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Abstract Asymptotic approximations to the Green’s functions of Sturm–Liouville boundary-value prob-
lems on graphs are obtained. These approximations are used to study the regularized traces of the dif-
ferential operators associated with these boundary-value problems. Various inverse spectral problems
for Sturm–Liouville boundary-value problems on graphs resembling those considered in Halberg and
Kramer’s ‘A generalization of the trace concept’ (Duke Mathematics Journal 27 (1960), 607–617), for
Sturm–Liouville problems, and Pielichowski’s ‘An inverse spectral problem for linear elliptic differential
operators’ (Universitatis Iagellonicae Acta Mathematica 27 (1988), 239–246), for elliptic boundary-value
problems, are solved.
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1. Introduction

Regularized traces of particular ordinary differential operators have been considered by
Halberg and Kramer [25], Gesztesy et al . [20], Gesztesy and Simon [19], Gilbert and
Kramer [21,22] and Javrjan [28]. The two main theorems of Halberg and Kramer [25,
Theorems 1 and 2] form the foundations for our work; see § 2 for more details. Halberg
and Kramer apply these theorems to the Sturm–Liouville equation

ly = λy, (1.1)

where

ly := −d2y

dx2 + q(x)y (1.2)

on a compact interval with general Lagrange self-adjoint boundary conditions. Javrjan
[28] extended this approach to singular Sturm–Liouville equations, while Gilbert and
Kramer treat various higher-order problems in [21,22].

Belokolos et al . [4], Carlson [10] and Clark et al . [12,13] considered regularized traces
in the context of differential systems.

Bochnek [5, 6] and Pielichowski [31, 32] used the regularized trace in the setting of
elliptic partial differential operators to deduce various inverse spectral results. Combining
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the approaches of [25] and [31,32] we are able to prove various inverse spectral theorems
for Sturm–Liouville operators on compact graphs.

We note that the regularized trace of an operator considered here and in [10,12,21,
22,28,31,32] is as follows. If, in a Hilbert space, A is a lower-semi-bounded self-adjoint
operator and V is a bounded self-adjoint operator such that both A and A + V have
only discrete spectrum, say µ0 � µ1 � · · · and λ0 � λ1 � · · · , respectively (where
eigenvalues are repeated according to multiplicity), with

∑
(λj − µj) convergent, then

this summation is called the regularized trace of A + V with respect to A.
Boundary-value problems on graphs have been studied by many authors, see the special

issue of Waves and Random Media (Volume 12), dedicated to differential operators on
graphs, for a review of some of the activity in this area. We refer the reader to [8] for
an in-depth look at self-adjointness of Sturm–Liouville operators on graphs. Oscillation
theory for Sturm–Liouville problems on graphs was explored in [36]. The eigenvalue
asymptotics and variational formulation of the boundary-value problem used here are
taken from [16] but also appear, under slightly different assumptions, in [2], of which we
were unaware at the time of writing [16].

As regards inverse spectral problems on graphs, the recent paper of Yurko [40] should
be noted for showing the dependence of the potential on (his) Weyl function for Sturm–
Liouville operators on a tree. The reader should also note [7, 9, 24, 29, 33–35, 41] for
their consideration of other inverse spectral problems on graphs. The related but dis-
tinct inverse spectral problem for the matrix Sturm–Liouville operators with Dirichlet
boundary conditions has been considered by many authors: see the bibliography in [12]
for an extensive list. Closer to the problem at hand is the inverse spectral problem for
the matrix Hill equation, studied in [11,17] and, notably via regularized traces, by Carl-
son in [10]. For some aspects of the explicit connections between Sturmian systems and
Sturm–Liouville operators on graphs we refer the reader to [15,38].

In this paper we consider a directed graph, G, with finitely many edges, ei, i = 1, . . . , K,
each of finite length li. The edge ei is identified with the interval [0, li]. Here 0 is associated
with the initial point of ei and li with the terminal point of ei. The focus of our study
is the Sturm–Liouville equation (1.1) on the graph G, where (1.1) becomes a shorthand
for the system of equations

−d2yi

dx2 + qi(x)yi = λyi, x ∈ [0, li], i = 1, . . . , K, (1.3)

where qi and yi denote q|ei
and y|ei

. Here each qi is a real-valued L∞[0, li] function. It
should be noted that by ∂G we mean the set of nodes of G and by G◦ the interior of G,
i.e. G◦ := G \ ∂G.

The boundary conditions at the node ν are specified in terms of the values of y and
y′ at ν on each of the incident edges. In particular, if the edges that start at ν are ei,
i ∈ Λs(ν), and the edges that end at ν are ei, i ∈ Λe(ν), then the boundary conditions
at ν can be expressed as∑

j∈Λs(ν)

[αijyj + βijy
′
j ](0) +

∑
j∈Λe(ν)

[γijyj + δijy
′
j ](lj) = 0, i = 1, . . . , N(ν), (1.4)
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where N(ν) is the number of linearly independent boundary conditions at node ν. The
boundary conditions at each node are assumed to be formally self-adjoint, i.e. the system
is Lagrange self-adjoint in the sense that

(lf, g) − (f, lg) = 0 for all f, g ∈ C2(G) obeying (1.4).

A consequence of the formal self-adjointness is that (1.4) imposes 2K linearly independent
conditions, i.e.

∑
ν N(ν) = 2K (see [8,30] for more details).

After a rescaling of the edges to length 1, the boundary-value problem (1.3), (1.4) is
equivalent to a weighted Sturm–Liouville system on [0, 1] (see [15,38]). Hence properties
such as self-adjointness, lower semi-boundedness and compactness of the resolvent follow
from standard Sturmian systems theory (see [3,30,37,39]). In addition, we require the
boundary conditions to be of co-normal type (see Definition 5.2) in order to ensure a
suitable variational formulation of the boundary-value problem.

