
J. Aust. Math. Soc. 115 (2023), 58–72
doi:10.1017/S1446788722000398

AN INCIDENCE RESULT FOR WELL-SPACED ATOMS
IN ALL DIMENSIONS

PETER J. BRADSHAW

(Received 12 August 2021; accepted 30 December 2022; first published online 20 February 2023)

Communicated by James East

Abstract

We prove an incidence result counting the k-rich δ-tubes induced by a well-spaced set of δ-atoms. Our
result coincides with the bound that would be heuristically predicted by the Szemerédi–Trotter theorem
and holds in all dimensions d ≥ 2. We also prove an analogue of Beck’s theorem for δ-atoms and δ-tubes
as an application of our result.
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1. Introduction

Incidence geometry is concerned with counting incidences between various geometric
objects, traditionally points and lines. Given a finite set of lines L inR2, a point is k-rich
if between k and 2k lines from L pass through it. The set of k-rich points is denoted by
Pk(L). For k ≥ 2, the classical Szemerédi–Trotter theorem [13] bounds sharply |Pk(L)|:

|Pk(L)| � |L|2k−3 + |L|k−1. (1-1)

By duality, the above bound also holds if the roles of points and lines are interchanged.
If Lk(P) is the set of k-rich lines induced by a set P of points, then

|Lk(P)| � |P|2k−3 + |P|k−1. (1-2)

Given a set P of points and a set L of lines in R2, the number of incidences
is defined to be I(P, L) := |{(p, l) ∈ P × L : p ∈ l}|. An equivalent formulation of the
Szemerédi–Trotter Theorem states that

I(P, L) � (|P||L|)2/3 + |P| + |L|. (1-3)

In their 2019 paper [11], Guth et al. proved an analogue of the Szemerédi–Trotter
theorem akin to Equation (1-1), for suitably well-spaced sets of tubes of thickness δ
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in [0, 1]2. Furthermore, they proved a similar result in [0, 1]3 which is an analogue
of the seminal Guth–Katz bound [9]. Both bounds are essentially sharp. Their work
expands our understanding of the Kakeya problem which studies intersections of
thin tubes.

As in [11], our objects of interest are small δ-atoms and thin δ-tubes. A δ-atom
is a closed ball in [0, 1]d of diameter δ and a δ-tube is the set of all points in [0, 1]d

which are within a distance δ/2 of some fixed line. Throughout this paper, distance
will always refer to Euclidean distance. Unlike the discrete setting of points and lines,
we need to carefully define what it means for two atoms or two tubes to be distinct.
Two δ-atoms are distinct if they do not intersect each other. Two δ-tubes are distinct if
either:

• they do not intersect each other; or
• the angle between them is greater than δ.

Unless otherwise stated, atoms and tubes will be assumed throughout to be distinct.
In the literature, these criteria are often summarised by saying that a set A of

atoms or a set T of tubes is δ-separated. (Technically, they are 2δ-separated under
the forthcoming definition.) More generally, we can state the following definition.

DEFINITION 1.1. Given γ ≥ δ, we say a set of δ-atoms A (respectively δ-tubes T) are
γ-separated if there is at most one atom of A (respectively tube of T) in each γ-atom
(respectively γ-tube).

We say that an atom and a tube are incident with each other if they have a nonempty
intersection. If the number of atoms from A incident with a δ-tube lies in [k, 2k), then
we say it is a k-rich tube (induced by A). Let Tk(A) be the set of k-rich δ-tubes induced
by A. Owing to the above setup, a set of atoms A must always be finite.

The problem we address is upper-bounding |Tk(A)|. In two dimensions, this problem
is dual to one of the aforementioned problems addressed in [11]. Bounding the number
of incidences between a set A of atoms and a set T of tubes is an equivalent way of
studying this problem.

An alternative setup involves counting approximate incidences between δ-separated
points and δ-separated lines. In this setting, we would say that a point p and a line l are
incident if p lies in a δ-neighbourhood of the line l. This is the setup used in [4].

Defining distinct atoms and distinct tubes in the above way is natural because it
avoids degenerate configurations of atoms and tubes. To give an example, let us allow
atoms to intersect. Let A be a large set of atoms that are all small perturbations of a
single atom, and let T be a large set of tubes arranged in a star shape and all passing
through the atoms of A. In this configuration, all atoms are incident with all tubes,
which ought not to happen in a good setup of a continuous incidence problem. Indeed,
the correct interpretation for two atoms which intersect each other is that they are two
copies of the same atom. We would say that this atom appears with multiplicity two.
In Section 2, we give an incidence result in which the atoms in A may appear with
multiplicity.
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However, even with these assumptions, atoms and tubes are still not a perfect model
for points and lines. In discrete geometry, two points can lie on at most one line and
two lines can intersect in at most one point. However, this does not hold for atoms and
tubes, and constitutes one of the most important differences between the two cases. In
fact, if two δ-atoms in [0, 1]d are separated by a distance of x where δ � x < 1, then
there exist ∼ x1−d distinct δ-tubes that are incident to both of them.

