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2 We will explore all of these possibilities in the
next chapter, p. 45.

3 v. dalibard et al. (2017). boat: Building Auto-
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www 2017.

4 The term“nonparametric” is something of a
misnomer. A nonparametric objective func-
tion model has parameters but their dimen-
sion is infinite – we effectively parameterize
the objective by its value at every point.

GAUSSIAN PROCESSES

The central object in optimization is an objective function 𝑓 : X → ℝ, and
the primary challenge in algorithm design is inherent uncertainty about
this function: most importantly, where is the function maximized and
what is its maximal value? Prior to optimization, we may very well have
no idea. Optimization affords us the opportunity to acquire information
about the objective – through observations of our own design – to shed
light on these questions. However, this process is itself fraught with
uncertainty, as we cannot know the outcomes and implications of these
observations at the time of their design. Notably, we face this uncertainty
even when we have a closed-form expression for the objective function,
a favorable position as many objectives act as “black boxes.”

Reflecting on this situation, diaconis posed an intriguing question:1
“what does it mean to ‘know’ a function?” The answer is unclear when an
analytic expression, which might at first glance seem to encapsulate the
essence of the function, is insufficient to determine features of interest.
However, diaconis argued that although we may not know everything

about a function, we often have some prior knowledge that can facilitate
a numerical procedure such as optimization. For example, we may expect
an objective function to be smooth (or rough), or to assume values in
a given range, or to feature a relatively simple underlying trend, or to
depend on some hidden low-dimensional representation we hope to
uncover.2 All of this knowledge could be instrumental in accelerating
optimization if it could be systematically captured and exploited.

Having identifiable information about an objective function prior to
optimization motivates the Bayesian approach we will explore through-
out this book. We will address uncertainty in the objective function
through the unifying framework of Bayesian inference, treating 𝑓 – as Bayesian inference of the objective function:

§ 1.2, p. 8well as ancillary quantities such as 𝑥∗ and 𝑓 ∗ (1.1) – as random variables
to be inferred from observations revealed during optimization.

To pursue this approach, we must first determine how to build useful
prior distributions for objective functions and how to compute a poste-
rior belief given observations. If the system under investigation is well
understood, we may be able to identify an appropriate parametric form
𝑓 (𝑥 ;𝜽 ) and infer the parameters 𝜽 directly. This approach is likely the
best course of action when possible;3 however, many objective functions
have no obvious parametric form, and most models used in Bayesian
optimization are thus nonparametric to avoid undue assumptions.4

In this chapter we will introduce Gaussian processes (gps), a conve-
nient class of nonparametric regression models widely used in Bayesian
optimization. We will begin by defining Gaussian processes and deriving
some basic properties, then demonstrate how to perform inference from
observations. In the case of exact observation and additive Gaussian
noise, we can perform this inference exactly, resulting in an updated
posterior Gaussian process. We will continue by considering some the-
oretical properties of Gaussian processes relevant to optimization and
inference with non-Gaussian observation models.
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5 c. e. rasmussen and c. k. i. williams (2006).
Gaussian Processes for Machine Learning. mit
Press.

6 p. hennig et al. (2015). Probabilistic Numerics
and Uncertainty in Computations. Proceedings
of the Royal Society A: Mathematical, Physical

and Engineering Sciences 471(2179):20150142.

7 p. hennig et al. (2022). Probabilistic Numerics:

Computation as Machine Learning. Cambridge
University Press.

8 If X is finite, there is no distinction between
a Gaussian process and a multivariate normal
distribution, so only the infinite case is inter-
esting for this discussion.

9 b. øksendal (2013). Stochastic Differential

Equations: An Introduction with Applications.
Springer–Verlag. [§ 2.1]

10 Writing the process as if it were a function-
valued probability density function is an abuse
of notation, but a useful and harmless one.

The literature on Gaussian processes is vast, andwe do not intend this
chapter to serve as a standalone introduction but rather as companion to
the existing literature. Although our discussion will be comprehensive,
our focus on optimization will sometimes bias its scope. For a broad
overview, the interested reader may consult rasmussen and williams’s
classic monograph.5

2.1 definition and basic properties

AGaussian process is an extension of the familiar multivariate normal dis-multivariate normal distribution: § a.2, p. 296
tribution suitable for modeling functions on infinite domains. Gaussian
processes inherit the convenient mathematical properties of the multi-
variate normal distribution without sacrificing computational tractability.Chapter 3: Modeling with Gaussian Processes,

p. 45 Further, by modifying the structure of a gp, we can model functions with
a rich variety of behavior; we will explore this capability in the next
chapter. This combination of mathematical elegance and flexibility in
modeling has established Gaussian processes as the workhorse of Bayes-
ian approaches to numerical tasks, including optimization.6,7

Definition

Consider an objective function 𝑓 : X → ℝ of interest over an arbitrary
infinite domain X .8 We will take a nonparametric approach and reason
about the function as an infinite collection of random variables, one
corresponding to the function value at every point in the domain. Mutual
dependence between these random variables will then determine the
statistical properties of the function’s shape.

It is perhaps not immediately clear how we can specify a useful distri-
bution over infinitely many random variables, a construction known as a
stochastic process. However, a result known as the Kolmogorov extension

theorem allows us to construct a stochastic process by defining only the
distribution of arbitrary finite sets of function values, subject to natural
consistency constraints.9 For a Gaussian process, these finite-dimensional
distributions are all multivariate Gaussian, hence its name.

In this light, we build a Gaussian process by replacing the parameters
in the finite-dimensional case – a mean vector and a positive semidefinite
covariance matrix – by analogous functions over the domain. We specify
a Gaussian process on 𝑓 :10

𝑝 (𝑓 ) = GP (𝑓 ; `, 𝐾)

by a mean function ` : X → ℝ and a positive semidefinite covariancemean function, `
function (or kernel) 𝐾 : X × X → ℝ. The mean function determines thecovariance function (kernel), 𝐾
expected function value 𝜙 = 𝑓 (𝑥) at any location 𝑥 :value of objective at 𝑥, 𝜙

` (𝑥) = 𝔼[𝜙 | 𝑥],

thus serving as a location parameter representing the function’s central
tendency. The covariance function determines how deviations from the
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11 In fact, this is precisely the consistency re-
quired by the Kolmogorov extension theorem
mentioned on the facing page.

0 3
0

1

|𝑥 − 𝑥′ |

𝐾 (𝑥, 𝑥′)

The squared exponential covariance (2.4) as a
function of the distance between inputs.

mean are structured, encoding expected properties of the function’s
behavior. Defining 𝜙 ′ = 𝑓 (𝑥 ′), we have: value of objective at 𝑥′, 𝜙′

𝐾 (𝑥, 𝑥 ′) = cov[𝜙, 𝜙 ′ | 𝑥, 𝑥 ′] . (2.1)

The mean and covariance functions of the process allow us to com-
pute any finite-dimensional marginal distribution on demand. Let x ⊂ X
be finite and let 𝝓 = 𝑓 (x) be the corresponding function values, a vector- values of objective at x, 𝝓 = 𝑓 (x)
valued random variable. For the Gaussian process (2.1), the distribution
of 𝝓 is multivariate normal with parameters determined by the mean
and covariance functions:

𝑝 (𝝓 | x) = N (𝝓; 𝝁, 𝚺), (2.2)
where

𝝁 = 𝔼[𝝓 | x] = ` (x); 𝚺 = cov[𝝓 | x] = 𝐾 (x, x). (2.3)

Here 𝐾 (x, x) is the matrix formed by evaluating the covariance function
for each pair of points: Σ𝑖 𝑗 = 𝐾 (𝑥𝑖 , 𝑥 𝑗 ), also called the Gram matrix of x. Gram matrix of x, 𝚺 = 𝐾 (x, x)

In many ways, Gaussian processes behave like “really big” Gaussian
distributions, and one can intuit many of their properties from this
heuristic alone. For example, the Gaussian marginal property in (2.2–
2.3) corresponds precisely with the analogous formula in the finite-
dimensional case (a.13). Further, this property automatically ensures
global consistency in the following sense.11 If x is an arbitrary set of
points and x′ ⊃ x is a superset, then we arrive at the same belief about
𝝓 whether we compute it directly from (2.2–2.3) or indirectly by first marginalizing multivariate normal

distributions, § a.2, p. 299computing 𝑝 (𝝓 ′ | x′) then marginalizing x′ \ x (a.13).

Example and basic properties

Let us construct and explore an explicit Gaussian process for a function
on the interval X = [0, 30]. For the mean function we take the zero
function ` ≡ 0, indicating a constant central tendency. For the covariance
function, we take the prototypical squared exponential covariance: squared exponential covariance: § 3.3, p. 51

𝐾 (𝑥, 𝑥 ′) = exp
(− 1

2 |𝑥 − 𝑥 ′ |2
)
. (2.4)

Let us pause to consider the implications of this choice. First, note that
var[𝜙 | 𝑥] = 𝐾 (𝑥, 𝑥) = 1 at every point 𝑥 ∈ X, and thus the covariance
function (2.4) also measures the correlation between the function values
𝜙 and 𝜙 ′. This correlation decreases with the distance between 𝑥 and 𝑥 ′,
falling from unity to zero as these points become increasingly separated;
see the illustration in the margin. We can loosely interpret this as a
statistical consequence of continuity: function values at nearby locations
are highly correlated, whereas function values at distant locations are
effectively independent. This assumption also implies that observing
the function at some point 𝑥 provides nontrivial information about the
function at sufficiently nearby locations (roughly when |𝑥 − 𝑥 ′ | < 3). We
will explore this implication further shortly.
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prior mean prior 95% credible interval samples

Figure 2.1: Our example Gaussian process on the domain X = [0, 30]. We illustrate the marginal belief at every location
with its mean and a 95% credible interval and also show three example functions sampled from the process.

