ON THE SINGULARITIES OF PLANE CURVES

TIBOR BISZTRICZKY

Let Γ be a differentiable curve in a real projective plane P^2 met by every line of P^2 at a finite number of points. The singular points of Γ are inflections, cusps (cusps of the first kind) and beaks (cusps of the second kind). Let $n_1(\Gamma)$, $n_2(\Gamma)$ and $n_3(\Gamma)$ be the number of these points in Γ respectively. Then Γ is *non-singular* if

$$n(\Gamma) = n_1(\Gamma) + n_2(\Gamma) + n_3(\Gamma) = 0;$$

otherwise, Γ is singular.

We wish to determine when Γ is singular and then find the minimum value of $n(\Gamma)$. A history and an analysis of this problem were presented in [1] and [2]. It was shown that we may assume that Γ is a curve of even order (even degree if Γ is algebraic), met by every line in P^2 . Then if Γ does not contain any multiple points or if Γ contains only a certain type of multiple point, Γ is singular. Presently, we complete this investigation.

We assume that P^2 has the usual topology. Let p, q, \ldots and L, M, \ldots denote the points and lines of P^2 respectively. Let $\langle p, L, \ldots \rangle$ denote the flat of P^2 spanned by p, L, \ldots . The other notations used are self-explanatory.

Differentiable curves. As we are presenting a theory already introduced in [1] and [2], we list only definitions and relevant results.

Let $T \subset P^2$ be an oriented line. For $t_0 \neq t_1$ in T, $[t_0, t_1]$ denotes the oriented closed line segment of T with initial point t_0 and terminal point t_1 . We set

$$[t_0, t_1) = [t_0, t_1] \setminus \{t_1\}, (t_0t_1] = [t_0, t_1] \setminus \{t_0\}$$
 and
 $(t_0, t_1) = [t_0, t_1] \setminus \{t_0, t_1\}.$

If $U(t) = (t_0, t_1)$ is a neighbourhood of t in T then

$$U^{-}(t) = (t_0, t), U^{+}(t) = (t, t_1)$$
 and $U'(t) = U^{-}(t) \cup U^{+}(t)$.

A curve Γ in P^2 is a continuous map from T into P^2 . Γ is differentiable if the tangent line

$$\Gamma_{l}(t) = \lim_{t \neq t' \to t} \left\langle \Gamma(t), \, \Gamma(t') \right\rangle$$

exists for each $t \in T$ and any line of P^2 meets $\Gamma(T)$ at a finite number of

Received January 21, 1985 and in revised form September 6, 1985.

points. Henceforth Γ is differentiable and we identify $\Gamma(T)$ with Γ .

Let $\mathcal{M} \subseteq T$ be a segment. We call $\Gamma|_{\mathcal{M}}$ a subarc of Γ and identify $\Gamma(\mathcal{M})$ with $\Gamma|_{\mathcal{M}}$. If

$$n = \sup_{L \subset P^2} |L \cap \Gamma(\mathcal{M})|$$

is finite, we say that \mathcal{M} is of order *n*. The order of a point $t \in T$, $\operatorname{ord}(t)$, is the minimum order which a U(t) can possess. Clearly $\operatorname{ord}(t) \ge 2$. A point *t* is ordinary if $\operatorname{ord}(t) = 2$; otherwise *t* is singular. \mathcal{M} is ordinary if each point of \mathcal{M} is ordinary.

Let $t \in T$ and $\Gamma(t) \in L \subset P^2$. Then L supports Γ at t if there is an $L' \neq L$ with $\Gamma(t) \notin L'$ and a U'(t) such that $\Gamma(U'(t))$ is contained in one of the open half-planes of P^2 determined by L and L'. If L does not support Γ at t then L cuts Γ at t. Let

$$S(t) = \{ L \subset P^2 | \Gamma(t) \in L \neq \Gamma_1(t) \}.$$

Then either all $L \in S(t)$ support Γ at t or all $L \in S(t)$ cut Γ at t. Thus there are four types of points in T with respect to Γ : t is regular if $L \in S(t)$ $[\Gamma_1(t)]$ cuts [supports] Γ at t; t is an *inflection* if $L \in S(t)$ and $\Gamma_1(t)$ both cut Γ at t; t is a *beak* if $L \in S(t)$ and $\Gamma_1(t)$ both support Γ at t; t is a *cusp* if $L \in S(t)$ [$\Gamma_1(t)$] supports [cuts] Γ at t. We note that an ordinary point is regular and hence inflections, cusps and beaks are singular.

Next we note that either every line of P^2 cuts Γ at an even number of points or every line of P^2 cuts Γ at an odd number of points. In the case of the former [latter], we say that Γ is of even [odd] order. Let $\mathcal{M} \subseteq T$. The index of $\Gamma(\mathcal{M})$, ind($\Gamma(\mathcal{M})$), is the minimum number of points of $\Gamma(\mathcal{M})$ which can lie on any line of P^2 . A point $t \in \mathcal{M}$ is a simple point of \mathcal{M} , if $\Gamma(t') \neq \Gamma(t)$ for $t' \in \mathcal{M} \setminus \{t\}$; otherwise, t is a multiple point of \mathcal{M} . Let $m(\Gamma(\mathcal{M}))$ be the number of multiple points of \mathcal{M} . We say that \mathcal{M} is simple if $m(\Gamma(\mathcal{M})) = 0$. A point $p \in \Gamma(T)$ is strong if there exist $t_i \neq t_j$ such that

$$p = \Gamma(t_i) = \Gamma(t_i)$$
 and $\operatorname{ind}(\Gamma[t_i, t_i]) = 0$.

Let $s(\Gamma(\mathcal{M}))$ be the number of strong points of Γ contained in $\Gamma(\mathcal{M})$. Since a simple point of \mathcal{M} need not be a simple point of Γ , we note that $m(\Gamma(\mathcal{M})) = 0$ does not imply that $s(\Gamma(\mathcal{M})) = 0$. If $s(\Gamma) = 0$, we say that Γ is *almost simple*.

Finally let \mathscr{R} be a connected compact set in P^2 such that \mathscr{R} is *bounded*; that is, there is an $L \subset P^2$ not meeting \mathscr{R} . We denote by $H(\mathscr{R})$ the convex hull of \mathscr{R} in the affine plane $P^2 \setminus L$. It is clear that if $N \cap \mathscr{R} = \emptyset$ then $H(\mathscr{R})$ is also the convex hull of \mathscr{R} in $P^2 \setminus N$. We say that \mathscr{R} is *convex* if $\mathscr{R} = H(\mathscr{R})$.

As indicated in the introduction, we wish to determine when $n(\Gamma) > 0$ and then find the minimum value of $n(\Gamma)$. Hence we restrict our attention to curves Γ with the property that $n(\Gamma) < \infty$ and (cf. [1]) $m(\Gamma) < \infty$. Thus Γ will be the differentiable union of a finite number of simple regular arcs. As such arcs are ordinary (cf. [4], p.148), we have that $\Gamma_1(t)$ depends continuously on $t \in T$, a regular point is ordinary (hence a singular point is an inflection, a cusp or a beak) and $\overline{n}(\Gamma) \equiv 0 \pmod{2}$ if and only if Γ is of even order where

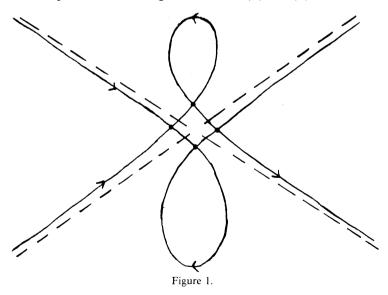
$$\overline{n}(\Gamma) = n_1(\Gamma) + 2n_2(\Gamma) + n_3(\Gamma).$$

The main theorems. Henceforth we assume that Γ is a differentiable curve of even order with $\operatorname{ind}(\Gamma) > 0$, $n(\Gamma) < \infty$ and $m(\Gamma) < \infty$. We note the following results regarding the minimum number of singular points of Γ .

1. If $m(\Gamma) = 0$ then $n(\Gamma) \ge 3$ and if $n_2(\Gamma) > 0$ $[n_2(\Gamma) = 0]$ then $\overline{n}(\Gamma) \ge 6$ [4]. ([2], 4.)

2. If $s(\Gamma) = 0$ then $n(\Gamma) \ge 2$ and $\overline{n}(\Gamma) \ge 4$. ([1], 3.1)

Thus it remains to determine the minimum values of $n(\Gamma)$ and $\overline{n}(\Gamma)$ when $s(\Gamma) > 0$ and $m(\Gamma) > 0$. In Figure 1 of [1], we presented a non-singular Γ with $s(\Gamma) = m(\Gamma) = 3$ and each strong point, a double point. From that example, it is readily seen that there exists a non-singular Γ with $s(\Gamma) = m(\Gamma) = 1$ and the strong point, a triple point. Finally in Figure 1, we present a non-singular Γ with $m(\Gamma) > s(\Gamma) = 2$.



We now state the main theorems and list the results required for the proofs. By the preceding, we of course assume that every strong point Γ is a double point.

3. THEOREM. If $s(\Gamma) = 1$ then Γ is singular.

4. THEOREM. If $s(\Gamma) = m(\Gamma) = 1$ then $n(\Gamma) \ge 2$ and $\overline{n}(\Gamma) \ge 4$.

5. THEOREM. If $s(\Gamma) = m(\Gamma) = 2$ then Γ is singular.

6. Let (s_1, s_2) be a subarc of order two. Then (s_1, s_2) is simple and ordinary, $\Gamma_1(s) \cap \Gamma[s_1, s_2] = {\Gamma(s)}$ for $s \in (s_1, s_2)$ and there is a line $L \subset P^2$ such that

 $L \cap \Gamma[s_1, s_2] = \emptyset$ and ind $\Gamma[s_1, s_2] = 0$.

