Lemma 6.1 for k

sufficiently large.

7 All Salem Numbers via Interlacing

7.1 Boyd’s Theorem

We recall the following fundamental result of Boyd [4].

Theorem 7.1 ([4, Theorem 4.1]) Let τ be a Salem number with minimal polynomial

R(z). Define S1(z) = z2 + 1, S−1(z) = z − 1. Then for each choice of ε = ±1, there

exist infinitely many Pisot polynomials A(z) such that (with A∗(z) as before)

(7.1) Sε(z)R(z) = zA(z) + εA∗(z) .

7.2 All Salem Numbers via Interlacing

Armed with Theorem 7.1, we show first (Lemma 7.2) that we can produce all Salem

numbers via SS-interlacing quotients, but with a “right-hand side” other than 1+1/z,

as used in Theorems 3.1, 5.1, and 5.2.

Lemma 7.2 Let τ be any Salem number and choose ε = ±1. Then for all sufficiently

large k there exists an SS-interlacing quotient Q(z)/P(z) such that the only non-zero

solutions to

(7.2)
Q(z)

(z − 1)P(z)
=

zk−1 + ε

zk + ε

are τ , its conjugates, and perhaps some roots of unity.

Proof Let R(z) be the minimal polynomial of τ , and let A(z) be a Pisot polynomial

such that (7.1) holds with our choice of ε. As in the proof of Theorem 6.4, we put

P = Pk+1(z) =
(

zk+1A(z) − A∗(z)
)

/(z − 1) and

Q = (z − 1)Pk(z) = zkA(z) − A∗(z),
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and repeat the observation that for all sufficiently large k the quotient Q(z)/P(z) is an

SS-interlacing quotient. With zkA(z) = Pk+1(z) − Pk(z) we have A∗(z) = Pk+1(z) −
zPk(z), and hence (with Sε(z) = z2 + 1 or z − 1 according as ε = 1 or −1) from (7.1)

we have

zk−1Sε(z)R(z) = zkA(z) + εzk−1A∗(z)

= (Pk+1(z) − Pk(z)) + εzk−1(Pk+1(z) − zPk(z))

= (1 + εzk−1)Pk+1(z) − (1 + εzk)Pk(z),

from which the result follows.

Instead of taking large k in Lemma 7.2, we can consider choosing k of any size.

The choice of k = 1 gives the following theorem.

Theorem 7.3 Consider the equation

(7.3)
Q(z)

(z − 1)P(z)
=

2

z + 1
.

Define four types of Salem number I, II, III, IV as follows. A Salem number τ is

of type I (respectively, II, III, IV ) if there exist monic polynomials P(z), Q(z) such

that Q(z)/P(z) is a CC-interlacing quotient (respectively, CS-interlacing, type 1 SS-

interlacing, type 2 SS-interlacing) and for which the only non-zero solutions to (7.3) are

τ , its conjugates, and pehaps some roots of unity. Then every Salem number is of at least

one of these four types.

Proof We take k = 1 and ε = 1 in the proof of Lemma 7.2. For the interlacing

properties, we appeal to Theorem 6.3.

8 Comparison with the Bertin-Boyd Classification

Let τ be any Salem number, with minimal polynomial R(z). Bertin and Boyd [1]

showed that there exist reciprocal polynomials K(z) and L(z) such that L(z) interlaces

with K(z)R(z) on the unit circle. Their Theorem B is most relevant here, as it relates

to expressing K(z)R(z) in the shape zA(z) + εA∗(z), where A(z) = zmA0(z) is a Pisot

polynomial, with A0(0) 6= 0.

In the case ε = 1, which they use only when A0(0) < 0, their polynomial L(z)

is A(z) + A∗(z); in the case ε = −1, which they use only when A0(0) > 0, their

L(z) is our P0(z). Our proof of interlacing comes from a winding argument; theirs

is via a characterisation of “entrances” and “exits” to and from the unit disc for the

associated algebraic curve zA(z) + εtA∗(z) = 0 (t ≥ 0 real); see [4, Lemma 3.1].

9 Final Remarks

9.1 Pisot Numbers of Negative Trace

As one application of the construction in Theorem 4.2, we produce an example of a

Pisot number that has trace −1 and degree only 16. Earlier examples of Pisot num-

bers that had negative trace had much larger degrees ([12, 14]). The algorithm in
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[16] for producing Pisot numbers of any desired trace gives an example with degree

38. The construction there was that in Theorem 4.2 with h(z) = 1/(z − 1). Instead,

take g(z) = (z − 1)(z8 + z7 − z5 − z4 − z3 + z + 1)/(z2 − 1)(z3 − 1)(z5 − 1) and

h(z) = z7/(z − 1)(z7 − 1) to give a Pisot number with degree 16 and trace −1; its

minimal polynomial is

z16 +z15−z14−4z13−6z12−7z11−7z10−7z9−6z8−4z7−2z6−z5 +z3 +2z2 +2z +1 .

The choice of g(z) (see §2.2) produces a low-degree example of a Salem number

with trace −1 via Theorem 3.1. The choice of the CC-limit function h(z) is motivated

by the desire to introduce a new, negative-trace, low-degree cyclotomic factor into the

denominator.

We used the Dufresnoy–Pisot–Boyd algorithm [5] to search for small Pisot num-

bers of small degree and negative trace. For Pisot numbers below 2, we found 10

examples, of degrees between 22 and 48. The degree-16 example above is for a Pisot

number slightly larger than 2. Finding the smallest degree (perhaps 16?) for a Pisot

number of negative trace remains a challenge.

