ON THE SINGULARITIES OF PLANE CURVES

TIBOR BISZTRICZKY

Let Γ be a differentiable curve in a real projective plane P^{2} met by every line of P^{2} at a finite number of points. The singular points of Γ are inflections, cusps (cusps of the first kind) and beaks (cusps of the second kind). Let $n_{1}(\Gamma), n_{2}(\Gamma)$ and $n_{3}(\Gamma)$ be the number of these points in Γ respectively. Then Γ is non-singular if

$$
n(\Gamma)=n_{1}(\Gamma)+n_{2}(\Gamma)+n_{3}(\Gamma)=0 ;
$$

otherwise, Γ is singular.
We wish to determine when Γ is singular and then find the minimum value of $n(\Gamma)$. A history and an analysis of this problem were presented in [1] and [2]. It was shown that we may assume that Γ is a curve of even order (even degree if Γ is algebraic), met by every line in P^{2}. Then if Γ does not contain any multiple points or if Γ contains only a certain type of multiple point, Γ is singular. Presently, we complete this investigation.

We assume that P^{2} has the usual topology. Let p, q, \ldots and L, M, \ldots denote the points and lines of P^{2} respectively. Let $\langle p, L, \ldots\rangle$ denote the flat of P^{2} spanned by p, L, \ldots. The other notations used are self-explanatory.

Differentiable curves. As we are presenting a theory already introduced in [1] and [2], we list only definitions and relevant results.

Let $T \subset P^{2}$ be an oriented line. For $t_{0} \neq t_{1}$ in $T,\left[t_{0}, t_{1}\right]$ denotes the oriented closed line segment of T with initial point t_{0} and terminal point t_{1}. We set

$$
\begin{aligned}
{\left[t_{0}, t_{1}\right) } & =\left[t_{0}, t_{1}\right] \backslash\left\{t_{1}\right\},\left(t_{0} t_{1}\right]=\left[t_{0}, t_{1}\right] \backslash\left\{t_{0}\right\} \quad \text { and } \\
\left(t_{0}, t_{1}\right) & =\left[t_{0}, t_{1}\right] \backslash\left\{t_{0}, t_{1}\right\} .
\end{aligned}
$$

If $U(t)=\left(t_{0}, t_{1}\right)$ is a neighbourhood of t in T then

$$
U^{-}(t)=\left(t_{0}, t\right), U^{+}(t)=\left(t, t_{1}\right) \quad \text { and } \quad U^{\prime}(t)=U^{-}(t) \cup U^{+}(t) .
$$

A curve Γ in P^{2} is a continuous map from T into P^{2}. Γ is differentiable if the tangent line

$$
\Gamma_{1}(t)=\lim _{t \neq t^{\prime} \rightarrow t}\left\langle\Gamma(t), \Gamma\left(t^{\prime}\right)\right\rangle
$$

exists for each $t \in T$ and any line of P^{2} meets $\Gamma(T)$ at a finite number of

[^0]points. Henceforth Γ is differentiable and we identify $\Gamma(T)$ with Γ.
Let $\mathscr{M} \subseteq T$ be a segment. We call $\left.\Gamma\right|_{\mathscr{M}}$ a subarc of Γ and identify $\Gamma(\mathscr{M})$ with $\left.\Gamma\right|_{\mathscr{M}}$. If
$$
n=\sup _{L \subset P^{2}}|L \cap \Gamma(\mathscr{M})|
$$
is finite, we say that \mathscr{M} is of order n. The order of a point $t \in T, \operatorname{ord}(t)$, is the minimum order which a $U(t)$ can possess. Clearly ord $(t) \geqq 2$. A point t is ordinary if $\operatorname{ord}(t)=2$; otherwise t is singular. \mathscr{M} is ordinary if each point of \mathscr{M} is ordinary.

Let $t \in T$ and $\Gamma(t) \in L \subset P^{2}$. Then L supports Γ at t if there is an $L^{\prime} \neq L$ with $\Gamma(t) \notin L^{\prime}$ and a $U^{\prime}(t)$ such that $\Gamma\left(U^{\prime}(t)\right)$ is contained in one of the open half-planes of P^{2} determined by L and L^{\prime}. If L does not support Γ at t then L cuts Γ at t. Let

$$
S(t)=\left\{L \subset P^{2} \mid \Gamma(t) \in L \neq \Gamma_{1}(t)\right\}
$$

Then either all $L \in S(t)$ support Γ at t or all $L \in S(t)$ cut Γ at t. Thus there are four types of points in T with respect to $\Gamma: t$ is regular if $L \in S(t)$ [$\Gamma_{1}(t)$] cuts [supports] Γ at $t ; t$ is an inflection if $L \in S(t)$ and $\Gamma_{1}(t)$ both cut Γ at $t ; t$ is a beak if $L \in S(t)$ and $\Gamma_{1}(t)$ both support Γ at $t ; t$ is a cusp if $L \in S(t)\left[\Gamma_{1}(t)\right]$ supports [cuts] Γ at t. We note that an ordinary point is regular and hence inflections, cusps and beaks are singular.

Next we note that either every line of P^{2} cuts Γ at an even number of points or every line of P^{2} cuts Γ at an odd number of points. In the case of the former [latter], we say that Γ is of even [odd] order. Let $\mathscr{M} \subseteq T$. The index of $\Gamma(\mathscr{M}), \operatorname{ind}(\Gamma(\mathscr{M}))$, is the minimum number of points of $\Gamma(\mathscr{M})$ which can lie on any line of P^{2}. A point $t \in \mathscr{M}$ is a simple point of \mathscr{M}, if $\Gamma\left(t^{\prime}\right) \neq \Gamma(t)$ for $t^{\prime} \in \mathscr{M} \backslash\{t\}$; otherwise, t is a multiple point of \mathscr{M}. Let $m(\Gamma(\mathscr{M}))$ be the number of multiple points of \mathscr{M}. We say that \mathscr{M} is simple if $m(\Gamma(\mathscr{M}))=0$. A point $p \in \Gamma(T)$ is strong if there exist $t_{i} \neq t_{j}$ such that

$$
p=\Gamma\left(t_{i}\right)=\Gamma\left(t_{j}\right) \quad \text { and } \quad \operatorname{ind}\left(\Gamma\left[t_{i}, t_{j}\right]\right)=0
$$

Let $s(\Gamma(\mathscr{M}))$ be the number of strong points of Γ contained in $\Gamma(\mathscr{M})$. Since a simple point of \mathscr{M} need not be a simple point of Γ, we note that $m(\Gamma(\mathscr{M}))=0$ does not imply that $s(\Gamma(\mathscr{M}))=0$. If $s(\Gamma)=0$, we say that Γ is almost simple.

Finally let \mathscr{R} be a connected compact set in P^{2} such that \mathscr{R} is bounded; that is, there is an $L \subset P^{2}$ not meeting \mathscr{R}. We denote by $H(\mathscr{R})$ the convex hull of \mathscr{R} in the affine plane $P^{2} \backslash L$. It is clear that if $N \cap \mathscr{R}=\emptyset$ then $H(\mathscr{R})$ is also the convex hull of \mathscr{R} in $P^{2} \backslash N$. We say that \mathscr{R} is convex if $\mathscr{R}=H(\mathscr{R})$.

As indicated in the introduction, we wish to determine when $n(\Gamma)>0$ and then find the minimum value of $n(\Gamma)$. Hence we restrict our attention
to curves Γ with the property that $n(\Gamma)<\infty$ and (cf. [1]) $m(\Gamma)<\infty$. Thus Γ will be the differentiable union of a finite number of simple regular arcs. As such arcs are ordinary (cf. [4], p.148), we have that $\Gamma_{1}(t)$ depends continuously on $t \in T$, a regular point is ordinary (hence a singular point is an inflection, a cusp or a beak) and $\bar{n}(\Gamma) \equiv 0(\bmod 2)$ if and only if Γ is of even order where

$$
\bar{n}(\Gamma)=n_{1}(\Gamma)+2 n_{2}(\Gamma)+n_{3}(\Gamma) .
$$

The main theorems. Henceforth we assume that Γ is a differentiable curve of even order with $\operatorname{ind}(\Gamma)>0, n(\Gamma)<\infty$ and $m(\Gamma)<\infty$. We note the following results regarding the minimum number of singular points of Γ.

1. If $m(\Gamma)=0$ then $n(\Gamma) \geqq 3$ and if $n_{2}(\Gamma)>0\left[n_{2}(\Gamma)=0\right]$ then $\bar{n}(\Gamma) \geqq 6[4]$. ([2], 4.)
2. If $s(\Gamma)=0$ then $n(\Gamma) \geqq 2$ and $\bar{n}(\Gamma) \geqq 4$. ([1], 3.1)

Thus it remains to determine the minimum values of $n(\Gamma)$ and $\bar{n}(\Gamma)$ when $s(\Gamma)>0$ and $m(\Gamma)>0$. In Figure 1 of [1], we presented a non-singular Γ with $s(\Gamma)=m(\Gamma)=3$ and each strong point, a double point. From that example, it is readily seen that there exists a non-singular Γ with $s(\Gamma)=m(\Gamma)=1$ and the strong point, a triple point. Finally in Figure 1, we present a non-singular Γ with $m(\Gamma)>s(\Gamma)=2$.

Figure 1.
We now state the main theorems and list the results required for the proofs. By the preceding, we of course assume that every strong point Γ is a double point.
3. Theorem. If $s(\Gamma)=1$ then Γ is singular.
4. Theorem. If $s(\Gamma)=m(\Gamma)=1$ then $n(\Gamma) \geqq 2$ and $\bar{n}(\Gamma) \geqq 4$.
5. Theorem. If $s(\Gamma)=m(\Gamma)=2$ then Γ is singular.
6. Let $\left(s_{1}, s_{2}\right)$ be a subarc of order two. Then $\left(s_{1}, s_{2}\right)$ is simple and ordinary, $\Gamma_{1}(s) \cap \Gamma\left[s_{1}, s_{2}\right]=\{\Gamma(s)\}$ for $s \in\left(s_{1}, s_{2}\right)$ and there is a line $L \subset P^{2}$ such that

$$
L \cap \Gamma\left[s_{1}, s_{2}\right]=\emptyset \text { and ind } \Gamma\left[s_{1}, s_{2}\right]=0
$$

Let $\left(t_{1}, t_{2}\right)$ be ordinary and simple.
7. There exist $s_{1}<s_{2}\left(s_{1}\right.$ preceding $\left.s_{2}\right)$ in $\left[t_{1}, t_{2}\right]$ such that $\left(s_{1}, s_{2}\right)$ is of order two and

$$
\Gamma\left[t_{1}, t_{2}\right] \subset H\left(\Gamma\left[s_{1}, s_{2}\right]\right)
$$

We call $\left[s_{1}, s_{2}\right]$, the (unique) convex cover of $\left[t_{1}, t_{2}\right]$. ($\left.[\mathbf{1}], 3.15\right)$.
8. If $\Gamma\left(t_{1}\right) \neq \Gamma\left(t_{2}\right)$ and $\left\langle\Gamma\left(t_{1}\right), \Gamma\left(t_{2}\right)\right\rangle \cap \Gamma\left(t_{1}, t_{2}\right)=\emptyset$ then $\left(t_{1}, t_{2}\right)$ is of order two. ($[\mathbf{1}], 3.13$).
9. For any $t \in\left(t_{1}, t_{2}\right)$

$$
\Gamma_{1}(t) \cap \Gamma\left[t_{1}, t\right)=\emptyset \quad \text { or } \quad \Gamma_{1}(t) \cap \Gamma\left(t, t_{2}\right]=\emptyset
$$

([1], 3.12).
10. Let $s\left(\Gamma\left(t_{1}, t_{2}\right)\right)=0$. If $L \cap \Gamma\left[t_{2}, t_{1}\right]=\emptyset$ then L meets, and cuts, Γ in exactly two points. If L^{\prime} is a limit of lines, none of which meets $\Gamma\left[t_{2}, t_{1}\right]$, then L^{\prime} cuts Γ in at most two points and these points lie in $\left[t_{1}, t_{2}\right]$. ([1], 3.17).

