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ON THE SINGULARITIES OF PLANE CURVES 

TIBOR BISZTRICZKY 

Let r be a differentiable curve in a real projective plane P met by every 
line of P2 at a finite number of points. The singular points of T are 
inflections, cusps (cusps of the first kind) and beaks (cusps of the second 
kind). Let nx(T), n2(T) and n3(T) be the number of these points in T 
respectively. Then T is non-singular if 

n(T) = n,(D + «2(D + n3(0 = 0; 

otherwise, T is singular. 
We wish to determine when T is singular and then find the minimum 

value of n(T). A history and an analysis of this problem were presented in 
[1] and [2]. It was shown that we may assume that T is a curve of even 
order (even degree if T is algebraic), met by every line in P2. Then if T does 
not contain any multiple points or if T contains only a certain type of 
multiple point, T is singular. Presently, we complete this investigation. 

We assume that P2 has the usual topology. Let /?, q, . . . and L, M,.. . 
denote the points and lines of P2 respectively. Let (p, L , . . .) denote the 
flat of P spanned by /?, L, . . . . The other notations used are 
self-explanatory. 

Differentiable curves. As we are presenting a theory already introduced 
in [1] and [2], we list only definitions and relevant results. 

Let T c P2 be an oriented line. For t0 ¥= tx in T, [/0, tx] denotes the 
oriented closed line segment of T with initial point t0 and terminal point 
tx. We set 

['o> 'i) = [*o> ' iM'i}> Co'il = ['o> ' i M ' o } a n d 

If U(t) = (/0, tx) is a neighbourhood of t in T then 

£/"(/) = (t0, t\ U+(t) = (/, t{) and U\t) = £/"(/) U U+(t). 

A curve T in P is a continuous map from T into P . T is differentiable if 
the tangent line 

vx{t) = lim <r(o, r ( o > 

exists for each t G T and any line of P2 meets T(T) at a finite number of 
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948 TIBOR BISZTRICZKY 

points. Henceforth T is differentiable and we identify T(T) with T. 
Let Jt ç T be a segment. We call T\^ a subarc of T and identify T(Jt) 

with r ^ . If 

« = sup \L n rpT) I 
Lc/>2 

is finite, we say that Jt is of order «. The order of a point t e 7, ord(/), is 
the minimum order which a U(t) can possess. Clearly ord(/) ^ 2. A point 
/ is ordinary if ord(t) = 2; otherwise / is singular. Jt is ordinary if each 
point of Jt'\§ ordinary. 

Let / G T and T(t) e L C P2. Then L supports T at / i f there is an 
L' ^ L with T(0 £ L' and a [/'(/) such that T(U'(t) ) is contained in one 
of the open half-planes of P determined by L and L. If L does not 
support T at / then L cuts T at t. Let 

S(t) = {L c i>2|T(0 e L * Ii(f) }. 

Then either all L G S(t) support T at f or all L e S ( 0 cut T at /. Thus 
there are four types of points in T with respect to T: tis regular if L e S(t) 
[T^t) ] cuts [supports] T at /; / is an inflection if L G S ( 0 and ^(7) both 
cut T at /; / is a beak if L e S(/) and T^/) both support T at f ; / is a cusp if 
L e SCO [IKO ] supports [cuts] T at f. We note that an ordinary point is 
regular and hence inflections, cusps and beaks are singular. 

Next we note that either every line of P2 cuts T at an even number of 
points or every line of P2 cuts T at an odd number of points. In the case of 
the former [latter], we say that T is of even [odd] order. Let Jt Q T. The 
index of T(Jt), ind(T(Jt) ), is the minimum number of points of T(Jt) 
which can lie on any line of P . A point t e Jt is a simple point of Jt, if 
T(tf) ¥= T(t) for t' e Jt\{t}\ otherwise, t is a multiple point of Jt. Let 
m(T(Jt) ) be the number of multiple points of Jt. We say that Jt is simple 
if m(T(Jt) ) = 0. A point p e T(T) is strong if there exist ti ¥* tj such 
that 

p = T(/,) = r(/y) and md(T[ti9 /,-] ) = 0. 

Let s(Y(Jt) ) be the number of strong points of T contained in Y(Jt). Since 
a simple point of Jt need not be a simple point of T, we note that 
m(T(Jt)) = 0 does not imply that .s(Ip8r) ) = 0. If s(T) - 0, we say 
that T is almost simple. 

Finally let & be a connected compact set in P such that & is bounded', 
that is, there is an L c P 2 not meeting &. We denote by 77 (^) the convex 
hull of ^ i n the affine plane P2\L. It is clear that if TV n 9t = 0 then 7/(^) 
is also the convex hull of & in P \7V\ We say that ^ is convex if 
« = # ( # ) . 