For a Gaussian process, the marginal distribution of any single func-predictive credible intervals
tion value is univariate normal (2.2):

𝑝 (𝜙 | 𝑥) = N (𝜙 ; `, 𝜎2); ` = ` (𝑥); 𝜎2 = 𝐾 (𝑥, 𝑥), (2.5)

where we have abused notation slightly by overloading the symbol `.
This allows us to derive pointwise credible intervals; for example, the
familiar `±1.96𝜎 is a 95% credible interval for 𝜙 . Examining our example
gp, the marginal distribution of every function value is in fact standard
normal. We provide a rough visual summary of the process via its mean
function and pointwise 95% predictive credible intervals in Figure 2.1.
There is nothing terribly exciting we can glean from these marginal
distributions alone, and no interesting structure in the process is yet
apparent.

Sampling

We may gain more insight by inspecting samples drawn from our exam-
ple process reflecting the joint distribution of function values. Although
it is impossible to represent an arbitrary function on X in finite memory,
we can approximate the sampling process by taking a dense grid x ⊂ X
and sampling the corresponding function values from their joint multi-sampling from a multivariate normal

distribution: §a.2, p. 299 variate normal distribution (2.2). Plotting the sampled vectors against
the chosen grid reveals curves approximating draws from the Gaussian
process. Figure 2.1 illustrates this procedure for our example using a grid
of 1000 equally spaced points. Each sample is smooth and has several
local optima distributed throughout the domain – for some applications,
this might be a reasonable model for an objective function on X .

2.2 inference with exact and noisy observations

We now turn to our attention to inference : given a Gaussian process
prior on an objective function, how can we condition this initial belief
on observations obtained during optimization?

Let us look at an example to build intuition before diving into theexample and discussion
details. Figure 2.2 shows the effect of conditioning our example gp from
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observations posterior mean posterior 95% credible interval samples

Figure 2.2: The posterior for our example scenario in Figure 2.1 conditioned on three exact observations.

12 We assumeC is positive definite; if it were only
positive semidefinite, there would be wasteful
linear dependence among observations.

the previous section on three exact measurements of the function. The
updated belief reflects both our prior assumptions and the information
contained in the data, the hallmark of Bayesian inference. To elaborate,
the posterior mean smoothly interpolates through the observed values,
agreeing with both the measured values and the smoothness encoded
in the prior covariance function. The posterior credible intervals are
reduced in the neighborhood of the measured locations – where the
prior covariance function encodes nontrivial dependence on at least one
observed value – and vanish where the function value has been exactly
determined. On the other hand, our marginal belief remains effectively
unchanged from the prior in regions sufficiently isolated from the data,
where the prior covariance function encodes effectively no correlation.

Conveniently, inference is straightforward for the pervasive observa-
tion models of exact measurement and additive Gaussian noise, where
the self-conjugacy of the normal distribution yields a Gaussian process

posterior with updated parameters we can compute in closed form. The
reasoning underlying inference for both observation models is identical
and is subsumed by a flexible general argument we will present first.

Inference from arbitrary jointly Gaussian observations

We may exactly condition a Gaussian process 𝑝 (𝑓 ) = GP (𝑓 ; `, 𝐾) on the
observation of any vector y sharing a joint Gaussian distribution with 𝑓 : vector of observed values, y

𝑝 (𝑓, y) = GP
([
𝑓
y

]
;
[
`
m

]
,

[
𝐾 ^⊤

^ C

])
. (2.6)

This notation, analogous to (a.12), extends the Gaussian process on 𝑓 to
include the entries of y; that is, we assume the distribution of any finite
subset of function and/or observed values is multivariate normal. We
specify the joint distribution via the marginal distribution of y:12 observation mean and covariance, m, C

𝑝 (y) = N (y;m,C) (2.7)

and the cross-covariance function between y and 𝑓 : cross-covariance between observations and
function values, ^

^ (𝑥) = cov[y, 𝜙 | 𝑥] . (2.8)
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13 This is a useful exercise! The result will be a
stochastic process with multivariate normal
finite-dimensional distributions, a Gaussian
process by definition (2.5).

Although it may seem absurd that we could identify and observe a vector
satisfying such strong restrictions on its distribution, we can already
deduce several examples from first principles, including:

• any vector of function values (2.2),inference from exact observations: § 2.2, p. 22

• any affine transformation of function values (a.10), andaffine transformations: § a.2, p. 298

• limits of such quantities, such as partial derivatives or expectations.derivatives and expectations: § 2.6, p. 30

Further, we may condition on any of the above even if corrupted by
independent additive Gaussian noise, as we will shortly demonstrate.

We may condition the joint distribution (2.6) on y analogously to theconditioning a multivariate normal
distribution: §a.2, p. 299 finite-dimensional case (a.14), resulting in a Gaussian process posterior

on 𝑓. Writing D = y for the observed data, we have:

𝑝 (𝑓 | D) = GP (𝑓 ; `D, 𝐾D), (2.9)
whereposterior mean and covariance, `D , 𝐾D

`D (𝑥) = ` (𝑥) + ^ (𝑥)⊤C−1 (y −m);
𝐾D (𝑥, 𝑥 ′) = 𝐾 (𝑥, 𝑥 ′) − ^ (𝑥)⊤C−1^ (𝑥 ′). (2.10)

This can be verified by computing the joint distribution of an arbitrary
finite set of function values and y and conditioning on the latter (a.14).13

The above result provides a simple procedure for gp posterior infer-
ence from any vector of observations satisfying (2.6):

1. compute the marginal distribution of y (2.7),
2. derive the cross-covariance function ^ (2.8), and
3. find the posterior distribution of 𝑓 via (2.9–2.10).

We will realize this procedure for several special cases below. However,
we will first demonstrate how we may seamlessly handle measurements
corrupted by additive Gaussian noise and build intuition for the posterior
distribution by dissecting its moments in terms of the statistics of the
observations and the correlation structure of the prior.

Corruption by additive Gaussian noise

We pause to make one observation of immense practical importance:
any vector satisfying (2.6) would continue to suffice even if corrupted
by independent additive Gaussian noise, and thus we can use the above
result to condition a Gaussian process on noisy observations as well.

Suppose that rather than observing y exactly, our measurement
mechanism only allowed observing z = y + 𝜺 instead, where 𝜺 is a vectornoisy observation of y, z
of random errors independent of y. If the errors are normally distributedvector of random errors, 𝜺
with mean zero and known (arbitrary) covariance N:noise covariance matrix, N

𝑝 (𝜺 | N) = N (𝜺; 0,N), (2.11)
then we havesums of normal vectors: § a.2, p. 300

𝑝 (z | N) = N (z;m,C + N); cov[z, 𝜙 | 𝑥] = cov[y, 𝜙 | 𝑥] = ^ (𝑥).

https://doi.org/10.1017/9781108348973.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108348973.003


2.2. inference with exact and noisy observations 21

14 Assuming zero-mean errors is not strictly nec-
essary but is overwhelmingly common in prac-
tice. A nonzero mean 𝔼[𝜺 ] = n is possible by
further replacing (y − 𝝁) with (

y − [𝝁 + n])
in (2.10), where 𝝁 + n = 𝔼[y].

0 1
0

𝜎

|𝜌 |

𝜎
√︁
1 − 𝜌2

The posterior standard deviation of 𝜙 as a
function of the strength of relationship with
𝑦, |𝜌 |.

Thus we can condition on an observation of the corrupted vector z by
simply replacing C with C + N in the prior (2.6) and posterior (2.10).14
Note that the posterior converges to that from a direct observation of y
if we take the noise covariance N→ 0 in the positive semidefinite cone,
a reassuring result.

Interpretation of posterior moments

The moments of the posterior Gaussian process (2.10) contain update
terms adjusting the prior moments in light of the data. These updates
have intuitive interpretations in terms of the nature of the prior process
and the observed values, which we may unravel with some care.

We can gain some initial insight by considering the case where we
observe a single value with𝑦 distributionN (𝑦;𝑚, 𝑠2) and breaking down
its impact on our belief. Consider an arbitrary function value 𝜙 with
prior distribution N (𝜙 ; `, 𝜎2) (2.5) and define 𝑧-score of measurement 𝑦, 𝑧

𝑧 =
𝑦 −𝑚
𝑠

to be the 𝑧-score of the observed value 𝑦 and correlation between measurement 𝑦 and
function value 𝜙 , 𝜌

𝜌 = corr[𝑦, 𝜙 | 𝑥] = ^ (𝑥)
𝜎𝑠

to be the correlation between 𝑦 and 𝜙 . Then the posterior mean and posterior moments of 𝜙 from a scalar
observationstandard deviation of 𝜙 are, respectively:

` + 𝜎𝜌𝑧; 𝜎
√︁

1 − 𝜌2. (2.12)

The 𝑧-score of the posterior mean, with respect to the prior distri- interpretation of moments
bution of 𝜙 , is 𝜌𝑧. An independent measurement with 𝜌 = 0 thus leaves
the prior mean unchanged, whereas a perfectly dependent measurement
with |𝜌 | = 1 shifts the mean up or down by 𝑧 standard deviations (de-
pending on the sign of the correlation) to match the magnitude of the
measurement’s 𝑧-score. Measurements with partial dependence result in
outcomes between these extremes. Further, surprising measurements –
that is, those with large |𝑧 | – yield larger shifts in the mean, whereas an
entirely expected measurement with 𝑦 =𝑚 leaves the mean unchanged.

Turning to the posterior standard deviation, the measurement re-
duces our uncertainty in 𝜙 by a factor depending on the correlation
𝜌 , but not on the value observed. An independent measurement again
leaves the prior intact, whereas a perfectly dependent measurement col-
lapses the posterior standard deviation to zero as the value of 𝜙 would be
completely determined. The relative reduction in posterior uncertainty
as a function of the absolute correlation is illustrated in the margin.