Let (t_1, t_2) be ordinary and simple.

7. There exist $s_1 < s_2$ (s_1 preceding s_2) in $[t_1, t_2]$ such that (s_1, s_2) is of order two and

 $\Gamma[t_1, t_2] \subset H(\Gamma[s_1, s_2]).$

We call $[s_1, s_2]$, the (unique) convex cover of $[t_1, t_2]$. ([1], 3.15).

8. If $\Gamma(t_1) \neq \Gamma(t_2)$ and $\langle \Gamma(t_1), \Gamma(t_2) \rangle \cap \Gamma(t_1, t_2) = \emptyset$ then (t_1, t_2) is of order two. ([1], 3.13).

9. For any $t \in (t_1, t_2)$

 $\Gamma_1(t) \cap \Gamma[t_1, t) = \emptyset$ or $\Gamma_1(t) \cap \Gamma(t, t_2] = \emptyset$.

([1], 3.12).

10. Let $s(\Gamma(t_1, t_2)) = 0$. If $L \cap \Gamma[t_2, t_1] = \emptyset$ then L meets, and cuts, Γ in exactly two points. If L' is a limit of lines, none of which meets $\Gamma[t_2, t_1]$, then L' cuts Γ in at most two points and these points lie in $[t_1, t_2]$. ([1], 3.17).

Finally we note some elementary facts about the convex hull of a subarc of Γ .

11. LEMMA. Let $\mathscr{R}^* = H(\Gamma[u, v]), u \neq v$ and $ind(\Gamma[u, v]) = 0$. Let $t \in (u, v)$ be an ordinary point with the property that t is simple in [u, v] and $\Gamma(t) \in bd(\mathscr{R}^*)$.

- 1. The only supporting line of \mathscr{R}^* through $\Gamma(t)$ is $\Gamma_1(t)$.
- 2. If $|\Gamma_1(t) \cap \Gamma[u, v]| = 1$ then there is a U(t) such that
 - $\Gamma(U(t)) \subset \mathrm{bd}(\mathscr{R}^*).$
- 3. If $|\Gamma_1(t) \cap \Gamma[u, v]| = 2$ then there is a U(t) such that either

 $\Gamma(U^+(t)) \subset \operatorname{bd}(\mathscr{R}^*) \quad or \quad \Gamma(U^-(t)) \subset \operatorname{bd}(\mathscr{R}^*).$

Proof. 1. Since $\Gamma(t) \in \operatorname{bd}(\mathscr{R}^*)$, there is a line L through $\Gamma(t)$ which supports \mathscr{R}^* . Since $\Gamma(t) \in \Gamma(u, v) \subset \mathscr{R}^*$, it follows that L also supports Γ at t and thus $L = \Gamma_1(t)$.

2. Let

 $|\Gamma_1(t) \cap \Gamma[u, v]| = 1.$

It is clear that there is a $U(t) \subset (u, v)$ such that U(t) is order two and

 $|\Gamma_1(s) \cap \Gamma[u, v]| = 1$ for all $s \in U(t)$.

Since each $s \in U(t)$ is ordinary, $\Gamma_1(s)$ supports $\Gamma[u, v]$ at s. As

$$\mathscr{R}^* = H(\Gamma[u, v]),$$

it follows that $\Gamma(s) \in bd(\mathscr{R}^*)$ for $s \in U(t)$.

3. Since $\Gamma_1(t)$ is a line of support of \mathscr{R}^* ,

$$|\Gamma_1(t) \cap \Gamma[u, v]| = 2$$

implies that $\Gamma_1(t)$ supports Γ at a point $t' \neq t$ in [u, v]. Hence the continuity of tangents yields that there is either a $U^+(t)$ or a $U^-(t)$ in (u, v) with the property that

$$|\Gamma_1(s) \cap \Gamma[u, v]| = 1$$
 for $s \in U^+(t)$ or $s \in U^-(t)$.

Now 11.2 yields 11.3.

12. LEMMA. Let \mathscr{R} be a closed bounded region bounded by the simple subarc $\Gamma[r, r']$ and the line $L = \langle \Gamma(r), \Gamma(r') \rangle$, $L \cap \Gamma(r, r') = \emptyset$. Let r be ordinary, $\Gamma(v, r) \subset \mathscr{R}$; $\Gamma(v) \in L \setminus \{\Gamma(r)\}$. Then $\Gamma(v, r)$ is not both simple and ordinary.

Proof. Let $\Gamma(v, r)$ be simple. As $|L \cap \Gamma| < \infty$ and v may be replaced by any $v' \in (v, r)$ satisfying $\Gamma(v') \in L \setminus \{\Gamma(r)\}$, we may assume that

 $\Gamma(v, r) \subset \operatorname{int}(\mathscr{R}).$

Since $\Gamma(r) \in bd(\mathcal{R})$ and $\Gamma(r)$ is ordinary, $L = \Gamma_1(r)$ by 11.1. Put $\mathcal{R}^* = H(\mathcal{R})$ and thus

 $\mathscr{R}^* = H(\Gamma[r, r']) = H(\Gamma[v, r']).$

For $w \in (v, r)$, we note that

 $\mathscr{R}^* = H(\Gamma[w, r']) \text{ and } |\Gamma_1(r) \cap \Gamma[w, r']| = 2.$

Hence by 11.3, there is a $U(r) \subset (v, r')$ such that either $\Gamma(U^+(r))$ or $\Gamma(U^-(r))$ lies in $bd(\mathscr{R}^*)$. Since

 $\Gamma(U^{-}(r)) \subset \Gamma(v, r) \subset \operatorname{int}(\mathscr{R}) \subseteq \operatorname{int}(\mathscr{R}^{*}),$

we have

(i) $\Gamma(U^+(r)) \subset \mathrm{bd}(\mathscr{R}^*).$

Suppose that $\Gamma(v, r)$ is ordinary. Then (v, r) is of order two by 8. Since

 $L \cap \Gamma[v, r] = {\Gamma(v), \Gamma(r)},$

L and $\Gamma(v, r)$ bound a bounded closed region \mathscr{R}' . Clearly,

 $\mathscr{R}' = H(\Gamma[v, r]) \subset \mathscr{R}^*.$

Since \mathscr{R}^* is a closed bounded region in P^2 , \mathscr{R}^* is contained in some affine restriction A^2 of P^2 . In A^2 , we note that $\Gamma(r)$ is the initial point of two opposite rays \mathscr{L} and \mathscr{L}' on L, say $\Gamma(v) \in \mathscr{L}$. Since (v, r) is of order two, every ray from $\Gamma(r)$ meets $\Gamma(v, r)$ in at most one point. Let $w \in [v, r]$ move from v to r. Then the ray from $\Gamma(r)$ through $\Gamma(w)$ rotates monotonically about $\Gamma(r)$ starting from \mathscr{L} and hence, ending at \mathscr{L}' .

Next let $s \in (r, r')$ tend to r. Since Γ is ordinary at r, the ray from $\Gamma(r)$ through $\Gamma(s)$ necessarily converges to the ray opposite \mathscr{L}' ; that is, \mathscr{L} . Since L supports Γ at r, this implies that $\Gamma(s) \in \operatorname{int}(\mathscr{R}^*)$. This is a contradiction by i).

13. LEMMA. Let \mathscr{R}_1 and \mathscr{R}_2 be convex sets in P^2 such that $\mathscr{R} = \mathscr{R}_1 \cap \mathscr{R}_2$ is connected. Then there is a line $L \subset P^2$ such that

 $L \cap (\mathscr{R}_1 \cup \mathscr{R}_2) = \emptyset.$

Proof. Since \mathscr{R}_i is convex, there is an L_i such that $L_i \cap \mathscr{R}_i = \emptyset$; i = 1, 2. We may assume that $L_1 \neq L_2$, \mathscr{R} , \mathscr{R}_1 and \mathscr{R}_2 are mutually distinct and $L_1[L_2]$ is not a supporting line of $\mathscr{R}_2[\mathscr{R}_1]$. Let $\{q\} = L_1 \cap L_2$ and denote by \mathscr{Q} and \mathscr{Q}' the closed half-planes of P^2 determined by L_1 and L_2 . Since

 $(L_1 \cup L_2) \cap \mathscr{R} = \emptyset,$

 $\mathscr{R} \subset \operatorname{int}(\mathscr{Q}')$ say. Let $L^* \subset \mathscr{Q}', L_1 \neq L^* \neq L_2$ and set

 $\mathscr{R}_i^* = \mathscr{Q} \cap \mathscr{R}_i; i = 1, 2.$

As $\mathscr{R} \subset \operatorname{int}(\mathscr{Q}')$,

 $L_1 \cap \operatorname{int}(\mathscr{R}_2) \neq \emptyset$ and $L_2 \cap \operatorname{int}(\mathscr{R}_1) \neq \emptyset$

imply that \mathscr{R}_1^* and \mathscr{R}_2^* are non-empty, disjoint convex sets in $P^2 \setminus L^*$. Hence (cf. [3]) there exist two distinct lines N_1 and N_2 such that $N_i \setminus L^*$ supports and separates \mathscr{R}_1^* and \mathscr{R}_2^* in $P^2 \setminus L^*$; i = 1, 2. Put $N_1 \cap N_2 = \{p\}$. Let \mathscr{P} and \mathscr{P}' be the closed half-planes in P^2 determined by N_1 and N_2 . Then by our construction, $q \neq p \in int(\mathscr{Q})$ and \mathscr{R}_1^* and \mathscr{R}_2^* are both contained in \mathscr{P}' say.