As indicated in the introduction, we wish to determine when n(T) > 0 
and then find the minimum value of n(T). Hence we restrict our attention 
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SINGULARITIES OF PLANE CURVES 949 

to curves T with the property that n(T) < oo and (cf. [1] ) m(T) < oo. 
Thus r will be the differentiable union of a finite number of simple regular 
arcs. As such arcs are ordinary (cf. [4], p. 148), we have that T{(t) depends 
continuously on / e T, a regular point is ordinary (hence a singular point 
is an inflection, a cusp or a beak) and n(T) = 0 (mod 2) if and only if T is 
of even order where 

n(T) = W l(D + 2n2(T) + n3(T). 

The main theorems. Henceforth we assume that T is a differentiable 
curve of even order with ind(T) > 0, n(T) < oo and m(T) < oo. We 
note the following results regarding the minimum number of singular 
points of T. 

1. If m(T) = 0 then n(T) ^ 3 and if n2(T) > 0 [n2(T) = 0] then 
JÎ(T) ^ 6 [4]. ( [2], 4.) 

2. If s(T) = 0 then n(T) ^ 2 and n(T) ^ 4. ( [1], 3.1) 

Thus it remains to determine the minimum values of n(T) and n(T) 
when s(T) > 0 and m(T) > 0. In Figure 1 of [1], we presented a 
non-singular T with s(T) = m(T) = 3 and each strong point, a double 
point. From that example, it is readily seen that there exists a non-singular 
T with s(T) = m(T) = 1 and the strong point, a triple point. Finally in 
Figure 1, we present a non-singular T with m(T) > s(T) = 2. 

Figure 1. 

We now state the main theorems and list the results required for the 
proofs. By the preceding, we of course assume that every strong point T is 
a double point. 
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3. THEOREM. Ifs(T) = 1 then T is singular. 

4. THEOREM. Ifs(T) = m(T) = 1 then n(T) â 2 and n(T) = 4. 

5. THEOREM. If s(T) = m(T) = 2 then T is singular. 

6. Let (su s2) be a subarc of order two. Then (sx, s2) is simple and 
ordinary, T^s) n T[sx, s2] = {T(s) } (or s e (su s2) and there is a line 
L c P2 such that 

L n T^j, j2] = 0 and ind T[s{, s2] = 0. 

Let (/j, /2) be ordinary and simple. 

7. There exist sx < s2 (sx preceding s2) i
n [t\> h] s u c n t n a t (s\> si) *s °f 

order two and 

r[/„/2] c //(i>„ *2] ). 

We call [sl9 s2], the (unique) convex cover of[th t2]. ( [1], 3.15). 

8. If T(^) ± T(t2) and ( T ^ ) , r(f2) > n r ( / „ f2) = 0 then (/l9 f2) is of 
order two. ( [1], 3.13). 

9. For any / e (*,, f2) 

r,(0 n T[tu 0 = 0 or r,(o n r(/, t2] = 0. 
([1], 3.12). 

10. Let s(r(/ l 5 t2) ) = 0. If L Pi T[/2, f,] = 0 then L meets, and cuts, V 
in exactly two points. If U is a limit of lines, none of which meets 
T[/2, /j], then L cuts T in at most two points and these points lie 
i n [ / „ / 2 ] . ([1], 3.17). 

Finally we note some elementary facts about the convex hull of a subarc 
of T. 

11. LEMMA. Let @* = H(T[u, v]), u ¥= v and ind(I>, v] ) = 0. Let 
t e (u, v) be an ordinary point with the property that t is simple in [w, v] and 
T(t) e bd(#*). 

1. The only supporting line of £ft* through T(t) is T^t). 
2. If\Tx(t) n T[w, v] | = 1 then there is a U(t) such that 

T(U(t)) c bd(#*). 

3. If\Tx(t) Pi T[w, v] I = 2 then there is a U(t) such that either 

r ( [ / + ( 0 ) c b d ( ^ * ) or r ( [ / _ ( / ) ) c b d ( f * ) . 

Proof 1. Since T(t) e bd(^*), there is a line L through T(t) which 
supports^**. Since T(/) e T(w, v) c ^ * , it follows that L also supports T 
at / and thus L = T^t). 

2. Let 
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|r,(0 n n«, v] | = l. 
It is clear that there is a U(t) c (w, v) such that [/(/) is order two and 

\Tx(s) n r[«, v] | = 1 for all s G 1/(0-

Since each s G [/(f) is ordinary, Tx(s) supports T[u, v] at s. As 

^ * = H(T[u9 v]), 

it follows that r(s) G bd(^*) for s G [/(/). 
3. Since r,(f ) is a line of support of ^* , 

|r,(0 n r[M, v] | = 2 
implies that r^f) supports T at a point t' ¥- t in [w, v]. Hence the 
continuity of tangents yields that there is either a U+(t) or a [/"(/) in 
(w, v) with the property that 

|r,(5) n T[w, v] | = 1 for J G [/+(*) or ^ G [/"(*). 

Now 11.2 yields 11.3. 

12. LEMMA. Let & be a closed bounded region bounded by the simple 
subarc T[r, r'] and the line L = (T(r\ T(r') ), L n T(r, r') = 0. Lef r Zw? 
ordinary, T(v, r) c ^ ; T(v) G L\{T(r) }. Then T(v, r) w not both simple 
and ordinary. 