The following example illustrates that without further assumptions on the distribu-
tion of atoms, bounds that match the Szemerédi–Trotter theorem in Equation (1-2) are
unobtainable.

EXAMPLE 1.2. Suppose A is a grid of δ-atoms with |A| = k2, that fit inside some
kδ × kδ square in [0, 1]2. It is clear that |Tk(A)| ∼ kδ−1 = δ−1 · |A|2/k3. Since δ−1 can be
arbitrarily large, any upper bounds on |Tk(A)| will be very weak. Similar problematic
examples can also be constructed in higher dimensions.

The following incidence bound is the dual to a result established in [4].

THEOREM 1.3 (Fässler, Orponen, Pinamonti). Let A be a set of W−1-separated δ-atoms
in [0, 1]2 where 1 < W ≤ δ−1. Let Tk(A) be the set of k-rich δ-tubes induced by A. Then

|Tk(A)| � W · |A|
2

k3 .

In light of Example 1.2, Theorem 1.3 is sharp when W = δ−1. However, when
k ≤ δ|A|, this bound is worse than the trivial |Tk(A)| � δ−2 and indeed there exist sets A
of atoms which attain this trivial bound.

For a set A of δ-atoms in [0, 1]d that is well distributed in some sense, we prove
a bound for |Tk(A)| which essentially depends only on |A| and k. In this context, well
distributed means that the atoms almost form a well-spaced grid.

THEOREM 1.4. Let d ≥ 2 be an integer. Given 1 < W < δ−1, let A be a W−1-separated
family of δ-atoms in [0, 1]d where |A| ∼ Wd. Let k ≥ 2. Then for every ε > 0, there exist
C1(ε, d) and C2(ε, d) such that if

k ≥ C1(ε, d)δ−ε · δd−1|A|, (1-4)

then

|Tk(A)| ≤ C2(ε, d)δ−ε · |A|
2

k3 . (1-5)

REMARK 1.5. Let T≥k(A) be the set of at least k-rich tubes induced by A. After
dyadic summing, it is clear that Theorem 1.4 obtains the same asymptotic bounds
for |T≥k(A)| and |Tk(A)|. In the literature, there is usually no distinction made between
these quantities.

The condition in Equation (1-4) on k is necessary and has a specific meaning. If the
atoms in A were randomly placed, then a simple calculation verifies that the expected
richness of any δ-tube is δd−1|A|. If k ≤ δd−1|A|, then probabilistic arguments prove that
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there exist configurations of atoms A such that a positive proportion of all possible
δ-tubes are at least k-rich. Thus we need Equation (1-4) to obtain nontrivial bounds for
|Tk(A)|.

Compared to Theorem 1.3, our Theorem 1.4 has the key added assumption that
|A| = Wd, which means that A is as big as a W−1-separated set could be. In other words,
A nearly forms a grid of atoms. In contrast, Theorem 1.3 applies to much sparser sets
of atoms that are still W−1-separated.

Given a general set T of tubes, I(A, T) will be the number of incidences between
atoms from A and tubes from T. Concretely,

I(A, T) := |{(a, t) ∈ A × T : a ∩ t � ∅}|.

We can obtain an equivalent formulation of Theorem 1.4 in terms of incidences by a
standard argument.

COROLLARY 1.6. Let d ≥ 2 be an integer. Given 1 < W < δ−1, let A be a
W−1-separated family of δ-atoms in [0, 1]d where |A| ∼ Wd. Let T be an arbitrary
set of distinct δ-tubes. Then for every ε > 0, there exists C3(ε, d), such that

I(A, T) ≤ C3(ε, d)δ−ε(|A|2/3|T |2/3 + k0(A, δ)|T |), (1-6)

where k0(A, δ) := max{1, δd−1|A|}.

The term k0(A, δ)|T | in Equation (1-6) plays the same role as the |L| term in the
Szemerédi–Trotter bound Equation (1-3), namely counting the incidences from lines
incident to only one point.

Let us now briefly clarify how our contribution fits in with the results from [11] upon
which our methods are inspired. The main result proved in [11] bounds the number
|Ak(T)| of k-rich atoms induced by a set T of well-distributed tubes.

THEOREM 1.7 (Guth–Solomon–Wang). Let d = 2 or 3. Given 1 < W < δ−1, let T be
a W−1-separated family of δ-tubes in [0, 1]d where |A| ∼ W2(d−1). Let k ≥ 2. Then for
every ε > 0, there exist C1(ε, d) and C2(ε, d) such that if

k ≥ C1(ε, d)δ−ε · δd−1|T |,

then

|Ak(T)| ≤ C2(ε, d)δ−ε · |T |
d/(d−1)

k(d+1)/(d−1)
.

