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We identify the extreme points of the unit sphere of the Lorentz space Lwl. This
yields a characterization of the surjective isometries of Lw ,(0,1). Our main result is that
every element in the unit sphere of LwX is the barycenter of a unique Borel probability
measure supported on the extreme points of the unit sphere of Lw_,.

1. Notation and terminology. For a measurable function / defined on (0, °°) we
define the distribution of/by df{t) = \{x:\f(x)\>t}\, 0<f <<» (|,4| denotes the Lebesgue
measure of the set A), and the decreasing rearrangement of / by f*(t) = inf{s > 0: df(s) <
t}. Following [5] we define the Lorentz space LwA(0,») as the space of all (equivalence
classes of) measurable functions / on (0, <») for which | |/ | | = iof*(t)w(t) dt<<*>, where
w.(0, °°) —*(0, °°) is a strictly decreasing function satisfying lim w(t) = <»,lim w(t) = 0,

0>0

Pow(t)dt = 1, and $Qw(t)dt = co. Lw] is sometimes referred to as A^ where
0(0 = 5ow(s)ds,t^:0. The fact that w is strictly decreasing implies that <f> is strictly
concave.

For M>0, Lw A(0, M) is the subspace of L^^O,^) consisting of those functions
which are supported on [0, M], We shall write LwA when the domain does not affect the
argument.

I(A) denotes the characteristic function of a set A c [0,°°). If 0 < \A\ <°°, we write
e(A) = I(A)/(p(\A\) (so that e(A) is of norm one in LwX). Ac denotes the complement of
A, and {/ > t) denotes the set {s :f(s) > t).

Given a Banach space A",Ba(X) denotes its closed unit ball. For a subset B of X,
conv (B) denotes the convex hull of B.

Finally, we would like to thank Chris Lennard for some helpful discussions.

2. Preliminary results. Before we can prove our main result (Theorem 3.5), we
need a description of the extreme points of Ba(Lvv j). For the sequence space lpA [3] and
the function space LpX [2], a characterization of the extreme points is well-known, but
we do not know a reference for the general result. Because this general result (Lemma
2.1) will be needed later, we supply a proof below. As a consequence, we get a
characterization of the surjective isometries of Lw , (Theorem 2.3).

LEMMA 2.1 (cf. [2, Lemma 2.1]). Iff,ge LwA(0,«) satisfy \\f + g\\ = | |/ | | + ||g||, then
(f + g)*=f*+g*.

Proof. Let h(t) =f*(t) +g*(t) - (/ +g)*(t), and let H{t) = f'oh(s)ds. Then
JoM0>v(0^=:ll/ll + l lg | | - | l /+gl l=0> a n d tf(0-0 b v definition of the decreasing
rearrangement. Integration by parts yields

f
Jo

H(t) d(-w(t)) = -H(t)w(t) |o + f h{t)w(t) dt = 0 + 0 = 0.
Jo
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Since H is continuous and w is strictly decreasing, it follows that H(t) = 0. This implies
that h(t) = O a.e. •

We prove our result on extreme points for the space Lw t(0, °°), but the same proof
works for Lwl(0, M).

PROPOSITION 2.2. Let f e Lwl. Then f is an extreme point of Ba(Lw ,) if and only if
| / | = e(A) for some A c (0, °°) of finite, positive measure.

Proof. Suppose first that f e Lwl(0, °°) and that there exists A c (0, °°) of finite,
positive measure such that \f\=e(A). Then /* = /(0, |v4|)/0(|/l|). If f = g + h with
llgll + ll̂ ll = 1' then/* =g* + h* by Lemma 2.1. Since g* and h* are non-increasing, this
implies that g* and h* are multiples of/*. But then |g| and \h\ must be multiples of | / | ,
and so g and h are multiples of/. Thus, / is an extreme point of Ba(Llvl).

Now suppose that | / | is not a multiple of 1{A) for any A c (0, °°) of finite, positive
measure. Then there exists A>0 such that if A = {\f\>X}, we have |.4|>0 and
| | / / ( ^ ) | | >0. Let g = ( /-Asgn(/)) /( / l ) , and let h=f-g. Clearly, | |g | |>0, ||/x||>0,
and f*gl\\g\\. But f*=g* + h*, and so ||/|| = \\g\\ + \\h\\. Since / =

). i{ follows that/is not an extreme point of Ba(Lw ,).