Proof. Let F(v, r) be simple. As \L n T| < oo and v may be replaced by 
any v' G (V, r) satisfying T(vr) G L\{T(r) }, we may assume that 

r(v, r) c int(#). 

Since T(r) G bd(^) and I » is ordinary, L = Tx(r) by 11.1. 
Put ^ * = H{31) and thus 

^ * = H(T[r, /] ) = H(T[v, r'] ). 

For w G (v, r), we note that 

@* = 7/(r[w, r'] ) and \Tx(r) n T[w, r'] | - 2. 

Hence by 11.3, there is a U(r) c (v, r') such that either T([ / + ( r ) ) or 
r ( [ / " ( r ) ) lies in bd(^*). Since 

T(U~(r)) c T(v, r) c int(#) Ç int(^*), 

we have 

(i) T( [ / + ( r ) ) c bd(^*). 

Suppose that F(v, r) is ordinary. Then (v, r) is of order two by 8. 
Since 

L n T[v, r] = { I » , T(r) }, 

L and I\v, r) bound a bounded closed region St'. Clearly, 
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se = H(T[v, r] ) c ge*. 
9 

Since ^ * is a closed bounded region in P , £%* is contained in some 
9 9 9 

affine restriction A of P . In A , we note that T(r) is the initial point of 
two opposite raySoSf and J? ' on L, say T(v) e ^ Since (v, r) is of order two, 
every ray from T(r) meets T(v, r) in at most one point. Let w e [V, r] move 
from v to r. Then the ray from T(r) through T(w) rotates monotonically 
about T(r) starting from & and hence, ending at JS?'. 

Next let s e (r, r') tend to r. Since T is ordinary at r, the ray from T(r) 
through T(s) necessarily converges to the ray opposi te^ ' ; that is, J^ Since 
L supports T at r, this implies that T(s) e int(^*). This is a contradiction 
byi) . 

13. LEMMA. Let 3ix and^ be convex sets in P2 such that <% = @x n &2 is 
connected. Then there is a line Lap such that 

L n (£?, u ^2) = 0. 

Proof. Since 9t{ is convex, there is an Lt such that Lt: n 3t{ = 0; / = 1, 2. 
We may assume that Lx ¥= L2, ^ , ^ and &2

 a r e mutually distinct and 
Lx [L2] is not a supporting line of 5?2 [^il- Let {q} = Lx C\ L2 and denote 
by â and =2' the closed half-planes of P2 determined by Lx and L2. 
Since 

(Lx U L2) n ^ = 0, 

^ c int(J') say. Let L* c J ' , Lx ¥= L* ¥= L2 and set 

@f = £ n ^-; / = 1, 2. 

As ^ c int(J'), 

LÏ n i n t ( ^ ) ^ 0 and L2 n int(^,) ^ 0 

imply that ^ f and ^ * are non-empty, disjoint convex sets in P2\L*. 
Hence (cf. [3] ) there exist two distinct lines Nx and N2 such that 
Nj\L* supports and separates 9t\ and 9l\ in P2\L*; i' = 1, 2. Put 
iVj n 7V2 = {/?}. Let & and ^ ' be the closed half-planes in P2 determined 
by Nx and 7V2. Then by our construction, q ¥= p & int(J) and 32* and ^ * 
are both contained in &' say. 

If q e ^ then (/>,#) c ^ n J and it follows that either 

(p, q) Pi ( ^ U ^ 2 ) - 0 or (/?, #> n ( ^ U ^ 2 ) = {/?}. 

In the latter case, (p, q) is disjoint from say $t2 and supports ^ at p. 
Hence a suitable line through q close to (p, q) is disjoint from âix U ^ 2 . 

Let # e ^ ' . As A^ and N2 separate &t\ and ^ J in J , this readily yields 
that Nx or 7V2, say Nl9 does not meet (Z^ n ^ J ) U (L2 n ^ f ) . Since 

L2 n JV, e J2\^f, 

we obtain that L2 n Nx £ 0lx. As ^ and âtx n A^ are convex in P2\LX, 
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this implies that &tx n Nx n £>' = & and hence NX\LX supports 0tx in 
P2\LX. Similarly, NX\L2 supports ^ 2

 m ^2\^2- Altogether, Nx supports 
both 9tx and % 

We note that the closed segments Nx n âf\ and Nx n ^? | lie in Nx n i 
and are disjoint. Hence there is a point b e (iV1 n £)\(3l* U 3?f ) which 
separates them in iVj n i and there is a line TV through Z?, close to TVj, 
which does not meet 9t\ U 9t\. Since 

i v , n f n (^ u @2) = 0, 

TV can be chosen so that it does not meet {^t2 U @2)
 n ^'- Thus 

N n (0, u ^ ) = 0. 