The boundary conditions at a node, ν, are said to be of Kirchhoff type if they are of
the form

yi(0) = yj(0) = yr(lr) = ys(ls) for all i, j ∈ Λs(ν), r, s ∈ Λe(ν),∑
j∈Λe(ν)

y′
j(lj) −

∑
j∈Λs(ν)

y′
j(0) = 0.

We say that the node ν has boundary conditions of Neumann type if the boundary
conditions are of Kirchhoff type and #Λs(ν) + #Λe(ν) = 1.

The boundary conditions at ν are of Dirichlet type if they can be expressed as

yi(0) = 0 for all i ∈ Λs(ν),

yj(lj) = 0 for all j ∈ Λe(ν).

It is easily verified that Dirichlet and Kirchhoff boundary conditions are of co-normal
type.

In § 6 we prove our main theorem.

Theorem 1.1. Consider the boundary-value problem on the graph G consisting of
(1.3) and boundary conditions that are of Kirchhoff type at each node ν of G. Let Ã

be the operator generated in L2(G) from this boundary-value problem with q ∈ C2(G),
and let A be operator generated from this problem but with q = 0. If λ0 = µ0 and∑

(λn − µn) converges, where µ0, µ1, . . . and λ0, λ1, . . . are the eigenvalues of Ã and A,
respectively, listed in increasing order and repeated according to multiplicity, then q is
identically 0 on G.

2. Preliminaries

A compact self-adjoint operator C on a Hilbert space is said to be of trace class or ‘nuclear’
if the sum of its eigenvalues, i.e. its trace, denoted tr(C) (with repetition according to
multiplicity), is absolutely convergent (see [23, pp. 95–106]).
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Let T , a self-adjoint operator on Hilbert space H with domain D(T ), be semi-bounded
from below and let (T − µI)−1 be of trace class for µ � M , for some M < 0. Denote the
eigenvalues of T by µ0 � µ1 � · · · , where eigenvalues are repeated according to multiplic-
ity. Associate with this sequence of eigenvalues a corresponding complete orthonormal
sequence of eigenfunctions ϕ0, ϕ1, . . . . In this context, Halberg and Kramer [25, Theo-
rems 1 and 2] prove the following theorem, on which this paper relies.

Theorem 2.1 (Halberg and Kramer). Let V be a bounded operator defined
on D(T ) such that the operator T + V has a denumerable sequence of real eigen-
values λ0 � λ1 � · · · having the property that

∑∞
n=0(λn − µn) is convergent. Then

(T − µI)−1V (T − µI)−1 is of trace class for µ � M , and

∞∑
n=0

(λn − µn) = lim
µ→−∞

µ2 tr[(T − µI)−1V (T − µI)−1]. (2.1)

If, in addition,
∑∞

n=0(V ϕn, ϕn) is convergent, then

∞∑
n=0

(λn − µn) =
∞∑

n=0

(V ϕn, ϕn). (2.2)

It should be noted that in order to obtain (2.1) from the above theorem, we need to
verify the following conditions on the self-adjoint operator T and the bounded operator
V in H:

(a) T is lower semi-bounded;

(b) there exists M < 0 such that (T − µI)−1 is of trace class for µ � M ;

(c) T + V has a denumerable sequence of (real) eigenvalues;

(d)
∑∞

n=0(λn − µn) is convergent.

Here (d) will hold by assumption. In order to obtain (2.2) we, in addition, need V to be
a trace class operator in L2(G).

The following function spaces provide the setting for our work. The first three are
Hilbert spaces when given Sobolev norms:

L2(G) :=
K⊕

i=1

L2(0, li),

Hm
◦ (G) :=

K⊕
i=1

Hm
◦ (0, li), m = 0, 1, 2, . . . ,

Hm(G) :=
K⊕

i=1

Hm(0, li), m = 0, 1, 2, . . . ,
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Cω(G) :=
K⊕

i=1

Cω([0, li]), ω = ∞, 0, 1, 2, . . . ,

Cω
◦ (G) :=

K⊕
i=1

Cω
◦ (0, li), ω = ∞, 0, 1, 2, . . . .

The inner product on Hm(G) and Hm
◦ (G), denoted (·, ·)m, is defined by

(f, g)m :=
K∑

i=1

m∑
j=0

∫ li

0
f |(j)ei

ḡ|(j)ei
dt =:

m∑
j=0

∫
G

f (j)ḡ(j) dt. (2.3)

Let ‖f‖2
m := (f, f)m. We will write (f, g) for (f, g)0 and ‖f‖ for ‖f‖0.

The boundary-value problem (1.3), (1.4) on G can be formulated as an operator eigen-
value problem in L2(G) by setting

Af := −f ′′ + qf (2.4)

with domain

D(A) = {f | f, f ′ ∈ AC, Af ∈ L2(G), f obeying (1.4)} (2.5)

(see [2,8,16], and for systems formulations of (1.3), (1.4) see [15,38]).
Note that since q ∈ L∞(G) an equivalent definition of D(A) is

D(A) = {f ∈ H2(G) | f obeys (1.4)},

which is clearly independent of q. The operator A thus defined is a lower-semi-bounded
self-adjoint operator with compact resolvent in L2(G) (see [27,30,39] or [37, Chapter 7]).

Set A0 to be the principal part of A and let Vp, for each real-valued p ∈ L∞(G), denote
the multiplier operator

Vpf = pf for all f ∈ L2(G). (2.6)

Observe that A = A0 + Vq and that Vq is a bounded self-adjoint operator in L2(G) for
each real-valued q ∈ L∞(G).