In the case of vector-valued observations, we can interpret similar
structure in the posterior, although dependence between entries of y
must also be accounted for. We may factor the observation covariance
matrix as

C = SPS, (2.13)
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15 It can be instructive to contrast the behavior
of the posterior when conditioning on two
highly correlated values versus two indepen-
dent ones. In the former case, the posterior
does not change much as a result of the sec-
ond measurement, as dependence reduces the
effective number of measurements.

16 P is congruent to C (2.13) and is thus positive
definite from Sylvester’s law of inertia.

17 For positive semidefinite A, B, |A | ≤ |A + B |.

18 The Löwner order is the partial order induced
by the convex cone of positive-semidefinite
matrices. For symmetricA,B, we defineA ≺ B
if and only if B − A is positive definite:

k. löwner (1934). Über monotone Matrixfunk-
tionen. Mathematische Zeitschrift 38:177–216.

where S is diagonal with 𝑆𝑖𝑖 =
√
𝐶𝑖𝑖 = std[𝑦𝑖 ] and P = corr[y] is the

observation correlation matrix. We may then rewrite the posterior mean
of 𝜙 as

` + 𝜎𝝆⊤P−1z,

where z and 𝝆 represent the vectors of measurement 𝑧-scores and the
cross-correlation between 𝜙 and y, respectively:

𝑧𝑖 =
𝑦𝑖 −𝑚𝑖

𝑠𝑖
; 𝜌𝑖 =

[^ (𝑥)]𝑖
𝜎𝑠𝑖

.

The posterior mean is now in the same form as the scalar case (2.12),
with the introduction of the observation correlation matrix moderating
the 𝑧-scores to account for dependence between the observed values.15

The posterior standard deviation of 𝜙 in the vector-valued case is

𝜎
√︃

1 − 𝝆⊤P−1𝝆,

again analogous to (2.12). Noting that the inverse correlation matrix
P−1 is positive definite,16 the posterior covariance again reflects a global
reduction in the marginal uncertainty of every function value. In fact, the
joint distribution of any set of function values has reduced uncertainty
in the posterior in terms of the differential entropy (a.16), as17

|𝐾 (x, x) − ^ (x)⊤C−1^ (x) | ≤ |𝐾 (x, x) |.

The reduction of uncertainty again depends on the strength of depen-
dence between function values and the observed data, with independence
(𝝆 = 0) resulting in no change. The reduction also depends on the pre-
cision of the measurements: all other things held equal, observations
with greater precision in terms of the Löwner order18 on the precision
matrix C−1 provide a globally better informed posterior. In particular, as
(C + N)−1 ≺ C−1 for any noise covariance N, noisy measurements (2.11)
categorically provide less information about the function than direct
observations, as one should hope.

Inference with exact function evaluations

We will now explicitly demonstrate the general process of Gaussian
process inference for important special cases, beginningwith the simplest
possible observation mechanism: exact observation.

Suppose we have observed 𝑓 at some set of locations x, revealing the
corresponding function values 𝝓 = 𝑓 (x), and let D = (x, 𝝓) denote thisobserved data, D = (x,𝝓)
dataset. The observed vector shares a joint Gaussian distribution with
any other set of function values by the gp assumption on 𝑓 (2.2), so we
may follow the above procedure to derive the posterior. The marginal
distribution of 𝝓 is Gaussian (2.3):

𝑝 (𝝓 | x) = N (𝝓; 𝝁, 𝚺),
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19 Allowing nondiagonalN departs from our typ-
ical convention of assuming conditional inde-
pendence between observations (1.3), but do-
ing so does not complicate inference, so there
is no harm in this generality.

and the cross-covariance between an arbitrary function value and 𝝓 is
by definition given by the covariance function:

^ (𝑥) = cov[𝝓, 𝜙 | x, 𝑥] = 𝐾 (x, 𝑥).

Appealing to (2.9–2.10) we have:

𝑝 (𝑓 | D) = GP (𝑓 ; `D, 𝐾D),
where

`D (𝑥) = ` (𝑥) + 𝐾 (𝑥, x)𝚺−1 (𝝓 − 𝝁);
𝐾D (𝑥, 𝑥 ′) = 𝐾 (𝑥, 𝑥 ′) − 𝐾 (𝑥, x)𝚺−1𝐾 (x, 𝑥 ′). (2.14)

Our previous Figure 2.2 illustrates the posterior resulting from con- example and discussion
ditioning our gp prior in Figure 2.1 on three exact measurements, with
high-level analysis of its behavior in the accompanying text.

Inference with function evaluations corrupted by additive Gaussian noise

With the notable exception of optimizing the output of a deterministic
computer program or simulation, observations of an objective function
are typically corrupted by noise due to measurement limitations or statis-
tical approximation; wemust be able to handle such noisy observations to
maximize utility. Fortunately, in the important case of additive Gaussian
noise, we may perform exact inference following the general procedure
described above. In fact, the derivation below follows directly from our
previous discussion on arbitrary additive Gaussian noise, but the case of
additive Gaussian noise in function evaluations is important enough to arbitrary additive Gaussian noise: § 2.2, p. 20
merit its own discussion.

Suppose we make observations of 𝑓 at locations x, revealing cor-
rupted values y = 𝝓 + 𝜺 . Suppose the measurement errors 𝜺 are indepen-
dent of 𝝓 and normally distributed with mean zero and covariance N,
which may optionally depend on x:

𝑝 (𝜺 | x,N) = N (𝜺; 0,N). (2.15)

As before we aggregate the observations into a dataset D = (x, y).
The observation noise covariance can in principle be arbitrary;19 special case: independent homoskedastic

noisehowever, the most common models in practice are independent ho-
moskedastic noise with scale 𝜎𝑛 :

N = 𝜎2
𝑛 I, (2.16)

and independent heteroskedastic noise with scale depending on location special case: independent heteroskedastic
noiseaccording to a function 𝜎𝑛 : X → ℝ≥0:

N = diag𝜎2
𝑛 (x). (2.17)

For a given observation location 𝑥 , we will simply write 𝜎𝑛 for the observation noise scale, 𝜎𝑛
associated noise scale, leaving any dependence on 𝑥 implicit.
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observations posterior mean posterior 95% credible interval

Figure 2.3: Posteriors for our example gp from Figure 2.1 conditioned on 15 noisy observations with independent ho-
moskedastic noise (2.16). The signal-to-noise ratio is 10 for the top example, 3 for the middle example, and 1 for
the bottom example.

The prior distribution of the observations is nowmultivariate normal
(2.3, a.15):

𝑝 (y | x,N) = N (y; 𝝁, 𝚺 + N). (2.18)

Due to independence of the noise, the cross-covariance remains the same
as in the exact observation case:

^ (𝑥) = cov[y, 𝜙 | x, 𝑥] = 𝐾 (x, 𝑥).

Conditioning on the observed value now yields a gp posterior with

`D (𝑥) = ` (𝑥) + 𝐾 (𝑥, x) (𝚺 + N)−1 (y − 𝝁);
𝐾D (𝑥, 𝑥 ′) = 𝐾 (𝑥, 𝑥 ′) − 𝐾 (𝑥, x) (𝚺 + N)−1𝐾 (x, 𝑥 ′). (2.19)

Figure 2.3 shows a sequence of posterior distributions resulting fromhomoskedastic example and discussion
conditioning our example gp on data corrupted by increasing levels of
homoskedastic noise (2.16). As the noise level increases, the observations
have diminishing influence on our belief, with some extreme values
eventually being partially explained away as outliers. As measurements
are assumed to be inexact, the posterior mean is not compelled to inter-
polate perfectly through the observations, as in the exact case (Figure
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observations posterior 95% credible interval, 𝑦
posterior mean posterior 95% credible interval, 𝜙

Figure 2.4: The posterior distribution for our example gp from Figure 2.1 conditioned on 50 observations with heteroskedas-
tic observation noise (2.17). We show predictive credible intervals for both the latent objective function and
noisy observations; the standard deviation of the observation noise increases linearly from left-to-right.

2.2). Further, with increasing levels of noise, our posterior belief reflects
significant residual uncertainty in the function, even in regions with
multiple nearby observations.

We illustrate an example of Gaussian process inference with het- heteroskedastic example and discussion
eroskedastic noise (2.17) in Figure 2.4, where the signal-to-noise ratio
decreases smoothly from left-to-right over the domain. Although the
observations provide relatively even coverage, our posterior uncertainty
is minimal on the left-hand side of the domain – where the measure-
ments provide maximal information – and increases as our observations
become more noisy and less informative.

We will often require the posterior predictive distribution for a noisy posterior predictive distribution for noisy
observationsmeasurement 𝑦 that would result from observing at a given location 𝑥 .

The posterior distribution on 𝑓 (2.19) provides the posterior predictive
distribution for the latent function value 𝜙 = 𝑓 (𝑥) (2.5):

𝑝 (𝜙 | 𝑥,D) = N (𝜙 ; `, 𝜎2); ` = `D (𝑥); 𝜎2 = 𝐾D (𝑥, 𝑥),

but does not account for the effect of observation noise. In the case of
independent additive Gaussian noise (2.16–2.17), deriving the posterior
predictive distribution is trivial; we have (a.15):

𝑝 (𝑦 | 𝑥,D, 𝜎𝑛) = N (𝑦; `, 𝜎2 + 𝜎2
𝑛). (2.20)

This predictive distribution is illustrated in Figure 2.4; the credible inter-
vals for noisy measurements reflect inflation of the credible intervals for
the underlying function value commensurate with the scale of the noise.