14. LEMMA. Le/ (x, y) and (u, v) be subarcs of order two with the property 
that L = (T(x), T(y)) is a line and T(x, y) O 0tx = 0 w/zere 

stx = //(i>, v]) w @2 = /f(r[x,^]). 
TTzew 

1. //zere /s Û //we TV' swc/z that TV' n ( ^ U ^ 2 ) = 0 or 
2. {IXx;), T(^) } c ^ and there is a line TV such that TV n @x = 0 ûwd TV 

meets, and cuts, T at exactly one point of (x, y). 

Proof If not 14.1 then 3tx n ^ 2 is not connected by 13. Since 9tx and @2 

are convex, the same applies to 

@x n bd(^2) = 9tx n (TO, j ) u (L n ^2) ) = ®x n L n % 

As L n f j and L n ^ 2 are closed segments of L and L n &2
 n a s t n e enc^ 

points T(x) and T(y), this yields that 

{T(x), T(y) } c <*, 

and there is a point p e (L n â^)\âix. As ̂  is convex, there is a line TV 
through p disjoint f r o m ^ . Since 

{T(x)9 T(y) } c bd(<*,)> 

TV ^ L and 14.2 follows. 

15. LEMMA. Le/ wz(T) = s(T) and let p = r ( ^ ) = T(/2) /3e « double point 
ofT such that (tx, t2) is of order two, tx or t2 is ordinary, 

ind(r[/2, tx] ) > 0 and s(T[tx, t2] ) = 1. 

77ze« //zere w a differentiable curve T* of even order such that ind(T*) > 0, 
m(T*) = s(T*) = s(T) - 1, nj(T*) = rij{T)forj = 1, 3 and n2(T*) equals 
n2(T) orn2(T) + 1 . 

Proof Case l.Tx(tx) = Tx(t2). 
Let T* be the closed segment [t2, tx] with t2 and tx identified, say 

T = tx = t2. Let T*:T* -> P2 be the curve defined by T*(/) - T(/) 
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for / e T*. Since T is differentiable and m(T) = s(T), we obtain that T* is 
differentiable and 

m(r*) - s(T*) = s(T) - 1. 

It is easy to check that if tx [t2] is ordinary then / is the same type of point 
as t2 [tx]. Thus /if.(r*) = n^T) for i = 1, 2, 3, w(r*) = 0(mod 2) and T* is 
of even order. Finally 

ind(r[f2, / J ) > 0 

implies that ind(r*) > 0. 
Case 2. Tx(tx) ^ I ^ ) and tx, t2 are ordinary. 
Since [tx, t2] is ordinary with 

ind(r[f„ t2] ) = 0 and j(r[fl9 f2] ) = 1, 

there exists an ordinary subarc (w, v) such that tx < t2 in (w, v), 

ind(I>, v] ) = 0 and s(T[u9 v] ) = 1. 

Let /* e (/j, /2). Since (tx, t2) is of order two and Tx(tx) [Tx(t2) ] cuts T at 
/2 UJ, there exist tf e (w, /,) and /J e (/2, v) such that 

(1) any line meets T in at most three points of (/*, t*)9 

(2) (tf, /*) and (/*, t%) are both of order two, 
(3) each line through two points of T(tf, tx] [T[t2, t%)] cuts T in 

I'*'!) I ( 'Mill and 
(4) T(tf, t2) has no double tangents, and a tangent of T(tf, /f ) meets this 

arc at no more than one other point. 
Finally, let &> be the closed triangle in P2 with the vertices T(tf), T(t%) 

and T(t*) which contains the point p. 
Let T*:T -» P2 be a curve with the property that r*(/) = T(t) for 

t e ['*> t\l tf is an ordinary point of T* with rf(ff ) = Tx(tf) (i = 1, 2), 
[/f, /f] is a simple subarc of T* such that T*(/f, /f) c ^ a n d (7f, /*) and 
(/*, /f ) are of order two and finally t* is a cusp of T* with 

T*(/*) = T(t*) and Tf(/*) = <T(/*),/?>; 

cf. Figure 2. 

Clearly T* is a differentiable curve with 

nj(T*) = nj(T) for j = 1, 3, 

w2(r*) = «2(r> + 1 and 

5(r*) = m(r*) = m(T*[t$9 tf]) = m(T[/J, tf]) 

= m(T) - 1 = s(T) - 1. 
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Figure 2. 

It remains to show that ind(T*) > 0. 
Let L c P2. If L n T[t$9 t*x ] ¥= 0 then 

\L n r*| ^ \L n r*[/j, *f ] I = |L n T[/f, /f ] | > 0. 
Thus we may assume that 

(5) L n r[ff, ff ] = 0. 

Suppose that L supports T at some f G (/f, /f) and thus L = Tx(t). 
Since 

ind(rt;2, r , ] ) > 0 

by assumption, L necessarily cuts T[/2, tx] in at least one point. By (5), such 
a point lies in T(tf, t*) and by (4), there is not more than one such point. 
Thus L supports T and L cuts V at one point each. Since T is of even order, 
this is a contradiction and hence L cuts V at every point of intersection. 