Finally we note some elementary facts about the convex hull of a subarc of Γ.
11. Lemma. Let $\mathscr{R}^{*}=H(\Gamma[u, v]), u \neq v$ and $\operatorname{ind}(\Gamma[u, v])=0$. Let $t \in(u, v)$ be an ordinary point with the property that t is simple in $[u, v]$ and $\Gamma(t) \in \operatorname{bd}\left(\mathscr{R}^{*}\right)$.

1. The only supporting line of \mathscr{R}^{*} through $\Gamma(t)$ is $\Gamma_{1}(t)$.
2. If $\left|\Gamma_{1}(t) \cap \Gamma[u, v]\right|=1$ then there is a $U(t)$ such that

$$
\Gamma(U(t)) \subset \mathrm{bd}\left(\mathscr{R}^{*}\right)
$$

3. If $\left|\Gamma_{1}(t) \cap \Gamma[u, v]\right|=2$ then there is a $U(t)$ such that either

$$
\Gamma\left(U^{+}(t)\right) \subset \operatorname{bd}\left(\mathscr{R}^{*}\right) \text { or } \quad \Gamma\left(U^{-}(t)\right) \subset \operatorname{bd}\left(\mathscr{R}^{*}\right) .
$$

Proof. 1. Since $\Gamma(t) \in \operatorname{bd}\left(\mathscr{R}^{*}\right)$, there is a line L through $\Gamma(t)$ which supports \mathscr{R}^{*}. Since $\Gamma(t) \in \Gamma(u, v) \subset \mathscr{R}^{*}$, it follows that L also supports Γ at t and thus $L=\Gamma_{1}(t)$.
2. Let

$$
\left|\Gamma_{1}(t) \cap \Gamma[u, v]\right|=1
$$

It is clear that there is a $U(t) \subset(u, v)$ such that $U(t)$ is order two and

$$
\left|\Gamma_{1}(s) \cap \Gamma[u, v]\right|=1 \quad \text { for all } s \in U(t)
$$

Since each $s \in U(t)$ is ordinary, $\Gamma_{1}(s)$ supports $\Gamma[u, v]$ at s. As

$$
\mathscr{R}^{*}=H(\Gamma[u, v]),
$$

it follows that $\Gamma(s) \in \operatorname{bd}\left(\mathscr{R}^{*}\right)$ for $s \in U(t)$.
3. Since $\Gamma_{1}(t)$ is a line of support of \mathscr{R}^{*},

$$
\left|\Gamma_{1}(t) \cap \Gamma[u, v]\right|=2
$$

implies that $\Gamma_{1}(t)$ supports Γ at a point $t^{\prime} \neq t$ in $[u, v]$. Hence the continuity of tangents yields that there is either a $U^{+}(t)$ or a $U^{-}(t)$ in (u, v) with the property that

$$
\left|\Gamma_{1}(s) \cap \Gamma[u, v]\right|=1 \text { for } s \in U^{+}(t) \text { or } s \in U^{-}(t)
$$

Now 11.2 yields 11.3.
12. Lemma. Let \mathscr{R} be a closed bounded region bounded by the simple subarc $\Gamma\left[r, r^{\prime}\right]$ and the line $L=\left\langle\Gamma(r), \Gamma\left(r^{\prime}\right)\right\rangle, L \cap \Gamma\left(r, r^{\prime}\right)=\emptyset$. Let r be ordinary, $\Gamma(v, r) \subset \mathscr{R} ; \Gamma(v) \in L \backslash\{\Gamma(r)\}$. Then $\Gamma(v, r)$ is not both simple and ordinary.

Proof. Let $\Gamma(v, r)$ be simple. As $|L \cap \Gamma|<\infty$ and v may be replaced by any $v^{\prime} \in(v, r)$ satisfying $\Gamma\left(\nu^{\prime}\right) \in L \backslash\{\Gamma(r)\}$, we may assume that

$$
\Gamma(v, r) \subset \operatorname{int}(\mathscr{R})
$$

Since $\Gamma(r) \in \operatorname{bd}(\mathscr{R})$ and $\Gamma(r)$ is ordinary, $L=\Gamma_{1}(r)$ by 11.1.
Put $\mathscr{R}^{*}=H(\mathscr{R})$ and thus

$$
\mathscr{R}^{*}=H\left(\Gamma\left[r, r^{\prime}\right]\right)=H\left(\Gamma\left[v, r^{\prime}\right]\right) .
$$

For $w \in(v, r)$, we note that

$$
\mathscr{R}^{*}=H\left(\Gamma\left[w, r^{\prime}\right]\right) \quad \text { and } \quad\left|\Gamma_{1}(r) \cap \Gamma\left[w, r^{\prime}\right]\right|=2 .
$$

Hence by 11.3, there is a $U(r) \subset\left(v, r^{\prime}\right)$ such that either $\Gamma\left(U^{+}(r)\right)$ or $\Gamma\left(U^{-}(r)\right)$ lies in $\operatorname{bd}\left(\mathscr{R}^{*}\right)$. Since

$$
\Gamma\left(U^{-}(r)\right) \subset \Gamma(v, r) \subset \operatorname{int}(\mathscr{R}) \subseteq \operatorname{int}\left(\mathscr{R}^{*}\right)
$$

we have
(i) $\Gamma\left(U^{+}(r)\right) \subset \operatorname{bd}\left(\mathscr{R}^{*}\right)$.

Suppose that $\Gamma(v, r)$ is ordinary. Then (v, r) is of order two by 8 . Since

$$
L \cap \Gamma[v, r]=\{\Gamma(v), \Gamma(r)\}
$$

L and $\Gamma(v, r)$ bound a bounded closed region \mathscr{R}^{\prime}. Clearly,

$$
\mathscr{R}^{\prime}=H(\Gamma[v, r]) \subset \mathscr{R}^{*} .
$$

Since \mathscr{R}^{*} is a closed bounded region in P^{2}, \mathscr{R}^{*} is contained in some affine restriction A^{2} of P^{2}. In A^{2}, we note that $\Gamma(r)$ is the initial point of two opposite rays \mathscr{L} and \mathscr{L}^{\prime} on L, say $\Gamma(v) \in \mathscr{L}$. Since (v, r) is of order two, every ray from $\Gamma(r)$ meets $\Gamma(v, r)$ in at most one point. Let $w \in[v, r]$ move from v to r. Then the ray from $\Gamma(r)$ through $\Gamma(w)$ rotates monotonically about $\Gamma(r)$ starting from \mathscr{L} and hence, ending at \mathscr{L}^{\prime}.

Next let $s \in\left(r, r^{\prime}\right)$ tend to r. Since Γ is ordinary at r, the ray from $\Gamma(r)$ through $\Gamma(s)$ necessarily converges to the ray opposite \mathscr{L}^{\prime}; that is, \mathscr{L}. Since L supports Γ at r, this implies that $\Gamma(s) \in \operatorname{int}\left(\mathscr{R}^{*}\right)$. This is a contradiction by i).
13. Lemma. Let \mathscr{R}_{1} and \mathscr{R}_{2} be convex sets in P^{2} such that $\mathscr{R}=\mathscr{R}_{1} \cap \mathscr{R}_{2}$ is connected. Then there is a line $L \subset P^{2}$ such that

$$
L \cap\left(R_{1} \cup \mathscr{R}_{2}\right)=\emptyset
$$

Proof. Since \mathscr{R}_{i} is convex, there is an L_{i} such that $L_{i} \cap \mathscr{R}_{i}=\emptyset ; i=1,2$. We may assume that $L_{1} \neq L_{2}, \mathscr{R}, \mathscr{R}_{1}$ and \mathscr{R}_{2} are mutually distinct and $L_{1}\left[L_{2}\right]$ is not a supporting line of $\mathscr{R}_{2}\left[\mathscr{R}_{1}\right]$. Let $\{q\}=L_{1} \cap L_{2}$ and denote by $\mathscr{2}$ and $\mathscr{2}^{\prime}$ the closed half-planes of P^{2} determined by L_{1} and L_{2}. Since

$$
\left(L_{1} \cup L_{2}\right) \cap \mathscr{R}=\emptyset,
$$

$\mathscr{R} \subset \operatorname{int}\left(\mathscr{Q}^{\prime}\right)$ say. Let $L^{*} \subset \mathscr{2}^{\prime}, L_{1} \neq L^{*} \neq L_{2}$ and set

$$
\mathscr{R}_{i}^{*}=\mathscr{Q} \cap \mathscr{R}_{i} ; i=1,2 .
$$

As $\mathscr{R} \subset \operatorname{int}\left(\mathscr{Q}^{\prime}\right)$,

$$
L_{1} \cap \operatorname{int}\left(\mathscr{R}_{2}\right) \neq \emptyset \quad \text { and } \quad L_{2} \cap \operatorname{int}\left(\mathscr{R}_{1}\right) \neq \emptyset
$$

imply that \mathscr{R}_{1}^{*} and \mathscr{R}_{2}^{*} are non-empty, disjoint convex sets in $P^{2} \backslash L^{*}$. Hence (cf. [3]) there exist two distinct lines N_{1} and N_{2} such that $N_{i} \backslash L^{*}$ supports and separates \mathscr{R}_{1}^{*} and \mathscr{R}_{2}^{*} in $P^{2} \backslash L^{*} ; i=1$, 2. Put $N_{1} \cap N_{2}=\{p\}$. Let \mathscr{P} and \mathscr{P}^{\prime} be the closed half-planes in P^{2} determined by N_{1} and N_{2}. Then by our construction, $q \neq p \in \operatorname{int}(\mathscr{Q})$ and \mathscr{R}_{1}^{*} and \mathscr{R}_{2}^{*} are both contained in \mathscr{P}^{\prime} say.

If $q \in \mathscr{P}$ then $\langle p, q\rangle \subset \mathscr{P} \cap \mathscr{Q}$ and it follows that either

$$
\langle p, q\rangle \cap\left(\mathscr{R}_{1} \cup \mathscr{R}_{2}\right)=\emptyset \quad \text { or }\langle p, q\rangle \cap\left(\mathscr{R}_{1} \cup \mathscr{R}_{2}\right)=\{p\} .
$$

In the latter case, $\langle p, q\rangle$ is disjoint from say \mathscr{R}_{2} and supports \mathscr{R}_{1} at p. Hence a suitable line through q close to $\langle p, q\rangle$ is disjoint from $\mathscr{R}_{1} \cup \mathscr{R}_{2}$.

Let $q \in \mathscr{P}^{\prime}$. As N_{1} and N_{2} separate \mathscr{R}_{1}^{*} and \mathscr{R}_{2}^{*} in \mathscr{Q}, this readily yields that N_{1} or N_{2}, say N_{1}, does not meet $\left(L_{1} \cap \mathscr{R}_{2}^{*}\right) \cup\left(L_{2} \cap \mathscr{R}_{1}^{*}\right)$. Since

$$
L_{2} \cap N_{1} \in \mathscr{2} \backslash \mathscr{R}_{1}^{*}
$$

we obtain that $L_{2} \cap N_{1} \notin \mathscr{R}_{1}$. As \mathscr{R}_{1} and $\mathscr{R}_{1} \cap N_{1}$ are convex in $P^{2} \backslash L_{1}$,
this implies that $\mathscr{R}_{1} \cap N_{1} \cap \mathscr{Q}^{\prime}=\emptyset$ and hence $N_{1} \backslash L_{1}$ supports \mathscr{R}_{1} in $P^{2} \backslash L_{1}$. Similarly, $N_{1} \backslash L_{2}$ supports \mathscr{R}_{2} in $P^{2} \backslash L_{2}$. Altogether, N_{1} supports both \mathscr{R}_{1} and \mathscr{R}_{2}.