If the noise contains nondiagonal correlation structure, we must predictive distribution with correlated noise
account for dependence between training and test errors in the predictive
distribution. The easiest way to proceed is to recognize that the noisy
observation process 𝑦 = 𝜙 + Y, as a function of 𝑥 , is itself a Gaussian covariance function for noisy measurements,

𝐶process with mean function ` and covariance function

𝐶 (𝑥, 𝑥 ′) = cov[𝑦,𝑦 ′ | 𝑥, 𝑥 ′] = 𝐾 (𝑥, 𝑥 ′) + 𝑁 (𝑥, 𝑥 ′),
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20 In particular the claims regarding continuity
and differentiability are slightly more compli-
cated than stated below.

where 𝑁 is the noise covariance: 𝑁 (𝑥, 𝑥 ′) = cov[Y, Y ′ | 𝑥, 𝑥 ′]. The poste-covariance function for observation noise, 𝑁
rior of the observation process is then a gp with

𝔼[𝑦 | 𝑥,D] = ` (𝑥) +𝐶 (𝑥, x) (𝚺 + N)−1 (y − 𝝁);
cov[𝑦,𝑦 ′ | 𝑥, 𝑥 ′,D] = 𝐶 (𝑥, 𝑥 ′) −𝐶 (𝑥, x) (𝚺 + N)−1𝐶 (x, 𝑥 ′), (2.21)

from which we can derive predictive distributions via (2.2).

2.3 overview of remainder of chapter

In the remainder of this chapter we will cover some additional, somewhat
niche and/or technical aspects of Gaussian processes that see occasional
use in Bayesian optimization. Modulo mathematical nuances irrelevant
in practical settings, an intuitive (but not entirely accurate!) summary
follows:20

• a joint Gaussian process (discussed below) allows us to model multiple

related functions simultaneously, which is critical for some scenariosmultifidelity optimization: § 11.5, p. 263
such as multifidelity and multiobjective optimization;multiobjective optimization: § 11.7, p. 269

• gp sample paths are continuous if the mean function is continuous andsample path continuity: § 2.5, p. 28
the covariance function is continuous along the “diagonal” 𝑥 = 𝑥 ′;

• gp sample paths are differentiable if the mean function is differentiablesample path differentiability: § 2.6, p. 30
and the covariance function is differentiable along the “diagonal” 𝑥 = 𝑥 ′;

• a function with a sufficiently smooth gp distribution shares a joint gpderivative observations: § 2.6, p. 32
distribution with its gradient; among other things, this allows us to con-
dition on (potentially noisy) derivative observations via exact inference;

• gp sample paths attain a maximum when sample paths are continuousexistence of global maxima: § 2.7, p. 34
and the domain is compact;

• gp sample paths attain a uniquemaximum under the additional conditionuniqueness of global maxima: § 2.7, p. 34
that no two unique function values are perfectly correlated; and

• several methods are available for approximating the posterior process ofinference with non-Gaussian observations
and constraints: § 2.8, p. 35 a gp conditioned on information incompatible with exact inference.

If satisfied with the above summary, the reader may safely skip this
material for now and move on with the next chapter. For those who wish
to see the gritty details, dive in below!

2.4 joint gaussian processes

In some settings, we may wish to reason jointly about two-or-more
related functions, such as an objective function and its gradient or an
expensive objective function and a cheaper surrogate. To this end we can
extend Gaussian processes to yield a joint distribution over the values
assumed by multiple functions. The key to the construction is to “paste
together” a collection of functions into a single function on a larger
domain, then construct a standard gp on this combined function.
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21 The domains need not be equal, but they often
are in practice.

22 A disjoint union represents a point 𝑥 ∈ X𝑖 by
the pair (𝑥, 𝑖) , thereby combining the domains
while retaining their identities.

23 In fact, any restriction of a gp-distributed func-
tion has a gp (or multivariate normal) distri-
bution.

24 We also used this notation in (2.6), where the
“domain” of the vector y can be taken to be
some finite index set of appropriate size.

Definition

To elaborate, consider a set of functions {𝑓𝑖 : X𝑖 → ℝ} we wish to
model.21 We define the disjoint union of these functions ⊔𝑓 – defined on disjoint union of {𝑓𝑖 }, ⊔𝑓
the disjoint union22 of their domains X =

⊔X𝑖 – by insisting its restric- disjoint union of {X𝑖 }, X
tion to each domain be compatible with the corresponding function:

⊔𝑓 : X → ℝ; ⊔𝑓 |X𝑖 ≡ 𝑓𝑖 .

We now can define a gp on ⊔𝑓 by choosing mean and covariance func-
tions on X as desired:

𝑝 (⊔𝑓 ) = GP (⊔𝑓 ; `, 𝐾). (2.22)

We will call this construction a joint Gaussian process on {𝑓𝑖 }. joint Gaussian process
It is often convenient to decompose the moments of a joint gp into

their restrictions on relevant subspaces. For example, consider a joint gp
(2.22) on 𝑓 : F → ℝ and 𝑔 : G → ℝ. After defining

`𝑓 ≡ ` |F ; `𝑔 ≡ ` |G ;
𝐾𝑓 ≡ 𝐾 |F×F ; 𝐾𝑔 ≡ 𝐾 |G×G ; 𝐾𝑓𝑔 ≡ 𝐾 |F×G ; 𝐾𝑔𝑓 ≡ 𝐾 |G×F ,

we can see that 𝑓 and 𝑔 in fact have marginal gp distributions:23

𝑝 (𝑓 ) = GP (𝑓 ; `𝑓 , 𝐾𝑓 ); 𝑝 (𝑔) = GP (𝑔; `𝑔, 𝐾𝑔), (2.23)

that are coupled by the cross-covariance functions 𝐾𝑓𝑔 and 𝐾𝑔𝑓 . Given
vectors x ⊂ F and x′ ⊂ G, these compute the covariance between the
corresponding function values 𝝓 = 𝑓 (x) and 𝜸 = 𝑔(x′):

𝐾𝑓𝑔 (x, x′) = cov[𝝓,𝜸 | x, x′];
𝐾𝑔𝑓 (x, x′) = cov[𝜸 , 𝝓 | x, x′] = 𝐾𝑓𝑔 (x, x′)⊤.

(2.24)

When convenient we will notate a joint gp in terms of these decomposed
functions, here writing:24

𝑝 (𝑓, 𝑔) = GP
([
𝑓
𝑔

]
;
[
`𝑓
`𝑔

]
,

[
𝐾𝑓 𝐾𝑓𝑔
𝐾𝑔𝑓 𝐾𝑔

])
. (2.25)

With this notation, the marginal gp property (2.23) is perfectly analogous
to the marginal property of the multivariate Gaussian distribution (a.13).

We can also use this construction to define a gp on a vector-valued extension to vector-valued functions
function f : X → ℝ𝑑 by defining a joint Gaussian process on its 𝑑
coordinate functions {𝑓𝑖 } : X → ℝ. In this case we typically write the
resulting model using the standard notation GP (f ; `, 𝐾),where the mean
and covariance functions are now understood to map to ℝ𝑑 and ℝ𝑑×𝑑.

Example

We can demonstrate the behavior of a joint Gaussian process by extend-
ing our running example gp on 𝑓 : [0, 30] → ℝ. Recall the prior on 𝑓 has

https://doi.org/10.1017/9781108348973.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108348973.003


28 gaussian processes

prior mean prior 95% credible interval sample

Figure 2.5: A joint Gaussian process over two functions on the shared domain X = [0, 30]. The marginal belief over both
functions is the same as our example gp from Figure 2.1, but the cross-covariance (2.26) between the functions
strongly couples their behavior. We also show a sample from the joint distribution illustrating the strong
correlation induced by the joint prior.

zero mean function ` ≡ 0 and squared exponential covariance function
(2.4). We augment our original function with a companion function 𝑔,
defined on the same domain, that has exactly the same marginal gp
distribution. However, we couple the distribution of 𝑓 and 𝑔 by defining
a nontrivial cross-covariance function 𝐾𝑓𝑔 (2.24):

𝐾𝑓𝑔 (𝑥, 𝑥 ′) = 0.9𝐾 (𝑥, 𝑥 ′), (2.26)

where 𝐾 is the marginal covariance function of 𝑓 and 𝑔. A consequence
of this choice is that for any given point 𝑥 ∈ X, the correlation of the
corresponding function values 𝜙 = 𝑓 (𝑥) and 𝛾 = 𝑔(𝑥) is quite strong:

corr[𝜙,𝛾 | 𝑥] = 0.9. (2.27)

We illustrate the resulting joint gp in Figure 2.5. Themarginal credible
intervals for 𝑓 (and now 𝑔) have not changed from our original example
in Figure 2.1. However, drawing a sample of the functions from their joint
distribution reveals the strong coupling encoded in the prior (2.26–2.27).

Inference for joint Gaussian processes

The construction in (2.22) allows us to reason about a joint Gaussian
process as if it were a single gp. This allows us to condition a joint gp
on observations of jointly Gaussian distributed values following the
procedure outlined previously. In Figure 2.6, we condition the joint gpinference from jointly Gaussian distributed

observations: § 2.2, p. 18 prior from Figure 2.5 on ten observations: five exact observations of 𝑓 on
the left-hand side of the domain and five exact observations of 𝑔 on the
right-hand side. Due to the strong correlation between the two functions,
an observation of either function strongly informs our belief about the
other, even in regions where there are no direct observations.

2.5 continuity

In this and the following sections we will establish some important
properties of Gaussian processes determined by the properties of their
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observations (direct) posterior mean
observations (other function) posterior 95% credible interval

𝑝 (𝑓 | D)

𝑝 (𝑔 | D)

Figure 2.6: The joint posterior for our example joint gp prior in Figure 2.5 conditioned on five exact observations of each
function.

moments. As a gp is completely specified by its mean and covariance
functions, it should not be surprising that the nature of these functions
has far-reaching implications regarding properties of the function being
modeled. A good familiarity with these implications can help guide
model design in practice – the focus of the next two chapters.

To begin, a fundamental question regarding Gaussian processes is
whether sample paths are almost surely continuous, and if so how many
times differentiable they may be. This is obviously an important consider-
ation for modeling and is also critical to ensure that global optimization existence of global maxima: § 2.7, p. 34
is a well-posed problem, as we will discuss later in this chapter. Fortu-
nately, continuity of Gaussian processes is a well-understood property
that can be guaranteed almost surely under simple conditions on the
mean and covariance functions.