We now characterize the surjective isometries of Lw ,(0,1). Our proof is based on the
description of the isometries of Lp(0,1), 1 <p <°o [6, pp. 415-418]. We present only a
sketch of the proof, but the details are easy to check.

THEOREM 2.3. Let T be a surjective isometry of the space LwA{Q, 1). Then there exists
a ±\-valued Borel measurable function e and a Borel measurable map o from [0,1] to
[0,1] which is measure-preserving (i.e., \a~1(A)\ = \A\) such that

(Tf)(t) = e(t)f(o(t)), 0 < f < l .

Proof. Since T is a surjective isometry, T maps the set of extreme points of
Ba(L>v i) onto itself. By Proposition 2.2, we know that for every Borel set A c [0,1] there
is a Borel set A' such that \T(e{A))\ = e(A'). Define a mapping xp from 38, the collection
of Borel sets of [0,1], into %\M, where Ji is the collection of Borel sets of measure zero,
by setting ip(A) = A'. It is easy to check that xp sends disjoint sets to disjoint sets, that

U ^ h U ^ ) for disjoint sets (An), and that \xp(A)\ = \A\. In particular,
n=l / n=l

xp([0,1]) = [0,1]. Arguing now as in [6, p. 417], there exists a Borel mapping a on [0,1]
such that xp(A) = o~1(A) for every A e 8ft. Finally, define a ±l-valued Borel measurable
function £ by e = T(/(0,1)). The conclusion of the theorem now follows easily. •

3. A uniqueness theorem. It is well-known that Lw>1 is a separable dual space [5].
One consequence of this fact is that for every / e LWyX with ||/| | = 1, there is a probability
measure (i on Ba(Llv,i) which is supported on the extreme points of Ba(Lw ,) such that/is
the barycenter of p:
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Our goal in this section is to show that this representation of / i s unique. We begin with
two technical lemmas. The proof of the first is straightforward (see e.g. [1, Section 2.7]).

LEMMA 3.1. Let f be a nonnegative, locally integrable function on (0, °°). For each
t>0 there exists A c (0, °°) such that \A\ = t and Jo/* = jAf. Moreover, any such A is
necessarily of the form {/ > A} U C, where C c {/ = A}, for some A > 0.

LEMMA 3.2. Let f and g be nonnegative functions in LwX such that | | / + g|| =
+ ||g||, and let B = {/> A}, where A>0. Then essinfg > ess sup g.

B

Proof. Let t = \B\. Applying Lemma 3.1 to / + g, there exists A a (0, °°) such that
\A\ = t and Jo(/ + g)* = J ^ ( / + g). By Lemma 2.1, ( / + g)* = /* + g*, so J 0 ( /*+g*)
= ]A (/ + g). This implies that Jo/* = jAf and Jog* = $Ag. By Lemma 3.1 we have A
= B = {/ > A}, and there exists an a>0 such that .4 = {g > a} U C, where C <={g = a}.
The conclusion of the lemma follows immediately. •

Let G denote the collection of extreme points of Ba(L(V,) and let f i b e a regular
Borel probability measure on Ba(Llvtl) such that /i(G) = l. Let us say that an extreme
point e belongs to the support of ju if fi(U) > 0 for every norm-open neighborhood U of e,
and let H denote the collection of extreme points in the support of p. Then H is a G6-set
in LwA and G\H is contained in a union of ju-null open sets. Since Lwl is separable it is a
Lindelof space, and so fi(G\H) = 0, whence fJ.(H) = 1. We are now in a position to give
the main technical ingredient in the proof of our theorem.

LEMMA 3.3. Suppose that f is a nonnegative function on (0, °°), that \\f\\ = 1, and thatf
is the barycenter of a Borel probability measure fi as described above. Then every extreme
point e in the support of JJ. is of the form e(E), where E = {/ > A} or E = {/ > A}, for
some A ̂  0.