We note that the closed segments $N_{1} \cap \mathscr{R}_{1}^{*}$ and $N_{1} \cap \mathscr{R}_{2}^{*}$ lie in $N_{1} \cap \mathscr{Q}$ and are disjoint. Hence there is a point $b \in\left(N_{1} \cap \mathscr{2}\right) \backslash\left(\mathscr{R}_{1}^{*} \cup \mathscr{R}_{2}^{*}\right)$ which separates them in $N_{1} \cap \mathscr{2}$ and there is a line N through b, close to N_{1}, which does not meet $\mathscr{R}_{1}^{*} \cup \mathscr{R}_{2}^{*}$. Since

$$
N_{1} \cap \mathscr{Q}^{\prime} \cap\left(\mathscr{R}_{1} \cup \mathscr{R}_{2}\right)=\emptyset,
$$

N can be chosen so that it does not meet $\left(\mathscr{R}_{2} \cup \mathscr{R}_{2}\right) \cap \mathscr{Q}^{\prime}$. Thus

$$
N \cap\left(\mathscr{R}_{1} \cup \mathscr{R}_{2}\right)=\emptyset .
$$

14. Lemma. Let (x, y) and (u, v) be subarcs of order two with the property that $L=\langle\Gamma(x), \Gamma(y)\rangle$ is a line and $\Gamma(x, y) \cap \mathscr{R}_{1}=\emptyset$ where

$$
\mathscr{R}_{1}=H(\Gamma[u, v]) \quad \text { and } \quad \mathscr{R}_{2}=H(\Gamma[x, y]) .
$$

Then

1. there is a line N^{\prime} such that $N^{\prime} \cap\left(\mathscr{R}_{1} \cup \mathscr{R}_{2}\right)=\emptyset$ or
2. $\{\Gamma(x), \Gamma(y)\} \subset \mathscr{R}_{1}$ and there is a line N such that $N \cap \mathscr{R}_{1}=\emptyset$ and N meets, and cuts, Γ at exactly one point of (x, y).

Proof. If not 14.1 then $\mathscr{R}_{1} \cap \mathscr{R}_{2}$ is not connected by 13. Since \mathscr{R}_{1} and \mathscr{R}_{2} are convex, the same applies to

$$
\mathscr{R}_{1} \cap \operatorname{bd}\left(\mathscr{R}_{2}\right)=\mathscr{R}_{1} \cap\left(\Gamma(x, y) \cup\left(L \cap \mathscr{R}_{2}\right)\right)=\mathscr{R}_{1} \cap L \cap \mathscr{R}_{2} .
$$

As $L \cap \mathscr{R}_{1}$ and $L \cap \mathscr{R}_{2}$ are closed segments of L and $L \cap \mathscr{R}_{2}$ has the end points $\Gamma(x)$ and $\Gamma(y)$, this yields that

$$
\{\Gamma(x), \Gamma(y)\} \subset \mathscr{R}_{1}
$$

and there is a point $p \in\left(L \cap \mathscr{R}_{2}\right) \backslash \mathscr{R}_{1}$. As \mathscr{R}_{1} is convex, there is a line N through p disjoint from \mathscr{R}_{1}. Since

$$
\{\Gamma(x), \Gamma(y)\} \subset \operatorname{bd}\left(\mathscr{R}_{1}\right)
$$

$N \neq L$ and 14.2 follows.
15. Lemma. Let $m(\Gamma)=s(\Gamma)$ and let $p=\Gamma\left(t_{1}\right)=\Gamma\left(t_{2}\right)$ be a double point of Γ such that $\left(t_{1}, t_{2}\right)$ is of order two, t_{1} or t_{2} is ordinary,

$$
\operatorname{ind}\left(\Gamma\left[t_{2}, t_{1}\right]\right)>0 \quad \text { and } \quad s\left(\Gamma\left[t_{1}, t_{2}\right]\right)=1
$$

Then there is a differentiable curve Γ^{*} of even order such that $\operatorname{ind}\left(\Gamma^{*}\right)>0$, $m\left(\Gamma^{*}\right)=s\left(\Gamma^{*}\right)=s(\Gamma)-1, n_{j}\left(\Gamma^{*}\right)=n_{j}(\Gamma)$ for $j=1,3$ and $n_{2}\left(\Gamma^{*}\right)$ equals $n_{2}(\Gamma)$ or $n_{2}(\Gamma)+1$.

Proof. Case 1. $\Gamma_{1}\left(t_{1}\right)=\Gamma_{1}\left(t_{2}\right)$.
Let T^{*} be the closed segment $\left[t_{2}, t_{1}\right]$ with t_{2} and t_{1} identified, say $\bar{t} \equiv t_{1} \equiv t_{2}$. Let $\Gamma^{*}: T^{*} \rightarrow P^{2}$ be the curve defined by $\Gamma^{*}(t)=\Gamma(t)$
for $t \in T^{*}$. Since Γ is differentiable and $m(\Gamma)=s(\Gamma)$, we obtain that Γ^{*} is differentiable and

$$
m\left(\Gamma^{*}\right)=s\left(\Gamma^{*}\right)=s(\Gamma)-1
$$

It is easy to check that if $t_{1}\left[t_{2}\right]$ is ordinary then \bar{t} is the same type of point as $t_{2}\left[t_{1}\right]$. Thus $n_{i}\left(\Gamma^{*}\right)=n_{i}(\Gamma)$ for $i=1,2,3, \bar{n}\left(\Gamma^{*}\right) \equiv 0(\bmod 2)$ and Γ^{*} is of even order. Finally

$$
\operatorname{ind}\left(\Gamma\left[t_{2}, t_{1}\right]\right)>0
$$

implies that $\operatorname{ind}\left(\Gamma^{*}\right)>0$.
Case 2. $\Gamma_{1}\left(t_{1}\right) \neq \Gamma_{1}\left(t_{2}\right)$ and t_{1}, t_{2} are ordinary.
Since $\left[t_{1}, t_{2}\right]$ is ordinary with

$$
\operatorname{ind}\left(\Gamma\left[t_{1}, t_{2}\right]\right)=0 \quad \text { and } \quad s\left(\Gamma\left[t_{1}, t_{2}\right]\right)=1
$$

there exists an ordinary $\operatorname{subarc}(u, v)$ such that $t_{1}<t_{2}$ in (u, v),

$$
\operatorname{ind}(\Gamma[u, v])=0 \quad \text { and } \quad s(\Gamma[u, v])=1
$$

Let $t^{*} \in\left(t_{1}, t_{2}\right)$. Since $\left(t_{1}, t_{2}\right)$ is of order two and $\Gamma_{1}\left(t_{1}\right)\left[\Gamma_{1}\left(t_{2}\right)\right]$ cuts Γ at $t_{2}\left[t_{1}\right]$, there exist $t_{1}^{*} \in\left(u, t_{1}\right)$ and $t_{2}^{*} \in\left(t_{2}, v\right)$ such that
(1) any line meets Γ in at most three points of $\left(t_{1}^{*}, t_{2}^{*}\right)$,
(2) $\left(t_{1}^{*}, t^{*}\right)$ and $\left(t^{*}, t_{2}^{*}\right)$ are both of order two,
(3) each line through two points of $\Gamma\left(t_{1}^{*}, t_{1}\right]\left[\Gamma\left[t_{2}, t_{2}^{*}\right)\right]$ cuts Γ in $\left[t_{2}, t_{2}^{*}\right)\left[\left(t_{1}^{*}, t_{1}\right]\right]$ and
(4) $\Gamma\left(t_{1}^{*}, t_{2}^{*}\right)$ has no double tangents, and a tangent of $\Gamma\left(t_{1}^{*}, t_{2}^{*}\right)$ meets this arc at no more than one other point.

Finally, let \mathscr{P} be the closed triangle in P^{2} with the vertices $\Gamma\left(t_{1}^{*}\right), \Gamma\left(t_{2}^{*}\right)$ and $\Gamma\left(t^{*}\right)$ which contains the point p.

Let $\Gamma^{*}: T \rightarrow P^{2}$ be a curve with the property that $\Gamma^{*}(t)=\Gamma(t)$ for $t \in\left[t_{2}^{*}, t_{1}^{*}\right], t_{i}^{*}$ is an ordinary point of Γ^{*} with $\Gamma_{1}^{*}\left(t_{i}^{*}\right)=\Gamma_{1}\left(t_{i}^{*}\right)(i=1,2)$, $\left[t_{1}^{*}, t_{2}^{*}\right]$ is a simple subarc of Γ^{*} such that $\Gamma^{*}\left(t_{1}^{*}, t_{2}^{*}\right) \subset \mathscr{P}$ and $\left(t_{1}^{*}, t^{*}\right)$ and $\left(t^{*}, t_{2}^{*}\right)$ are of order two and finally t^{*} is a cusp of Γ^{*} with

$$
\Gamma^{*}\left(t^{*}\right)=\Gamma\left(t^{*}\right) \quad \text { and } \quad \Gamma_{1}^{*}\left(t^{*}\right)=\left\langle\Gamma\left(t^{*}\right), p\right\rangle
$$

cf. Figure 2.
Clearly Γ^{*} is a differentiable curve with

$$
\begin{aligned}
& n_{j}\left(\Gamma^{*}\right)=n_{j}(\Gamma) \quad \text { for } j=1,3, \\
& n_{2}\left(\Gamma^{*}\right)=n_{2}(\Gamma)+1 \text { and } \\
& s\left(\Gamma^{*}\right)=m\left(\Gamma^{*}\right)=m\left(\Gamma^{*}\left[t_{2}^{*}, t_{1}^{*}\right]\right)=m\left(\Gamma\left[t_{2}^{*}, t_{1}^{*}\right]\right) \\
& \\
& =m(\Gamma)-1=s(\Gamma)-1 .
\end{aligned}
$$

Figure 2.
It remains to show that $\operatorname{ind}\left(\Gamma^{*}\right)>0$.
Let $L \subset P^{2}$. If $L \cap \Gamma\left[t_{2}^{*}, t_{1}^{*}\right] \neq \emptyset$ then

$$
\left|L \cap \Gamma^{*}\right| \geqq\left|L \cap \Gamma^{*}\left[t_{2}^{*}, t_{1}^{*}\right]\right|=\left|L \cap \Gamma\left[t_{2}^{*}, t_{1}^{*}\right]\right|>0 .
$$

Thus we may assume that

$$
\begin{equation*}
L \cap \Gamma\left[t_{2}^{*}, t_{1}^{*}\right]=\emptyset . \tag{5}
\end{equation*}
$$

Suppose that L supports Γ at some $t \in\left(t_{1}^{*}, t_{2}^{*}\right)$ and thus $L=\Gamma_{1}(t)$. Since

$$
\operatorname{ind}\left(\Gamma\left[t_{2}, t_{1}\right]\right)>0
$$

by assumption, L necessarily cuts $\Gamma\left[t_{2}, t_{1}\right]$ in at least one point. By (5), such a point lies in $\Gamma\left(t_{1}^{*}, t_{2}^{*}\right)$ and by (4), there is not more than one such point. Thus L supports Γ and L cuts Γ at one point each. Since Γ is of even order, this is a contradiction and hence L cuts Γ at every point of intersection.

We again note that $L \cap \Gamma\left[t_{2}, t_{1}\right]=\emptyset$ and by (5),

$$
L \cap \Gamma\left[t_{2}, t_{1}\right] \subset \Gamma\left(t_{1}^{*}, t_{1}\right] \cup \Gamma\left[t_{2}, t_{2}^{*}\right) .
$$

As Γ is of even order, the preceding result implies that

$$
|L \cap \Gamma|=\left|L \cap \Gamma\left(t_{1}^{*}, t_{2}^{*}\right)\right|
$$

is even. Hence by (1),

$$
L \cap \Gamma\left(t_{1}^{*}, t_{2}^{*}\right)=\left\{\Gamma\left(t^{\prime}\right), \Gamma\left(t^{\prime \prime}\right)\right\}
$$

where $\left\{t^{\prime}, t^{\prime \prime}\right\} \subset\left(t_{1}^{*}, t_{1}\right] \cup\left[t_{2}, t_{2}^{*}\right)$ and $t^{\prime} \neq t^{\prime \prime}$.