We say a set A of atoms is well distributed if it satisfies the conditions in
Theorem 1.4. Similarly, we say a set T of tubes is well distributed if it satisfies the
conditions in Theorem 1.7. In dimension d = 2, well-distributed atoms and tubes are
dual to each other. Lines in two dimensions are parametrised by two variables, so a
set of well-distributed δ-tubes becomes a set of well-distributed δ-atoms when viewed
in the parameter space. Thus, the d = 2 case of Theorem 1.4 follows immediately by
duality from Theorem 1.7. This result is essentially optimal.
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However, for all d ≥ 3, Theorem 1.4 is a new result. It cannot be obtained by
reparametrising Theorem 1.7 or any other existing result. When d ≥ 3, we conjecture
that the bound should have k3 replaced with kd+1 in the denominator of Equation (1-5),
but any improvement towards this appears not to be amenable to the method we use.
The obstacles to obtaining stronger results for d ≥ 3 appear to be related to the reasons
that the method in [11] fails if d > 3. In both cases, proving a suitable modification of
Proposition 2.1 (and its analogue from [11]) would yield improvements.

A discrete version of Theorem 1.4 can be obtained in any dimension d ≥ 3 by
projecting generically onto a plane and applying the Szemerédi–Trotter theorem.
However, this is not possible in the thickened setting because projecting into a plane
will not preserve the well-distributed property of the set of atoms in general.

REMARK 1.8. It does not matter if we define our atoms to be δ-balls with respect to
the ‖ · ‖2 norm or the ‖ · ‖∞ norm, that is, whether our atoms are d-dimensional balls
or cubes. It only matters that there exist constants C, c such that a δ-cube is always
contained in a Cδ-ball, and also contains a cδ-ball. The choice of shape then only
affects multiplicative constants in our bounds, which are of no consequence since we
are primarily interested in growth rate. During our proof, we partition the space [0, 1]d

into ‘cells’, which is most natural if we view our cells as smaller d-dimensional cubes.
One important upshot is that all equalities in this paper are implicitly up to absolute
constants. None of these constants are problematically large or small.

Several other recent atom–tube incidence bounds with different spacing conditions
are worth noting. Fu et al. [5] proved a generalisation of Theorem 1.7 with the
following more permissive spacing assumption: for 1 ≤ W ≤ X ≤ δ−1, T is a set of
X−1-separated tubes with at most X/W tubes in each 1 ×W−1 rectangle. Indeed, their
result recovers the d = 2 case of Theorem 1.7 when X = W. Fu and Ren [6] also
addressed incidence estimations where the set of atoms (respectively tubes) behave
locally like α-dimensional (respectively β-dimensional) sets for fixed α, β.

Our focus in this paper is combinatorial, but it ought to be mentioned that studying
the intersections of atoms and tubes is relevant to other problems in real analysis.
A discretised version of the Erdős distinct distance problem is treated in [11] and
the related Falconer distance conjecture has admitted recent improvements in the
plane in [8].

Incidence geometry has been used for addressing sum-product type problems since
the groundbreaking paper of Elekes [3]. A δ-discretised sum-product theorem was
proved by Bourgain [2], and then reproved with explicit bounds by Guth et al. [10].
In recent work by Gan and Harbuzova [7], Elekes’ incidence geometry method was
adapted to a version of the δ-discretised sum-product theorem with more restrictive
assumptions on the set A. The more general discretised sum-product theorem appears
impervious to being improved using continuous incidence geometry.

The structure of this paper is as follows: in Section 2, we prove a general incidence
result which will be needed in the proof of Theorem 1.4 in Section 3. In Section 4,

https://doi.org/10.1017/S1446788722000398 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000398


[6] An incidence result for well-spaced atoms in all dimensions 63

we give an application of Theorem 1.4, an analogue of Beck’s theorem for atoms and
tubes.

NOTATION 1.9. We use asymptotic notation extensively. We write f (n) � g(n) to mean
that there exists a (positive) constant C such that f (n) ≤ Cg(n) for large n. We define
�α,β similarly, but in this case, the constant C := C(α, β) may depend on α and β.

2. A general incidence result

To assist in our proofs, we are mostly working with incidence counts rather than
directly with k-rich tubes. Furthermore, we allow for sets of weighted atoms and tubes.
Let A be a set of atoms where each a ∈ A has a positive integer weight w(a) associated
with it. This essentially means that when counting incidences, the atom a appears w(a)
times. Similarly, we define the weight for sets of tubes.