Suppose 𝑓 : X → ℝ has distribution GP (𝑓 ; `, 𝐾). Recall that 𝑓 is
continuous at 𝑥 if 𝑓 (𝑥) − 𝑓 (𝑥 ′) = 𝜙 − 𝜙 ′→ 0 when 𝑥 ′→ 𝑥 . Continuity
is thus a limiting property of differences in function values. But under
the Gaussian process assumption, this difference is Gaussian distributed
(2.5, a.9)! We have

𝑝 (𝜙 − 𝜙 ′ | 𝑥, 𝑥 ′) = N (𝜙 − 𝜙 ′;𝑚, 𝑠2),
where

𝑚 = ` (𝑥) − ` (𝑥 ′); 𝑠2 = 𝐾 (𝑥, 𝑥) − 2𝐾 (𝑥, 𝑥 ′) + 𝐾 (𝑥 ′, 𝑥 ′).
Now if ` is continuous at 𝑥 and 𝐾 is continuous at 𝑥 = 𝑥 ′, then both
𝑚 → 0 and 𝑠2 → 0 as 𝑥 → 𝑥 ′, and thus 𝜙 −𝜙 ′ converges in probability to
0. This intuitive condition of continuous moments is known as continuity continuity in mean square
in mean square at 𝑥 ; if ` and𝐾 are both continuous over the entire domain
(the latter along the “diagonal” 𝑥 = 𝑥 ′), then we say the entire process is
continuous in mean square.

https://doi.org/10.1017/9781108348973.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108348973.003


30 gaussian processes

25 r. j. adler and j. e. taylor (2007). Random
Fields and Geometry. Springer–Verlag. [§§ 1.3–
1.4]

26 Hölder continuity is a generalization of Lip-
schitz continuity. Effectively, the covariance
function must, in some sense, be “predictably”
continuous.

27 w. rudin (1976). Principles of Mathematical

Analysis. McGraw–Hill. [theorem 2.41]

28 Following the discussion in the next section,
they in fact are infinitely differentiable.

It turns out that continuity in mean square is not quite sufficient
to guarantee that 𝑓 is simultaneously continuous at every 𝑥 ∈ X with
probability one, a property known as sample path continuity. However,sample path continuity
very slightly stronger conditions on the moments of a gp are sufficient
to guarantee sample path continuity.25 The following result is adequate
for most settings arising in practice and may be proven as a corollary to
the slightly weaker (and slightly more complicated) conditions assumed
in adler and taylor’s theorem 1.4.1.

Theorem. Suppose X ⊂ ℝ𝑑 is compact and 𝑓 : X → ℝ has Gaussian

process distribution GP (𝑓 ; `, 𝐾), where ` is continuous and 𝐾 is Hölder

continuous.26 Then 𝑓 is almost surely continuous on X .

The condition that X ⊂ ℝ𝑑 be compact is equivalent to the domain
being closed and bounded, by the Heine–Borel theorem.27 Applying this
result to our example gp in Figure 2.1, we conclude that samples from the
process are continuous with probability one as the domain X = [0, 30] is
compact and the squared exponential covariance function (2.4) is Hölder
continuous. Indeed, the generated samples are very smooth.28

Sample path continuity can also be guaranteed on non-Euclidean
domains under similar smoothness conditions.25

2.6 differentiability

We can approach the question of differentiability by again reasoning
about the limiting behavior of linear transformations of function values.
Suppose 𝑓 : X → ℝ with X ⊂ ℝ𝑑 has distribution GP (𝑓 ; `, 𝐾), and
consider the 𝑖th partial derivative of 𝑓 at x, if it exists:

𝜕𝑓

𝜕𝑥𝑖
(x) = lim

ℎ→0

𝑓 (x + ℎe𝑖 ) − 𝑓 (x)
ℎ

,

where e𝑖 is the 𝑖th standard basis vector. For ℎ > 0, the value in the limit
is Gaussian distributed as a linear transformation of Gaussian-distributed
random variables (a.9). Assuming the corresponding partial derivative
of the mean exists at x and the corresponding partial derivative with
respect to each input of the covariance function exists at x = x′, then as
ℎ → 0 the partial derivative converges in distribution to a Gaussian:sequences of normal rvs: §a.2, p. 300

𝑝

(
𝜕𝑓

𝜕𝑥𝑖
(x) | x

)
= N

(
𝜕𝑓

𝜕𝑥𝑖
(x); 𝜕`

𝜕𝑥𝑖
(x), 𝜕2𝐾

𝜕𝑥𝑖 𝜕𝑥
′
𝑖

(x, x)
)
.

If this property holds for each coordinate 1 ≤ 𝑖 ≤ 𝑑 , then 𝑓 is said to bedifferentiability in mean square
differentiable in mean square at x.

If 𝑓 is differentiable in mean square everywhere in the domain, thejoint gp between function and gradient
process itself is called differentiable in mean square, and we have the
remarkable result that the function and its gradient have a joint Gaussian
process distribution:

𝑝 (𝑓,∇𝑓 ) = GP
([

𝑓
∇𝑓

]
;
[
`
∇`

]
,

[
𝐾 𝐾∇⊤
∇𝐾 ∇𝐾∇⊤

])
. (2.28)
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observations posterior mean posterior 95% credible interval

𝑓

𝑑𝑓
𝑑𝑥

Figure 2.7: The joint posterior of the function and its derivative for our example Gaussian process from Figure 2.2. The
dashed line in the lower plot corresponds to a derivative of zero.

Here by writing the gradient operator ∇ on the left-hand side of 𝐾 we
mean the result of taking the gradient with respect to its first input,
and by writing ∇⊤ on the right-hand side of 𝐾 we mean taking the
gradient with respect to its second input and transposing the result. Thus
∇𝐾 : X × X → ℝ𝑑 maps pairs of points to column vectors: covariance between ∇𝑓 (x) and 𝑓 (x′) , ∇𝐾

[∇𝐾 (x, x′)]
𝑖
= cov

[
𝜕𝑓

𝜕𝑥𝑖
(x), 𝑓 (x′)

�� x, x′] =
𝜕𝐾

𝜕𝑥𝑖
(x, x′),

and 𝐾∇⊤: X × X → (ℝ𝑑 )∗ maps pairs of points to row vectors: transpose of covariance between 𝑓 (x) and
∇𝑓 (x′) , 𝐾∇⊤

𝐾∇⊤(x, x′) = [∇𝐾 (x′, x)]⊤.
Finally, the function ∇𝐾∇⊤: X × X → ℝ𝑑×𝑑 represents the result of covariance between ∇𝑓 (x) and ∇𝑓 (x′) ,

∇𝐾∇⊤applying both operations, mapping a pair of points to the covariance
matrix between the entries of the corresponding gradients:

[∇𝐾∇⊤(x, x′)]
𝑖 𝑗
= cov

[
𝜕𝑓

𝜕𝑥𝑖
(x), 𝜕𝑓

𝜕𝑥 ′𝑗
(x′)

�� x, x′] =
𝜕2𝐾

𝜕𝑥𝑖 𝜕𝑥
′
𝑗

(x, x′).

As the gradient of 𝑓 has a Gaussian process marginal distribution (2.28),
we can reduce the question of continuous differentiability to sample path continuous differentiability
continuity of the gradient process following the discussion above.

Figure 2.7 shows the posterior distribution for the derivative of our example and discussion
example Gaussian process alongside the posterior for the function itself.
We can observe a clear correspondence between the two distributions;
for example, the posterior mean of the derivative vanishes at critical
points of the posterior mean of the function. Notably, we have a great
deal of residual uncertainty about the derivative, even at the observed
locations. That is because the relatively high spacing between the exist-
ing observations limits our ability to accurately estimate the derivative
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𝑓

observations posterior mean posterior 95% credible interval

𝑑𝑓
𝑑𝑥

Figure 2.8: The joint posterior of the derivative of our example Gaussian process after adding a new observation nearby
another suggesting a large positive slope. The dashed line in the lower plot corresponds to a derivative of zero.

29 For 𝐾 we again only need to consider the “di-
agonal” x = x′.

30 Recall the Hessian is symmetric (assuming the
second partial derivatives are continuous) and
thus redundant. The half-vectorization opera-
tor vechA maps the upper triangular part of
a square, symmetric matrix A to a vector.

anywhere. Adding an observation immediately next to a previous one
significantly reduces the uncertainty in the derivative in that region by
effectively providing a finite-difference approximation; see Figure 2.8.

Conditioning on derivative observations

However, we can be more direct in specifying derivatives than finite
differencing. We can instead condition the joint gp (2.28) directly on a
derivative observation, as described previously. Figure 2.9 shows theinference from jointly Gaussian distributed

observations: § 2.2, p. 18 joint posterior after conditioning on an exact observation of the deriva-
tive at the left-most observation location, where the uncertainty in the
derivative now vanishes entirely. This capability allows the seamless
incorporation of derivative information into an objective function model.
Notably, we can even condition a Gaussian process on noisy derivative
observations as well, as we might obtain in stochastic gradient descent.

We can reason about derivatives past the first recursively. For exam-
ple, if ` and 𝐾 are twice differentiable,29 then the (e.g., half-vectorized30)
Hessian of 𝑓 will also have a joint gp distribution with 𝑓 and its gradient.
Defining h to be the operator mapping a function to its half-vectorized
Hessian:

h𝑓 = vech∇∇⊤𝑓,
for a Gaussian process with suitably differentiable moments, we have

𝑝 (h𝑓 ) = GP (
h𝑓 ; h`, h𝐾h⊤

)
, (2.29)

where we have used the same notational convention for the transpose.
Further, 𝑓, ∇𝑓, and h𝑓 will have a joint Gaussian process distribution
given by augmenting (2.28) with the marginal in (2.29) and the cross-
covariance functions

cov[h𝑓, 𝑓 ] = h𝐾 ; cov[h𝑓,∇𝑓 ] = h𝐾∇⊤.
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observations posterior mean posterior 95% credible interval

𝑓

𝑑𝑓
𝑑𝑥

Figure 2.9: The joint posterior of the derivative of our example Gaussian process after adding an exact observation of the
derivative at the indicated location. The dashed line in the lower plot corresponds to a derivative of zero.