Proof. It is clear that every extreme point in the support of /x is nonnegative, and so
e is of the form e(E) for some Ec(0, °°). If E is not of the form described in the
statement of the lemma, then there exist a A > 0 and disjoint sets A and B of positive
Lebesgue measure such that A c {/ > A} n Ec and B a {/ < A} D E. Thus e \A = 0 and
e\B = p for some p > 0 . Let e > 0 ; since e lies in the support of \i there exists a
neighborhood U of e of diameter less than E such that fi(U) > 0. Let g and h be defined by
g = J(;jcdju(jc) and h = j(jcxdfi(x). Now g//x(t/) and e are close in measure, since
\\g/n(U) — e\\ < e. By choosing e > 0 sufficiently small we may assume that there exist
A'<=A and B' c B of positive Lebesgue measure such that g/n(U)> p/4 on A' and
g//i(C/)>3p/4 on B'. Recall that A'cAc{f>X} and B' <= B c {/ < A}, and that
f = g + h. Thus, for almost all a' e A' we have

h(a')=f(a')-g(al)2:*.-Pii(U)/4,

and for almost all b' e B' we have

h(b')=f(b')-g(b')<k-3pn(U)/4,
and so

essinf h s ess sup/i - pu(U)/2. (*)
B' A'
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To derive a contradiction, first observe that B' c {g >3p/i(U)/4} and A' a {g <
pn(U)/4}. Also, ||g + h\\ = \\g\\ + \\h\\ since / and the support of ft both lie in the unit
sphere of Lwi. Combined with Lemma 3.2 it now follows that ess inf h > ess sup h, which
contradicts (*). •

LEMMA 3.4. Let f e LwA with \\f\\ = 1. Then f* is the barycenter of a unique Borel
probability measure supported on the extreme points of Ba(LM,,).

Proof. By Lemma 3.3, the support of every |U for which /* is a barycenter is
contained in 5 = {e(0, u): u >0}. The homeomorphism u^*e{Q,u) from (0, °°) onto 5
induces a bijection between the regular Borel probability measures supported on 5 and
those on (0, °°). Suppose // corresponds to ft under this bijection. Then

(«)=! } |

for all u by the right continuity of/*. Now every regular Borel measure on (0, °°) is the
Lebesgue-Stieltjes measure defined by its indefinite integral [4, p. 331]; thus (1/0) dfi =
d(-f*), and djj. = (f>d(-f*). The uniqueness of (x follows at once. •

THEOREM 3.5. Let f e Lwi with \\f\\ = 1. Then f is the barycenter of a unique Borel
probability measure supported on the extreme points of Ba(LwA).

Proof. The mapping g>-*g. £, where £ is a ±l-valued measurable function, defines
an isometry from Lw _, onto Lwl, and hence we may assume that/is non-negative. Given
a nonnegative function g e LwA, define the set S(g) by

S(g) = {e({g > A}): A > 0} U {e({g > A}): A > 0}.

Define a map T from S(f) onto 5(/*) by T(e({f> A})) = e({f* > A}), T(e({/>A}))
= e({/*>A}). By linearity, T extends from conv(5(/)) onto conv(5(/*)). Since /
and/* have the same distribution, it is easily verified that T is an affine isometry. So, T
extends to an affine isometry from the closed convex hull of S(f) onto the closed convex
hull of £(/*) with T(f) = T(f*). By Lemma 3.3, if / is the barycenter of a Borel
probability measure n of the required type, then the support of n is contained in S(f).
Under the affine isometry T, the measure fi corresponds to a measure n* whose
barycenter is /*. By Lemma 3.4, /x* is unique, whence n is unique. •

The proof of Theorem 3.5 implies the following corollary.

COROLLARY 3.6. Suppose f e LwA with \\f\\ = 1. Then f admits a representation of the
QO CO

form f = £ knen, where Xn ^ 0, E K = 1, and each en is an extreme point of Ba(LH,,), if
n = l n = l

and only if d(f*) is purely atomic (that is, if and only iff* is a saltus function; cf, e.g.,
[4, p. 335]).

REMARK. Of course, if | |/| | < 1, then a representing measure supported on the
extreme points will no longer be unique. In fact, it is easy to see that / can always be

QO

expressed in the form/ = E Anen as described in Corollary 3.6.
l
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