We again note that L n T[t2, tx] = 0 and by (5), 

L n r[*2, ̂  c r(/f, tx] u r[/2, qy 
As r is of even order, the preceding result implies that 

\L n r| = \L n T(/f, r|) | 
is even. Hence by (1), 

L n r(/f, /j) = {ixo, r(r")} 
where {?', r"} c (ff, *,] u [t2, ?|) and ?' # /". 
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If {/', t") c (**, tx] say, then L n T[f2, ff) * 0 by (3). Since this is 
impossible, each of (/*, tx] and [/2, **) contains exactly one of f and t". 
Hence L n 0 separates T(t*) from both r(*f) and T(t$) in ^ and L 
necessarily meets both r*(/f, t*) and r*(/*, t2). 

Finally, we observe that the preceding yields that any line meets both 
T*(/f, /f) and r(/f, t2) with the same parity. Thus T* is also of even 
order. 

Case 3. Tx(tx) ¥^ Tx(t2) and tx or t2 is singular. 
Let tx be singular, say. 
We choose t\ e (fb t2) and ff e (/2, tx) so close to f2 that T(/f, f|) is an 

arc of order two and that &', one of the closed triangles bounded by 
r,(/f), Tx(t*) and (T(t*)9 T(t2) ), contains T[tx, t*]. We may clearly assume 
that/? is the only double point and T(tx) is the only singular point in 3P'\ cf. 
Figure 3. 

The arc T[tx, t2] decomposes 0* into two subsets. If t* and t* are 
sufficiently close to t2, one of these subsets, say &'0, does not meet T(t*, tx). 
Let T':T -> P2 be a curve with the property that T'(t) = T(t) for 
/ e [ff, /*] and F[ff, /*] is a convex curve in &'0 with 

T{(tf) = r,(/f); / = 1, 2. 
Then F is a curve of even order with 

ind(F) > 0 and /iy.(F) = /i/I1);./ = 1, 2, 3. 

If tx is a cusp or a beak (case (a) ) then 

s(Tf) = w (F ) = S(T) - 1 

and T* = F has the required property. If tx is an inflection (case (b) ) 
then 

J ( F ) = m(F) = j ( r ) 

and F has a double point in &'§ which satisfies the assumptions of 
case 2. 

16. Remarks. Since 

r [ / | , ff] - r*[rj , ff ] and 

r(/f, /2*) c int(//(r[/f, /2*] ), 
ind(T) > 0 implies that the construction in Figure 3(a) results in a curve 
T* satisfying 15 even if ind(r[/2, tx] ) = 0. 

The construction in Figure 3(b) performed when tx is an inflection 
point results in a differentiable curve F of even order with ind(F) > 0, 
m(r) = s(T') = s(T) and «,(F) = n^T) for i = 1, 2, 3. Furthermore, F 
contains a double point p' = T'(t\) = T'(t2) such that neither (t\, t2) 
nor (t2, /'i) is ordinary. 
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(a) (b) 

Figure 3. 

As a final comment, we note that a similar construction allows us to 
replace any simple cusp [beak] of T by a pair of inflections [one inflection] 
in such a manner that the resultant curve T has the property that 
s(T) = S(T), m(T) = m(T\ ind(T) > 0 and V is of even order; cf. [2], 
p. 147. 

Proof of Theorem 3. Let/? = T(tx) = T(/2), t\ # t2, be the only strong 
point of r with 

md(T[tl9t2]) = 0. 

We assume that (tX9 t2) and (/2, ^i) are ordinary. 
Since i n d ^ / j , t2] ) = 0, every multiple point of (tX9 t2) is then the 

common end-point of a subarc of index 0 in T[tX9 t2] and is therefore 
strong. Thus s(T) = 1 implies that (tl9 t2) is simple. Then by 7, there exist 
sx < s2 in [tl9 t2] such that (sl9 s2) is of order two and 

T[t]9t2] c <% = H(T[sl9 s2]). 

Let T[vj, v2] be the maximal subarc of T contained in ^ ; v2 < Vj in [t2, / , ] . 
If tx T̂  sx then vx ¥= sx, T(vx) £ T[sx, s2) and T(vj, sx) has index 0. As in the 
preceding, ind(T(v1, sx) ) = 0 implies that every multiple point of (vl5 sx) is 
strong. Thus t2 £ (vb sx) and s(T) = 1 imply that (v]9 sx) is simple. By 12, 
(vj, sx) is not ordinary and n(T) ^ 1. Hence we assume that tx = sx and by 
symmetry, t2 = s2. 