If $q \in \mathscr{P}$ then $\langle p, q \rangle \subset \mathscr{P} \cap \mathscr{Q}$ and it follows that either

$$\langle p, q \rangle \cap (\mathscr{R}_1 \cup \mathscr{R}_2) = \emptyset \text{ or } \langle p, q \rangle \cap (\mathscr{R}_1 \cup \mathscr{R}_2) = \{p\}.$$

In the latter case, $\langle p, q \rangle$ is disjoint from say \mathscr{R}_2 and supports \mathscr{R}_1 at p. Hence a suitable line through q close to $\langle p, q \rangle$ is disjoint from $\mathscr{R}_1 \cup \mathscr{R}_2$.

Let $q \in \mathscr{P}'$. As N_1 and N_2 separate \mathscr{R}_1^* and \mathscr{R}_2^* in \mathscr{Q} , this readily yields that N_1 or N_2 , say N_1 , does not meet $(L_1 \cap \mathscr{R}_2^*) \cup (L_2 \cap \mathscr{R}_1^*)$. Since

 $L_2 \cap N_1 \in \mathscr{Q} \backslash \mathscr{R}_1^*,$

we obtain that $L_2 \cap N_1 \notin \mathscr{R}_1$. As \mathscr{R}_1 and $\mathscr{R}_1 \cap N_1$ are convex in $P^2 \setminus L_1$,

this implies that $\mathscr{R}_1 \cap N_1 \cap \mathscr{Q}' = \emptyset$ and hence $N_1 \setminus L_1$ supports \mathscr{R}_1 in $P^2 \setminus L_1$. Similarly, $N_1 \setminus L_2$ supports \mathscr{R}_2 in $P^2 \setminus L_2$. Altogether, N_1 supports both \mathscr{R}_1 and \mathscr{R}_2 .

We note that the closed segments $N_1 \cap \mathscr{R}_1^*$ and $N_1 \cap \mathscr{R}_2^*$ lie in $N_1 \cap \mathscr{Q}$ and are disjoint. Hence there is a point $b \in (N_1 \cap \mathscr{Q}) \setminus (\mathscr{R}_1^* \cup \mathscr{R}_2^*)$ which separates them in $N_1 \cap \mathscr{Q}$ and there is a line N through b, close to N_1 , which does not meet $\mathscr{R}_1^* \cup \mathscr{R}_2^*$. Since

 $N_1 \cap \mathscr{Q}' \cap (\mathscr{R}_1 \cup \mathscr{R}_2) = \emptyset,$

N can be chosen so that it does not meet $(\mathscr{R}_2 \cup \mathscr{R}_2) \cap \mathscr{Q}'$. Thus

 $N \cap (\mathscr{R}_1 \cup \mathscr{R}_2) = \emptyset.$

14. LEMMA. Let (x, y) and (u, v) be subarcs of order two with the property that $L = \langle \Gamma(x), \Gamma(y) \rangle$ is a line and $\Gamma(x, y) \cap \mathscr{R}_1 = \emptyset$ where

 $\mathscr{R}_1 = H(\Gamma[u, v])$ and $\mathscr{R}_2 = H(\Gamma[x, y])$.

Then

1. there is a line N' such that $N' \cap (\mathscr{R}_1 \cup \mathscr{R}_2) = \emptyset$ or

2. { $\Gamma(x)$, $\Gamma(y)$ } $\subset \mathscr{R}_1$ and there is a line N such that $N \cap \mathscr{R}_1 = \emptyset$ and N meets, and cuts, Γ at exactly one point of (x, y).

Proof. If not 14.1 then $\mathscr{R}_1 \cap \mathscr{R}_2$ is not connected by 13. Since \mathscr{R}_1 and \mathscr{R}_2 are convex, the same applies to

 $\mathscr{R}_1 \cap \mathrm{bd}(\mathscr{R}_2) = \mathscr{R}_1 \cap (\Gamma(x, y) \cup (L \cap \mathscr{R}_2)) = \mathscr{R}_1 \cap L \cap \mathscr{R}_2.$

As $L \cap \mathscr{R}_1$ and $L \cap \mathscr{R}_2$ are closed segments of L and $L \cap \mathscr{R}_2$ has the end points $\Gamma(x)$ and $\Gamma(y)$, this yields that

 $\{\Gamma(x), \Gamma(y)\} \subset \mathscr{R}_1$

and there is a point $p \in (L \cap \mathscr{R}_2) \setminus \mathscr{R}_1$. As \mathscr{R}_1 is convex, there is a line N through p disjoint from \mathscr{R}_1 . Since

 $\{\Gamma(x), \Gamma(y)\} \subset \mathrm{bd}(\mathscr{R}_1),$

 $N \neq L$ and 14.2 follows.

15. LEMMA. Let $m(\Gamma) = s(\Gamma)$ and let $p = \Gamma(t_1) = \Gamma(t_2)$ be a double point of Γ such that (t_1, t_2) is of order two, t_1 or t_2 is ordinary,

 $ind(\Gamma[t_2, t_1]) > 0$ and $s(\Gamma[t_1, t_2]) = 1$.

Then there is a differentiable curve Γ^* of even order such that $\operatorname{ind}(\Gamma^*) > 0$, $m(\Gamma^*) = s(\Gamma^*) = s(\Gamma) - 1$, $n_j(\Gamma^*) = n_j(\Gamma)$ for j = 1, 3 and $n_2(\Gamma^*)$ equals $n_2(\Gamma)$ or $n_2(\Gamma) + 1$.

Proof. Case 1. $\Gamma_1(t_1) = \Gamma_1(t_2)$.

Let T^* be the closed segment $[t_2, t_1]$ with t_2 and t_1 identified, say $\overline{t} \equiv t_1 \equiv t_2$. Let $\Gamma^*: T^* \to P^2$ be the curve defined by $\Gamma^*(t) = \Gamma(t)$

for $t \in T^*$. Since Γ is differentiable and $m(\Gamma) = s(\Gamma)$, we obtain that Γ^* is differentiable and

$$m(\Gamma^*) = s(\Gamma^*) = s(\Gamma) - 1.$$

It is easy to check that if $t_1[t_2]$ is ordinary then \overline{t} is the same type of point as $t_2[t_1]$. Thus $n_i(\Gamma^*) = n_i(\Gamma)$ for $i = 1, 2, 3, \overline{n}(\Gamma^*) \equiv 0 \pmod{2}$ and Γ^* is of even order. Finally

 $ind(\Gamma[t_2, t_1]) > 0$

implies that $ind(\Gamma^*) > 0$.

Case 2. $\Gamma_1(t_1) \neq \Gamma_1(t_2)$ and t_1, t_2 are ordinary.

Since $[t_1, t_2]$ is ordinary with

 $ind(\Gamma[t_1, t_2]) = 0$ and $s(\Gamma[t_1, t_2]) = 1$,

there exists an ordinary subarc (u, v) such that $t_1 < t_2$ in (u, v),

 $\operatorname{ind}(\Gamma[u, v]) = 0$ and $s(\Gamma[u, v]) = 1$.

Let $t^* \in (t_1, t_2)$. Since (t_1, t_2) is of order two and $\Gamma_1(t_1) [\Gamma_1(t_2)]$ cuts Γ at $t_2 [t_1]$, there exist $t_1^* \in (u, t_1)$ and $t_2^* \in (t_2, v)$ such that

(1) any line meets Γ in at most three points of (t_1^*, t_2^*) ,

(2) (t_1^*, t^*) and (t^*, t_2^*) are both of order two,

(3) each line through two points of $\Gamma(t_1^*, t_1] [\Gamma[t_2, t_2^*)]$ cuts Γ in $[t_2, t_2^*) [(t_1^*, t_1]]$ and

(4) $\Gamma(t_1^*, t_2^*)$ has no double tangents, and a tangent of $\Gamma(t_1^*, t_2^*)$ meets this arc at no more than one other point.

Finally, let \mathscr{P} be the closed triangle in P^2 with the vertices $\Gamma(t_1^*)$, $\Gamma(t_2^*)$ and $\Gamma(t^*)$ which contains the point p.

Let $\Gamma^*: T \to P^2$ be a curve with the property that $\Gamma^*(t) = \Gamma(t)$ for $t \in [t_2^*, t_1^*], t_i^*$ is an ordinary point of Γ^* with $\Gamma_1^*(t_i^*) = \Gamma_1(t_i^*)$ $(i = 1, 2), [t_1^*, t_2^*]$ is a simple subarc of Γ^* such that $\Gamma^*(t_1^*, t_2^*) \subset \mathcal{P}$ and (t_1^*, t^*) and (t^*, t_2^*) are of order two and finally t^* is a cusp of Γ^* with

$$\Gamma^*(t^*) = \Gamma(t^*)$$
 and $\Gamma^*_1(t^*) = \langle \Gamma(t^*), p \rangle;$

cf. Figure 2.