9.2 Salem Numbers of Large Negative Trace

For Salem numbers of trace −1, see [19]. Salem numbers of trace below −1 first

appeared via a graph construction [15], which can now be seen as a special case of

Theorem 3.1. In [16], Salem numbers of arbitrary trace were produced by interlac-

ing, but the interlacing quotients were not optimal for producing minimal degrees.

Starting with the interlacing quotient

g(z) =
(z − 1)(z8 + z7 − z5 − z4 − z3 + z + 1)

(z2 − 1)(z3 − 1)(z5 − 1)

from Subsection 2.2, add the CC-interlacing quotient

z18 − 1

(z − 1)(z7 − 1)(z11 − 1)
+

z30 − 1

(z − 1)(z13 − 1)(z17 − 1)

and apply Theorem 3.1 to produce a Salem number of degree 54 and trace −3, the

smallest degree currently known for this trace:

z54 + 3z53 + 2z52 − 11z51 − 48z50 − 122z49 − 245z48 + · · · .

(One needs to check that this polynomial has no cyclotomic factors. This can be done

using the algorithm of Beukers and Smyth [3] or by checking irreducibility.)

A real transform of this polynomial can be found in [13, §5.4].

9.3 Small Salem Numbers

Proposition 9.1 Let τ be any Salem number below the real root of z3 − z − 1 (so that

τ is smaller than any Pisot number). Let R(z) be the minimal polynomial of τ , and let

A(z) be any Pisot polynomial such that (7.1) holds with ε = 1. Then A(z) has at least

three real roots, with at least one between 1/τ and 1.

https://doi.org/10.4153/CJM-2011-051-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-051-2


Salem Numbers and Pisot Numbers 365

Proof The conditions on τ imply that A(τ ) < 0. Putting z = τ in (7.1) we deduce

that A∗(τ ) > 0, and hence A∗ has a real root between 1 and τ . Thus A has at least

two real roots: the Pisot number and another root between 1/τ and 1. Since A has

odd degree, it must have at least three real roots.

For example, taking τ to be Lehmer’s number, one possibility for A(z) is

z11 − 2z9 − 4z8 − 4z7 − 3z6 − z5 + z4 + 3z3 + 4z2 + 3z + 1.

Sure enough, this has real roots approximately equal to −0.74616, 0.98390, 2.20974.

It is not known whether or not there is a smallest Salem number. If there is one,

then the next theorem gives some information about it.

Theorem 9.2 If there is a smallest Salem number τ , then it is of type IV (as defined

in Theorem 7.3) and not of any other type.

Proof Suppose that there is a smallest Salem number τ . We take A(z) and

the sequence Pk(z) as in the proof of Lemma 7.2, and claim that Q(z)/P(z) =

(z − 1)P1(z)/P2(z) must be a type 2 SS-interlacing quotient, showing that τ is of

type IV.

If Q(z)/P(z) were either CS-interlacing or type 1 SS-interlacing, then the Salem

root of P(z) would be smaller than τ , giving a contradiction.

Finally we eliminate the possibility that Q(z)/P(z) is CC-interlacing. In this case

we increase k until Pk+1 becomes Salem, with Pk still cyclotomic; then we get (using

(7.2) with Q/P = (z − 1)Pk/Pk+1, as in the proof of Lemma 7.2) that the root of Pk+1

is smaller than our Salem number, again contradicting the minimality of τ .

Note that this is not saying that there are no examples of small Salem numbers that

come from CC or CS interlacing, merely that if we go via (7.3) (as in the definition

of types) we will not see small Salem numbers arising other than as type IV.

9.4 Further Consequences of CC-interlacing

We conclude with two amusing remarks concerning CC-interlacing quotients, which

we record as a single proposition.

Proposition 9.3 Let Q/P be a CC-interlacing quotient. Then

(a) P2 + Q2 has all its roots in T;

(b) P + Q has all its roots in the open unit disc |z| < 1.

Proof For (a) we just apply Lemma 2.1(a). The sum P/Q + Q/P is a CC-interlacing

quotient, so its numerator has all roots in T. We can say even further that these roots

interlace with those of PQ.

For (b) we use another winding argument. Let d be the common degree of P

and Q, and suppose that z − 1 | Q. We observe that it is enough to show that

f (z) = P(z2) + Q(z2) (a polynomial of degree 2d) has all its roots in the open unit

disc.

Write f (z) = zdg(z) = zd
(

P(z2)/zd + Q(z2)/zd
)

. Since P is reciprocal and Q is

antireciprocal, P(z2)/zd and Q(z2)/zd give the real and imaginary parts of g(z) when
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z is on the unit circle. As z goes round the unit circle, anticlockwise, the argument

of zd increases by 2dπ. The roots of P and Q interlace on the unit circle, so as z

goes round the unit circle the pair (ℜg(z),ℑg(z)) cycles d times through one of the

patterns (+,+), (+,−), (−,−), (−,+) or (+,+), (−,+), (−,−), (+,−). We do not

(yet) know which of these patterns occurs, nor at what point in the pattern we start,

but d complete cycles through one of these two patterns must be made. In either

case, g(z) winds d times round the origin. In the former case it winds clockwise,

and in the latter case anticlockwise. We conclude that as z goes anticlockwise around

the unit circle, the argument of f (z) increases by either 0 or 4dπ. It follows that

P(z2) + Q(z2) has either all of its roots in the open unit disc or none of them, and

the same holds for P(z) + Q(z). But since P is reciprocal and Q is antireciprocal, we

have P(0) + Q(0) = 1 + (−1) = 0, so that P + Q has at least one root, namely 0, that

has modulus strictly less than 1. Hence all d roots must have modulus strictly less

than 1.
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