Suppose that ind(T[/2, tx] ) > 0. Since (72, tx) is ordinary, (72, /,) is not 
simple by 7. Thus m(T[t29 tx]) < oo implies that there exist u < uf 

in (72, tx) such that q = T(u) = T(u') and (w, u') is simple. But then 
ind(T[w, u'\ ) = 0 by 7 and q ¥= p is strong; a contradiction. Since 
ind(T[/2, /,] ) = 0, we assume as in the preceding that (72, tx) is of order 
two. Let 

W = H{T[t29tx}). 
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Since Yx(tt) meets Y at exactly tx and t2 and Y is of even order, I ^ ) 
supports Y at both tx and t2 or T ^ ) cuts Y at both tx and f2; i = 1, 2. If 
Yx(tx) and T ^ ) both support Y at ^ and f2 then Yx(tx) = Yx(t2) and it is 
easy to check that Sfc n 0lf is connected. Hence by 13, there is a line not 
meet ing^ U 0?'. Since r c f u f ' , w e obtain that ind(T) = 0. Thus !",(*,.) 
cuts T at tj and tt is singular. 

In Figure 4, we present a T of even order with ind(T) > 0, s(Y) = 
1 * m(Y) and n(Y) = 1. 

Figure 4. 

Proof of Theorem 4. Let/? = T ^ ) = T(V2), tx ¥= t2. Since «(T) is even, we 
need only to show that n(Y) ^ 3 or n2(Y) ^ 2. 

Case 1. Neither (tx, t2) nor (72, tx) is ordinary. 
If ^ or t2 is singular or if (tl9 t2) or (r2, tx) contains more than one 

singular point then n(Y) ^ 3. Hence we assume that tx and t2 are ordinary 
and say ux [u2] is the only singular point of (tx, t2) [ (t2, tx) ]. If ux or u2 is a 
cusp then «(T) ^ 4 and hence we assume that they are not cusps. From 
16, we may then assume that ux and u2 are inflections. Finally as p is 
strong, we may assume that say 

indole,/,]) = 0. 

Let @ = H(Y[t2, tx]). Since no line through Y(u2) supports Y at w2, 
Y(u2) e int(^). Hence some line L supports 9t in at least two distinct 
points of Y[t2, tx] and there is a segment [r2, r j c |72, tx] such that 

L = (Y(rx), Y(r2) ) , L n T(r2, rx) = 0 and 

L ^ r , (0 for all t e (r2, r,). 

As {IX^), T(r2) } c bd(^f), we have that rx and r2 are ordinary. Then 
by 11, 
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L = Tx(r2) and either rx = tx or L = Tx(rx). 

Finally, let 01' be the closed region in 01 bounded by T[r2, rx] and L. 
a) rx 7̂  tx and (r2, rx) is ordinary. 
By 8, (r2, r^ is of order two and hence 0tf = H(T[r2, rx] ). Since L is a 

supporting line of both 01 and 0tf and T[/2, ^] is simple, it follows that 
T[t2, tx] c 0t' and thus 0t = 01'. 

Since ind(T) > 0, there is a maximal subarc T[v2, vx] ^ T in ^ with 

[ ^ ^1] c ('2* '1) ^ (v2> v i ) -

As m(T) = 1, (v2, r2) and (rl5 Vj) are both simple and thus by 12, (v2, r2) 
and (r b vj) are both singular. As {w,, w2} c (v2, r2) U (rl9 Vj), we may 
assume that say 

ux e (*„ /2) n (r„ v,) = (rl5 v,) 

and 

u2 (= (72, ^ ) O (v2, r2) = (72, r2). 

Finally, we note that since T[v2, vx] is the maximal subarc contained in 0t 
and 

r(v,) e bd(«)\r[r2, r j , 

L cuts r at Vj and v2. 
Suppose that (vl5 v2) is ordinary and let ? e (vl5 v2) c (wls t2). By 9, 

rj(o n T[ux, t) = 0 or r;(o n r<>, *2) = 0. 

Hence r(vj) or T(v2) does not lie on Tx(t), Tx(i) =£ L and L cuts T at every 
point of L n T[vl5 v2]. Since r[v1? v2] is simple with index 0, L cuts T at 
only V! and v2 by 10. Altogether then 

L n r(vl9 v2) - 0 

and thus (vb v2) is of order two by 8. Let 

a» = #(r[v1,v2]). 

Since 

r(v„ v2) n r(r2, r,) = 0 and L n r(v„ v2) = 0, 

we have that 

r(v1? v2) n bd(«) = 0. 

As L cuts r at Vj and T[v2, v j c ^ it follows that 

r (v b v2) O ^ = 0. 
Thus by 14, either 0t U ^ " is bounded in P or there is a line not meeting 
0t which meets and cuts T at exactly one point. Since r c 0t U 01", the 

https://doi.org/10.4153/CJM-1986-047-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-047-3


960 TIBOR BISZTRICZKY 

latter yields that ind(T) = 1; a contradiction. Thus (vh v2) is not ordinary 
and n(T) ^ 3 or (r2, rx) is not ordinary. 

b) rx ¥= tx and (r2, rx) is not ordinary. 
Then u2 G (>2, rx) c (72, tx) and we may assume that [t2, r2] and [rl5 tx] 

are ordinary. Since T(/2) G ^ \T[ r 2 , r j , either 

T[/2, r2] c int(#') or T[r2, r2) c # \ # ' . 

Similarly, either 

T(rx, *,] c int(#') or r ( r „ f,] c # \ # ' . 