31 This is true in classical optimization as well!

32 p. diaconis (1988). Bayesian Numerical Anal-
ysis. In: Statistical Decision Theory and Related

Topics iv.

33 This can be shown, for example, by consider-
ing the limiting distribution of Riemann sums.

34 a. o’hagan (1991). Bayes–Hermite Quadrature.
Journal of Statistical Planning and Inference

29(3):245–260.

35 c. e. rasmussen and z. ghahramani (2002).
Bayesian Monte Carlo. neurips 2002.

We can continue further in this vein if needed; however, we rarely reason
about derivatives of third-or-higher order in Bayesian optimization.31

Other linear transformations

The joint gp distribution between a suitably smooth gp-distributed func-
tion and its gradient (2.28) is simply an infinite-dimensional analog of
the general result that Gaussian random variables are jointly Gaussian
distributed with arbitrary linear transformations (a.10), after noting that
differentiation is a linear operator. We can extend this result to reason
about other linear transformations of gp-distributed functions. diaco-
nis’s original motivation for studying Bayesian numerical methods was
quadrature, the numerical estimation of intractable integrals.32 It turns
out that Gaussian processes are a rather convenient model for this task:
if 𝑝 (𝑓 ) = GP (𝑓 ; `, 𝐾) and we want to reason about the expectation

𝑍 =
∫
𝑓 (𝑥) 𝑝 (𝑥) d𝑥,

then (under mild conditions) we again have a joint Gaussian process
distribution over 𝑓 and 𝑍 .33 This enables both inference about 𝑍 and
conditioning on noisy observations of integrals, such as a Monte Carlo
estimate of an expectation. The former is the basis for Bayesian quadra-

ture, an analog of Bayesian optimization bringing Bayesian experimental
design to bear on numerical integration.32,34,35

2.7 existence and uniqeness of global maxima

The primary use of gps in Bayesian optimization is to inform optimiza-
tion decisions, which will be our focus for the majority of this book.
Before continuing down this path, we pause to consider whether global
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36 w. rudin (1976). Principles of Mathematical

Analysis. McGraw–Hill. [theorem 4.16]

37 A centered Gaussian process has identically
zero mean function ` ≡ 0.

38 j. kim and d. pollard (1990). Cube Root
Asymptotics. The Annals of Statistics 18(1):191–
219. [lemma 2.6]

optimization of a gp-distributed function is a well-posed problem, in par-
ticular, whether the model guarantees the existence of a global maximum
at all.

Consider a function 𝑓 : X → ℝ with distribution GP (𝑓 ; `, 𝐾), and
consider the location and value of its global optimum, if one exists:

𝑥∗ = arg max
𝑥 ∈X

𝑓 (𝑥); 𝑓 ∗ = max
𝑥 ∈X

𝑓 (𝑥) = 𝑓 (𝑥∗).

As 𝑓 is unknown, these quantities are random variables. Many Bayesianmutual information and entropy search: § 7.6,
p. 135 optimization algorithms operate by reasoning about the distributions of

(and uncertainties in) these quantities induced by our belief on 𝑓.
There are two technical issues we must address. The first is whether

we can be certain that a globally optimal value 𝑓 ∗ exists when the objec-
tive function is random. If existence is not guaranteed, then its distribu-
tion is meaningless. The second issue is one of uniqueness: assuming the
objective does attain a maximal value, can we be certain the optimum
is unique? In general 𝑥∗ is a set-valued random variable, and thus its
distribution might have support over arbitrary subsets of the domain,
rendering it complicated to reason about. However, if we could ensure
the uniqueness of 𝑥∗, its distribution would have support on X rather
than its power set, allowing more straightforward inference.

Both the existence of 𝑓 ∗ and uniqueness of 𝑥∗ are tacitly assumed
throughout the Bayesian optimization literature when building algo-
rithms based on distributions of these quantities, but these properties
are not guaranteed for arbitrary Gaussian processes. However, we can
ensure these properties hold almost surely under mild conditions.

Existence of global maxima

To begin, guaranteeing the existence of an optimal value is straightfor-
ward if we suppose the domain X is compact, a pervasive assumption
in optimization. This is no coincidence! In this case, if 𝑓 is continuous
then it achieves a global optimum by the extreme value theorem.36 Thus
sample path continuity of 𝑓 and compactness of X is sufficient to ensure
that 𝑓 ∗ exists almost surely. Both conditions can be readily established:
sample path continuity by following our previous discussion, and com-sample path continuity: § 2.5, p. 28
pactness of the domain by standard arguments (for example, ensuring
that X ⊂ ℝ𝑑 be closed and bounded).

Uniqueness of global maxima

We now turn to the question of uniqueness of 𝑥∗, which obviously only
becomes a meaningful question after presupposing that 𝑓 ∗ exists. Again,
this condition is easy to ensure almost surely under simple conditions
on the covariance function of a Gaussian process.

kim and pollard considered this issue and provided straightforward
conditions under which the uniqueness of 𝑥∗ is guaranteed for a centered
Gaussian process.37,38 Namely, no two unique points in the domain can
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39 Although unlikely to matter in practice, kim
and pollard allow X to be 𝜎-compact and
show that the supremum (rather than the max-
imum) is unique under the same conditions.

40 m. a. arcones (1992). On the argmax of a Gaus-
sian Process. Statistics & Probability Letters

15(5):373–374.

41 It turns out this naïve model of white noise
has horrible mathematical properties, but it is
sufficient for this counterexample.

42 Let𝑄 = ℚ ∩ [0, 1] = {𝑞𝑖 } be the rationals in
the domain and let 𝑓 ∗ be a putative maximum.
Defining 𝜙𝑖 = 𝑓 (𝑞𝑖 ) , we must have 𝜙𝑖 ≤ 𝑓 ∗
for every 𝑖; call this event 𝐴.

Define the event 𝐴𝑘 by 𝑓 ∗ exceeding the
first 𝑘 elements of𝑄 . From independence,

Pr(𝐴𝑘 ) =
𝑘∏
𝑖=1

Pr(𝜙𝑖 ≤ 𝑓 ∗) = Φ(𝑓 ∗)𝑘,

so Pr(𝐴𝑘 ) → 0 as 𝑘 → ∞. But {𝐴𝑘 } ↗ 𝐴,
so Pr(𝐴) = 0, and 𝑓 ∗ is almost surely not the
maximum.

Our counterexample gpwithout a unique max-
imum. Every sample achieves its maximum
twice.

have perfectly correlated function values, a natural condition that can
be easily verified.

Theorem (kim and pollard, 1990). Let X be a compact metric space.39
Suppose 𝑓 : X → ℝ has distribution GP (𝑓 ; ` ≡ 0, 𝐾), and that 𝑓 is sample

path continuous. If for all 𝑥, 𝑥 ′ ∈ X with 𝑥 ≠ 𝑥 ′ we have

var[𝜙 − 𝜙 ′ | 𝑥, 𝑥 ′] = 𝐾 (𝑥, 𝑥) − 2𝐾 (𝑥, 𝑥 ′) + 𝐾 (𝑥 ′, 𝑥 ′) ≠ 0,

then 𝑓 almost surely has a unique maximum on X .

arcones provided slightly weaker conditions for uniqueness of the
supremum, avoiding the requirement of sample path continuity.40

Counterexamples

Although the above conditions for ensuring existence of 𝑓 ∗ and unique-
ness of 𝑥∗ are fairly mild, it is easy to construct counterexamples.

Consider a function on the closed unit interval, which we note is
compact: 𝑓 : [0, 1] → ℝ. We endow 𝑓 with a “white noise”41 Gaussian
process with

` (𝑥) ≡ 0; 𝐾 (𝑥, 𝑥 ′) = [𝑥 = 𝑥 ′] .
Now 𝑓 almost surely does not have a maximum. Roughly, because the
value of 𝑓 at every point in the domain is independent of every other,
there will almost always be a point with value exceeding any putative
maximum.42 However, the conditions of sample path continuity were
violated as the covariance is discontinuous at 𝑥 = 𝑥 ′.

Wemay also construct a Gaussian process that almost surely achieves
a maximum that is not unique. Consider a random function 𝑓 defined
on the (compact) interval [0, 4𝜋] defined by the parametric model

𝑓 (𝑥) = 𝛼 cos𝑥 + 𝛽 sin𝑥,

where 𝛼 and 𝛽 are independent standard normal random variables. Then
𝑓 has a Gaussian process distribution with

` (𝑥) ≡ 0; 𝐾 (𝑥, 𝑥 ′) = cos(𝑥 − 𝑥 ′). (2.30)

Here ` is continuous and 𝐾 is Hölder continuous, and thus 𝑓 is sample
path continuous and almost surely achieves a global maximum. However,
𝑓 is also periodic with period 2𝜋 with probability one andwill thus almost
surely achieve its maximum twice.Note that the covariance function does
not satisfy the conditions outlined in the above theorem, as any input
locations separated by 2𝜋 have perfectly correlated function values.

2.8 inference with non-gaussian observations and constraints

Gaussian process inference is tractable when the observed values are inference from jointly Gaussian distributed
observations: § 2.2, p. 18jointly Gaussian distributed with the function of interest (2.6). However,

this may not always hold for all relevant information we may receive.
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observations objective mean, Gaussian noise 95% credible interval, Gaussian noise

Figure 2.10: Regression with observations corrupted with heavy-tailed noise. The triangular marks indicate observations
lying beyond the plotted range. Shown is the posterior distribution of an objective function (along with
ground truth) modeling the errors as Gaussian. The posterior is heavily affected by the outliers.