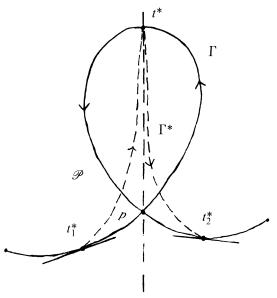
Clearly Γ^* is a differentiable curve with

$$n_{j}(\Gamma^{*}) = n_{j}(\Gamma) \text{ for } j = 1, 3,$$

$$n_{2}(\Gamma^{*}) = n_{2}(\Gamma) + 1 \text{ and}$$

$$s(\Gamma^{*}) = m(\Gamma^{*}) = m(\Gamma^{*}[t_{2}^{*}, t_{1}^{*}]) = m(\Gamma[t_{2}^{*}, t_{1}^{*}])$$

$$= m(\Gamma) - 1 = s(\Gamma) - 1.$$



It remains to show that $ind(\Gamma^*) > 0$.

Let $L \subset P^2$. If $L \cap \Gamma[t_2^*, t_1^*] \neq \emptyset$ then

$$|L \cap \Gamma^*| \ge |L \cap \Gamma^*[t_2^*, t_1^*]| = |L \cap \Gamma[t_2^*, t_1^*]| > 0.$$

Thus we may assume that

(5)
$$L \cap \Gamma[t_2^*, t_1^*] = \emptyset$$
.

Suppose that L supports Γ at some $t \in (t_1^*, t_2^*)$ and thus $L = \Gamma_1(t)$. Since

 $ind(\Gamma[t_2, t_1]) > 0$

by assumption, L necessarily cuts $\Gamma[t_2, t_1]$ in at least one point. By (5), such a point lies in $\Gamma(t_1^*, t_2^*)$ and by (4), there is not more than one such point. Thus L supports Γ and L cuts Γ at one point each. Since Γ is of even order, this is a contradiction and hence L cuts Γ at every point of intersection.

We again note that $L \cap \Gamma[t_2, t_1] = \emptyset$ and by (5),

$$L \cap \Gamma[t_2, t_1] \subset \Gamma(t_1^*, t_1] \cup \Gamma[t_2, t_2^*).$$

As Γ is of even order, the preceding result implies that

 $|L \cap \Gamma| = |L \cap \Gamma(t_1^*, t_2^*)|$

is even. Hence by (1),

$$L \cap \Gamma(t_1^*, t_2^*) = \{ \Gamma(t'), \Gamma(t'') \}$$

where $\{t', t''\} \subset (t_1^*, t_1] \cup [t_2, t_2^*)$ and $t' \neq t''$.

If $\{t', t''\} \subset (t_1^*, t_1]$ say, then $L \cap \Gamma[t_2, t_2^*) \neq \emptyset$ by (3). Since this is impossible, each of $(t_1^*, t_1]$ and $[t_2, t_2^*)$ contains exactly one of t' and t''. Hence $L \cap \mathcal{P}$ separates $\Gamma(t^*)$ from both $\Gamma(t_1^*)$ and $\Gamma(t_2^*)$ in \mathcal{P} and Lnecessarily meets both $\Gamma^*(t_1^*, t^*)$ and $\Gamma^*(t^*, t_2^*)$.

Finally, we observe that the preceding yields that any line meets both $\Gamma^*(t_1^*, t_2^*)$ and $\Gamma(t_1^*, t_2^*)$ with the same parity. Thus Γ^* is also of even order.

Case 3. $\Gamma_1(t_1) \neq \Gamma_1(t_2)$ and t_1 or t_2 is singular.

Let t_1 be singular, say.

We choose $t_1^* \in (t_1, t_2)$ and $t_2^* \in (t_2, t_1)$ so close to t_2 that $\Gamma(t_1^*, t_2^*)$ is an arc of order two and that \mathscr{P}' , one of the closed triangles bounded by $\Gamma_1(t_1^*)$, $\Gamma_1(t_2^*)$ and $\langle \Gamma(t_1^*), \Gamma(t_2^*) \rangle$, contains $\Gamma[t_1^*, t_2^*]$. We may clearly assume that p is the only double point and $\Gamma(t_1)$ is the only singular point in \mathscr{P}' ; cf. Figure 3.

The arc $\Gamma[t_1^*, t_2^*]$ decomposes \mathscr{P}' into two subsets. If t_1^* and t_2^* are sufficiently close to t_2 , one of these subsets, say \mathscr{P}'_0 , does not meet $\Gamma(t_2^*, t_1)$. Let $\Gamma': T \to P^2$ be a curve with the property that $\Gamma'(t) = \Gamma(t)$ for $t \in [t_2^*, t_1^*]$ and $\Gamma'[t_1^*, t_2^*]$ is a convex curve in \mathscr{P}'_0 with

 $\Gamma_1'(t_i^*) = \Gamma_1(t_i^*); \quad i = 1, 2.$

Then Γ' is a curve of even order with

 $ind(\Gamma') > 0$ and $n_i(\Gamma') = n_i(\Gamma); j = 1, 2, 3.$

If t_1 is a cusp or a beak (case (a)) then

 $s(\Gamma') = m(\Gamma') = S(\Gamma) - 1$

and $\Gamma^* = \Gamma'$ has the required property. If t_1 is an inflection (case (b)) then

 $s(\Gamma') = m(\Gamma') = s(\Gamma)$

and Γ' has a double point in \mathscr{P}'_0 which satisfies the assumptions of case 2.

16. Remarks. Since

 $\Gamma[t_2^*, t_1^*] = \Gamma^*[t_2^*, t_1^*]$ and $\Gamma(t_1^*, t_2^*) \subset int(H(\Gamma[t_1^*, t_2^*])),$

ind(Γ) > 0 implies that the construction in Figure 3(a) results in a curve Γ^* satisfying 15 even if ind($\Gamma[t_2, t_1]$) = 0.

The construction in Figure 3(b) performed when t_1 is an inflection point results in a differentiable curve Γ' of even order with $\operatorname{ind}(\Gamma') > 0$, $m(\Gamma') = s(\Gamma') = s(\Gamma)$ and $n_i(\Gamma') = n_i(\Gamma)$ for i = 1, 2, 3. Furthermore, Γ' contains a double point $p' = \Gamma'(t_1') = \Gamma'(t_2')$ such that neither (t_1', t_2') nor (t_2', t_1') is ordinary.

956

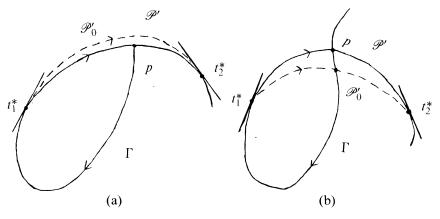


Figure 3.

As a final comment, we note that a similar construction allows us to replace any simple cusp [beak] of Γ by a pair of inflections [one inflection] in such a manner that the resultant curve $\tilde{\Gamma}$ has the property that $s(\tilde{\Gamma}) = S(\Gamma), m(\tilde{\Gamma}) = m(\Gamma), ind(\tilde{\Gamma}) > 0$ and $\tilde{\Gamma}$ is of even order; cf. [2], p. 147.

Proof of Theorem 3. Let $p = \Gamma(t_1) = \Gamma(t_2)$, $t_1 \neq t_2$, be the only strong point of Γ with

 $\operatorname{ind}(\Gamma[t_1, t_2]) = 0.$

We assume that (t_1, t_2) and (t_2, t_1) are ordinary.

Since $\operatorname{ind}(\Gamma[t_1, t_2]) = 0$, every multiple point of (t_1, t_2) is then the common end-point of a subarc of index 0 in $\Gamma[t_1, t_2]$ and is therefore strong. Thus $s(\Gamma) = 1$ implies that (t_1, t_2) is simple. Then by 7, there exist $s_1 < s_2$ in $[t_1, t_2]$ such that (s_1, s_2) is of order two and

 $\Gamma[t_1, t_2] \subset \mathscr{R} = H(\Gamma[s_1, s_2]).$

Let $\Gamma[v_1, v_2]$ be the maximal subarc of Γ contained in \mathscr{R} ; $v_2 < v_1$ in $[t_2, t_1]$. If $t_1 \neq s_1$ then $v_1 \neq s_1$, $\Gamma(v_1) \notin \Gamma[s_1, s_2)$ and $\Gamma(v_1, s_1)$ has index 0. As in the preceding, $\operatorname{ind}(\Gamma(v_1, s_1)) = 0$ implies that every multiple point of (v_1, s_1) is strong. Thus $t_2 \notin (v_1, s_1)$ and $s(\Gamma) = 1$ imply that (v_1, s_1) is simple. By 12, (v_1, s_1) is not ordinary and $n(\Gamma) \ge 1$. Hence we assume that $t_1 = s_1$ and by symmetry, $t_2 = s_2$.

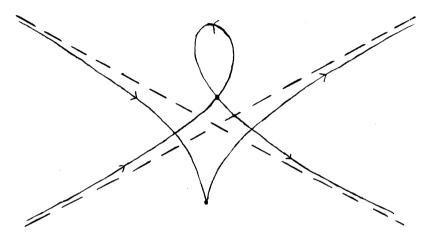
Suppose that $\operatorname{ind}(\Gamma[t_2, t_1]) > 0$. Since (t_2, t_1) is ordinary, (t_2, t_1) is not simple by 7. Thus $m(\Gamma[t_2, t_1]) < \infty$ implies that there exist u < u' in (t_2, t_1) such that $q = \Gamma(u) = \Gamma(u')$ and (u, u') is simple. But then $\operatorname{ind}(\Gamma[u, u']) = 0$ by 7 and $q \neq p$ is strong; a contradiction. Since $\operatorname{ind}(\Gamma[t_2, t_1]) = 0$, we assume as in the preceding that (t_2, t_1) is of order two. Let

$$\mathscr{R}' = H(\Gamma[t_2, t_1]).$$

TIBOR BISZTRICZKY

Since $\Gamma_1(t_i)$ meets Γ at exactly t_1 and t_2 and Γ is of even order, $\Gamma_1(t_i)$ supports Γ at both t_1 and t_2 or $\Gamma_1(t_i)$ cuts Γ at both t_1 and t_2 ; i = 1, 2. If $\Gamma_1(t_1)$ and $\Gamma_1(t_2)$ both support Γ at t_1 and t_2 then $\Gamma_1(t_1) = \Gamma_1(t_2)$ and it is easy to check that $\mathcal{R} \cap \mathcal{R}'$ is connected. Hence by 13, there is a line not meeting $\mathcal{R} \cup \mathcal{R}'$. Since $\Gamma \subset \mathcal{R} \cup \mathcal{R}'$, we obtain that $\operatorname{ind}(\Gamma) = 0$. Thus $\Gamma_1(t_i)$ cuts Γ at t_i and t_i is singular.