3. Green’s function

Formulating (1.3), (1.4) as a second-order system with separated boundary conditions
(see [15]) gives directly that the boundary-value problem has a Green’s function and
that the Green’s operator is a compact operator. Denote the iterated Green’s function
by gk(x, y, λ), k ∈ N, i.e. the kernel of the operator Gk

λ := (A − λI)−k. We give an
analogue of [18, § 3] for iterated Green’s functions on a graph: Lemma 3.1. In particular,
for ρ > 0 large,

Gk
−ρ2f(y) =

∫
G

gk(y, x,−ρ2)f(x) dx for all f ∈ L2(G), (3.1)
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and

(l + ρ2)kGk
−ρ2f = f for all f ∈ L2(G), (3.2)

G−ρ2(l + ρ2)f = f for all f ∈ D(A). (3.3)

For x �= y,

(lx + ρ2)G−ρ2(x, y,−ρ2) = 0, (3.4)

where lx denotes l operating with respect to the variable x, with y held constant. As the
boundary-value problem is self-adjoint,

G−ρ2(y, x,−ρ2) = G−ρ2(x, y,−ρ2), (3.5)

for ρ ∈ R.
Let A denote the operator A generated when (1.4) is replaced by Dirichlet bound-

ary conditions at all nodes, and denote by Γ and γ the Green’s operator and function
corresponding to A.

Lemma 3.1. Let k ∈ N, q ∈ C2(k−1)(G) be real valued, and let U ⊂ G be open with
Ū ⊂ G◦. If r = 1

3 dist(∂G, Ū), then

|gk(y, z,−ρ2) − γk(y, z, −ρ2)| � C(U)
ρ2e2rρ

for y, z ∈ U,

where C(U) > 0 is independent of ρ and y, z.

Proof. The sesquilinear forms generated by gk(x, y,−ρ2) and γk(x, y,−ρ2) will,
respectively, be denoted by

Gk
ρ(f, h) :=

∫
G

∫
G

f(x)gk(x, y,−ρ2)h(y) dxdy,

and

Γ k
ρ (f, g) :=

∫
G

∫
G

f(x)γk(x, y,−ρ2)g(y) dxdy,

for f, h ∈ L2(G). Now λ0(g, g) � (Ag, g) for all g ∈ D(A), and consequently (ρ2 +
λ0)(g, g) � ((A + ρ2)g, g), from which it follows that, for all ρ2 > λ0,

0 � (λ0 + ρ2)‖g‖2 � ‖(A + ρ2)g‖ ‖g‖.

Thus
0 � (λ0 + ρ2)‖g‖ � ‖(A + ρ2)g‖ for all g ∈ D(A).

Let h ∈ L2(G) and g := Gρh, then the above display gives

‖Gρh‖ � ‖h‖
λ0 + ρ2 ,

https://doi.org/10.1017/S0013091506000319 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506000319


Traces of Sturm–Liouville operators 321

from which it follows immediately that

‖Gρ‖ � 1
λ0 + ρ2 for all ρ2 > λ0.

Hence there exists κ > 0 such that, for ρ > 0 sufficiently large,

‖Gk
ρ‖ � κ

ρ2k
,

and thus, for k ∈ N and ρ > 0 large,

|Gk
ρ(f, h)| � κ

ρ2k
‖f‖ ‖h‖ for all f, h ∈ L2(G), (3.6)

with a similar bound holding for Γ k
ρ . Now let

Ck
ρ (f, g) := Gk

ρ(f, g) − Γ k
ρ (f, g).

From (3.6) and its analogue for Γ k
ρ , there exists a constant κ1 > 0 such that, for large

ρ > 0,

‖Ck
ρ ‖ = sup

f,g∈L2(G)\{0}

|Ck
ρ (f, g)|

‖f‖ ‖g‖ = sup
f,g∈L2(G)\{0}

|Gk
ρ(f, g) − Γ k

ρ (f, g)|
‖f‖ ‖g‖ � κ1

ρ2k
. (3.7)

Thus ‖Ck
ρ ‖ = O(ρ−2k).

Since
H2k

◦ (G) ⊂ D(A) ∩ D(A),

it follows that
Akh = A

kh = lkh for all h ∈ H2k
◦ (G).

Let
bk
ρh := (A + ρ2)kh = (A + ρ2)kh = (l + ρ2)kh for all h ∈ H2k

◦ (G).

From the definitions of gk(x, y,−ρ2) and γk(x, y,−ρ2),

Gk
ρ(f, bk

ρh) = (f, Gk
ρbk

ρh) = (f, h) = (f, Γ k
ρ bk

ρh) = Γ k
ρ (f, bk

ρh)

for all f ∈ L2(G) and h ∈ H2k
◦ (G), and thus, for all such f and h,

Ck
ρ (f, bk

ρh) = Gk
ρ(f, bk

ρh) − Γ k
ρ (f, bk

ρh) = 0. (3.8)

Let U1, U2 be open subsets of G with

Ū ⊂ U1 ⊂ Ū1 ⊂ U2 ⊂ Ū2 ⊂ G◦.

Let ϕ ∈ C∞
◦ (G) with ϕ|U1 ≡ 1 and ϕ|G\U2 ≡ 0. For y ∈ U1 let

pk
ρ(y, x) := bk

ρ,x[γk(y, x,−ρ2)(1 − ϕ(x))] for all x ∈ G. (3.9)

Then, for y ∈ U1, pk
ρ(y, x) vanishes everywhere except possibly for x ∈ U2 \ U1.
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For each y, y∗ ∈ U1 let

ck(y, y∗,−ρ2) := Ck
ρ (pk

ρ(y, ·), pk
ρ(y∗, ·))

=
∫

G

∫
G

pk
ρ(y, x)[gk − γk](x, w,−ρ2)pk

ρ(y∗, w) dxdw,

and, for each f, h ∈ L2(G) with support in U1, i.e. f = χU1f and g = χU1g, where χU1

is the characteristic function of U1,

ck
ρ(f, h) =

∫
G

∫
G

f(y)ck(y, y∗,−ρ2)h(y∗) dy dy∗.