If $\left\{t^{\prime}, t^{\prime \prime}\right\} \subset\left(t_{1}^{*}, t_{1}\right]$ say, then $L \cap \Gamma\left[t_{2}, t_{2}^{*}\right) \neq \emptyset$ by (3). Since this is impossible, each of $\left(t_{1}^{*}, t_{1}\right]$ and $\left[t_{2}, t_{2}^{*}\right)$ contains exactly one of t^{\prime} and $t^{\prime \prime}$. Hence $L \cap \mathscr{P}$ separates $\Gamma\left(t^{*}\right)$ from both $\Gamma\left(t_{1}^{*}\right)$ and $\Gamma\left(t_{2}^{*}\right)$ in \mathscr{P} and L necessarily meets both $\Gamma^{*}\left(t_{1}^{*}, t^{*}\right)$ and $\Gamma^{*}\left(t^{*}, t_{2}^{*}\right)$.

Finally, we observe that the preceding yields that any line meets both $\Gamma^{*}\left(t_{1}^{*}, t_{2}^{*}\right)$ and $\Gamma\left(t_{1}^{*}, t_{2}^{*}\right)$ with the same parity. Thus Γ^{*} is also of even order.

Case 3. $\Gamma_{1}\left(t_{1}\right) \neq \Gamma_{1}\left(t_{2}\right)$ and t_{1} or t_{2} is singular.
Let t_{1} be singular, say.
We choose $t_{1}^{*} \in\left(t_{1}, t_{2}\right)$ and $t_{2}^{*} \in\left(t_{2}, t_{1}\right)$ so close to t_{2} that $\Gamma\left(t_{1}^{*}, t_{2}^{*}\right)$ is an arc of order two and that \mathscr{P}^{\prime}, one of the closed triangles bounded by $\Gamma_{1}\left(t_{1}^{*}\right), \Gamma_{1}\left(t_{2}^{*}\right)$ and $\left\langle\Gamma\left(t_{1}^{*}\right), \Gamma\left(t_{2}^{*}\right)\right\rangle$, contains $\Gamma\left[t_{1}^{*}, t_{2}^{*}\right]$. We may clearly assume that p is the only double point and $\Gamma\left(t_{1}\right)$ is the only singular point in \mathscr{P}^{\prime}; cf. Figure 3.

The arc $\Gamma\left[t_{1}^{*}, t_{2}^{*}\right]$ decomposes \mathscr{P}^{\prime} into two subsets. If t_{1}^{*} and t_{2}^{*} are sufficiently close to t_{2}, one of these subsets, say \mathscr{P}_{0}^{\prime}, does not meet $\Gamma\left(t_{2}^{*}, t_{1}\right)$. Let $\Gamma^{\prime}: T \rightarrow P^{2}$ be a curve with the property that $\Gamma^{\prime}(t)=\Gamma(t)$ for $t \in\left[t_{2}^{*}, t_{1}^{*}\right]$ and $\Gamma^{\prime}\left[t_{1}^{*}, t_{2}^{*}\right]$ is a convex curve in \mathscr{P}_{0}^{\prime} with

$$
\Gamma_{1}^{\prime}\left(t_{i}^{*}\right)=\Gamma_{1}\left(t_{i}^{*}\right) ; \quad i=1,2
$$

Then Γ^{\prime} is a curve of even order with

$$
\operatorname{ind}\left(\Gamma^{\prime}\right)>0 \quad \text { and } \quad n_{j}\left(\Gamma^{\prime}\right)=n_{j}(\Gamma) ; j=1,2,3
$$

If t_{1} is a cusp or a beak (case (a)) then

$$
s\left(\Gamma^{\prime}\right)=m\left(\Gamma^{\prime}\right)=S(\Gamma)-1
$$

and $\Gamma^{*}=\Gamma^{\prime}$ has the required property. If t_{1} is an inflection (case (b)) then

$$
s\left(\Gamma^{\prime}\right)=m\left(\Gamma^{\prime}\right)=s(\Gamma)
$$

and Γ^{\prime} has a double point in \mathscr{P}_{0}^{\prime} which satisfies the assumptions of case 2.
16. Remarks. Since

$$
\begin{aligned}
& \Gamma\left[t_{2}^{*}, t_{1}^{*}\right]=\Gamma^{*}\left[t_{2}^{*}, t_{1}^{*}\right] \quad \text { and } \\
& \Gamma\left(t_{1}^{*}, t_{2}^{*}\right) \subset \operatorname{int}\left(H\left(\Gamma\left[t_{1}^{*}, t_{2}^{*}\right]\right),\right.
\end{aligned}
$$

$\operatorname{ind}(\Gamma)>0$ implies that the construction in Figure 3(a) results in a curve Γ^{*} satisfying 15 even if $\operatorname{ind}\left(\Gamma\left[t_{2}, t_{1}\right]\right)=0$.

The construction in Figure $3(\mathrm{~b})$ performed when t_{1} is an inflection point results in a differentiable curve Γ^{\prime} of even order with ind $\left(\Gamma^{\prime}\right)>0$, $m\left(\Gamma^{\prime}\right)=s\left(\Gamma^{\prime}\right)=s(\Gamma)$ and $n_{i}\left(\Gamma^{\prime}\right)=n_{i}(\Gamma)$ for $i=1,2,3$. Furthermore, Γ^{\prime} contains a double point $p^{\prime}=\Gamma^{\prime}\left(t_{1}^{\prime}\right)=\Gamma^{\prime}\left(t_{2}^{\prime}\right)$ such that neither $\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$ nor $\left(t_{2}^{\prime}, t_{1}^{\prime}\right)$ is ordinary.

Figure 3.
As a final comment, we note that a similar construction allows us to replace any simple cusp [beak] of Γ by a pair of inflections [one inflection] in such a manner that the resultant curve $\widetilde{\Gamma}$ has the property that $s(\widetilde{\Gamma})=S(\Gamma), m(\widetilde{\Gamma})=m(\Gamma), \operatorname{ind}(\widetilde{\Gamma})>0$ and $\widetilde{\Gamma}$ is of even order; cf. [2], p. 147.

Proof of Theorem 3. Let $p=\Gamma\left(t_{1}\right)=\Gamma\left(t_{2}\right), t_{1} \neq t_{2}$, be the only strong point of Γ with

$$
\operatorname{ind}\left(\Gamma\left[t_{1}, t_{2}\right]\right)=0
$$

We assume that $\left(t_{1}, t_{2}\right)$ and $\left(t_{2}, t_{1}\right)$ are ordinary.
Since $\operatorname{ind}\left(\Gamma\left[t_{1}, t_{2}\right]\right)=0$, every multiple point of $\left(t_{1}, t_{2}\right)$ is then the common end-point of a subarc of index 0 in $\Gamma\left[t_{1}, t_{2}\right]$ and is therefore strong. Thus $s(\Gamma)=1$ implies that $\left(t_{1}, t_{2}\right)$ is simple. Then by 7 , there exist $s_{1}<s_{2}$ in $\left[t_{1}, t_{2}\right]$ such that $\left(s_{1}, s_{2}\right)$ is of order two and

$$
\Gamma\left[t_{1}, t_{2}\right] \subset \mathscr{R}=H\left(\Gamma\left[s_{1}, s_{2}\right]\right) .
$$

Let $\Gamma\left[v_{1}, v_{2}\right]$ be the maximal subarc of Γ contained in \mathscr{R}; $v_{2}<v_{1}$ in $\left[t_{2}, t_{1}\right]$. If $t_{1} \neq s_{1}$ then $v_{1} \neq s_{1}, \Gamma\left(v_{1}\right) \notin \Gamma\left[s_{1}, s_{2}\right)$ and $\Gamma\left(v_{1}, s_{1}\right)$ has index 0 . As in the preceding, $\operatorname{ind}\left(\Gamma\left(v_{1}, s_{1}\right)\right)=0$ implies that every multiple point of $\left(v_{1}, s_{1}\right)$ is strong. Thus $t_{2} \notin\left(v_{1}, s_{1}\right)$ and $s(\Gamma)=1$ imply that $\left(v_{1}, s_{1}\right)$ is simple. By 12 , (v_{1}, s_{1}) is not ordinary and $n(\Gamma) \geqq 1$. Hence we assume that $t_{1}=s_{1}$ and by symmetry, $t_{2}=s_{2}$.

Suppose that $\operatorname{ind}\left(\Gamma\left[t_{2}, t_{1}\right]\right)>0$. Since $\left(t_{2}, t_{1}\right)$ is ordinary, $\left(t_{2}, t_{1}\right)$ is not simple by 7. Thus $m\left(\Gamma\left[t_{2}, t_{1}\right]\right)<\infty$ implies that there exist $u<u^{\prime}$ in $\left(t_{2}, t_{1}\right)$ such that $q=\Gamma(u)=\Gamma\left(u^{\prime}\right)$ and $\left(u, u^{\prime}\right)$ is simple. But then $\operatorname{ind}\left(\Gamma\left[u, u^{\prime}\right]\right)=0$ by 7 and $q \neq p$ is strong; a contradiction. Since $\operatorname{ind}\left(\Gamma\left[t_{2}, t_{1}\right]\right)=0$, we assume as in the preceding that $\left(t_{2}, t_{1}\right)$ is of order two. Let

$$
\mathscr{R}^{\prime}=H\left(\Gamma\left[t_{2}, t_{1}\right]\right) .
$$

Since $\Gamma_{1}\left(t_{i}\right)$ meets Γ at exactly t_{1} and t_{2} and Γ is of even order, $\Gamma_{1}\left(t_{i}\right)$ supports Γ at both t_{1} and t_{2} or $\Gamma_{1}\left(t_{i}\right)$ cuts Γ at both t_{1} and $t_{2} ; i=1,2$. If $\Gamma_{1}\left(t_{1}\right)$ and $\Gamma_{1}\left(t_{2}\right)$ both support Γ at t_{1} and t_{2} then $\Gamma_{1}\left(t_{1}\right)=\Gamma_{1}\left(t_{2}\right)$ and it is easy to check that $\mathscr{R} \cap \mathscr{R}^{\prime}$ is connected. Hence by 13, there is a line not meeting $\mathscr{R} \cup \mathscr{R}^{\prime}$. Since $\Gamma \subset \mathscr{R} \cup \mathscr{R}^{\prime}$, we obtain that ind $(\Gamma)=0$. Thus $\Gamma_{1}\left(t_{i}\right)$ cuts Γ at t_{i} and t_{i} is singular.

In Figure 4, we present a Γ of even order with ind $(\Gamma)>0, s(\Gamma)=$ $1 \neq m(\Gamma)$ and $n(\Gamma)=1$.

Figure 4.
Proof of Theorem 4. Let $p=\Gamma\left(t_{1}\right)=\Gamma\left(t_{2}\right), t_{1} \neq t_{2}$. Since $\bar{n}(\Gamma)$ is even, we need only to show that $n(\Gamma) \geqq 3$ or $n_{2}(\Gamma) \geqq 2$.