In Figure 4, we present a Γ of even order with $ind(\Gamma) > 0$, $s(\Gamma) = 1 \neq m(\Gamma)$ and $n(\Gamma) = 1$.



Proof of Theorem 4. Let $p = \Gamma(t_1) = \Gamma(t_2)$, $t_1 \neq t_2$. Since $\overline{n}(\Gamma)$ is even, we need only to show that $n(\Gamma) \ge 3$ or $n_2(\Gamma) \ge 2$.

Case 1. Neither (t_1, t_2) nor (t_2, t_1) is ordinary.

If t_1 or t_2 is singular or if (t_1, t_2) or (t_2, t_1) contains more than one singular point then $n(\Gamma) \ge 3$. Hence we assume that t_1 and t_2 are ordinary and say $u_1[u_2]$ is the only singular point of $(t_1, t_2) [(t_2, t_1)]$. If u_1 or u_2 is a cusp then $\overline{n}(\Gamma) \ge 4$ and hence we assume that they are not cusps. From 16, we may then assume that u_1 and u_2 are inflections. Finally as p is strong, we may assume that say

 $\operatorname{ind}(\Gamma[t_2, t_1]) = 0.$

Let $\mathscr{R} = H(\Gamma[t_2, t_1])$. Since no line through $\Gamma(u_2)$ supports Γ at u_2 , $\Gamma(u_2) \in int(\mathscr{R})$. Hence some line L supports \mathscr{R} in at least two distinct points of $\Gamma[t_2, t_1]$ and there is a segment $[r_2, r_1] \subset [t_2, t_1]$ such that

$$L = \langle \Gamma(r_1), \Gamma(r_2) \rangle, \quad L \cap \Gamma(r_2, r_1) = \emptyset$$
 and

$$L \neq \Gamma_1(t)$$
 for all $t \in (r_2, r_1)$.

As $\{\Gamma(r_1), \Gamma(r_2)\} \subset bd(\mathscr{R})$, we have that r_1 and r_2 are ordinary. Then by 11,

 $L = \Gamma_1(r_2)$ and either $r_1 = t_1$ or $L = \Gamma_1(r_1)$.

Finally, let \mathscr{R}' be the closed region in \mathscr{R} bounded by $\Gamma[r_2, r_1]$ and L.

a) $r_1 \neq t_1$ and (r_2, r_1) is ordinary.

By 8, (r_2, r_1) is of order two and hence $\mathscr{R}' = H(\Gamma[r_2, r_1])$. Since *L* is a supporting line of both \mathscr{R} and \mathscr{R}' and $\Gamma[t_2, t_1]$ is simple, it follows that $\Gamma[t_2, t_1] \subset \mathscr{R}'$ and thus $\mathscr{R} = \mathscr{R}'$.

Since $\operatorname{ind}(\Gamma) > 0$, there is a maximal subarc $\Gamma[\nu_2, \nu_1] \neq \Gamma$ in \mathscr{R} with

$$[r_2, r_1] \subset (t_2, t_1) \subseteq (v_2, v_1).$$

As $m(\Gamma) = 1$, (v_2, r_2) and (r_1, v_1) are both simple and thus by 12, (v_2, r_2) and (r_1, v_1) are both singular. As $\{u_1, u_2\} \subset (v_2, r_2) \cup (r_1, v_1)$, we may assume that say

$$u_1 \in (t_1, t_2) \cap (r_1, v_1) = (t_1, v_1)$$

and

$$u_2 \in (t_2, t_1) \cap (v_2, r_2) = (t_2, r_2).$$

Finally, we note that since $\Gamma[v_2, v_1]$ is the maximal subarc contained in \mathscr{R} and

 $\Gamma(v_i) \notin \operatorname{bd}(\mathscr{R}) \setminus \Gamma[r_2, r_1],$

L cuts Γ at v_1 and v_2 .

Suppose that (v_1, v_2) is ordinary and let $t \in (v_1, v_2) \subset (u_1, t_2)$. By 9,

 $\Gamma_1(t) \cap \Gamma[u_1, t) = \emptyset$ or $\Gamma_1(t) \cap \Gamma(t, t_2) = \emptyset$.

Hence $\Gamma(v_1)$ or $\Gamma(v_2)$ does not lie on $\Gamma_1(t)$, $\Gamma_1(t) \neq L$ and L cuts Γ at every point of $L \cap \Gamma[v_1, v_2]$. Since $\Gamma[v_1, v_2]$ is simple with index 0, L cuts Γ at only v_1 and v_2 by 10. Altogether then

$$L \cap \Gamma(v_1, v_2) = \emptyset$$

and thus (v_1, v_2) is of order two by 8. Let

$$\mathscr{R}'' = H(\Gamma[v_1, v_2]).$$

Since

$$\Gamma(v_1, v_2) \cap \Gamma(r_2, r_1) = \emptyset$$
 and $L \cap \Gamma(v_1, v_2) = \emptyset$,

we have that

 $\Gamma(v_1, v_2) \cap \mathrm{bd}(\mathscr{R}) = \emptyset.$

As L cuts Γ at v_1 and $\Gamma[v_2, v_1] \subset \mathcal{R}$, it follows that

$$\Gamma(v_1, v_2) \cap \mathscr{R} = \emptyset.$$

Thus by 14, either $\mathscr{R} \cup \mathscr{R}''$ is bounded in P^2 or there is a line not meeting \mathscr{R} which meets and cuts Γ at exactly one point. Since $\Gamma \subset \mathscr{R} \cup \mathscr{R}''$, the

latter yields that $ind(\Gamma) = 1$; a contradiction. Thus (v_1, v_2) is not ordinary and $n(\Gamma) \ge 3$ or (r_2, r_1) is not ordinary.

b) $r_1 \neq t_1$ and (r_2, r_1) is not ordinary.

Then $u_2 \in (r_2, r_1) \subset (t_2, t_1)$ and we may assume that $[t_2, r_2]$ and $[r_1, t_1]$ are ordinary. Since $\Gamma(t_2) \in \mathscr{R} \setminus \Gamma[r_2, r_1]$, either

 $\Gamma[t_2, r_2] \subset \operatorname{int}(\mathscr{R}') \text{ or } \Gamma[t_2, r_2) \subset \mathscr{R} \setminus \mathscr{R}'.$

Similarly, either

 $\Gamma(r_1, t_1] \subset \operatorname{int}(\mathscr{R}') \text{ or } \Gamma(r_1, t_1] \subset \mathscr{R} \setminus \mathscr{R}'.$

Since $\Gamma(t_1) = \Gamma(t_2)$, it follows that $\Gamma[t_2, r_2) \cup \Gamma(r_1, t_1]$ is in either int(\mathscr{R}') or $\mathscr{R} \setminus \mathscr{R}'$.

We recall that $L = \Gamma_1(r_1) = \Gamma_1(r_2)$ supports both Γ and the convex set \mathscr{R} at $\Gamma(r_1)$ and $\Gamma(r_2)$ and $\mathscr{R}' \subset \mathscr{R}$. Let $\Gamma^*: T \to P^2$ be a curve with the property that $\Gamma^*(t) = \Gamma(t)$ for $t \in [r_2, r_1]$, $\Gamma_1^*(r_1) = \Gamma_1^*(r_2) = L$, $\Gamma^*(r_1, r_2)$ is of order two,

$$\Gamma^*(r_1, r_2) \cap \mathscr{R} = \emptyset$$
 and $H(\Gamma^*[r_1, r_2]) \cap \mathscr{R} \subset L$.

Clearly, Γ^* is a simple curve of even order with the three singular points $\Gamma^*(u_2)$, $\Gamma^*(r_1)$ and $\Gamma^*(r_2)$. We note that $\Gamma^*(u_2)$ is an inflection and since L cuts Γ^* at both r_1 and r_2 , each of $\Gamma^*(r_1)$ and $\Gamma^*(r_2)$ is an inflection or a cusp. It is easy to check that $\Gamma[t_2, r_2) \cup \Gamma(r_1, t_1]$ in either $\operatorname{int}(\mathscr{R}')$ or $\mathscr{R} \setminus \mathscr{R}'$ yields that $\Gamma^*(r_1)$ and $\Gamma^*(r_2)$ are both cusps or both inflections. In either case, we then have that $\overline{n}(\Gamma^*)$ is odd and thus Γ^* is of odd order; a contradiction. Hence u_2 is not the only singular point of (r_2, r_1) and $n(\Gamma) \geq 3$ or $r_1 = t_1$.

c) $r_1 = t_1$ and $u_2 \in (t_2, r_2)$.