From the continuity of pk
ρ and ck

ρ,

ck
ρ(f, h) =

∫
G

∫
G

f(y)ck(y, y∗,−ρ2)h(y∗) dy dy∗

=
∫

G

∫
G

[ ∫
G

f(y)pk
ρ(y, z) dy

]
[gk − γk](x, w,−ρ2)

[ ∫
G

pk
ρ(y∗, w)h(y∗) dy∗

]
dw dx

= Ck
ρ

([ ∫
G

f(y)pk
ρ(y, ·) dy

]
,

[ ∫
G

pk
ρ(y∗, ·)h(y∗) dy∗

])
= Ck

ρ (bk
ρ[(1 − ϕ)Γ k

ρ f ], bk
ρ[(1 − ϕ)Γ k

ρ h])

= Ck
ρ (f − bk

ρϕΓ k
ρ f, h − bk

ρϕΓ k
ρ h),

for f, h ∈ H2k(G) with supp(f), supp(h) ⊂ U1.
Since ϕΓ k

ρ f, ϕΓ k
ρ h ∈ H2k

◦ (G), by (3.8),

Ck
ρ (f, bk

ρϕΓ k
ρ h) = Ck

ρ (bk
ρϕΓ k

ρ f, h) = Ck
ρ (bk

ρϕΓ k
ρ f, bk

ρϕΓ k
ρ h) = 0

and
Ck

ρ (f, h) = ck
ρ(f, h).

Thus

Gk
ρ(f, h) = Γ k

ρ (f, h) + ck
ρ(f, h), (3.10)

for f, h ∈ H2k(G) with supp(f), supp(h) ⊂ U1. By continuity of the forms Ck
ρ , Gk

ρ and
Γ k

ρ , (3.10) holds for all f, h ∈ L2(G) with supports contained in U1. Consequently,

gk(z, w,−ρ2) = γk(z, w,−ρ2) + ck(z, w,−ρ2), (3.11)

almost everywhere for z, w ∈ U1, and, since gk(z, w,−ρ2), γk(z, w,−ρ2) and ck(z, w,−ρ2)
are continuous with respect to z, w ∈ G, (3.11) holds for al2l z, w ∈ U1.

From (3.7) it follows that, for large ρ > 0 and y, y∗ ∈ U ,

|ck(y, y∗,−ρ2)| � κ2

ρ2k
‖pk

ρ(y, ·)‖ ‖pk
ρ(y∗, ·)‖.
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Let y ∈ U , then

‖pk
ρ(y, ·)‖ � K(ϕ)

2k−1∑
i=0

sup
x∈U2\U1

∣∣∣∣∂iγk(y, x,−ρ2)
∂xi

∣∣∣∣.
and, by Corollary 6.3,

‖pk
ρ(y, ·)‖ � C(ϕ) sup

x∈U2\U1

e−ρ|x−y|ρk−1,

where K(ϕ) and C(ϕ) depend on ϕ and its derivatives.
Let r = dist(Ū2 \ U1, Ū), then from the above bound and Lemma 6.2 there is a constant

C(ϕ) > 0 such that for y ∈ U

‖pρ(y, ·)‖ � C(ϕ)e−rρρk−1.

Hence for all y, y∗ ∈ U

|ck(y, y∗,−ρ2)| � κ2C
2(ϕ)

e−2rρ

ρ2 ,

from which the lemma follows directly. �

Combining Lemmas 6.2 and 3.1 yields the following corollary.

Corollary 3.2. For λ < −|λ0|, where λ0 is the least eigenvalue of (1.3), (1.4), and
q ∈ C2(G), the iterated Green’s function g2(x, y, λ) of (l − λ) with (1.4) satisfies

lim
ρ→∞

ρ3g2(x, x,−ρ2) = 1
4 for each x ∈ G. (3.12)

This limit holds uniformly on compact subsets of G◦.

4. Regularized traces

In this section we develop the theory of regularized traces for differential operators on
graphs. Regularized traces of partial differential operators on regions with smooth bound-
aries and compact closures were studied in [5,28,32].

If A and Ã are lower-semi-bounded self-adjoint semi-simple differential operators with
eigenvalues λ0 � λ1 � · · · and λ̃0 � λ̃1 � · · · listed in increasing order and repeated
according to multiplicity, then the regularized trace of A with respect to Ã is

∑
(λj − λ̃j),

if this summation converges. This summation is termed the regularized trace of A with
respect to Ã (see [25]) since neither A nor Ã need necessarily have finite trace for the
regularized trace to be defined.

Lemma 4.1. Let A and Vp, p ∈ L∞(G), be as defined in (2.4)–(2.6) and let µ0, µ1, . . .

and λ0, λ1, . . . be the eigenvalues of A+Vp and A, respectively, listed in increasing order
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and repeated according to multiplicity. If
∑∞

n=0(µn − λn) is convergent, then VpA
−2
λ is

a trace class operator and

lim
λ→−∞

λ2 tr(VpA
−2
λ ) =

∞∑
n=0

(µn − λn), (4.1)

where Aλ = A − λI.