For a set of weighted atoms A with weight function w, and a set of weighted tubes
T with weight function ω, we define a more general incidence counting function

I(A, T) :=
∑
a∈A

∑
t∈T

w(a)ω(t)1{a∩t�∅}.

The following incidence bound is a generalisation of [11, Proposition 2.1] and
our proof is a modification of theirs. Its uses for us are twofold. First, our proof of
Theorem 1.4 requires an incidence result for a general set of atoms which may not
be well distributed. Second, since it applies to weighted atoms, we can sidestep some
technical steps in proving the main result.

The substance of Proposition 2.1 below is how the incidence count I(A, T) behaves
when the atoms in A and the tubes in T are thickened by a factor of S. That is, each
δ-atom becomes an Sδ-atom centred at the same point, and each δ-tube becomes an
Sδ-tube about the same line. Importantly, after thickening, some atoms may intersect,
in which case we consider them a single atom with an associated weight. If the original
atoms were already weighted, then their weights sum if they intersect after thickening.
Similarly, tubes may also become weighted after thickening.

PROPOSITION 2.1. Fix 0 < α < 1. Let k ≥ 1 and A be a set of distinct weighted δ-atoms
in [0, 1]d with weight function w. Let T be a set of distinct (not weighted) δ-tubes. Let
S be such that δ−α � S � δ−1. Then

I(A, T) �
(
Sδ−(d−1)|T |

∑
a∈A

w(a)2
)1/2
+ δ−αS1−dI(AS, TS), (2-1)

where AS and TS are, respectively, the weighted sets of atoms and tubes formed by
thickening A and T by a factor of S.

The proof of Proposition 2.1 uses some elementary Fourier analysis. We include the
following definition for completeness.
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DEFINITION 2.2. For an integrable function f : Rd → C, its Fourier transform is
defined as

f̂ (ξ) :=
∫
Rd

f (x)e−2πix·ξ dx.

For two integrable functions f : Rd → C and g : Rd → C, their convolution is given by

( f ∗ g)(x) :=
∫
Rd

f (y)g(x − y) dy.

PROOF OF PROPOSITION 2.1. We scale the problem by δ−1, so that the δ-atoms are now
1-atoms and the δ-tubes are now 1-tubes in [0, δ−1]d. This will be more convenient to
work with.

For any a ∈ A and any t ∈ T , let χa(x) and χt(x), respectively, be smooth bump
functions approximating the indicator functions for the atom a and the tube t. Now let
f (x) :=

∑
a∈A w(a)χa(x) and g(x) :=

∑
t∈T χt(x). In this notation,

I(A, T) ∼
∫

[0,δ−1]d
f (x)g(x) dx.

Since f and g are Lebesgue integrable functions, their Fourier transforms are well
defined. Furthermore, since they are all bounded and supported on compact sets, they
are Lp functions for all p. It follows that Plancherel’s theorem holds:

∫
f (x)g(x) dx =∫

f̂ (ξ)ĝ(ξ) dξ. Decompose the above into high and low frequency parts:

I(A, T) ∼
∫

f̂ ĝ η +
∫

f̂ ĝ (1 − η),

where η is a smooth function taking value 1 on the ball of radius ρ := δ−α/dS−1 and
supported on a ball of radius 2ρ.

Low frequency case: Assume I(A, T) �
∫

f̂ ĝ η. By Plancherel (and using that η2 ≈ η),

I(A, T) �
∫

( f ∗ h)(g ∗ h),

where ĥ = η. Roughly speaking, convolution with h thickens atoms and tubes by a
factor of ρ−1. For each atom a ∈ A, the function χa ∗ h is approximately w(a)ρd on
the thickened ρ−1-atom around a. Similarly, for each tube t ∈ T , the function χt ∗ h is
approximately ρd−1 on the thickened ρ−1-tube around t.

Outside of these ρ−1-atoms and ρ−1-tubes, the functions f ∗ h and g ∗ h are rapidly
decaying. Since S = δ−α/dρ−1, the tails of both functions are negligible outside the
S-atoms AS and S-tubes TS. It follows that

I(A, T) �
∫

( f ∗ h)(g ∗ h) � ρd−1I(AS, TS) � δ−αS1−dI(AS, TS).
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High frequency case: Assume that I(A, T) �
∫

f̂ ĝ (1 − η). Using the Cauchy–Schwarz
inequality,∫

f̂ (ξ)ĝ(ξ)(1 − η(ξ)) dξ ≤
( ∫
| f̂ (ξ)|2 dξ

)1/2( ∫
|ĝ(ξ)|2(1 − η(ξ))2 dξ

)1/2
. (2-2)

By Parseval’s identity, the first term on the right-hand side can be evaluated as
( ∫
| f̂ (ξ)|2 dξ

)1/2
=

( ∫
| f (x)|2 dx

)1/2
∼
(∑

a∈A
w(a)2

)1/2
.