By the preceding cases, we may assume that L meets Γ at exactly t_2 , r_2 and t_1 in $[t_2, t_1]$. Then $L \cap \Gamma[r_2, t_1) = \emptyset$ and (r_2, t_1) ordinary imply that (r_2, t_1) is of order two and

 $\mathscr{R} = H(\Gamma[r_2, t_1]).$

We now consider (u_2, u_1) which is both simple and ordinary. Let $[s_2, s_1]$ be the convex cover of $[u_2, u_1]$. Thus (s_2, s_1) is of order two and

 $H(\Gamma[u_2, u_1]) = H(\Gamma[s_2, s_1]) = \mathcal{R}_u$ say.

As $[r_2, t_1] \subset [u_2, u_1]$ we have $\mathscr{R} \subset \mathscr{R}_u$.

Let $\Gamma[z_2, z_1]$ be the maximal subarc of Γ contained in \mathcal{R}_u . Thus

 $[s_2, s_1] \subset [u_2, u_1] \subset [z_2, z_1].$

Since $\mathscr{R} \subset \mathscr{R}_{\mu}$, we also have

$$[t_2, t_1] \subset [z_2, z_1]$$
 and $[t_1, u_1] \subset [u_2, u_1]$.

Thus

960

 $[t_2, u_1] \subset [z_2, z_1]$ and $[z_1, z_2] \subset [u_1, t_2]$,

and (z_1, z_1) is ordinary and simple.

Let $[w_1, w_2]$ be the convex cover of $[z_1, z_2]$,

$$\mathscr{R}_{z} = H(\Gamma[w_{1}, w_{2}]).$$

We note that $\Gamma(w_1) \neq \Gamma(w_2), L' = \langle \Gamma(s_2), \Gamma(s_1) \rangle$ is a line and

$$\mathrm{bd}(\mathscr{R}_u) = \Gamma(s_2, s_1) \cup (L' \cap \mathscr{R}_u).$$

If $\{\Gamma(z_1), \Gamma(z_2)\} \subset L'$ then by arguing as in the preceding (with L' = L, $z_1 = v_1$ and $z_2 = v_2$), we obtain that $\operatorname{ind}(\Gamma) \leq 1$; a contradiction. Thus $\{\Gamma(z_1), \Gamma(z_2)\}$ is not contained in L' and in particular

$$s(\Gamma[s_2, s_1]) \neq 0.$$

As $p \in \Gamma[s_2, s_1]$, this implies that

$$t_2 < u_2 < s_2 < t_1 < s_1 \le u_1 \le z_1 < z_2 = t_2.$$

Hence $p = \Gamma(z_2) \notin L'$ and $\Gamma(z_1) \in L'$. Since L' is a supporting line of \mathscr{R}_u and $\Gamma[z_2, z_1]$ is the maximal subarc in \mathscr{R}_u , L' cuts Γ at z_1 . By 10, L' cuts Γ at exactly one point, say z, in (z_1, z_2) and by 9,

 $L' \cap \Gamma(z_1, z) = \emptyset$

and L' supports Γ in at most one point of (z, z_2) . Clearly (z_1, z) is of order two and

 $\Gamma(z_1, z) \cap \mathscr{R}_u = \emptyset.$

It is now easy to check that $\Gamma(z) \notin \mathscr{R}_{u}, L' \cap \Gamma(z, z_{2}) = \emptyset$ and thus

$$\Gamma(z_1, z_2) \cap \mathscr{R}_u = \emptyset.$$

Since $w_1 < w_2$ in $[z_1, z_2]$,

 $\Gamma(w_1, w_2) \cap \mathscr{R}_{\mu} = \emptyset.$

Since $\Gamma(w_1) \neq \Gamma(w_2)$, 14 implies that

$$N' \cap (\mathscr{R}_{u} \cup \mathscr{R}_{z}) = \emptyset$$

for some N' or

 $\{\Gamma(w_1), \Gamma(w_2)\} \subset \mathscr{R}_u$

and there is an N such that $N \cap \mathscr{R}_u = \emptyset$ and N meets, and cuts, Γ at exactly one point of (w_1, w_2) . Since

 $\Gamma = \Gamma[z_2, z_1] \cup \Gamma[z_1, z_2] \subset \mathscr{R}_{\mu} \cup \mathscr{R}_{z},$

the latter is true. But $\{\Gamma(w_1), \Gamma(w_2)\} \subset \mathcal{R}_u$ implies that $w_1 = z_1$ and $w_2 = z_2$ and thus (z_1, z_2) is of order two. Since $\Gamma[z_2, z_1] \subset \mathcal{R}_u$ and $N \cap \mathscr{R}_u = \emptyset$, the intersection property of N implies that Γ is odd order; a contradiction. Thus (z_1, z_2) is not ordinary and $n(\Gamma) \ge 3$.

d) $r_1 = t_1$ and $u_2 \in (r_2, t_1)$.

In this case, we consider the simple and ordinary arc (u_1, u_2) and argue as in c) with (u_2, u_1) to obtain a contradiction to $n(\Gamma) = 2$.

Case 2. (t_1, t_2) or (t_2, t_1) is ordinary.

Let (t_1, t_2) be ordinary and let $[s_1, s_2]$ be the convex cover of $[t_1, t_2]$ with $\mathscr{R} = H(\Gamma[s_1, s_2])$.

Suppose $s_1 \neq t_1$. Since $L = \langle \Gamma(s_1), \Gamma(s_2) \rangle$ supports both \mathscr{R} and Γ at $\Gamma(s_1)$, we have $L = \Gamma_1(s_1)$. Hence $p \neq \Gamma(s_2)$ by 9 and either

$$[s_1, s_2] \subset (t_1, t_2)$$

or

$$(s_1, s_2) = (t_1, t_2).$$

Let $\Gamma[v_1, v_2]$ be the maximal subarc of Γ in \mathcal{R} containing $\Gamma[t_1, t_2]$.

Assume $[s_1, s_1] \subset (t_1, t_2)$. Thus $L = \Gamma_1(s_1) = \Gamma_1(s_2)$. Since (t_1, t_2) is ordinary, we obtain that $p \in int(\mathcal{R})$, L cuts Γ at v_1 and v_2 , and

 $t_1 < s_1 < s_2 < t_2 < v_2 < v_1 < t_1.$

As both (v_1, s_1) and (s_2, v_2) are simple, 12 yields that each of them is singular. Arguing as in Case 1 a), we obtain that $ind(\Gamma) \leq 1$ if (v_2, v_1) is ordinary. Hence (v_2, v_1) is not ordinary and $n(\Gamma) \geq 3$. Thus we may assume that $s_1 = t_1, s_2 = t_2$ and (t_1, t_2) is of order two.

Since the preceding is symmetric in (t_1, t_2) and (t_2, t_1) , we also have that (t_2, t_1) is of order two whenever (t_2, t_1) is ordinary. Since

 $\Gamma[t_1, t_2] \cap \Gamma[t_2, t_1] = \{p\},\$

the intersection of $H(\Gamma[t_1, t_2])$ and $H(\Gamma[t_2, t_1])$ is either $\{p\}$ or one of these two sets is contained in the other. In the latter case, $\operatorname{ind}(\Gamma) = 0$ and in the former case we obtain that $\operatorname{ind}(\Gamma) = 0$ by 13. Thus we may assume that (t_2, t_1) is not ordinary. We may also assume that say t_1 is ordinary, for otherwise $n(\Gamma) \ge 3$.

If $\operatorname{ind}(\Gamma[t_2, t_1]) > 0$ we apply 15 and 1 to obtain that $n_2(\Gamma^*) = 0$ implies $n(\Gamma) = n(\Gamma^*) \ge 3$ and $n_2(\Gamma^*) > 0$ implies that

 $\overline{n}(\Gamma) \geq \overline{n}(\Gamma^*) - 2 \geq 4.$

Hence, let

 $ind(\Gamma[t_2, t_1]) = 0.$

If t_2 is singular then the construction in 15, Case 3 yields a curve Γ' with all the properties of Γ except that either $m(\Gamma') = 0$ or Γ' has exactly one strong double point and Γ' is ordinary at that point. Since 1 is applicable when $m(\Gamma') = 0$, we may assume that t_2 is also ordinary. Thus (t_2, t_1) contains two inflections or a cusp. From 16, we may assume that (t_2, t_1) contains two inflections. Let \mathscr{R}^* denote the convex hull of the bounded arc (curve) $\Gamma[t_2, t_1]$. We claim that

(1) there exist r < s in (t_2, t_1) such that

$$\{\Gamma(r), \Gamma(s)\} \subset \operatorname{bd}(\mathscr{R}^*) \text{ and } \Gamma(t_2, r) \cup \Gamma(s, t_1) \subset \operatorname{int}(\mathscr{R}^*).$$

If $p \in int(\mathscr{R}^*)$ then clearly (1). If $\Gamma_1(t_1) \neq \Gamma_1(t_2)$ then (cf. 15, Case 2) for any ordinary t arbitrarily close to t_1 or t_2 in (t_2, t_1) , $\Gamma_1(t)$ cuts Γ in (t_2, t_1) . Thus $\Gamma_1(t)$ is not a supporting line of \mathscr{R}^* and $\Gamma(t) \notin bd(\mathscr{R}^*)$. Since there exist ordinary $U^+(t_2)$ and $U^-(t_1)$ in (t_2, t_1) , (1) follows. Let

 $p \in \mathrm{bd}(\mathscr{R}^*)$ and $\Gamma_1(t_1) = \Gamma_1(t_2)$.