Proof. Assume that
∑∞

n=0(µn − λn) is convergent. Let {ϕn} be an orthonormal fam-
ily of eigenfunctions of A corresponding to the eigenvalue sequence {λn}. Then

∞∑
n=0

|(VpA
−2
λ ϕn, ϕn)| �

∞∑
n=0

‖Vp‖
|λ − λn|2 < ∞

since there exist constants 0 < K1 < K2 such that, for large n, K1n
2 � λn � K2n

2

(see [15]). Therefore, VpA
−2
λ is a trace class operator. From Theorem 2.1,

∞∑
n=0

|(A−1
λ ϕn, ϕn)| �

∞∑
n=0

1
|λ − λn| �

∞∑
n=0

1
K1n2 − |λ| < ∞.

Now, since A and A + Vp both have only discrete spectrum, Theorem 2.1 can be applied
to give

lim
λ→−∞

λ2 tr(A−1
λ VpA

−1
λ ) =

∞∑
n=0

(µn − λn). (4.2)

The lemma now follows upon noting that, for λ < λ0, the self-adjointness of A gives

tr(A−1
λ VpA

−1
λ ) =

∞∑
n=0

(A−1
λ VpA

−1
λ ϕn, ϕn)

=
∞∑

n=0

(VpA
−1
λ ϕn, A−1

λ ϕn)

=
∞∑

n=0

(Vpϕn, ϕn)
(λn − λ)2

=
∞∑

n=0

(VpA
−2
λ ϕn, ϕn).

�

As in [32], the Mercer expansion, together with Corollary 3.2 and Lemma 4.1, shows
that the convergence of the regularized trace of A + Vp with respect to A implies that
the mean value of p is 0. More precisely we obtain the following theorem.

Theorem 4.2. Let A, Vp, p ∈ C2(G), be as defined in (2.4)–(2.6) and let µ0 � µ1 � · · ·
and λ0 � λ1 � · · · be the eigenvalues of A + Vp and A, respectively, repeated according
to multiplicity. If

∑∞
n=0(µn − λn) is convergent, then

∫
G

p(x) dx = 0.
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Proof. Mercer expansion of g2(x, y, λ) gives

g2(x, y, λ) =
∞∑

n=0

ϕn(x)ϕn(y)
(λn − λ)2

where {ϕn} is an orthonormal sequence of eigenfunctions of A corresponding to the
eigenvalue sequence {λn}. In particular

g2(x, x, λ) =
∞∑

n=0

ϕ2
n(x)

(λn − λ)2
,

where the summation

b(x) :=
∞∑

n=0

ϕ2
n(x)

|λn − λ|2

converges both almost everywhere pointwise and in L1(G) as there exist constants 0 <

K1 < K2 such that, for large n, K1n
2 � λn � K2n

2 (see [15]). Thus b(x) max |p(x)| is
an L1(G)-bound for the pointwise-convergent sequence of partial sums

{ N∑
n=0

ϕ2
n(x)p(x)

(λn − λ)2

}
.

Hence Lebesgue’s dominated convergence theorem can be applied to give∫
G

g2(x, x, λ)p(x) dx =
∞∑

n=0

∫
G

ϕ2
n(x)p(x)

(λn − λ)2
dx = tr(VpA

−2
λ ).

Now, as
∑∞

n=0(µn − λn) converges, from Lemma 4.1 we obtain

lim
λ→−∞

λ3/2 tr(VpA
−2
λ ) = lim

λ→−∞
λ2 tr(VpA

−2
λ ) lim

λ→−∞
λ−1/2 = 0.

Hence
0 = lim

λ→−∞
λ3/2 tr(VpA

−2
λ ) = lim

λ→−∞

∫
G

λ3/2g2(x, x, λ)p(x) dx.

The uniformity on compact subsets of G◦ of the limit in Corollary 3.2 allows us to
interchange the limit and the summation above, giving

0 =
∫

G

lim
λ→−∞

(−λ)3/2g2(x, x, λ)p(x) dx = 1
4

∫
G

p(x) dx.

�

5. Inverse spectral problems

In this section we apply Theorem 4.2 to inverse spectral problems for second-order oper-
ators on graphs. The first theorem gives a simple consequence of Theorem 4.2 while the
second result uses the variational reformulation of (1.3), (1.4) to give a somewhat deeper
result.
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Theorem 5.1. If A, Vp, {λj} and {µj} are as defined in Theorem 4.2, then for

∞∑
j=0

(µj − λj) (5.1)

convergent and p of constant sign on G we have that p = 0 everywhere on G.

Proof. From Theorem 4.2,
∫

G
p(x) dx = 0, making p = 0 almost everywhere and thus

identically 0, as p ∈ C2(G). �

The eigenvalue problem (1.3), (1.4), or equivalently the operator eigenvalue problem
associated with A, has a variational or weak H1(G) formulation and this was studied
in [16]. Without loss of generality, we assume the boundary conditions (1.4) to be of the
form

K∑
j=1

[αijyj(0) + γijyj(lj)] = 0, i = 1, . . . , J, (5.2)

K∑
j=1

[αijyj(0) + βijy
′
j(0) + γijyj(lj) + δijy

′
j(lj)] = 0, i = J + 1, . . . , 2K, (5.3)

where yi = y|ei
and J is maximal, i.e. no conditions independent of y′

j(0) and y′
j(lj) can

be extracted by linear operations from (5.3).
Let F (x, y) be the sesquilinear form given by

F (x, y) :=
∫

∂G

fxȳ +
∫

G

(x′ȳ′ + xqȳ) dt, (5.4)

with domain
D(F ) = {y ∈ H1(G) | y obeying (5.2)},

where ∫
∂G

y dσ :=
K∑

i=1

[yi(li) − yi(0)] =
∫

G

y′ dt.

Definition 5.2. The boundary conditions on G are co-normal with respect to l if
there exists f defined on ∂G such that x ∈ D(F ) obeys∫

∂G

fxȳ dσ =
∫

∂G

x′ȳ dσ for all y ∈ D(F ),

if and only if x obeys (5.3).