𝜙

𝑦

𝑝 (𝑦 | 𝑥,𝜙)

A Student-𝑡 error model (solid) with a Gaus-
sian error model (dashed) for reference. The
heavier tails of the Student-𝑡 model can better
explain large outliers.

43 k. l. lange et al. (1989). Robust Statistical Mod-
eling Using the 𝑡 Distribution. Journal of the
American Statistical Association 84(408):881–
896.

One obvious limitation is an incompatibility with naturally non-
Gaussian observations. A scenario particularly relevant to optimization
is heavy-tailed noise. Consider the data shown in Figure 2.10, where
some observations represent extreme outliers. These errors are poorly
modeled as Gaussian, and attempting to infer the underlying objective
function with the additive Gaussian noise model leads to overfitting
and poor predictive performance. A Student-𝑡 error model with a ≈ 4
degrees of freedom provides a robust alternative:43

𝑝 (𝑦 | 𝑥, 𝜙) = T (𝑦;𝜙, 𝜎2
𝑛, a). (2.31)

The heavier tails of this model can better explain large outliers; un-
fortunately, the non-Gaussian nature of this model also renders exact
inference impossible. We will demonstrate how to overcome this impasse.

Constraints on an objective function, such as bounds on given func-
tion values, can also provide valuable information during optimization,
but many natural constraints cannot be reduced to observations that can
be handled in closed form. Several Bayesian optimization policies impose
hypothetical constraints on the objective function when designing each
observation, requiring inference from intractable constraints even when
the observations themselves pose no difficulties.

To see how constraints might arise in optimization, consider a Gaus-
sian process belief on a one-dimensional objective 𝑓, and suppose we
wish to condition on 𝑓 on having a local maximum at a given loca-
tion 𝑥 . Assuming the function is twice differentiable, we can invoke thedifferentiability, derivative observations: § 2.6,

p. 30 second-derivative test to encode this information in two constraints:

𝑓 ′(𝑥) = 0; 𝑓 ′′(𝑥) < 0. (2.32)

We can condition a gp on the first of these conditions by following
our previous discussion. However, no gp is compatible with the second
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true distribution
samples Figure 2.11: The probability density function of an example

distribution along with 50 samples drawn inde-
pendently from the distribution. In Monte Carlo
approaches, the distribution is effectively approxi-
mated by a mixture of Dirac delta distributions at
the sample locations.

44 f. r. kschischang et al. (2001). Factor Graphs
and the Sum–Product Algorithm. ieee Trans-
actions on Information Theory 47(2):498–519.

45 For example, when observations are condi-
tionally independent given the corresponding
function values, the likelihood factorizes into
a product of one-dimensional factors (1.3):

𝑝 (y | x,𝝓) =
∏
𝑖

𝑝 (𝑦𝑖 | 𝑥𝑖 , 𝜙𝑖 ) .

condition as 𝑓 ′′(𝑥) would necessarily have a Gaussian distribution with
unbounded support (2.29). We need some other means to proceed.

Non-Gaussian observations: general case

We can address both non-Gaussian observations and constraints with
the following general case, which is flexible enough to handle a large
range of information. As in our discussion on exact inference, suppose
there is some vector y sharing a joint Gaussian process distribution with
a function of interest 𝑓 (2.6):

𝑝 (𝑓, y) = GP
([
𝑓
y

]
;
[
`
m

]
,

[
𝐾 ^⊤

^ C

])
.

Suppose we receive some information about y in the form of infor-
mation D inducing a non-Gaussian posterior on y. Here, it is convenient
to adopt the language of factor graphs44 and write the resulting posterior
as proportional to the prior weighted by a function 𝑡 (y) encoding the
available information, which may factorize:

𝑝 (y | D) ∝ 𝑝 (y) 𝑡 (y) = N (y;m,C)
∏
𝑖

𝑡𝑖 (y). (2.33)

The functions {𝑡𝑖 } are called factors or local functions that may comprise factors, local functions, {𝑡𝑖 }
a likelihood augmented by any desired (hard or soft) constraints. The
term “local functions” arises because each factor often depends only on
a low-dimensional subspace of y, often a single entry.45

The posterior on y (2.33) in turn induces a posterior on 𝑓 :

𝑝 (𝑓 | D) =
∫
𝑝 (𝑓 | y) 𝑝 (y | D) dy. (2.34)

At first glance, we may hope to resolve this posterior easily as 𝑝 (𝑓 | y) is
a Gaussian process (2.9–2.10). Unfortunately, the non-Gaussian posterior
on y usually renders the posterior on 𝑓 intractable.

Monte Carlo sampling

A Monte Carlo approach to approximating the 𝑓 posterior (2.34) begins
by drawing samples from the y posterior (2.33):

{y𝑖 }𝑠𝑖=1 ∼ 𝑝 (y | D).
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observations objective posterior mean posterior 95% credible interval

Figure 2.12: Regression with observations corrupted with heavy-tailed noise. The triangular marks indicate observations
lying beyond the plotted range. Shown is the posterior distribution of an objective function (along with
ground truth) modeling the errors as Student-𝑡 distributed with a = 4 degrees of freedom. The posterior was
approximated from 100 000 Monte Carlo samples. Comparing with the additive Gaussian noise model from
Figure 2.10, this model effectively ignores the outliers and the fit is excellent.

46 Handbook of Markov Chain Monte Carlo (2011).
Chapman & Hall.

47 i. murray et al. (2010). Elliptical Slice Sam-
pling. aistats 2010.

We may generate these by appealing to one of numerous Markov chain
Monte Carlo (mcmc) routines.46 One natural choice would be elliptical
slice sampling,47 which is specifically tailored for latent Gaussian models
of this form. Samples from a one-dimensional toy example distribution
are shown in Figure 2.11.

Given posterior samples of y, we may then approximate (2.34) via
the standard Monte Carlo estimator

𝑝 (𝑓 | D) ≈ 1
𝑠

𝑠∑︁
𝑖=1

𝑝 (𝑓 | y𝑖 ) = 1
𝑠

𝑠∑︁
𝑖=1

GP (𝑓 ; `D𝑖 , 𝐾D). (2.35)

This is a mixture of Gaussian processes, each of the form in (2.9–2.10).
The posterior mean functions depend on the corresponding y samples,
whereas the posterior covariance functions are identical as there is no
dependence on the observed values. In this approximation, the marginal
belief about any function value is then a mixture of univariate Gaussians:

𝑝 (𝜙 | 𝑥,D) ≈ 1
𝑠

𝑠∑︁
𝑖=1

N (𝜙 ; `𝑖 , 𝜎2); `𝑖 = `D𝑖 (𝑥); 𝜎2 = 𝐾D (𝑥, 𝑥).
(2.36)

Although slightly more complex than the Gaussian marginals of a Gaus-
sian process, this is often convenient enough for most needs.

A Monte Carlo approximation to the posterior for the heavy-tailedexample: Student-𝑡 observation model
dataset from Figure 2.10 is shown in Figure 2.12. The observations were
modeled as corrupted by Student-𝑡 errors with a = 4 degrees of freedom.
The posterior was approximated using a truly excessive number of sam-
ples (100 000, with a burn-in of 10 000) from the y posterior drawn using
elliptical slice sampling.47 The outliers in the data are ignored and the
predictive performance is excellent.
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48 h. nickisch and c. e. rasmussen (2008). App-
proximations for Binary Gaussian Process
Classification. Journal of Machine Learning Re-

search 9(Oct):2035–2078.

Gaussian approximate inference

An alternative to sampling is approximate inference, where we make
a parametric approximation to the y posterior that yields a tractable
posterior on 𝑓. In particular, if the posterior (2.33) were actually normal,

it would induce a Gaussian process posterior on 𝑓. This insight is the
basis for most approximation schemes.

In this vein, we proceed by first – somehow – approximating the
true posterior over y with a multivariate Gaussian distribution:

𝑝 (y | D) ≈ 𝑞(y | D) = N (y; m̃, C̃). (2.37)

We are free to design this approximation as we see fit. There are several
general-purpose approaches available, distinguished by how they ap-
proach maximizing the fidelity of fitting the true posterior (2.33). These
include the Laplace approximation, Gaussian expectation propagation, Laplace approximation: § b.1, p. 301
and variational Bayesian inference. The first two of these methods are Gaussian expectation propagation: § b.2

p. 302covered in Appendix b, and nickisch and rasmussen provide an exten-
sive survey of these and other approaches in the context of Gaussian
process binary classification.48

Regardless of the details of the approximation scheme, the high-level
result is the same – the normal approximation (2.37) in turn induces an
approximate Gaussian process posterior on 𝑓. To demonstrate this, we
consider the posterior on 𝑓 that would arise from a direct observation of
y (2.9–2.10) and integrate against the approximate posterior (2.37):

𝑝 (𝑓 | D) ≈
∫
𝑝 (𝑓 | y) 𝑞(y | D) dy = GP (𝑓 ; `D, 𝐾D), (2.38)

where
`D (𝑥) = ` (𝑥) + ^ (𝑥)⊤C−1 (m̃ −m);

𝐾D (𝑥, 𝑥 ′) = 𝐾 (𝑥, 𝑥 ′) − ^ (𝑥)⊤C−1 (C − C̃)C−1^ (𝑥 ′). (2.39)

For most approximation schemes, the posterior covariance on 𝑓
simplifies to a nicer, more familiar form. Most approximations to the y
posterior (2.37) yield an approximate posterior covariance of the form

C̃ = C − C (C + N)−1C, (2.40)

where N is positive definite. Although this might appear mysterious, it
is actually a natural form: it is the posterior covariance that would result
from observing y corrupted by additive Gaussian noise with covarianceN
(2.19), except we are now free to design the noise covariance to maximize
the fit. For approximations of this form (2.40), the approximate posterior
covariance function on 𝑓 simplifies to the more familiar

𝐾D (𝑥, 𝑥 ′) = 𝐾 (𝑥, 𝑥 ′) − ^ (𝑥)⊤ (C + N)−1^ (𝑥 ′). (2.41)

To demonstrate the power of approximate inference, we return to example: conditioning on a local optimum
our motivating scenario of conditioning a one-dimensional process on
having a local maximum at an identified point 𝑥 , which we can achieve by
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𝑥

posterior mean posterior 95% credible interval posterior sample

𝑥 𝑥

𝑓 ′(𝑥) = 0 𝑓 ′′(𝑥) < 0

Figure 2.13: Approximately conditioning a Gaussian process to have a local maximum at the marked point 𝑥 . We show
each stage of the conditioning process with a sample drawn from the corresponding posterior. We begin
with the unconstrained process (left), which we condition on the first derivative being zero at 𝑥 using exact
inference (middle). Finally we use Gaussian expectation propagation to approximately condition on the second
derivative being negative at 𝑥 .