We now estimate the second term on the right-hand side of Equation (2-2).
Cover the d-dimensional unit sphere Sd−1 := {x ∈ Rd : ‖x‖ = 1} with small (d − 1)-
dimensional δ-balls. These will be called δ-caps and are used to sort tubes in T by
direction. Let Tθ be the set of all tubes from T in the direction of δ-cap θ, and let
gθ =

∑
t∈Tθ χt. Then we need to estimate

∫
|ĝ(ξ)|2(1 − η(ξ))2 dξ =

∫ ∣∣∣∣∣
∑
θ

ĝθ(ξ)
∣∣∣∣∣
2
(1 − η(ξ))2 dξ.

We apply Cauchy–Schwarz to the sum over θ. The advantage is that for fixed ξ, there
are not many values of θ for which ĝθ(ξ) is nonzero.

For each t ∈ Tθ, we have that χ̂t is mostly supported on a 1 × · · · × 1 × δ slab
orthogonal to θ and decays quickly outside. We call this slab θ⊥. Due to the rapidly
decaying tails, the contribution of ĝθ outside the dilated slab δ−α/dθ⊥ is of the order δB

for some positive B, and is therefore negligible.
Thus, the term ĝθ(ξ) is only nonzero if ξ belongs to δ−α/dθ⊥. We may assume that

|ξ| ≥ ρ, as 1 − η(ξ) is otherwise zero. For such a large ξ, simple geometric arguments
show that ξ belongs to δ−α/dθ⊥ for at most � δ−α/dρ−1δ−(d−2) = Sδ−(d−2) different θ
values. Then Cauchy–Schwarz yields

(1 − η(ξ))2
∣∣∣∣∣
∑
θ

ĝθ(ξ)
∣∣∣∣∣
2
� Sδ−(d−1)

∑
θ

|ĝθ(ξ)|2.

Again using Parseval’s identity, it follows that∫
|ĝ(ξ)|2(1 − η(ξ))2 dξ � Sδ−(d−2)

∑
θ

∫
|ĝθ(ξ)|2 dξ

= Sδ−(d−2)
∑
θ

∫
|gθ(x)|2 dx = Sδ−(d−1)|T |.

Substituting into Equation (2-2) yields

I(A, T) �
(
Sδ−(d−1)|T |

∑
a∈A

w(a)2
)1/2

.

�
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The dominant term in Equation (2-1) is determined based on whether the incidence
count increases disproportionately after thickening by S. The following two examples
give configurations of atoms and tubes that attain both bounds in Proposition 2.1,
demonstrating that it is sharp up to a factor of S. For the purpose of these examples, A
will not be a weighted set of atoms.

EXAMPLE 2.3. If A ⊂ [0, 1]d consists of all the δ-atoms in a d-dimensional box with
side length kδ, then |A| ∼ kd. If T is the set of induced k-rich δ-tubes, it can be shown
that |T | ∼ δ−(d−1)kd−1. Further calculations show that

(Sδ−(d−1)|A||T |)1/2 ∼ S1/2δ−(d−1)kd−1/2 and δ−αS1−dI(AS, TS) ∼ δ−(d−1+α)kd.

Also, since all tubes in T are k-rich, we have

I(A, T) ∼ δ−(d−1)kd,

so the second term in Equation (2-1) is attained up to a δ−α factor (for sufficiently
small S).

EXAMPLE 2.4. If A ⊂ [0, 1]d consists of a (d − 1)-dimensional slice of the above
configuration of δ-atoms, then we have |A| ∼ kd−1. Again let T be the set of induced
k-rich δ-tubes, so |T | ∼ δ−(d−1)kd−3. In this case,

(Sδ−(d−1)|A||T |)1/2 ∼ S1/2δ−(d−1)kd−2 and δ−αS1−dI(AS, TS) ∼ S−1δ−(d−1+α)kd−2.

Again, since all tubes in T are k-rich,

I(A, T) ∼ δ−(d−1)kd−2,

so the first term in Equation (2-1) is the attained bound up to an S1/2 factor.

3. The main result

The proof of Theorem 1.4 combines induction with a cell partitioning argument.
Often in proofs of incidence results it is useful to partition the space into smaller cells
and estimate the contribution of incidences in each cell. An illustrative example is a
very short, elementary proof of the Szemerédi–Trotter theorem for Cartesian products
using a ‘lucky pairs’ argument. The prototype for this method can be found in [12].

The lucky pairs argument adapts readily to higher dimensions, and since our set of
atoms A in [0, 1]d is nearly a d-fold Cartesian product, we conjecture that the analogous
bound should hold, namely that |Tk(A)| � δ−ε |A|2k−(d+1).