Case 1. Neither $\left(t_{1}, t_{2}\right)$ nor $\left(t_{2}, t_{1}\right)$ is ordinary.
If t_{1} or t_{2} is singular or if $\left(t_{1}, t_{2}\right)$ or $\left(t_{2}, t_{1}\right)$ contains more than one singular point then $n(\Gamma) \geqq 3$. Hence we assume that t_{1} and t_{2} are ordinary and say $u_{1}\left[u_{2}\right]$ is the only singular point of $\left(t_{1}, t_{2}\right)\left[\left(t_{2}, t_{1}\right)\right]$. If u_{1} or u_{2} is a cusp then $\bar{n}(\Gamma) \geqq 4$ and hence we assume that they are not cusps. From 16, we may then assume that u_{1} and u_{2} are inflections. Finally as p is strong, we may assume that say

$$
\operatorname{ind}\left(\Gamma\left[t_{2}, t_{1}\right]\right)=0
$$

Let $\mathscr{R}=H\left(\Gamma\left[t_{2}, t_{1}\right]\right)$. Since no line through $\Gamma\left(u_{2}\right)$ supports Γ at u_{2}, $\Gamma\left(u_{2}\right) \in \operatorname{int}(\mathscr{R})$. Hence some line L supports \mathscr{R} in at least two distinct points of $\Gamma\left[t_{2}, t_{1}\right]$ and there is a segment $\left[r_{2}, r_{1}\right] \subset\left[t_{2}, t_{1}\right]$ such that

$$
\begin{aligned}
& L=\left\langle\Gamma\left(r_{1}\right), \Gamma\left(r_{2}\right)\right\rangle, \quad L \cap \Gamma\left(r_{2}, r_{1}\right)=\emptyset \quad \text { and } \\
& L \neq \Gamma_{1}(t) \text { for all } t \in\left(r_{2}, r_{1}\right)
\end{aligned}
$$

As $\left\{\Gamma\left(r_{1}\right), \Gamma\left(r_{2}\right)\right\} \subset \operatorname{bd}(\mathscr{R})$, we have that r_{1} and r_{2} are ordinary. Then by 11 ,

$$
L=\Gamma_{1}\left(r_{2}\right) \text { and either } r_{1}=t_{1} \text { or } L=\Gamma_{1}\left(r_{1}\right)
$$

Finally, let \mathscr{R}^{\prime} be the closed region in \mathscr{R} bounded by $\Gamma\left[r_{2}, r_{1}\right]$ and L.
a) $r_{1} \neq t_{1}$ and $\left(r_{2}, r_{1}\right)$ is ordinary.

By $8,\left(r_{2}, r_{1}\right)$ is of order two and hence $\mathscr{R}^{\prime}=H\left(\Gamma\left[r_{2}, r_{1}\right]\right)$. Since L is a supporting line of both \mathscr{R} and \mathscr{R}^{\prime} and $\Gamma\left[t_{2}, t_{1}\right]$ is simple, it follows that $\Gamma\left[t_{2}, t_{1}\right] \subset \mathscr{R}^{\prime}$ and thus $\mathscr{R}=\mathscr{R}^{\prime}$.

Since $\operatorname{ind}(\Gamma)>0$, there is a maximal subarc $\Gamma\left[v_{2}, v_{1}\right] \neq \Gamma$ in \mathscr{R} with

$$
\left[r_{2}, r_{1}\right] \subset\left(t_{2}, t_{1}\right) \subseteq\left(v_{2}, v_{1}\right) .
$$

As $m(\Gamma)=1,\left(v_{2}, r_{2}\right)$ and $\left(r_{1}, v_{1}\right)$ are both simple and thus by $12,\left(v_{2}, r_{2}\right)$ and $\left(r_{1}, v_{1}\right)$ are both singular. As $\left\{u_{1}, u_{2}\right\} \subset\left(v_{2}, r_{2}\right) \cup\left(r_{1}, v_{1}\right)$, we may assume that say

$$
u_{1} \in\left(t_{1}, t_{2}\right) \cap\left(r_{1}, v_{1}\right)=\left(t_{1}, v_{1}\right)
$$

and

$$
u_{2} \in\left(t_{2}, t_{1}\right) \cap\left(v_{2}, r_{2}\right)=\left(t_{2}, r_{2}\right)
$$

Finally, we note that since $\Gamma\left[v_{2}, v_{1}\right]$ is the maximal subarc contained in \mathscr{R} and

$$
\Gamma\left(v_{i}\right) \notin \mathrm{bd}(\mathscr{R}) \backslash \Gamma\left[r_{2}, r_{1}\right],
$$

L cuts Γ at v_{1} and v_{2}.
Suppose that $\left(v_{1}, v_{2}\right)$ is ordinary and let $t \in\left(v_{1}, v_{2}\right) \subset\left(u_{1}, t_{2}\right)$. By 9 ,

$$
\Gamma_{1}(t) \cap \Gamma\left[u_{1}, t\right)=\emptyset \quad \text { or } \quad \Gamma_{1}(t) \cap \Gamma\left(t, t_{2}\right)=\emptyset .
$$

Hence $\Gamma\left(v_{1}\right)$ or $\Gamma\left(v_{2}\right)$ does not lie on $\Gamma_{1}(t), \Gamma_{1}(t) \neq L$ and L cuts Γ at every point of $L \cap \Gamma\left[v_{1}, v_{2}\right]$. Since $\Gamma\left[v_{1}, v_{2}\right]$ is simple with index $0, L$ cuts Γ at only v_{1} and v_{2} by 10 . Altogether then

$$
L \cap \Gamma\left(v_{1}, v_{2}\right)=\emptyset
$$

and thus $\left(v_{1}, v_{2}\right)$ is of order two by 8 . Let

$$
\mathscr{R}^{\prime \prime}=H\left(\Gamma\left[v_{1}, v_{2}\right]\right) .
$$

Since

$$
\Gamma\left(v_{1}, v_{2}\right) \cap \Gamma\left(r_{2}, r_{1}\right)=\emptyset \quad \text { and } \quad L \cap \Gamma\left(v_{1}, v_{2}\right)=\emptyset
$$

we have that

$$
\Gamma\left(v_{1}, v_{2}\right) \cap \operatorname{bd}(\mathscr{R})=\emptyset .
$$

As L cuts Γ at v_{1} and $\Gamma\left[v_{2}, v_{1}\right] \subset \mathscr{R}$, it follows that

$$
\Gamma\left(v_{1}, v_{2}\right) \cap \mathscr{R}=\emptyset .
$$

Thus by 14 , either $\mathscr{R} \cup \mathscr{R}^{\prime \prime}$ is bounded in P^{2} or there is a line not meeting \mathscr{R} which meets and cuts Γ at exactly one point. Since $\Gamma \subset \mathscr{R} \cup \mathscr{R}^{\prime \prime}$, the
latter yields that $\operatorname{ind}(\Gamma)=1$; a contradiction. Thus $\left(v_{1}, v_{2}\right)$ is not ordinary and $n(\Gamma) \geqq 3$ or $\left(r_{2}, r_{1}\right)$ is not ordinary.
b) $r_{1} \neq t_{1}$ and $\left(r_{2}, r_{1}\right)$ is not ordinary.

Then $u_{2} \in\left(r_{2}, r_{1}\right) \subset\left(t_{2}, t_{1}\right)$ and we may assume that $\left[t_{2}, r_{2}\right]$ and $\left[r_{1}, t_{1}\right]$ are ordinary. Since $\Gamma\left(t_{2}\right) \in \mathscr{R} \backslash \Gamma\left[r_{2}, r_{1}\right]$, either

$$
\Gamma\left[t_{2}, r_{2}\right] \subset \operatorname{int}\left(\mathscr{R}^{\prime}\right) \quad \text { or } \quad \Gamma\left[t_{2}, r_{2}\right) \subset \mathscr{R} \backslash \mathscr{R}^{\prime} .
$$

Similarly, either

$$
\Gamma\left(r_{1}, t_{1}\right] \subset \operatorname{int}\left(\mathscr{R}^{\prime}\right) \quad \text { or } \quad \Gamma\left(r_{1}, t_{1}\right] \subset \mathscr{R} \backslash \mathscr{R}^{\prime} .
$$

Since $\Gamma\left(t_{1}\right)=\Gamma\left(t_{2}\right)$, it follows that $\Gamma\left[t_{2}, r_{2}\right) \cup \Gamma\left(r_{1}, t_{1}\right]$ is in either $\operatorname{int}\left(\mathscr{R}^{\prime}\right)$ or $\mathscr{R} \backslash \mathscr{R}^{\prime}$.

We recall that $L=\Gamma_{1}\left(r_{1}\right)=\Gamma_{1}\left(r_{2}\right)$ supports both Γ and the convex set \mathscr{R} at $\Gamma\left(r_{1}\right)$ and $\Gamma\left(r_{2}\right)$ and $\mathscr{R}^{\prime} \subset \mathscr{R}$. Let $\Gamma^{*}: T \rightarrow P^{2}$ be a curve with the property that $\Gamma^{*}(t)=\Gamma(t)$ for $t \in\left[r_{2}, r_{1}\right], \Gamma_{1}^{*}\left(r_{1}\right)=\Gamma_{1}^{*}\left(r_{2}\right)=L, \Gamma^{*}\left(r_{1}, r_{2}\right)$ is of order two,

$$
\Gamma^{*}\left(r_{1}, r_{2}\right) \cap \mathscr{R}=\emptyset \quad \text { and } \quad H\left(\Gamma^{*}\left[r_{1}, r_{2}\right]\right) \cap \mathscr{R} \subset L .
$$

Clearly, Γ^{*} is a simple curve of even order with the three singular points $\Gamma^{*}\left(u_{2}\right), \Gamma^{*}\left(r_{1}\right)$ and $\Gamma^{*}\left(r_{2}\right)$. We note that $\Gamma^{*}\left(u_{2}\right)$ is an inflection and since L cuts Γ^{*} at both r_{1} and r_{2}, each of $\Gamma^{*}\left(r_{1}\right)$ and $\Gamma^{*}\left(r_{2}\right)$ is an inflection or a cusp. It is easy to check that $\Gamma\left[t_{2}, r_{2}\right) \cup \Gamma\left(r_{1}, t_{1}\right]$ in either $\operatorname{int}\left(\mathscr{R}^{\prime}\right)$ or $\mathscr{R} \backslash \mathscr{R}^{\prime}$ yields that $\Gamma^{*}\left(r_{1}\right)$ and $\Gamma^{*}\left(r_{2}\right)$ are both cusps or both inflections. In either case, we then have that $\bar{n}\left(\Gamma^{*}\right)$ is odd and thus Γ^{*} is of odd order; a contradiction. Hence u_{2} is not the only singular point of $\left(r_{2}, r_{1}\right)$ and $n(\Gamma) \geqq 3$ or $r_{1}=t_{1}$.
c) $r_{1}=t_{1}$ and $u_{2} \in\left(t_{2}, r_{2}\right)$.

By the preceding cases, we may assume that L meets Γ at exactly t_{2}, r_{2} and t_{1} in $\left[t_{2}, t_{1}\right]$. Then $L \cap \Gamma\left[r_{2}, t_{1}\right)=\emptyset$ and $\left(r_{2}, t_{1}\right)$ ordinary imply that $\left(r_{2}, t_{1}\right)$ is of order two and

$$
\mathscr{R}=H\left(\Gamma\left[r_{2}, t_{1}\right]\right) .
$$

We now consider (u_{2}, u_{1}) which is both simple and ordinary. Let $\left[s_{2}, s_{1}\right]$ be the convex cover of $\left[u_{2}, u_{1}\right]$. Thus $\left(s_{2}, s_{1}\right)$ is of order two and

$$
H\left(\Gamma\left[u_{2}, u_{1}\right]\right)=H\left(\Gamma\left[s_{2}, s_{1}\right]\right)=\mathscr{R}_{u} \quad \text { say } .
$$

As $\left[r_{2}, t_{1}\right] \subset\left[u_{2}, u_{1}\right]$ we have $\mathscr{R} \subset \mathscr{R}_{u}$.
Let $\Gamma\left[z_{2}, z_{1}\right]$ be the maximal subarc of Γ contained in \mathscr{R}_{u}. Thus

$$
\left[s_{2}, s_{1}\right] \subset\left[u_{2}, u_{1}\right] \subset\left[z_{2}, z_{1}\right] .
$$

Since $\mathscr{R} \subset \mathscr{R}_{u}$, we also have

$$
\left[t_{2}, t_{1}\right] \subset\left[z_{2}, z_{1}\right] \quad \text { and } \quad\left[t_{1}, u_{1}\right] \subset\left[u_{2}, u_{1}\right] .
$$

Thus

$$
\left[t_{2}, u_{1}\right] \subset\left[z_{2}, z_{1}\right] \quad \text { and } \quad\left[z_{1}, z_{2}\right] \subset\left[u_{1}, t_{2}\right],
$$

and $\left(z_{1}, z_{1}\right)$ is ordinary and simple.
Let $\left[w_{1}, w_{2}\right]$ be the convex cover of $\left[z_{1}, z_{2}\right]$,

$$
\mathscr{R}_{z}=H\left(\Gamma\left[w_{1}, w_{2}\right]\right) .
$$

We note that $\Gamma\left(w_{1}\right) \neq \Gamma\left(w_{2}\right), L^{\prime}=\left\langle\Gamma\left(s_{2}\right), \Gamma\left(s_{1}\right)\right\rangle$ is a line and

$$
\operatorname{bd}\left(\mathscr{R}_{u}\right)=\Gamma\left(s_{2}, s_{1}\right) \cup\left(L^{\prime} \cap \mathscr{R}_{u}\right) .
$$