Most physically interesting boundary conditions on graphs are of co-normal type. In
particular, Kirchhoff boundary conditions are co-normal. Observe that if node ν has
Kirchhoff boundary conditions, then f(x) = 0 for all x ∈ ν and this node contributes the
domain conditions y(x) = y(z) for all x, z ∈ ν.
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If each node of G has boundary conditions of Kirchhoff type, let ΛK denote the col-
lection of nodes of G. Then

D(F ) = {y ∈ H1(G) | y(x) = y(z) for all x, z ∈ ν, for each ν ∈ ΛK}, (5.5)

and f is the constant 0 function on ∂G.
In [16] it was shown that if (5.2), (5.3) are co-normal boundary conditions with respect

to l, then u ∈ D(F ) satisfies F (u, v) = λ(u, v) for all v ∈ D(F ) if and only if u ∈ H2(G)
and u obeys (1.1), (5.2), (5.3).

Proof of Theorem 1.1. From Theorem 4.2 with p = −q, we obtain that∫
G

q(x) dx = 0.
Let F̃ and F denote the sesquilinear forms corresponding to the eigenvalue problems

for Ã and A, respectively, and let D(F̃ ) = D = D(F ) denote their domain as given in
(5.5). Observe that

F̃ (x, y) =
∫

G

(x′ȳ′ + xqȳ) dt

and

F (x, y) =
∫

G

x′ȳ′ dt.

Hence F is positive definite on D, making λ0 � 0. In addition, from the definition of D
it is apparent that the constant 1 function 1 is in D. Also F (1,1) = 0 and thus, from the
variational formulation of the boundary-value problem in [16], 0 is the least eigenvalue
of A and has eigenfunction 1. The hypotheses of the theorem now enable us to conclude
that 0 is also the least eigenvalue of Ã, making F̃ positive semi-definite on D. But the
definition of F̃ , along with the mean value of q being 0, gives

F̃ (1,1) =
∫

G

q dt = 0.

Hence 1 is an eigenfunction of Ã with eigenvalue 0, from [16].
In [16] it was shown that the eigenvalue problem for the operator A and the boundary-

value problem (1.3), (1.4) are equivalent. Consequently, 1 is an eigenfunction of (1.3),
(1.4) for the eigenvalue 0 and so q = −(1)′′ + q · 1 = 0 · 1 = 0. �

6. Appendix

If we impose Dirichlet boundary conditions at each node on the graph G, i.e. the con-
dition that yi(0) = 0 = yi(li) for all i = 1, . . . , K, then, from a boundary-value-problem
perspective, the graph can be considered as a disconnected graph composed of the disjoint
union of the edges ei each with Dirichlet boundary conditions at both ends.

Equation (1.3) with Dirichlet boundary conditions at each node has operator represen-
tation A, where D(A) = H2(G) ∩ H1

◦(G) and has a particularly simple Green’s function.
Denote the iterates of this Green’s function by γk(x, y, λ), k ∈ N, i.e. the kernel of
Γ k

λ := (A − λI)−k.
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For ρ > 0, denote
√

λ = iρ.

Lemma 6.1. The iterated Green’s function γk(x, y, λ) of

(l − λ)g = −d2g

dx2 + qg − λg,

with Dirichlet boundary conditions at each node, is given by

γk(x, y, λ) =

{
0, x ∈ ei, y ∈ ej , where i �= j,

γk
i (x, y, λ), x, y ∈ ei,

where γk
i (x, y, λ) is the iterated Green’s function of (l − λ) on the edge ei with Dirichlet

boundary conditions at both ends.

Proof. If f ∈ L2(G) and x ∈ ei, then

(A − λ)
∫

G

γ(x, y, λ)f(y) dy = (l − λ)
∫ li

0
γi(x, y, λ)fi(y) dy = f(x).

Also, for x ∈ ei and f ∈ D(A) we have

∫
G

γ(x, y, λ)(A − λ)f(y) dy =
∫ li

0
γi(x, y, λ)(l − λ)fi(y) dy = f(x),

thus proving the claim for k = 1.
Assuming the result for k and letting x ∈ ei, bootstrapping on the above case, we

obtain that

γk+1(x, y, λ) =
∫

G

γ(x, z, λ)γk(z, y, λ) dz =
∫ li

0
γi(x, z, λ)γk(z, y, λ) dz.

But the hypothesis that the result holds for k gives, for z ∈ ei,

γk(z, y, λ) =

{
0, y ∈ ej , where i �= j,

γk
i (z, y, λ), y ∈ ei,

and hence

γk+1(x, y, λ) =

⎧⎪⎨
⎪⎩

0, y ∈ ej , where i �= j,∫ li

0
γi(x, z, λ)γk

i (z, y, λ) dz, y ∈ ei,

from which the result follows for k + 1 upon noting that

γk+1
i (x, y, λ) =

∫ li

0
γi(x, z, λ)γk

i (z, y, λ) dz.

The theorem now follows by induction. �
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Lemma 6.2. For q ∈ C2(k−1)(G) let γk
i (x, y,−ρ2) be as defined in Lemma 6.1. Then

γk
i has the following asymptotics approximations:

γk
i (x, y,−ρ2) = O

(
e−ρ|x−y|

ρk

)
, (6.1)

∂γk
i (x, y,−ρ2)

∂y
= O

(
e−ρ|x−y|

ρk−1

)
, (6.2)

γi(x, y,−ρ2) =
e−ρ|x−y|

2ρ

(
1 + O

(
1
ρ

))
, (6.3)

γ2
i (x, y,−ρ2) =

e−ρ|x−y|

4ρ2

[
|x − y|

(
1 + O

(
1
ρ

))
+

1
ρ

(
1 + O

(
1
ρ

))]
, (6.4)

where (6.1) and (6.2) hold uniformly in x and y as ρ → +∞, while (6.3) and (6.4) hold
uniformly for (x, y) on compact subsets of e◦

i × e◦
i = (0, li) × (0, li) as ρ → +∞.