We again mention that the higher-dimensional version of Theorem 1.4 does
not follow from projecting into the plane and applying the d = 2 result, since
the well-distributed assumption that A is nearly grid-like is clearly violated after
projection.

Our strategy is the following: we partition [0, 1]d into cells of side length D−1 for
some parameter D to be chosen. Proposition 2.1 with some thickening parameter S
allows us to relate the number of k-rich tubes to an incidence count, specifically the

https://doi.org/10.1017/S1446788722000398 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000398


[10] An incidence result for well-spaced atoms in all dimensions 67

L2-norm of the weights of shortened tubes in all cells. This is bounded by applying the
induction hypothesis in each cell.

For the proof to work, we need S to be much smaller than D, and D to be much
smaller than δ−ε . We also want S and D to be much bigger than constants. This is the
motivation for the uniform choices of these parameters given in the proof.

The method is inspired by [11], but is different in several key ways. First, we
work with incidences to give a new exposition of this kind of proof. Second, by
using Proposition 2.1 which works for weighted atoms, we sidestep several dyadic
pigeonholing steps which are needed in [11]. Finally, our problem admits an additional
simplification. There is a simple expression for the number of 2-rich tubes induced by
A which applies in any dimension d ≥ 2. This allows us to resolve both the ‘narrow’
and ‘broad’ case for small k which appear in [11], in a single simplified case.

PROOF OF THEOREM 1.4. We treat ε and d as constants, so in what follows, � is written
to mean �ε,d. We fix W and proceed by induction on δ. Namely, we have to prove the
statement for all δ ∈ (0, W−1). There are two base cases because when we apply the
induction hypothesis, it will be for a smaller value of both W and δ−1.

The first base case will be when δ is very close to W−1, namely, when
δ−(1−c1ε) ≤ W for some small fixed c1 (we choose c1 < 1/(d − 1) which assists in
the following calculation). Assuming δ−(1−c1ε) ≤ W, Equation (1-4) gives

k ≥ C1(ε, d)Wd−(d−1−ε)/(1−c1ε) > C1(ε, d)W.

Since the distribution of atoms permits |Tk(A)| to be nonzero only if k � W, we can
choose C1(ε, d) large enough so that |Tk(A)| = 0, and Equation (1-5) holds trivially.

The other base case is when W is very small, say smaller than some constant c2.
In this case, |Tk(A)| ≤ c2d

2 trivially, so Equation (1-5) holds for a suitable choice of
C2(ε, d).

We move on to the induction step. Assume the result holds for all δ′ > Kδ and
W ′−1 > KW−1, where K is sufficiently small (K = 2 will work). Assume Equation (1-4)
holds.

First, we split up [0, 1]d into Dd sub-cubes or cells, where D = δ−c2
1ε

2
. Let a tubelet

be the intersection of a k-rich δ-tube with one of these cells. (A tubelet looks like a
section of a δ-tube of length D−1.) To each tubelet t we associate a weight w(t) which is
the number of atoms from A intersecting t, and a multiplicity m(t) which is the number
of k-rich tubes containing the tubelet t. (A tubelet is ‘contained’ in a tube if all the
atoms on the tubelet also intersect the tube. A tubelet may lie on up to Dd−1k-rich
tubes.) From here on, we often abbreviate Tk = Tk(A). With this notation, it is evident
that

k|Tk | = I(A, Tk) =
∑

tubelets t

w(t)m(t).

https://doi.org/10.1017/S1446788722000398 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000398


68 P. J. Bradshaw [11]

It is also clear that ∑
tubelets t

m(t) = D|Tk |,

so by the pigeonhole principle, a positive proportion of the incidences come from
tubelets t with w(t) � k/D (with an appropriate subsumed constant). We henceforth
assume that the weights of all tubelets are at least k/D.

Now we treat separately two cases: k � D and k � D. The reason is that we will
later apply the induction hypothesis to estimate the number of k/D-rich tubelets, and
the induction hypothesis only holds if k/D is greater than some constant.

Case 1: k � D. Since D = δ−c2
1ε

2
, it follows that δ−εk−3 � 1. Now let us count the tubes

that are at least 2-rich. For each pair of atoms a, a′ ∈ A, there are dist(a, a′)−(d−1) tubes
passing through both (where dist(a, a′) is the distance between the centres of atoms a
and a′). It follows that

|Tk(A)| ≤ |T≥2(A)| =
∑

a,a′∈A
a�a′

dist(a, a′)−(d−1).

By the grid-like configuration, we may assume that the atoms are exactly arranged in
a d-dimensional integer grid (scaled down by a factor of W). At worst, this affects
the above sum by a small multiplicative constant. We also lose no generality by
considering only the case where a′ is the atom with centre at the origin. Thus, it follows
that ∑

a,a′∈A
a�a′

dist(a, a′)−(d−1) ∼ |A|Wd−1 ·
∑

n∈(Z∩[0,W])d

n�0

‖n‖−(d−1).