Since t_1 and t_2 are ordinary and (t_1, t_2) is of order two, it is immediate that $\Gamma_1(t_1)$ is a supporting line of both \mathcal{R} and \mathcal{R}^* . Hence

 $\Gamma[t_1, t_2] \cap \Gamma[t_2, t_1] = \{p\}$

yields that $\mathscr{R} \subseteq \mathscr{R}^*$ or $\mathscr{R}^* \subseteq \mathscr{R}$ and thus $\operatorname{ind}(\Gamma) = 0$. This is a contradiction and hence (1).

Since $\{\Gamma(r), \Gamma(s)\} \subset bd(\mathscr{R}^*)$, there are lines through $\Gamma(r)$ and $\Gamma(s)$ which support \mathscr{R}^* . Since (t_2, t_1) contains at most inflections, it follows that $\Gamma(r)$ and $\Gamma(s)$ are ordinary. In particular; $\Gamma_1(r)$ is a supporting line of \mathscr{R}^* ,

$$\Gamma_1(r) \cap \Gamma(t_2, r) = \emptyset$$

and there exists a U(r) of order two in (t_2, t_1) . Let t tend r in $(t_2, r) \cap U(r)$. Then $\Gamma(t) \in int(\mathscr{R}^*)$ and 6 imply that $\Gamma_1(t)$ cuts Γ in $(t_2, t_1) \setminus U(r)$. Hence by the continuity of tangents, $\Gamma_1(r)$ meets Γ in $(r, t_1]$. Similarly, $\Gamma_1(s)$ meets Γ in $[t_2, s)$.

Let u_1 and u_2 be inflections, $u_1 < u_2$ in (t_2, t_1) and suppose that $n(\Gamma) = 2$. Then

 $\{\Gamma(u_1), \Gamma(u_2)\} \subset \operatorname{int}(\mathscr{R}^*)$

and $\Gamma_1(r)$ meets Γ at some point $r' \in (r, t_1]$ such that

$$\Gamma_1(r) \cap \Gamma(r, r') = \emptyset$$

Since $\Gamma(r') \in bd(\mathscr{R}^*)$, we have that $u_1 \neq r' \neq u_2$ and r' is ordinary.

Let $r' \neq t_1$. If (r, r') is ordinary or (r, r') contains only u_1 or u_2 , we argue as in Case 1 to obtain a contradiction. If $\Gamma_1(r)$ meets Γ at say r < r' < r''in (t_2, t_1) then one of (r, r') or (r', r'') again contains at most one of u_1 and u_2 , which is again a contradiction. Hence we may assume that $\Gamma_1(r)$ meets Γ at exactly r and r' in (t_2, t_1) and that $\{u_1, u_2\} \subset (r, r')$. If $p \in \Gamma_1(r)$ then $(t_2, r) \cup (r', t_1)$ ordinary yields that (t_2, r) and (r', t_1) are both of order two by 8. Since t_1 and t_2 are ordinary, it readily follows that either

$$\mathscr{R}^* = H(\Gamma[t_2, r]) \text{ or } \mathscr{R}^* = H(\Gamma[r', t_1]);$$

a contradiction by (1). Hence

 $p \notin \Gamma_1(r)$ and $|\Gamma_1(r) \cap \Gamma[t_1, t_2]| = 2.$

Then $\Gamma(t_2, r) \subset \operatorname{int}(\mathscr{R}^*)$ and 11.3 imply that

 $\Gamma(U^+(r)) \subset \mathrm{bd}(\mathscr{R}^*) \text{ for } U^+(r) \subset (r, r').$

Let \mathscr{R}' be the closed region in \mathscr{R}^* bounded by $\Gamma[r, r']$ and $\Gamma_1(r)$. Thus

 $\Gamma(U^+(r)) \subset \mathrm{bd}(\mathscr{R}')$

as well. But now

 $\Gamma(U^+(r)) \subset \mathrm{bd}(\mathscr{R}^*) \cap \mathrm{bd}(\mathscr{R}')$

and

$$\Gamma(r, r') \cap (\Gamma[t_2, r) \cup \Gamma(r', t_1]) = \emptyset$$

clearly imply that

 $\Gamma[t_2, r) \cup \Gamma(r', t_1] \subset \mathscr{R}' \text{ and } \Gamma[t_2, t_1] \subset \mathscr{R}' = \mathscr{R}^*.$

Let $\Gamma[z_2, z_1]$ be the maximal subarc of Γ contained in $\mathscr{R}', z_1 < z_2$ in $[t_1, t_2]$. Then

 $[r, r'] \subset (t_2, t_1) \subset (z_2, z_1).$

As $t_1 \notin (z_2, r)$ we have that (z_2, r) is both simple and ordinary; a contradiction by 12.

Let $r' = t_1$. Then

$$\Gamma_1(r) \cap \Gamma[t_2, t_1] = \{p, \Gamma(r)\}.$$

Symmetrically, we obtain that

 $\Gamma_1(s) \cap \Gamma[t_2, t_1] = \{ p, \Gamma(s) \}.$

Thus $p \in \Gamma_1(r) \cap \Gamma_1(s)$ and in fact, $p \in bd(\mathscr{R}^*)$. From (1),

 $\operatorname{bd}(\mathscr{R}^*) \subset \Gamma[r, s] \cup \Gamma_1(r) \cup \Gamma_1(s).$

If (t_2, r) is ordinary then (t_2, r) is of order two. Since r is also ordinary,

 $\Gamma[t_2, r] \subset \operatorname{bd}(H(\Gamma[t_2, r]))$

implies that there is a $U^+(t) \subset (r, s)$ such that

 $\Gamma(U^+(r)) \subset \operatorname{int}(H(\Gamma[t_2, r])).$

Since (t_2, t_1) is simple, it follows that

$$\mathscr{R}^* \subseteq H(\Gamma[t_2, r])$$

and thus

964

 $\Gamma(t_2, r) \subset \mathrm{bd}(\mathscr{R}^*);$

a contradiction by (1). Thus (t_2, r) is not ordinary and similarly, (s, t_1) is not ordinary. Let $u_2 \in (t_2, r)$, $u_1 \in (s, t_1)$ and thus

 $(r, s) \subset (u_2, u_1) \subset (t_2, t_1).$

We recall that (r, s) is ordinary and simple. Since $\Gamma_1(r)[\Gamma_1(s)]$ meets $\Gamma[r, s]$ at only $\Gamma(r)[\Gamma(s)]$, we have that

 $\langle \Gamma(r), \Gamma(s) \rangle \cap \Gamma(r, s) = \emptyset$

and thus (r, s) is of order two by 8. Next

 $\Gamma[r, s] \cap \Gamma[t_1, t_2] = \emptyset.$

Since $p \in \Gamma_1(r)$ and (t_1, t_2) is of order two, it follows that

(2)
$$\Gamma_1(r) \cap \Gamma(t_1, t_2) = \emptyset$$

or $\Gamma_1(r)$ cuts Γ at t_1 , t_2 and exactly one point of (t_1, t_2) . As $\Gamma_1(r)$ does not cut Γ in (t_2, t_1) , we have that Γ is of odd order in the latter case; a contradiction. Thus (2) and symmetrically,

(3) $\Gamma_1(s) \cap \Gamma(t_1, t_2) = \emptyset$.

But then $bd(\mathscr{R}) = \Gamma[t_1, t_2]$ implies that $\mathscr{R} \cap \mathscr{R}^* = \{p\}$ and thus $\mathscr{R} \cup \mathscr{R}^*$ is bounded by 13. Since $\Gamma \subset \mathscr{R} \cup \mathscr{R}^*$, this is a contradiction and hence (r, s) is not ordinary and $n(\Gamma) \ge 3$.

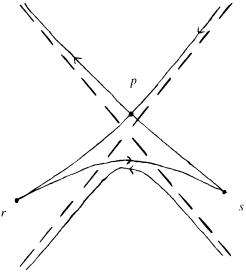


Figure 5.

We note the arguments in the proof of Theorem 4 not only show that $n(\Gamma) \ge 2$ but also indicate how Γ may be constructed. For example, the

curve Γ in Figure 5 is of even order with $\operatorname{ind}(\Gamma) > 0$, $m(\Gamma) = s(\Gamma) = 1$, $p = \Gamma(t_1) = \Gamma(t_2)$, (t_1, t_2) of order two, ind $\Gamma[t_2, t_1] = 0$ and r and s cusps in (t_2, t_1) .

Proof of Theorem 5. Let Γ be an ordinary curve with the strong double points $p = \Gamma(t_1) = \Gamma(t_2)$, $t_1 \neq t_2$, and $q = \Gamma(u_1) = \Gamma(u_2)$; $u_1 \neq u_2$. By suitable labelling, either $t_1 < u_1 < t_2 < u_2 < t_1$ or $t_1 < t_2 < u_1 < u_2 < t_1$.

Case 1. $t_1 < u_1 < t_2 < u_2 < t_1$.

As (t_1, t_2) is ordinary and simple $[t_1, t_2]$ has a convex cover $[s_1, s_2]$. Let $\Gamma[v_1, v_2]$ be the maximal subarc of Γ contained in $H(\Gamma[s_1, s_2])$ and containing $\Gamma[s_1, s_2]$. Then either

$$[s_1, s_2] \subset (t_1, t_2)$$
 or $[s_1, s_2] = [t_1, t_2];$

cf. Case 2 of the proof of 4.