If $\left\{\Gamma\left(z_{1}\right), \Gamma\left(z_{2}\right)\right\} \subset L^{\prime}$ then by arguing as in the preceding (with $L^{\prime}=L$, $z_{1}=v_{1}$ and $z_{2}=v_{2}$, we obtain that $\operatorname{ind}(\Gamma) \leqq 1$; a contradiction. Thus $\left\{\Gamma\left(z_{1}\right), \Gamma\left(z_{2}\right)\right\}$ is not contained in L^{\prime} and in particular

$$
s\left(\Gamma\left[s_{2}, s_{1}\right]\right) \neq 0
$$

As $p \in \Gamma\left[s_{2}, s_{1}\right]$, this implies that

$$
t_{2}<u_{2}<s_{2}<t_{1}<s_{1} \leqq u_{1} \leqq z_{1}<z_{2}=t_{2} .
$$

Hence $p=\Gamma\left(z_{2}\right) \notin L^{\prime}$ and $\Gamma\left(z_{1}\right) \in L^{\prime}$. Since L^{\prime} is a supporting line of \mathscr{R}_{u} and $\Gamma\left[z_{2}, z_{1}\right]$ is the maximal subarc in $\mathscr{R}_{u}, L^{\prime}$ cuts Γ at z_{1}. By $10, L^{\prime}$ cuts Γ at exactly one point, say z, in $\left(z_{1}, z_{2}\right)$ and by 9 ,

$$
L^{\prime} \cap \Gamma\left(z_{1}, z\right)=\emptyset
$$

and L^{\prime} supports Γ in at most one point of $\left(z, z_{2}\right)$. Clearly $\left(z_{1}, z\right)$ is of order two and

$$
\Gamma\left(z_{1}, z\right) \cap \mathscr{R}_{u}=\emptyset
$$

It is now easy to check that $\Gamma(z) \notin \mathscr{R}_{u}, L^{\prime} \cap \Gamma\left(z, z_{2}\right)=\emptyset$ and thus

$$
\Gamma\left(z_{1}, z_{2}\right) \cap \mathscr{R}_{u}=\emptyset
$$

Since $w_{1}<w_{2}$ in $\left[z_{1}, z_{2}\right]$,

$$
\Gamma\left(w_{1}, w_{2}\right) \cap \mathscr{R}_{u}=\emptyset
$$

Since $\Gamma\left(w_{1}\right) \neq \Gamma\left(w_{2}\right), 14$ implies that

$$
N^{\prime} \cap\left(\mathscr{R}_{u} \cup \mathscr{R}_{z}\right)=\emptyset
$$

for some N^{\prime} or

$$
\left\{\Gamma\left(w_{1}\right), \Gamma\left(w_{2}\right)\right\} \subset \mathscr{R}_{u}
$$

and there is an N such that $N \cap \mathscr{R}_{u}=\emptyset$ and N meets, and cuts, Γ at exactly one point of $\left(w_{1}, w_{2}\right)$. Since

$$
\Gamma=\Gamma\left[z_{2}, z_{1}\right] \cup \Gamma\left[z_{1}, z_{2}\right] \subset \mathscr{R}_{u} \cup \mathscr{R}_{z}
$$

the latter is true. But $\left\{\Gamma\left(w_{1}\right), \Gamma\left(w_{2}\right)\right\} \subset \mathscr{R}_{u}$ implies that $w_{1}=z_{1}$ and $w_{2}=z_{2}$ and thus $\left(z_{1}, z_{2}\right)$ is of order two. Since $\Gamma\left[z_{2}, z_{1}\right] \subset \mathscr{R}_{u}$ and
$N \cap \mathscr{R}_{u}=\emptyset$, the intersection property of N implies that Γ is odd order; a contradiction. Thus $\left(z_{1}, z_{2}\right)$ is not ordinary and $n(\Gamma) \geqq 3$.
d) $r_{1}=t_{1}$ and $u_{2} \in\left(r_{2}, t_{1}\right)$.

In this case, we consider the simple and ordinary arc $\left(u_{1}, u_{2}\right)$ and argue as in c) with $\left(u_{2}, u_{1}\right)$ to obtain a contradiction to $n(\Gamma)=2$.

Case 2. $\left(t_{1}, t_{2}\right)$ or $\left(t_{2}, t_{1}\right)$ is ordinary.
Let $\left(t_{1}, t_{2}\right)$ be ordinary and let $\left[s_{1}, s_{2}\right]$ be the convex cover of $\left[t_{1}, t_{2}\right]$ with $\mathscr{R}=H\left(\Gamma\left[s_{1}, s_{2}\right]\right)$.

Suppose $s_{1} \neq t_{1}$. Since $L=\left\langle\Gamma\left(s_{1}\right), \Gamma\left(s_{2}\right)\right\rangle$ supports both \mathscr{R} and Γ at $\Gamma\left(s_{1}\right)$, we have $L=\Gamma_{1}\left(s_{1}\right)$. Hence $p \neq \Gamma\left(s_{2}\right)$ by 9 and either

$$
\left[s_{1}, s_{2}\right] \subset\left(t_{1}, t_{2}\right)
$$

or

$$
\left(s_{1}, s_{2}\right)=\left(t_{1}, t_{2}\right)
$$

Let $\Gamma\left[v_{1}, v_{2}\right]$ be the maximal subarc of Γ in \mathscr{R} containing $\Gamma\left[t_{1}, t_{2}\right]$.
Assume $\left[s_{1}, s_{1}\right] \subset\left(t_{1}, t_{2}\right)$. Thus $L=\Gamma_{1}\left(s_{1}\right)=\Gamma_{1}\left(s_{2}\right)$. Since $\left(t_{1}, t_{2}\right)$ is ordinary, we obtain that $p \in \operatorname{int}(\mathscr{R}), L$ cuts Γ at v_{1} and v_{2}, and

$$
t_{1}<s_{1}<s_{2}<t_{2}<v_{2}<v_{1}<t_{1} .
$$

As both $\left(v_{1}, s_{1}\right)$ and $\left(s_{2}, v_{2}\right)$ are simple, 12 yields that each of them is singular. Arguing as in Case 1 a), we obtain that $\operatorname{ind}(\Gamma) \leqq 1$ if $\left(v_{2}, v_{1}\right)$ is ordinary. Hence (v_{2}, v_{1}) is not ordinary and $n(\Gamma) \geqq 3$. Thus we may assume that $s_{1}=t_{1}, s_{2}=t_{2}$ and $\left(t_{1}, t_{2}\right)$ is of order two.

Since the preceding is symmetric in $\left(t_{1}, t_{2}\right)$ and $\left(t_{2}, t_{1}\right)$, we also have that $\left(t_{2}, t_{1}\right)$ is of order two whenever $\left(t_{2}, t_{1}\right)$ is ordinary. Since

$$
\Gamma\left[t_{1}, t_{2}\right] \cap \Gamma\left[t_{2}, t_{1}\right]=\{p\}
$$

the intersection of $H\left(\Gamma\left[t_{1}, t_{2}\right]\right)$ and $H\left(\Gamma\left[t_{2}, t_{1}\right]\right)$ is either $\{p\}$ or one of these two sets is contained in the other. In the latter case, $\operatorname{ind}(\Gamma)=0$ and in the former case we obtain that $\operatorname{ind}(\Gamma)=0$ by 13 . Thus we may assume that $\left(t_{2}, t_{1}\right)$ is not ordinary. We may also assume that say t_{1} is ordinary, for otherwise $n(\Gamma) \geqq 3$.
If ind $\left(\Gamma\left[t_{2}, t_{1}\right]\right)>0$ we apply 15 and 1 to obtain that $n_{2}\left(\Gamma^{*}\right)=0$ implies $n(\Gamma)=n\left(\Gamma^{*}\right) \geqq 3$ and $n_{2}\left(\Gamma^{*}\right)>0$ implies that

$$
\bar{n}(\Gamma) \geqq \bar{n}\left(\Gamma^{*}\right)-2 \geqq 4
$$

Hence, let

$$
\operatorname{ind}\left(\Gamma\left[t_{2}, t_{1}\right]\right)=0
$$

If t_{2} is singular then the construction in 15 , Case 3 yields a curve Γ^{\prime} with all the properties of Γ except that either $m\left(\Gamma^{\prime}\right)=0$ or Γ^{\prime} has exactly one strong double point and Γ^{\prime} is ordinary at that point. Since 1 is applicable when $m\left(\Gamma^{\prime}\right)=0$, we may assume that t_{2} is also ordinary. Thus
$\left(t_{2}, t_{1}\right)$ contains two inflections or a cusp. From 16, we may assume that $\left(t_{2}\right.$, t_{1}) contains two inflections. Let \mathscr{R}^{*} denote the convex hull of the bounded arc (curve) $\Gamma\left[t_{2}, t_{1}\right]$. We claim that
(1) there exist $r<s$ in $\left(t_{2}, t_{1}\right)$ such that

$$
\{\Gamma(r), \Gamma(s)\} \subset \operatorname{bd}\left(\mathscr{R}^{*}\right) \quad \text { and } \quad \Gamma\left(t_{2}, r\right) \cup \Gamma\left(s, t_{1}\right) \subset \operatorname{int}\left(\mathscr{R}^{*}\right)
$$

If $p \in \operatorname{int}\left(\mathscr{R}^{*}\right)$ then clearly (1). If $\Gamma_{1}\left(t_{1}\right) \neq \Gamma_{1}\left(t_{2}\right)$ then (cf. 15, Case 2) for any ordinary t arbitrarily close to t_{1} or t_{2} in $\left(t_{2}, t_{1}\right), \Gamma_{1}(t)$ cuts Γ in $\left(t_{2}, t_{1}\right)$. Thus $\Gamma_{1}(t)$ is not a supporting line of \mathscr{R}^{*} and $\Gamma(t) \notin \operatorname{bd}\left(\mathscr{R}^{*}\right)$. Since there exist ordinary $U^{+}\left(t_{2}\right)$ and $U^{-}\left(t_{1}\right)$ in $\left(t_{2}, t_{1}\right)$, (1) follows. Let

$$
p \in \operatorname{bd}\left(\mathscr{R}^{*}\right) \quad \text { and } \quad \Gamma_{1}\left(t_{1}\right)=\Gamma_{1}\left(t_{2}\right)
$$

Since t_{1} and t_{2} are ordinary and $\left(t_{1}, t_{2}\right)$ is of order two, it is immediate that $\Gamma_{1}\left(t_{1}\right)$ is a supporting line of both \mathscr{R} and \mathscr{R}^{*}. Hence

$$
\Gamma\left[t_{1}, t_{2}\right] \cap \Gamma\left[t_{2}, t_{1}\right]=\{p\}
$$

yields that $\mathscr{R} \subseteq \mathscr{R}^{*}$ or $\mathscr{R}^{*} \subseteq \mathscr{R}$ and thus $\operatorname{ind}(\Gamma)=0$. This is a contradiction and hence (1).

Since $\{\Gamma(r), \Gamma(s)\} \subset \operatorname{bd}\left(\mathscr{R}^{*}\right)$, there are lines through $\Gamma(r)$ and $\Gamma(s)$ which support \mathscr{R}^{*}. Since $\left(t_{2}, t_{1}\right)$ contains at most inflections, it follows that $\Gamma(r)$ and $\Gamma(s)$ are ordinary. In particular; $\Gamma_{1}(r)$ is a supporting line of \mathscr{R}^{*},

$$
\Gamma_{1}(r) \cap \Gamma\left(t_{2}, r\right)=\emptyset
$$

and there exists a $U(r)$ of order two in $\left(t_{2}, t_{1}\right)$. Let t tend r in $\left(t_{2}, r\right) \cap U(r)$. Then $\Gamma(t) \in \operatorname{int}\left(\mathscr{R}^{*}\right)$ and 6 imply that $\Gamma_{1}(t)$ cuts Γ in $\left(t_{2}, t_{1}\right) \backslash U(r)$. Hence by the continuity of tangents, $\Gamma_{1}(r)$ meets Γ in $\left(r, t_{1}\right]$. Similarly, $\Gamma_{1}(s)$ meets Γ in $\left[t_{2}, s\right)$.