Given x ∈ [0, W], we have ‖n‖ ∈ [x, 2x) for ∼d xd values of n. Incorporating this into a
dyadic sum, one obtains the desired

|Tk(A)| �d |A|Wd−1 ·
W∑

x dyadic

x � δ−ε
|A|2

k3 .

Case 2: k � D. We want to apply Proposition 2.1, but to do so globally is wasteful of
the strong spacing assumptions on A, so the bound will be prohibitively weak.

If we consider any maximal set of distinct Dδ-tubes in [0, 1]d, then each δ-tube is
contained in one of these Dδ-tubes. Indeed, this partitions the set of all δ-tubes into
the Dδ-tubes which contain them. The rationale for this partitioning is that in each
Dδ-tube, the tubelets behave like weighted atoms. There are (Dδ)−2(d−1) such Dδ-tubes.

Given one of these Dδ-tubes τ, we ‘stretch’ it in all nonaxis directions by a factor
of D−1δ−1, so it becomes [0, 1]d. Each tubelet in τ that runs parallel to τ becomes a
D−1-atom, and each k-rich δ-tube in τ becomes a D−1-tube. Furthermore, each new
atom has a weight, which is the same as the weight of the corresponding tubelet.
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FIGURE 1. After ‘stretching’, the incidences between tubelets and δ-tubes inside a Dδ-tube become
incidences between weighted D−1-atoms and D−1-tubes.

Call this set of new weighted D−1-atoms Aτ and the set of new D−1-tubes Tτ. For
the case d = 2, this procedure is indicated in Figure 1.

For each Dδ-tube τ, we count the incidences arising from tubelets that lie on, and
are parallel to, τ. By the stretching procedure above (see Figure 1), this is equal to
I(Aτ,Tτ). It follows that

I(A, Tk) =
∑
τ

I(Aτ,Tτ).

Applying Proposition 2.1 in each Dδ-tube τ using a thickening factor S = δ−c3
1ε

3
and

δ−α = Sε , and then applying Cauchy–Schwarz,

k|Tk | = I(A, Tk) =
∑
τ

I(Aτ,Tτ)

�
∑
τ

(
SDd−1|Tτ|

∑
a∈Aτ

w(a)2
)1/2
+ S1−d+ε

∑
τ

I(AS
τ,T

S
τ)

≤ (SDd−1)1/2
(∑
τ

|Tτ|
)1/2(∑

τ

∑
a∈Aτ

w(a)2
)1/2
+ S1−d+εI(AS, TS

k )

= (SDd−1)1/2|Tk |1/2
(∑
τ

∑
a∈Aτ

w(a)2
)1/2
+ S1−d+εI(AS, TS

k ). (3-1)

We now have two cases based on which term in Equation (3-1) dominates.
First suppose the second term dominates. Since there is at most one atom in each

W−1-cell, all thickened Sδ-atoms in AS have weight one, and hence |AS| = |A|. Also, the
weights of tubes in TS are trivially bounded above by S2(d−1), the maximum number of
δ-tubes contained in an Sδ-tube. If T̃S

k is the underlying set of unweighted tubes, then

I(AS, TS
k ) � S2(d−1)I(AS, T̃S

k ). (3-2)
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To have k|Tk| � S1−dI(AS, TS
k ), a positive proportion of these incidences must be

supported on Sδ-tubes that are at least Sd−1k-rich in atoms from AS. Furthermore,
Equation (1-4) implies that

Sd−1k ≥ Sd−1C1(ε, d)δd−1−ε |A| ≥ C1(ε, d)(Sδ)d−1−ε |AS| · Sε ,

so we can apply the induction hypothesis for any richness k′ ≥ Sd−1k. Standard dyadic
summing of the induction hypothesis implies that

I(AS, T̃S
k ) � C2(ε, d )(Sδ)−ε

|A|2

(Sd−1k)2 . (3-3)

Then combining Equations (3-1), (3-2) and (3-3) yields

k|Tk | � S1−dC2(ε, d)δ−ε
|A|2

k2 ,

and rearranging closes the induction, as the S1−d term subsumes the multiplicative
constants.

Now assume the first term in Equation (3-1) dominates. After rearranging, this
implies that

|Tk | �
SDd−1(

∑
τ

∑
a∈Aτ w(a)2)

k2 . (3-4)

Notice that the bracketed term in the numerator is a sum over all tubelets. A suitable
bound on this quantity will complete the proof.

Having already partitioned [0, 1]d into Dd cells, we now estimate the contribution
from tubelets in each cell. For any of these cells C, let AC be the set of atoms from A
that lie in C and let TC be the set of tubelets in C.