Since r(f,) = T(/2), it follows that T[t2, r2) U r(r l9tx] is in either int(^') or 
®\9t'. 

We recall that L = Tx(rx) = Ti(r2) supports both T and the convex set St 
at T(r,) and T(r2) and ^ ' c St. Let T* : 71 -> P2 be a curve with the property 
that r * ( 0 = T(t) for t G [r2, r,], r f ( r , ) = Tf(r2) = L, r*(r„ r2) is of order 
two, 

r*(r,, r2) O St = 0 and # ( r * [ r „ r2] ) n « c L. 

Clearly, T* is a simple curve of even order with the three singular points 
r*(i/2), r*(rj) and r*(r2). We note that T*(w2) is an inflection and since L 
cuts T* at both rx and r2, each of T*(>i) and T*(r2) is an inflection or a 
cusp. It is easy to check that T[/2, r2) U T(ru tx] in either m\{Str) or 5 ? \ ^ ' 
yields that T*(r,) and T*(r2) are both cusps or both inflections. In either 
case, we then have that n(T*) is odd and thus T* is of odd order; a 
contradiction. Hence u2 is not the only singular point of (r2, rx) and 
n(T) ^ 3 or r, = tx. 

c) rx = tx and u2 G (/2, r2). 
By the preceding cases, we may assume that L meets T at exactly /2, r2 

and tx in [/2, ^ ] . Then L n T[r2, ^ ) = 0 and (r2, f,) ordinary imply that 
(r2, /]) is of order two and 

« = / / ( r [ r 2 , / , ] ) . 

We now consider (w2, Wj) which is both simple and ordinary. Let [s2, sx] 
be the convex cover of [w2, w,]. Thus (s2, sx) is of order two and 

H(T[u2,ux]) = H(T[s2,sx]) = Stu say. 

As [r2, tx] c [w2, « J we have St c ^M. 
Let T[z2, Zj] be the maximal subarc of T contained in Stu. Thus 

[s2, sx] c [u29 ux] c [z2, z,] . 

Since St c ^ , we also have 

[*2> ' i l c [z2> ziJ a n d Ui> wil c [u2, ux]. 

Thus 

I 
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[*2> U\] C iZ2> Z\] a n d lZh Z2\ C lUU hi 

and (zl5 zx) is ordinary and simple. 
Let [wj, w2] be the convex cover of [z1? z2], 

^ z = 7/(r[wl5 w2]). 

We note that T(wx) ¥= T(w2), L! = (T(s2), T(sx) ) is a line and 

bd(^M) = T(s2, s{) U (U n #„). 

If {r(zj), T(z2) } c L' then by arguing as in the preceding (with L' = L, 
Zj = V] and z2 = v2), we obtain that ind(T) ^ 1; a contradiction. 
Thus {r(zj), T(z2) } is not contained in L and in particular 

s(T[s2, s{] ) * 0. 

As/> e r[s2, s-j], this implies that 

/2 < W2 < ^2 < t\ < S\ = Ux ^ Zj < Z2 = t2. 

Hencep = T(z2) £ L' and IXzj) G L'. Since L' is a supporting line of &u 

and T[z2, z}] is the maximal subarc in^w , L! cuts r at zv By 10, L' cuts T at 
exactly one point, say z, in (z1? z2) and by 9, 

L' n T(zl5 z) = 6 

and L' supports T in at most one point of (z, z2). Clearly (z}, z) is of order 
two and 

r(z„z) n ®u = 0. 

It is now easy to check that T(z) £ ^M, L' n T(z, z2) = 0 and thus 

r(z„z2) n<%u = 0. 

Since W] < w2 in [zb z2], 

rov„ w2) n #M = 0. 

Since r(u>j) 7̂  r(w2), 14 implies that 

N' n (^w u @z) = 0 

for some TV' or 

{r(Wl), r(w2)} c @u 

and there is an TV such that N n ^w = 0 and TV meets, and cuts, T at 
exactly one point of (wl9 w2). Since 

r - T[z2, z j U T[zb z2] c ^w u <̂ z, 

the latter is true. But {r(wj), T(w2) } c @u implies that wx = Zj 
and w2 = z2 and thus (zl5 z2) is of order two. Since T[z2, z j c ^tu and 
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N n 0tu = 0, the intersection property of N implies that T is odd order; a 
contradiction. Thus (z]9 z2) is not ordinary and n(T) i^ 3. 

d) A-J = /j and u2 ^ (r2, /j). 
In this case, we consider the simple and ordinary arc (w1? u2) and argue 

as in c) with (w2, ux) to obtain a contradiction to n(T) = 2. 
Case 2. (tl9 t2) or (72, ^ ) is ordinary. 
Let (/], /2) be ordinary and let [sl9 s2] be the convex cover of [tl9 t2] with 

!Z = H(T[sl9 s2]). 
Suppose sx ¥= tx. Since L = {T(sx)9 T(s2) ) supports both & and T at 

r(^j), we have L = Tx(sx). Hence p ¥* T(s2) by 9 and either 

[sl9 s2] c (tX9 t2) 

o r 

( j , , s2) = (t]9 t2). 