Proof. By Lemma 6.1 we need only consider the case of x, y ∈ ei. We proceed by
induction on k.

k = 1. Let S(x, ρ) be the solution (l + ρ2)S = 0 on e◦
i = (0, li) having S(0, ρ) = 0 and

S′(0, ρ) = 1, then, from the appendix of [26],

S(x, ρ) =
sinh ρx

ρ
+ O

(
eρx

ρ2

)
, (6.5)

S′(x, ρ) = cosh ρx + O

(
eρx

ρ

)
. (6.6)

Let σ(x, ρ) be the solution of (l + ρ2)σ = 0 on ei with σ(li, ρ) = 0 and σ′(li, ρ) = 1, then,
again from the appendix of [26],

σ(x, ρ) =
sinh ρ(x − li)

ρ
+ O

(
eli−x

ρ2

)
, (6.7)

σ′(x, ρ) = cosh ρ(x − li) + O

(
eli−x

ρ

)
. (6.8)

In (6.5)–(6.8) the approximations are uniform in x as ρ → +∞.
The Green’s function γi can be explicitly expressed in terms of the solutions S(x, ρ)

and σ(x, ρ) by

γi(x, y,−ρ2) =

⎧⎪⎪⎨
⎪⎪⎩

S(x, ρ)σ(y, ρ)
W [σ, S]

, x � y,

σ(x, ρ)S(y, ρ)
W [σ, S]

, x � y

(6.9)

(see [14] or [30, pp. 35–37]). Here W [σ, S](ρ) denotes the Wronskian of σ(x, ρ) and
S(x, ρ), which has the argument x omitted as it is independent of x (see [14, p. 82]). It
should be noted that γi(x, y,−ρ2) is a continuous function of x and y (see [30, p. 29]).
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Combining (6.5)–(6.8), direct computation gives

W [σ, S](0, ρ) = −eρli

2ρ

(
1 + O

(
1
ρ

))
, (6.10)

as ρ → +∞.
Substituting (6.5), (6.7) and (6.10) into (6.9) gives

γi(x, y,−ρ2) = O

(
e−ρ|y−x|

ρ

)

uniformly in x and y for ρ → +∞. Also, uniformly for (x, y) on compact subsets of
ei × ei = (0, li) × (0, li) as ρ → +∞ we have the more precise estimate

γi(x, y,−ρ2) =
e−ρ|x−y|

2ρ

(
1 + O

(
1
ρ

))
.

We have thus established (6.1) for k = 1 and (6.3).
Differentiating (6.9) with respect to y yields

∂γi(x, y,−ρ2)
∂y

=

⎧⎪⎪⎨
⎪⎪⎩

S(x, ρ)
W [σ, S](ρ)

dσ(y, ρ)
dy

, x < y,

σ(x, ρ)
W [σ, S](ρ)

dS(y, ρ)
dy

, x > y,

(6.11)

for all x �= y and ρ > 0 large. Substituting the estimates (6.5)–(6.8) into (6.11) we obtain

∂γi(x, y,−ρ2)
∂y

= O(e−ρ|x−y|) (6.12)

uniformly in x and y for ρ → +∞, thus proving (6.2) for k = 1.

The induction step. For the remainder of the proof we assume that the lemma is
true for k. We begin by considering (6.1) for k + 1. From the definition of γk+1

i it follows
that

γk+1
i (x, y,−ρ2) =

∫ li

0
γk

i (x, z,−ρ2)γi(z, y,−ρ2) dz. (6.13)

The induction hypothesis and (6.1) for the case of k = 1 applied to (6.13), where the
uniformity of the approximations is noted, gives

γk+1
i (x, y,−ρ2) = O

( ∫ li

0

e−ρ|x−z|

ρk

e−ρ|y−z|

ρ
dz

)
.

Since |x − z| + |z − y| � |y − x|, the above equation yields

γk+1
i (x, y,−ρ2) = O

(
e−ρ|x−y|

ρk+1

)

uniformly in x and y as ρ → +∞, thereby proving (6.1).
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The proof of (6.2) follows from (6.1) and the case of (6.2) for k = 1 since

∂γk+1
i (x, y,−ρ2)

∂y
=

∫ li

0
γk

i (x, z,−ρ2)
∂γi(z, y,−ρ2)

∂y
dz

= O

( ∫ li

0

e−ρ|x−z|

ρk
e−ρ|y−z| dz

)
,

from which it follows, as in the case of the iterates of γi, that

∂γk+1
i (x, y,−ρ2)

∂y
= O

(
e−ρ|x−y|

ρk

)

uniformly in x and y as ρ → +∞, thereby proving (6.2).
We now progress to the proof of (6.4). From (6.5), (6.7) and (6.9), observe that for

x � y

1
4ρ2e2ρliγ2

i (x, y,−ρ2)

= 1
4ρ2e2ρli

∫ li

0
γi(x, z,−ρ2)γi(z, y,−ρ2) dz

=
∫ x

0

(
sinh ρ(x − li) sinh2 ρz sinh ρ(y − li) + O

(
eρ(2z+2li−x−y)

ρ

))
dz

+
∫ y

x

(
sinh ρx sinh ρ(z − li) sinh ρz sinh ρ(y − li) + O

(
eρ(2li+x−y)