If we enlarge each cell C to [0, 1]d, then the δ-atoms become Dδ-atoms that satisfy
the spacing conditions for applying the induction hypothesis. This technically assumes
that D < W; the reverse case is simple and discussed at the end of the proof. Each
tubelet t is now a Dδ-tube, and the richness of this tube, denoted by r(t), is the weight of
the corresponding tubelet. Recall that these weights all exceed k/D. For any m > k/D,
using Equation (1-4),

m > C1(ε, d)δd−1−ε |A|D−1

> C1(ε, d)(δD)d−1−ε(D−d |A|)
= C1(ε, d)(δD)d−1−ε |AC|,

so the induction hypothesis in Equation (1-5) can be used in any cell C to bound
|Tm(AC)|. We get
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∑
τ

∑
a∈Aτ

w(a)2 =
∑
C

∑
t∈TC

r(t)2

=
∑
C

k∑
m dyadic
m=k/D

m2|Tm(AC)|

≤
∑
C

k∑
m dyadic
m=k/D

C2(ε, d)(Dδ)−ε(|A|D−d)2m−1

� Dd · C2(ε, d)(Dδ)−ε(|A|D−d)2 · (D/k).

Substituting this into Equation (3-4), and recalling that S = δ−c3
1ε

3
and D = δ−c2

1ε
2
,

|Tk(A)| ≤ C2(ε, d)δ−ε |A|2k−3,

closing the induction and completing the proof. � �

REMARK 3.1. There is a small omission in the above proof: in Case 2, it is essential
that each cell contains approximately the same number of atoms from A and that they
are well distributed. This follows immediately if D < W. However, if D ≥ W, then δ
is so ridiculously small that the δ−ε factor in Equation (1-5) is enormous, and trivial
bounds give the desired result. Concretely, if W ≤ D = δ−c2

1ε
2
, then since no pair of

atoms can lie on more than W tubes,

|Tk(A)| ≤ W |A|2 ≤ W4 · |A|
2

k3 ≤ δ
−4c2ε2 · |A|

2

k3 ≤ δ
−ε · |A|

2

k3 .

4. An application

Beck’s theorem [1] is an important result in discrete geometry, and is a standard
corollary of the Szemerédi–Trotter theorem. It states that given n points in the plane
with at most n − k on any line, the number of lines connecting at least two such points
is � nk. Theorem 1.4 allows us to prove a version of Beck’s theorem for a set of
well-spaced atoms in any dimension d ≥ 2. We use the same method that can be used
to derive Beck’s theorem from the Szemerédi–Trotter theorem.

THEOREM 4.1. Let A be a set of δ-atoms in [0, 1]d satisfying the spacing conditions of
Theorem 1.4, and such that |A| ≤ δ1−d. Then for every ε > 0,

|T≥2(A)| �ε,d δε |A|2.

PROOF. Since |A| ≤ δ1−d, Theorem 1.4 can be applied and

|Tk(A)| ≤ C2(ε/2, d)δ−ε/2 · |A|
2

k3
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holds for all k. The number of pairs of atoms that both lie on a tube that is at least
k0-rich is given by

∑
k dyadic

k≥k0

k2|Tk(A)| ≤ 2C2(ε/2, d)δ−ε/2
|A|2
k0

.

Choosing k0 = 10C2(ε/2, d)δ−ε/2, it follows that �ε,d |A|2 pairs of atoms lie together
only on tubes that are less than k0-rich. A δ-tube can have at most k2

0 of these pairs
lying on it so there are �ε,d |A|2/k2

0 ∼ δ
ε |A|2 tubes that are at least 2-rich, completing

the proof. �
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[2] J. Bourgain, ‘On the Erdős–Volkmann and Katz–Tao ring conjectures’, Geom. Funct. Anal. 13(2)

(2003), 334–365.
[3] G. Elekes, ‘On the number of sums and products’, Acta Arith. 81(4) (1997), 365–367.
[4] K. Fässler, T. Orponen and A. Pinamonti, ‘Planar incidences and geometric inequalities in the

Heisenberg group’, Preprint, 2020, arXiv:2003.05862.
[5] Y. Fu, S. Gan and K. Ren, ‘An incidence estimate and a Furstenberg type estimate for tubes in R2’,

J. Fourier Anal. Appl. 28(4) (2022), Article no. 59.
[6] Y. Fu and K. Ren, ‘Incidence estimates for α-dimensional tubes and β-dimensional balls in R2’,

Preprint, 2021, arXiv:2111.05093.
[7] S. Gan and A. Harbuzova, ‘A sum-product estimate for well spaced sets’, Preprint, 2020,

arXiv:2010.01377.
[8] L. Guth, A. Iosevich, Y. Ou and H. Wang, ‘On Falconer’s distance set problem in the plane’, Invent.

Math. 219(3) (2020), 779–830.
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