Suppose $[s_1, s_2] \subset (t_1, t_2)$. Then the quoted argument yields that $(t_1, t_2) \subset (v_1, v_2)$. We now apply 12 repeatedly. If $\Gamma(v_1) \in \Gamma[s_1, s_2]$ then $v_1 = u_2$ and $u_1 \in [s_1, s_2)$. Hence

$$v_2 \notin \{u_1, u_2\}$$
 and $\Gamma(v_2) \notin \Gamma(s_1, s_2)$.

But then (s_2, v_2) is simple; a contradiction by 12. Hence $\Gamma(v_2) \notin \Gamma[s_1, s_2]$ and (v_1, s_1) is not simple. Symmetrically, (s_2, v_2) is not simple and thus

 $\{u_1, u_2\} \subset (v_1, s_1) \cap (s_2, v_2).$

As this is impossible, we obtain that $[s_1, s_2] = [t_1, t_2]$.

By the preceding, (t_1, t_2) is of order two and symmetrically, (t_2, t_1) is of order two. The line $\Gamma_1(t_1)$ supports both $H(\Gamma[t_2, t_1])$ and $H(\Gamma[t_1, t_2])$ and thus

$$\Gamma_1(t_1) \cap \Gamma = \{p\}.$$

Suppose $\Gamma_1(t_1) \neq \Gamma_1(t_2)$. Then $\Gamma_1(t_1)$ supports Γ at t_1 and cuts Γ at t_2 . Thus $\Gamma_1(t) \cap \Gamma = \{p\}$ yields that Γ is of odd order. This is a contradiction and hence $L = \Gamma_1(t_1) = \Gamma_1(t_2)$ supports Γ at both t_1 and t_2 . Symmetrically, $L' = \Gamma_1(u_1) = \Gamma_1(u_2)$ meets Γ at only q and supports Γ at both u_1 and u_2 . Clearly, $L \neq L'$ and $L \cap L' \notin \Gamma$. Thus Γ lies in one of the closed half-planes bounded by L and L' and $\operatorname{ind}(\Gamma) = 0$. This is a contradiction and therefore Γ is singular.

Case 2. $t_1 < t_2 < u_1 < u_2 < t_1$.

Then $\Gamma[t_1, t_2] \cap \Gamma[u_1, u_2] = \emptyset$ and (t_1, t_2) and (u_1, u_2) are both simple and ordinary. As in Case 1, we then obtain that (t_1, t_2) and (u_1, u_2) are both of order two. Let

$$\mathscr{R}_t = H(\Gamma[t_1, t_2])$$
 and $\mathscr{R}_u = H(\Gamma[u_1, u_2]).$

If $ind(\Gamma[t_2, t_1]) > 0$ then 15 implies that there is a differentiable curve Γ^* of even order with

ind(Γ^*) > 0, $m(\Gamma^*) = s(\Gamma^*) = s(\Gamma) - 1 = 1$ and $n(\Gamma) \ge n(\Gamma^*) - 1.$

Thus by 4, $n(\Gamma^*) \ge 2$ and $n(\Gamma) \ge 1$. Hence we may assume that

$$\operatorname{ind}(\Gamma[t_2, t_1]) = \operatorname{ind}(\Gamma[u_2, u_1]) = 0.$$

Let $\mathscr{R}_t^* = H(\Gamma[t_2, t_1]).$

As in the Case 2 of the proof of 4:

(1) there exist r < s in (t_2, t_1) such that

 $\{\Gamma(r), \Gamma(s)\} \subset \mathrm{bd}(\mathscr{R}^*_t),$

$$\Gamma(t_2, r) \cup \Gamma(s, t_1) \subset \operatorname{int}(\mathscr{R}^*_t)$$

and if $q \neq \Gamma(r) [q \neq \Gamma(s)]$ then $\Gamma_1(r) [\Gamma_1(s)]$ meets Γ in $(r, t_1] [[t_2, s)]$. Next we observe that both

(2) $\Gamma[t_2, u_1] \subset \Gamma[u_2, t_1] \subset \mathscr{R}_u$

and

(3) $\Gamma[u_1, u_2] \subset H(\Gamma[t_2, u_1] \cup \Gamma[u_2, t_1])$

lead to a contradiction. Since (2) implies that

$$p \in \Gamma[t_2, t_1] \subset \mathscr{R}_u;$$

 $bd(\mathscr{R}_u) = \Gamma[u_1, u_2] \text{ and } \Gamma[u_1, u_2] \cap \Gamma[t_1, t_2] = \emptyset \text{ yield that}$
 $p \in int(\mathscr{R}_u)$

and in particular

 $\Gamma[t_2, t_2] = \Gamma \subset \operatorname{int}(\mathscr{R}_u) \text{ and } \operatorname{ind}(\Gamma) = 0.$

In case of (3),

 $H(\Gamma[t_2, u_1] \cup \Gamma[u_2, t_1]) \subseteq H(\Gamma[u_2, u_1])$

implies that $\Gamma \subset H(\Gamma[u_2, u_1])$. Thus $ind(\Gamma[u_2, u_1]) = 0$ now yields that $ind(\Gamma) = 0$.

Since $\Gamma[t_2, u_1] \cup \Gamma[u_2, t_1]$ and $\Gamma[u_1, u_2]$ are curves which meet only at q, $\Gamma_1(u_1) = \Gamma_1(u_2)$ clearly implies either (2) or (3). Hence $\Gamma_1(u_1) \neq \Gamma_1(u_2)$, $\Gamma_1(u_1)$ cuts Γ at u_2 and $q \notin bd(\mathscr{R}_t^*)$. Since r is ordinary, we have that

 $\Gamma_1(r) \cap \Gamma(t_2, r) = \emptyset$

and $\Gamma_1(r)$ meets Γ at a point $r' \in (r, t_1]$ such that

 $\Gamma_1(r) \cap \Gamma(r, r') = \emptyset.$

Since (r, r') is ordinary, (r, r') is of order two whenever (r, r') is simple. Let \mathscr{R}' be the closed region in \mathscr{R}^*_t bounded by $\Gamma[r, r']$ and $\Gamma_1(r)$.

Let $r' \neq t_1$. If $q \notin \Gamma(r, r')$ then (r, r') is simple and

 $\mathscr{R}' = H(\Gamma[r, r']).$

Clearly since r is ordinary, $\Gamma[t_2, r] \subset \mathscr{R}'$ and thus $\mathscr{R}' = \mathscr{R}^*_t$ and (3). If (r, r') contains u_1 and not u_2 then (r, r') is still simple,

$$\mathscr{R}' = H(\Gamma[r, r']) \text{ and } p \in \Gamma[t_2, u_2] \subset \mathscr{R}'.$$

Since $q \in bd(\mathscr{R}')$ and $\Gamma_1(u_1)$ cuts Γ at t_2 , it follows that

 $p \in \Gamma(u_2, t_1) \subset \mathscr{R}^*_t \backslash \mathscr{R}';$

a contradiction. The preceding is symmetric in u_1 and u_2 and thus $u_1 < u_2$ in (r, r'). But then it is clear that either

 $\Gamma(r, r') \subset \operatorname{int}(\mathscr{R}_t^*) \text{ or } \Gamma[t_2, t_1] \subset \mathscr{R}'.$

Since $\Gamma(r, r') \subset \operatorname{int}(\mathscr{R}_t^*)$ implies (3), there exist $v_1 < v_2$ in $[t_2, t_1]$ such that $\Gamma[v_2, v_1]$ is the maximal subarc of Γ contained in \mathscr{R}' . Then $r < u_1 < u_2 < r'$ in (t_2, t_1) implies that

 $\{\Gamma(v_1), \Gamma(v_2)\} \cap \Gamma[r, r'] = \emptyset$

and $m(\Gamma) = 2$ yields that (v_1, r) or (r', v_2) is simple. Hence $n(\Gamma) > 0$ by 12.

Let $r' = t_1$. Then $\Gamma_1(r)$ meets Γ at exactly t_2 , r and t_1 in $[t_2, t_1]$ and (r, t_1) is ordinary. Since (t_2, r) is also ordinary, (as in the preceding) $r \notin (u_1, u_2)$ implies that (t_2, r) or (r, t_1) is of order two with \mathscr{R}_t^* equal to its convex hull. This is a contradiction by (1) and thus $r \in (u_1, u_2)$ and (r, t_1) is of order two. Since the preceding arguments are symmetric in r and s; $\Gamma_1(s)$ meets Γ at exactly t_2 , s and t_1 in $[t_2, t_1]$ and $s \in (u_1, u_2)$. Since r < s in (t_2, t_1) , $s \in (r, t_1)$. As (r, t_1) is of order two, 6 implies that $\Gamma(t_1) \notin \Gamma_1(s)$; a contradiction. Thus (t_2, r) cannot be ordinary and $n(\Gamma) > 0$.

From the curve represented in Figure 5, it is easy to deduce that there exists a differentiable curve Γ of even order with $ind(\Gamma) > 0$, $m(\Gamma) = s(\Gamma) = 2$ and $n(\Gamma) = n_2(\Gamma) = 1$.

References

- 1. T. Bisztriczky, On the singularities of almost-simple plane curves, Pac. J. Math. 109 (1983), 257-273.
- 2. On the singularities of simple plane curves, Mich. Math. J. 32 (1985), 141-151.
- 3. H. Brunn, Sätze über zwei getrennte Eikörper, Math. Ann. 104 (1931), 300-324.

4. R. Park, Topics in direct differential geometry, Can. J. Math. 24 (1972), 98-148.

University of Calgary, Calgary, Alberta