49 p. mccullagh and j. a. nelder (1989). Gener-
alized Linear Models. Chapman & Hall.

conditioning the first derivative to be zero and constraining the second
derivative to be negative at 𝑥 (2.32). We illustrate an approximation to
the resulting posterior step-by-step in Figure 2.13, beginning with the
example Gaussian process in the left-most panel. We first condition
the process on the first derivative observation 𝑓 ′(𝑥) = 0 using exactderivative observations: § 2.6, p. 32
inference; the result is shown in the middle panel. Both the updated
posterior mean and the sample reflect this information; however, the
sample displays a localminimum at 𝑥 , as the second-derivative constraint
has not yet been addressed.

To incorporate the second-derivative constraint, we begin with this
updated gp and consider the second derivative ℎ = 𝑓 ′′(𝑥), which is
Gaussian distributed prior to the constraint (2.29):

𝑝 (ℎ) = N (ℎ;𝑚, 𝑠2).
The negativity constraint induces a posterior on ℎ incorporating the
factor [ℎ < 0] (2.33); see Figure 2.14:

𝑝 (ℎ | D) ∝ 𝑝 (ℎ) [ℎ < 0] .
The result is a truncated normal posterior on ℎ. We may use Gaussian
expectation propagation, which is especially convenient for handling
bound constraints of this form, to produce a Gaussian approximation:

𝑝 (ℎ | D) ≈ 𝑞(ℎ | D) = N (ℎ;�̃�, 𝑠2).
Incorporating the updated belief on ℎ into the Gaussian process (2.39)
yields the approximate posterior in the right-most panel of Figure 2.13.
Although there is still some residual probability that the second derivative
is positive at𝑥 in the approximate posterior (approximately 8%; see Figure
2.14), the belief reflects the desired information reasonably faithfully.
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0

prior, 𝑝 (ℎ)
constraint factor, [ℎ < 0]

0

true posterior, 𝑝 (ℎ | D) ∝ 𝑝 (ℎ) [ℎ < 0]
Gaussian ep approximation

Figure 2.14: A demonstration of Gaussian expectation propagation. On the left we have a Gaussian belief on the second
derivative, 𝑝 (ℎ). We wish to constrain this value to be negative, introducing a step-function factor encoding
the constraint, [ℎ < 0]. The resulting distribution is non-Gaussian (right), but we can approximate it with a
Gaussian, which induces an updated gp posterior on the function approximately incorporating the constraint.

50 h. nickisch and c. e. rasmussen (2008). App-
proximations for Binary Gaussian Process
Classification. Journal of Machine Learning Re-

search 9(Oct):2035–2078.

51 j. møller et al. (1998). Log Gaussian Cox Pro-
cesses. Scandinavian Journal of Statistics 25(3):
451–482.

52 r. p. adams et al. (2009). Tractable Nonpara-
metric Bayesian Inference in Poisson Pro-
cesses with Gaussian Process Intensities. icml
2009.

53 m. kuss (2006). Gaussian Process Models for
Robust Regression, Classification, and Rein-
forcement Learning. Ph.D. thesis. Technische
Universität Darmstadt.[§ 5.4]

54 r. m. neal (1997). Monte Carlo Implementation

of Gaussian Process Models for Bayesian Re-

gression and Classification. Technical report
(9702). Department of Statistics, University of
Toronto.

55 p. jylänki et al. (2011). Robust Gaussian Pro-
cess Regression with a Student-𝑡 Likelihood.
Journal of Machine Learning Research 12(99):
3227–3257.

56 diaconis identified an early application of gps
by poincaré for nonlinear regression:

p. diaconis (1988). Bayesian Numerical Anal-
ysis. In: Statistical Decision Theory and Related

Topics iv.

h. poincaré (1912). Calcul des probabilités.
Gauthier–Villars.

57 c. e. rasmussen and c. k. i. williams (2006).
Gaussian Processes for Machine Learning. mit
Press.

58 r. j. adler and j. e. taylor (2007). Random
Fields and Geometry. Springer–Verlag.

Going beyond this example, we may use the approach outlined above
to realize a general framework for Bayesian nonlinear regression by
combining a gp prior on a latent function with an observation model
appropriate for the task at hand, then approximating the posterior as
desired. The convenience and modeling flexibility offered by Gaussian
processes can easily justify any extra effort required for approximating
the posterior. This can be seen as a nonlinear extension of thewell-known
family of generalized linear models.49

This approach is quite popular and has been realized countless times.
Notable examples include binary classification using a logistic or probit
observation model,50 modeling point processes as a nonhomogeneous
Poisson process with unknown intensity,51,52 and robust regression with
heavy-tailed additive noise such as Laplace53 or Student-𝑡 54,55 distributed
errors. With regard to the latter and our previous heavy-tailed noise
example, a Laplace approximation to the posterior for the data in Figures
2.10–2.12 with the Student-𝑡 observation model produces an approximate
posterior in excellent agreement with the Monte Carlo approximation
in Figure 2.12; see Figure 2.15. The cost of approximate inference in this
case was dramatically (several orders of magnitude) cheaper than Monte
Carlo sampling.

2.9 summary of major ideas

Gaussian processes have been studied – in one form or another – for over
100 years.56 Although we have covered a lot of ground in this chapter, we
have only scratched the surface of an expansive body of literature. A good
entry point to that literature is rasmussen and williams’s monograph,
which focuses on machine learning applications of Gaussian processes
but also covers their theoretical underpinnings and properties in depth.57
A good companion to this work is the book of adler and taylor, which
takes a deep dive into the properties and geometry of sample paths,
including statistical properties of their maxima.58
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observations objective posterior mean posterior 95% credible interval

Figure 2.15: A Laplace approximation to the posterior from Figure 2.12.

Fortunately, the basic definitions and properties covered in § 2.1 and
exact inference procedure covered in § 2.2 already provide a sufficient
foundation for the majority of practical applications of Bayesian opti-
mization. This material also provides sufficient background knowledge
for the majority of the remainder of the book. However, we wish to
underscore the major results from this chapter at a high level.

• Gaussian processes extend the multivariate normal distribution to model
functions on infinite domains. As in the finite-dimensional case, Gaussian
processes are specified by their first two moments – a mean function
and a positive-definite covariance function – which endow any finite set
of function values with a multivariate normal distribution (2.2–2.3).

• Conditioning a Gaussian process on function observations that are either
exact or corrupted by additive Gaussian noise yields a Gaussian process
posterior with updated moments reflecting the assumptions in the prior
and the information in the observations (2.9–2.10).

• In fact, we may condition a Gaussian process on the observation of anyinference from arbitrary joint Gaussian
observations: § 2.2, p. 22 observations sharing a joint Gaussian distribution with the function of

interest.
• In the case of exact inference, the posterior moments of a Gaussianinterpretation of posterior moments: § 2.2,

p. 21 process can be rewritten in terms of correlations among function values
and 𝑧-scores of the observed values in a manner that may be more
intuitive than the standard formulas.

• We may extend Gaussian processes to jointly model multiple correlatedjoint Gaussian processes: § 2.4, p. 26
functions via careful bookkeeping, a construction known as a joint Gaus-
sian process. Joint gps are widely used in optimization settings involvingExtensions and Related Settings: Chapter 11,

p. 245 multiple objectives and/or cheaper surrogates for an expensive objective.
• Continuity and differentiability of Gaussian process sample paths cancontinuity: § 2.5, p. 28
be guaranteed under mild assumptions on the mean and covariancedifferentiability: § 2.6, p. 30
functions. When these functions are sufficiently differentiable, a gp-
distributed function shares a joint gp distribution with its gradient (2.28).
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59 In particular, policies grounded in information
theory under the umbrella of “entropy search.”
See § 7.6, p. 135 for more.

This joint distribution allows us to condition a Gaussian process on derivative observations: § 2.6, p. 32
(potentially noisy) derivative observations.

• The existence and uniqueness of global maxima for Gaussian process existence and uniqueness of global maxima:
§ 2.7, p. 33sample paths can be guaranteed under mild assumptions on the mean

and covariance functions. Establishing these properties ensures that
the location 𝑥∗ and value 𝑓 ∗ of the global maximum are well-founded
random variables, which will be critical for some optimization methods
introduced later in the book.59

• Inference from non-Gaussian observations and constraints is possible inference with non-Gaussian observations
and constraints: § 2.8, p. 35via Monte Carlo sampling or Gaussian approximate inference.

Looking forward, the focus of this chapter has been on theoretical
rather than practical properties of Gaussian processes. A huge outstand-
ing question is how to actually design a Gaussian process to model a
given system. This will be our focus for the next two chapters. In the
next chapter, we will explore model construction, and in the following
chapter we will consider model assessment in light of available data.

Finally, we have not yet discussed any computational issues inherent
to Gaussian process inference, including, most importantly, how the
cost of computing the posterior grows with respect to the number of
observations. We will discuss implementation details and scaling in a implementation and scaling of Gaussian

process inference: § 9.1, p. 201dedicated chapter later in the book.
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