ρ

))
dz

+
∫ li

y

(
sinh ρx sinh2 ρ(z − li) sinh ρy + O

(
eρ(2li−2z+x+y)

ρ

))
dz

= sinh ρ(x − li) sinh ρ(y − li)
(

− 1
2x +

sinh 2ρx

4ρ

)

+ sinh ρx sinh ρ(y − li)
(

− y − x

2
cosh ρli +

sinh ρ(2y − li)
4ρ

− sinh ρ(2x − li)
4ρ

)

+ sinh ρx sinh ρy

(
− li − y

2
+

sinh 2ρ(li − y)
4ρ

)

+ O

(
eρ(2li+x−y)

ρ2 + |x − y|e
ρ(2li+x−y)

ρ

)

uniformly in x � y as ρ → +∞. If we relax the uniformity of the above estimates to
uniformity in (x, y) on compact subsets of e◦

i × e◦
i = (0, li)× (0, li) and use the symmetry

of γi, the above expression can be simplified to

γ2
i (x, y,−ρ2) =

e−ρ|x−y|

4ρ2

[
|x − y|

(
1 + O

(
1
ρ

))
+

1
ρ

(
1 + O

(
1
ρ

))]
,

thereby proving (6.4). �

The following corollaries follow from Lemma 6.2.
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Corollary 6.3. If q ∈ C(2k−1)(G) and γk
i (x, y,−ρ2) is as defined in Lemma 6.1, then∣∣∣∣ ∂j

∂xj
γk

i (x, y,−ρ2)
∣∣∣∣ � K

ρk−j
e−ρ|x−y| (6.14)

uniformly in x and y as ρ → ∞ for 0 � j < k, k ∈ N, and K a constant.

Proof. By Lemma 6.1 we need only consider x, y ∈ ei.
As in the proof of Lemma 3.1, let bk

ρ,x := (A + ρ2)k, where x denotes the variable with
respect to which A is operating. For f ∈ D(Aj) ⊃ C∞

0 (G) we have

Γ k
i bj

ρf = Γ k−j
i f.

Thus ∫ li

0
γk

i (x, y,−ρ2)bj
ρ,yϕ(y) dy =

∫ li

0
γk−j

i (x, y,−ρ2)ϕ(y) dy

for ϕ ∈ C∞
0 (ei).

Since the boundary-value problem is formally self-adjoint with q ∈ C2(k−1)(G) and
since ϕ ∈ C∞

0 (ei) we obtain from the above equation

∫ li

0
bj
ρ,yγk

i (x, y,−ρ2)ϕ(y) dy =
∫ li

0
γk−j

i (x, y,−ρ2)ϕ(y) dy.

Therefore, making

bj
ρ,xγk

i (x, y,−ρ2) = γk−j
i (x, y) for 0 � j < k

and

bk
ρ,xγk

i (x, y,−ρ2) = 0 for x �= y.

We now prove that the inequality∣∣∣∣ ∂j

∂xj
γk

i (x, y,−ρ2)
∣∣∣∣ � Kk,j

ρk−j
e−ρ|x−y| (6.15)

holds for all 0 � j < 2k − 1, where Kk,j is a constant.
Lemma 6.2 gives immediately that (6.15) is true for k = 1, 2.
Suppose that (6.15) is true for all 1, 2, . . . , k, then by Lemma 6.2 we have that for k

replaced by k + 1 and j = 0, 1, (6.15) holds, i.e.

γk+1
i (x, y,−ρ2)| � Kk+1,0

ρk+1 e−ρ|x−y|

and ∣∣∣∣ ∂

∂x
γ2

i (x, y,−ρ2)
∣∣∣∣ � Kk+1,1

ρk−1 e−ρ|x−y|

for Kk+1,0, Kk+1,1 constants.
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Now assume that ∣∣∣∣ ∂j

∂xj
γk+1

i (x, y,−ρ2)
∣∣∣∣ � Kk+1,j

ρk+1−j
e−ρ|x−y|

is true for all j = 0, 1, . . . J , where 1 � J � 2k − 2.
Then, using Leibnitz’s rule (see [1, p. 9]),

∣∣∣∣ ∂J+1

∂xJ+1 γk+1
i (x, y,−ρ2)

∣∣∣∣ =
∣∣∣∣ ∂J−1

∂xJ−1 (−bρ,x + qi(x) + ρ2)γk+1
i (x, y,−ρ2)

∣∣∣∣
=

∣∣∣∣ ∂J−1

∂xJ−1 [−γk
i (x, y,−ρ2) + (qi(x) + ρ2)γk+1

i (x, y,−ρ2)]
∣∣∣∣

=
∣∣∣∣ − ∂J−1

∂xJ−1 γk
i (x, y,−ρ2) + ρ2 ∂J−1

∂xJ−1 γk+1
i (x, y,−ρ2)

+
∑

m�J−1

(
m

J − 1

)(
∂mqi(x)

∂xm

)
∂J−1−m

∂xJ−1−m
γk+1

i (x, y,−ρ2)
∣∣∣∣

� e−ρ|x−y|
(

Kk,J−1

ρk−J+1 +
Kk+1,J−1

ρk−J
+ O

(
1

ρk−J+2

))

= e−ρ|x−y|O

(
1

ρk−J

)

� Kk+1,J+1
e−ρ|x−y|

ρk−J

for Kk,J−1, Kk+1,J−1 and Kk+1,J+1 constants. Hence the lemma now follows. �

Corollary 6.4. If q ∈ C3(G) and γ2
i (x, y,−ρ2) is as defined in Lemma 6.1, then

γ2
i (x, x,−ρ2) =

1
4ρ3

[
1 + O

(
1
ρ

)]

uniformly for x on compact subsets of e◦
i = (0, li) as ρ → +∞.
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