Let u_{1} and u_{2} be inflections, $u_{1}<u_{2}$ in $\left(t_{2}, t_{1}\right)$ and suppose that $n(\Gamma)=2$. Then

$$
\left\{\Gamma\left(u_{1}\right), \Gamma\left(u_{2}\right)\right\} \subset \operatorname{int}\left(\mathscr{R}^{*}\right)
$$

and $\Gamma_{1}(r)$ meets Γ at some point $r^{\prime} \in\left(r, t_{1}\right]$ such that

$$
\Gamma_{1}(r) \cap \Gamma\left(r, r^{\prime}\right)=\emptyset
$$

Since $\Gamma\left(r^{\prime}\right) \in \operatorname{bd}\left(\mathscr{R}^{*}\right)$, we have that $u_{1} \neq r^{\prime} \neq u_{2}$ and r^{\prime} is ordinary.
Let $r^{\prime} \neq t_{1}$. If $\left(r, r^{\prime}\right)$ is ordinary or $\left(r, r^{\prime}\right)$ contains only u_{1} or u_{2}, we argue as in Case 1 to obtain a contradiction. If $\Gamma_{1}(r)$ meets Γ at say $r<r^{\prime}<r^{\prime \prime}$ in $\left(t_{2}, t_{1}\right)$ then one of $\left(r, r^{\prime}\right)$ or $\left(r^{\prime}, r^{\prime \prime}\right)$ again contains at most one of u_{1} and u_{2}, which is again a contradiction. Hence we may assume that $\Gamma_{1}(r)$ meets Γ at exactly r and r^{\prime} in $\left(t_{2}, t_{1}\right)$ and that $\left\{u_{1}, u_{2}\right\} \subset\left(r, r^{\prime}\right)$. If $p \in \Gamma_{1}(r)$ then $\left(t_{2}, r\right) \cup\left(r^{\prime}, t_{1}\right)$ ordinary yields that $\left(t_{2}, r\right)$ and $\left(r^{\prime}, t_{1}\right)$ are both of order two by 8 . Since t_{1} and t_{2} are ordinary, it readily follows that either

$$
\mathscr{R}^{*}=H\left(\Gamma\left[t_{2}, r\right]\right) \quad \text { or } \quad \mathscr{R}^{*}=H\left(\Gamma\left[r^{\prime}, t_{1}\right]\right) ;
$$

a contradiction by (1). Hence

$$
p \notin \Gamma_{1}(r) \quad \text { and } \quad\left|\Gamma_{1}(r) \cap \Gamma\left[t_{1}, t_{2}\right]\right|=2
$$

Then $\Gamma\left(t_{2}, r\right) \subset \operatorname{int}\left(\mathscr{R}^{*}\right)$ and 11.3 imply that

$$
\Gamma\left(U^{+}(r)\right) \subset \operatorname{bd}\left(\mathscr{R}^{*}\right) \text { for } U^{+}(r) \subset\left(r, r^{\prime}\right)
$$

Let \mathscr{R}^{\prime} be the closed region in \mathscr{R}^{*} bounded by $\Gamma\left[r, r^{\prime}\right]$ and $\Gamma_{1}(r)$. Thus

$$
\Gamma\left(U^{+}(r)\right) \subset \operatorname{bd}\left(\mathscr{R}^{\prime}\right)
$$

as well. But now

$$
\Gamma\left(U^{+}(r)\right) \subset \operatorname{bd}\left(\mathscr{R}^{*}\right) \cap \operatorname{bd}\left(\mathscr{R}^{\prime}\right)
$$

and

$$
\Gamma\left(r, r^{\prime}\right) \cap\left(\Gamma\left[t_{2}, r\right) \cup \Gamma\left(r^{\prime}, t_{1}\right]\right)=\emptyset
$$

clearly imply that

$$
\Gamma\left[t_{2}, r\right) \cup \Gamma\left(r^{\prime}, t_{1}\right] \subset \mathscr{R}^{\prime} \quad \text { and } \quad \Gamma\left[t_{2}, t_{1}\right] \subset \mathscr{R}^{\prime}=\mathscr{R}^{*} .
$$

Let $\Gamma\left[z_{2}, z_{1}\right]$ be the maximal subarc of Γ contained in $\mathscr{R}^{\prime}, z_{1}<z_{2}$ in $\left[t_{1}, t_{2}\right]$. Then

$$
\left[r, r^{\prime}\right] \subset\left(t_{2}, t_{1}\right) \subset\left(z_{2}, z_{1}\right) .
$$

As $t_{1} \notin\left(z_{2}, r\right)$ we have that $\left(z_{2}, r\right)$ is both simple and ordinary; a contradiction by 12 .

Let $r^{\prime}=t_{1}$. Then

$$
\Gamma_{1}(r) \cap \Gamma\left[t_{2}, t_{1}\right]=\{p, \Gamma(r)\}
$$

Symmetrically, we obtain that

$$
\Gamma_{1}(s) \cap \Gamma\left[t_{2}, t_{1}\right]=\{p, \Gamma(s)\}
$$

Thus $p \in \Gamma_{1}(r) \cap \Gamma_{1}(s)$ and in fact, $p \in \operatorname{bd}\left(\mathscr{R}^{*}\right)$. From (1),
$\operatorname{bd}\left(\mathscr{R}^{*}\right) \subset \Gamma[r, s] \cup \Gamma_{1}(r) \cup \Gamma_{1}(s)$.
If $\left(t_{2}, r\right)$ is ordinary then $\left(t_{2}, r\right)$ is of order two. Since r is also ordinary,
$\Gamma\left[t_{2}, r\right] \subset \operatorname{bd}\left(H\left(\Gamma\left[t_{2}, r\right]\right)\right)$
implies that there is a $U^{+}(t) \subset(r, s)$ such that
$\Gamma\left(U^{+}(r)\right) \subset \operatorname{int}\left(H\left(\Gamma\left[t_{2}, r\right]\right)\right)$.
Since $\left(t_{2}, t_{1}\right)$ is simple, it follows that

$$
\mathscr{R}^{*} \subseteq H\left(\Gamma\left[t_{2}, r\right]\right)
$$

and thus

$$
\Gamma\left(t_{2}, r\right) \subset \operatorname{bd}\left(\mathscr{R}^{*}\right) ;
$$

a contradiction by (1). Thus $\left(t_{2}, r\right)$ is not ordinary and similarly, $\left(s, t_{1}\right)$ is not ordinary. Let $u_{2} \in\left(t_{2}, r\right), u_{1} \in\left(s, t_{1}\right)$ and thus

$$
(r, s) \subset\left(u_{2}, u_{1}\right) \subset\left(t_{2}, t_{1}\right)
$$

We recall that (r, s) is ordinary and simple. Since $\Gamma_{1}(r)\left[\Gamma_{1}(s)\right]$ meets $\Gamma[r, s]$ at only $\Gamma(r)[\Gamma(s)]$, we have that

$$
\langle\Gamma(r), \Gamma(s)\rangle \cap \Gamma(r, s)=\emptyset
$$

and thus (r, s) is of order two by 8 . Next

$$
\Gamma[r, s] \cap \Gamma\left[t_{1}, t_{2}\right]=\emptyset
$$

Since $p \in \Gamma_{1}(r)$ and $\left(t_{1}, t_{2}\right)$ is of order two, it follows that
(2) $\Gamma_{1}(r) \cap \Gamma\left(t_{1}, t_{2}\right)=\emptyset$
or $\Gamma_{1}(r)$ cuts Γ at t_{1}, t_{2} and exactly one point of $\left(t_{1}, t_{2}\right)$. As $\Gamma_{1}(r)$ does not cut Γ in $\left(t_{2}, t_{1}\right)$, we have that Γ is of odd order in the latter case; a contradiction. Thus (2) and symmetrically,
(3) $\Gamma_{1}(s) \cap \Gamma\left(t_{1}, t_{2}\right)=\emptyset$.

But then $\operatorname{bd}(\mathscr{R})=\Gamma\left[t_{1}, t_{2}\right]$ implies that $\mathscr{R} \cap \mathscr{R}^{*}=\{p\}$ and thus $\mathscr{R} \cup \mathscr{R}^{*}$ is bounded by 13. Since $\Gamma \subset \mathscr{R} \cup \mathscr{R}^{*}$, this is a contradiction and hence (r, s) is not ordinary and $n(\Gamma) \geqq 3$.

Figure 5.
We note the arguments in the proof of Theorem 4 not only show that $n(\Gamma) \geqq 2$ but also indicate how Γ may be constructed. For example, the
curve Γ in Figure 5 is of even order with $\operatorname{ind}(\Gamma)>0, m(\Gamma)=s(\Gamma)=1$, $p=\Gamma\left(t_{1}\right)=\Gamma\left(t_{2}\right),\left(t_{1}, t_{2}\right)$ of order two, ind $\left.\Gamma\left[t_{2}, t_{1}\right]\right)=0$ and r and s cusps in $\left(t_{2}, t_{1}\right)$.

Proof of Theorem 5. Let Γ be an ordinary curve with the strong double points $p=\Gamma\left(t_{1}\right)=\Gamma\left(t_{2}\right), t_{1} \neq t_{2}$, and $q=\Gamma\left(u_{1}\right)=\Gamma\left(u_{2}\right) ; u_{1} \neq u_{2}$. By suitable labelling, either $t_{1}<u_{1}<t_{2}<u_{2}<t_{1}$ or $t_{1}<t_{2}<u_{1}<$ $u_{2}<t_{1}$.

Case 1. $t_{1}<u_{1}<t_{2}<u_{2}<t_{1}$.
As $\left(t_{1}, t_{2}\right)$ is ordinary and simple $\left[t_{1}, t_{2}\right]$ has a convex cover $\left[s_{1}, s_{2}\right]$. Let $\Gamma\left[v_{1}, v_{2}\right]$ be the maximal subarc of Γ contained in $H\left(\Gamma\left[s_{1}, s_{2}\right]\right)$ and containing $\Gamma\left[s_{1}, s_{2}\right]$. Then either

$$
\left[s_{1}, s_{2}\right] \subset\left(t_{1}, t_{2}\right) \quad \text { or }\left[s_{1}, s_{2}\right]=\left[t_{1}, t_{2}\right]
$$

cf. Case 2 of the proof of 4 .
Suppose $\left[s_{1}, s_{2}\right] \subset\left(t_{1}, t_{2}\right)$. Then the quoted argument yields that $\left(t_{1}, t_{2}\right) \subset\left(v_{1}, v_{2}\right)$. We now apply 12 repeatedly. If $\Gamma\left(v_{1}\right) \in \Gamma\left[s_{1}, s_{2}\right]$ then $v_{1}=u_{2}$ and $u_{1} \in\left[s_{1}, s_{2}\right)$. Hence

$$
v_{2} \notin\left\{u_{1}, u_{2}\right\} \quad \text { and } \quad \Gamma\left(v_{2}\right) \notin \Gamma\left(s_{1}, s_{2}\right) .
$$

But then $\left(s_{2}, v_{2}\right)$ is simple; a contradiction by 12 . Hence $\Gamma\left(v_{2}\right) \notin \Gamma\left[s_{1}, s_{2}\right]$ and (v_{1}, s_{1}) is not simple. Symmetrically, $\left(s_{2}, v_{2}\right)$ is not simple and thus

$$
\left\{u_{1}, u_{2}\right\} \subset\left(v_{1}, s_{1}\right) \cap\left(s_{2}, v_{2}\right) .
$$

As this is impossible, we obtain that $\left[s_{1}, s_{2}\right]=\left[t_{1}, t_{2}\right]$.
By the preceding, $\left(t_{1}, t_{2}\right)$ is of order two and symmetrically, $\left(t_{2}, t_{1}\right)$ is of order two. The line $\Gamma_{1}\left(t_{1}\right)$ supports both $H\left(\Gamma\left[t_{2}, t_{1}\right]\right)$ and $H\left(\Gamma\left[t_{1}, t_{2}\right]\right)$ and thus

$$
\Gamma_{1}\left(t_{1}\right) \cap \Gamma=\{p\} .
$$

Suppose $\Gamma_{1}\left(t_{1}\right) \neq \Gamma_{1}\left(t_{2}\right)$. Then $\Gamma_{1}\left(t_{1}\right)$ supports Γ at t_{1} and cuts Γ at t_{2}. Thus $\Gamma_{1}(t) \cap \Gamma=\{p\}$ yields that Γ is of odd order. This is a contradiction and hence $L=\Gamma_{1}\left(t_{1}\right)=\Gamma_{1}\left(t_{2}\right)$ supports Γ at both t_{1} and t_{2}. Symmetrically, $L^{\prime}=\Gamma_{1}\left(u_{1}\right)=\Gamma_{1}\left(u_{2}\right)$ meets Γ at only q and supports Γ at both u_{1} and u_{2}. Clearly, $L \neq L^{\prime}$ and $L \cap L^{\prime} \notin \Gamma$. Thus Γ lies in one of the closed half-planes bounded by L and L^{\prime} and $\operatorname{ind}(\Gamma)=0$. This is a contradiction and therefore Γ is singular.

Case 2. $t_{1}<t_{2}<u_{1}<u_{2}<t_{1}$.
Then $\Gamma\left[t_{1}, t_{2}\right] \cap \Gamma\left[u_{1}, u_{2}\right]=\emptyset$ and $\left(t_{1}, t_{2}\right)$ and $\left(u_{1}, u_{2}\right)$ are both simple and ordinary. As in Case 1, we then obtain that $\left(t_{1}, t_{2}\right)$ and $\left(u_{1}, u_{2}\right)$ are both of order two. Let

$$
\mathscr{R}_{t}=H\left(\Gamma\left[t_{1}, t_{2}\right]\right) \quad \text { and } \quad \mathscr{R}_{u}=H\left(\Gamma\left[u_{1}, u_{2}\right]\right) .
$$

If ind $\left(\Gamma\left[t_{2}, t_{1}\right]\right)>0$ then 15 implies that there is a differentiable curve Γ^{*} of even order with

$$
\begin{aligned}
& \operatorname{ind}\left(\Gamma^{*}\right)>0, \\
& m\left(\Gamma^{*}\right)=s\left(\Gamma^{*}\right)=s(\Gamma)-1=1 \text { and } \\
& n(\Gamma) \geqq n\left(\Gamma^{*}\right)-1 .
\end{aligned}
$$

Thus by $4, n\left(\Gamma^{*}\right) \geqq 2$ and $n(\Gamma) \geqq 1$. Hence we may assume that

$$
\operatorname{ind}\left(\Gamma\left[t_{2}, t_{1}\right]\right)=\operatorname{ind}\left(\Gamma\left[u_{2}, u_{1}\right]\right)=0
$$

Let $\mathscr{R}_{t}^{*}=H\left(\Gamma\left[t_{2}, t_{1}\right]\right)$.
As in the Case 2 of the proof of 4:
(1) there exist $r<s$ in $\left(t_{2}, t_{1}\right)$ such that

$$
\begin{aligned}
& \{\Gamma(r), \Gamma(s)\} \subset \operatorname{bd}\left(\mathscr{R}_{t}^{*}\right), \\
& \Gamma\left(t_{2}, r\right) \cup \Gamma\left(s, t_{1}\right) \subset \operatorname{int}\left(\mathscr{R}_{t}^{*}\right)
\end{aligned}
$$

and if $q \neq \Gamma(r)[q \neq \Gamma(s)]$ then $\Gamma_{1}(r)\left[\Gamma_{1}(s)\right]$ meets Γ in $\left(r, t_{1}\right]\left[\left[t_{2}, s\right)\right]$.
Next we observe that both
(2) $\Gamma\left[t_{2}, u_{1}\right] \subset \Gamma\left[u_{2}, t_{1}\right] \subset \mathscr{R}_{u}$
and
(3) $\Gamma\left[u_{1}, u_{2}\right] \subset H\left(\Gamma\left[t_{2}, u_{1}\right] \cup \Gamma\left[u_{2}, t_{1}\right]\right)$
lead to a contradiction. Since (2) implies that

$$
\begin{aligned}
p & \in \Gamma\left[t_{2}, t_{1}\right] \subset \mathscr{R}_{u} ; \\
\operatorname{bd}\left(\mathscr{R}_{u}\right) & =\Gamma\left[u_{1}, u_{2}\right] \text { and } \Gamma\left[u_{1}, u_{2}\right] \cap \Gamma\left[t_{1}, t_{2}\right]=\emptyset \text { yield that } \\
p & \in \operatorname{int}\left(\mathscr{R}_{u}\right)
\end{aligned}
$$

and in particular

$$
\Gamma\left[t_{2}, t_{2}\right]=\Gamma \subset \operatorname{int}\left(\mathscr{R}_{u}\right) \quad \text { and } \quad \operatorname{ind}(\Gamma)=0
$$

In case of (3),

$$
H\left(\Gamma\left[t_{2}, u_{1}\right] \cup \Gamma\left[u_{2}, t_{1}\right]\right) \subseteq H\left(\Gamma\left[u_{2}, u_{1}\right]\right)
$$

implies that $\Gamma \subset H\left(\Gamma\left[u_{2}, u_{1}\right]\right)$. Thus ind $\left(\Gamma\left[u_{2}, u_{1}\right]\right)=0$ now yields that $\operatorname{ind}(\Gamma)=0$.

Since $\Gamma\left[t_{2}, u_{1}\right] \cup \Gamma\left[u_{2}, t_{1}\right]$ and $\Gamma\left[u_{1}, u_{2}\right]$ are curves which meet only at q, $\Gamma_{1}\left(u_{1}\right)=\Gamma_{1}\left(u_{2}\right)$ clearly implies either (2) or (3). Hence $\Gamma_{1}\left(u_{1}\right) \neq \Gamma_{1}\left(u_{2}\right)$, $\Gamma_{1}\left(u_{1}\right)$ cuts Γ at u_{2} and $q \notin \operatorname{bd}\left(\mathscr{R}_{t}^{*}\right)$. Since r is ordinary, we have that

$$
\Gamma_{1}(r) \cap \Gamma\left(t_{2}, r\right)=\emptyset
$$

and $\Gamma_{1}(r)$ meets Γ at a point $r^{\prime} \in\left(r, t_{1}\right]$ such that

$$
\Gamma_{1}(r) \cap \Gamma\left(r, r^{\prime}\right)=\emptyset .
$$

Since $\left(r, r^{\prime}\right)$ is ordinary, $\left(r, r^{\prime}\right)$ is of order two whenever $\left(r, r^{\prime}\right)$ is simple. Let \mathscr{R}^{\prime} be the closed region in \mathscr{R}_{t}^{*} bounded by $\Gamma\left[r, r^{\prime}\right]$ and $\Gamma_{1}(r)$.

Let $r^{\prime} \neq t_{1}$. If $q \notin \Gamma\left(r, r^{\prime}\right)$ then $\left(r, r^{\prime}\right)$ is simple and

$$
\mathscr{R}^{\prime}=H\left(\Gamma\left[r, r^{\prime}\right]\right) .
$$

Clearly since r is ordinary, $\Gamma\left[t_{2}, r\right] \subset \mathscr{R}^{\prime}$ and thus $\mathscr{R}^{\prime}=\mathscr{R}_{t}^{*}$ and (3). If (r, r^{\prime}) contains u_{1} and not u_{2} then (r, r^{\prime}) is still simple,

$$
\mathscr{R}^{\prime}=H\left(\Gamma\left[r, r^{\prime}\right]\right) \quad \text { and } \quad p \in \Gamma\left[t_{2}, u_{2}\right] \subset \mathscr{R}^{\prime} .
$$

Since $q \in \operatorname{bd}\left(\mathscr{R}^{\prime}\right)$ and $\Gamma_{1}\left(u_{1}\right)$ cuts Γ at t_{2}, it follows that

$$
p \in \Gamma\left(u_{2}, t_{1}\right) \subset \mathscr{R}_{t}^{*} \backslash \mathscr{R}^{\prime} ;
$$

a contradiction. The preceding is symmetric in u_{1} and u_{2} and thus $u_{1}<u_{2}$ in $\left(r, r^{\prime}\right)$. But then it is clear that either

$$
\Gamma\left(r, r^{\prime}\right) \subset \operatorname{int}\left(\mathscr{R}_{t}^{*}\right) \quad \text { or } \quad \Gamma\left[t_{2}, t_{1}\right] \subset \mathscr{R}^{\prime} .
$$

Since $\Gamma\left(r, r^{\prime}\right) \subset \operatorname{int}\left(\mathscr{R}_{t}^{*}\right)$ implies (3), there exist $v_{1}<v_{2}$ in $\left[t_{2}, t_{1}\right]$ such that $\Gamma\left[v_{2}, v_{1}\right]$ is the maximal subarc of Γ contained in \mathscr{R}^{\prime}. Then $r<u_{1}<$ $u_{2}<r^{\prime}$ in $\left(t_{2}, t_{1}\right)$ implies that

$$
\left\{\Gamma\left(v_{1}\right), \Gamma\left(v_{2}\right)\right\} \cap \Gamma\left[r, r^{\prime}\right]=\emptyset
$$

and $m(\Gamma)=2$ yields that $\left(v_{1}, r\right)$ or $\left(r^{\prime}, v_{2}\right)$ is simple. Hence $n(\Gamma)>0$ by 12 .

Let $r^{\prime}=t_{1}$. Then $\Gamma_{1}(r)$ meets Γ at exactly t_{2}, r and t_{1} in $\left[t_{2}, t_{1}\right]$ and $\left(r, t_{1}\right)$ is ordinary. Since $\left(t_{2}, r\right)$ is also ordinary, (as in the preceding) $r \notin\left(u_{1}, u_{2}\right)$ implies that $\left(t_{2}, r\right)$ or $\left(r, t_{1}\right)$ is of order two with \mathscr{R}_{t}^{*} equal to its convex hull. This is a contradiction by (1) and thus $r \in\left(u_{1}, u_{2}\right)$ and $\left(r, t_{1}\right)$ is of order two. Since the preceding arguments are symmetric in r and $s ; \Gamma_{1}(s)$ meets Γ at exactly t_{2}, s and t_{1} in $\left[t_{2}, t_{1}\right]$ and $s \in\left(u_{1}, u_{2}\right)$. Since $r<s$ in $\left(t_{2}, t_{1}\right)$, $s \in\left(r, t_{1}\right)$. As $\left(r, t_{1}\right)$ is of order two, 6 implies that $\Gamma\left(t_{1}\right) \notin \Gamma_{1}(s)$; a contradiction. Thus (t_{2}, r) cannot be ordinary and $n(\Gamma)>0$.

From the curve represented in Figure 5, it is easy to deduce that there exists a differentiable curve Γ of even order with ind $(\Gamma)>0, m(\Gamma)=$ $s(\Gamma)=2$ and $n(\Gamma)=n_{2}(\Gamma)=1$.

References

1. T. Bisztriczky, On the singularities of almost-simple plane curves, Pac. J. Math. 109 (1983), 257-273.
2. - On the singularities of simple plane curves, Mich. Math. J. 32 (1985), 141-151.
3. H. Brunn, Sätze über zwei getrennte Eikörper, Math. Ann. 104 (1931), 300-324.
4. R. Park, Topics in direct differential geometry, Can. J. Math. 24 (1972), 98-148.

University of Calgary,
Calgary, Alberta

[^0]: Received January 21, 1985 and in revised form September 6, 1985.