Let r [v b v2] be the maximal subarc of T in 5? containing r[ / l 5 / 2 ] . 
Assume [5l5 sx] c (/1? /2). Thus L = rjfaj) = T ^ ) . Since (t]9 t2) is 

ordinary, we obtain that/? e int(^), L cuts T at Vj and v2, and 

/] < Sx < S2 < t2 < V2 < Vx < tx. 

As both (vj, sx) and (s2, v2) are simple, 12 yields that each of them is 
singular. Arguing as in Case 1 a), we obtain that ind(T) ^ 1 if (v2, Vj) 
is ordinary. Hence (v2, vx) is not ordinary and n(T) ^ 3. Thus we may 
assume that sx = tX9 s2 = t2 and (tl9 t2) is of order two. 

Since the preceding is symmetric in (tx, t2) and (/2, /j), we also have that 
(/2, tx) is of order two whenever (V2, tx) is ordinary. Since 

r [ /„ f 2 ] n T[t29tx] = {/>}, 

the intersection of i / ( r [ / l 9 /2] ) and H(T[t29 tx] ) is either {p} or one of 
these two sets is contained in the other. In the latter case, ind(T) = 0 and 
in the former case we obtain that ind(T) = 0 by 13. Thus we may assume 
that (/2, tx) is not ordinary. We may also assume that say tx is ordinary, for 
otherwise n(T) = 3. 

If ind(T[/2, / , ] ) > 0 w e apply 15 and 1 to obtain that n2(T*) = 0 implies 
n(T) = n(T*) è 3 and n2(T*) > 0 implies that 

n(T) ^ n(T*) - 2 ^ 4 . 

Hence, let 

ind(T[t29 tx]) = 0. 

If t2 is singular then the construction in 15, Case 3 yields a curve F with 
all the properties of T except that either m(V) = 0 or T' has exactly 
one strong double point and F is ordinary at that point. Since 1 is 
applicable when m(T') = 0, we may assume that t2 is also ordinary. Thus 
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(t2, tx) contains two inflections or a cusp. From 16, we may assume that (/2, 
/j) contains two inflections. Let St* denote the convex hull of the bounded 
arc (curve) T[t2, tx]. We claim that 

(1) there exist r < s in (/2, tx) such that 

{T(r\ T(s) } c bd(<#*) and T(t29 r) U T(s, tx) c int(#*). 

Up e int(#*) then clearly (1). If Tx(tx) ^ Tx(t2) then (cf. 15, Case 2) for 
any ordinary / arbitrarily close to tx or t2 in (/2, tx\ Tx(t) cuts T in (/2, fj). 
Thus r}(^) is not a supporting line of ^ * and T(t) £ bd(^*). Since there 
exist ordinary U^(t2) and U~(tx) in (/2, fj), (1) follows. Let 

p e bd(^*) and 1 ^ ) = Ii(/2). 

Since tx and f2 are ordinary and (tx, t2) is of order two, it is immediate that 
r,(/,) is a supporting line of both St and St*. Hence 

T[tl9t2] n T[t2,tx] = {p} 

yields that St Q St* or @* ç ^ and thus ind(F) = 0. This is a 
contradiction and hence (1). 

Since { I » , T(s) } c bd(^*), there are lines through T(r) and T ( J ) 
which support St*. Since (f2, ^) contains at most inflections, it follows 
that T(r) and T(s) are ordinary. In particular; Tx(r) is a supporting line 
of ^ * , 

r,(r) n r(*2, r) = 0 

and there exists a U(r) of order two in (/2, ^ ) . Let / tend r in (f2, r) Pi U(r). 
Then T(0 e int(^*) and 6 imply that r,(f) cuts T in (f2, / , ) \ t / ( r ) . Hence 
by the continuity of tangents, Tx(r) meets T in (r, f j . Similarly, T^s) meets 
T in [f2, 5). 

Let ux and w2 be inflections, ux < u2 in (/2, tx) and suppose that 
w(r) = 2. Then 

(r(t/,), r(«2) } c int(#*) 

and rj(r) meets T at some point r' e (r, /j] such that 

r,(r) H T(r, r') - 0. 

Since T(r') G bd(^*), we have that ux =£ r' ¥= u2 and rf is ordinary. 
Let r' =£ tx. If (r, r') is ordinary or (r, r') contains only ux or w2, we argue 

as in Case 1 to obtain a contradiction. If Tx(r) meets T at say r < r' < r" 
in (t2, tx) then one of (r, r') or (/•', /*") again contains at most one of ux and 
t/2, which is again a contradiction. Hence we may assume that Tx(r) meets 
T at exactly r and rf in (̂ 2, ^) and that {ux, u2} c (r, r'). If/? e T^r) then 
(t2, r) U (/•', ^) ordinary yields that (t2, r) and (r\ tx) are both of order two 
by 8. Since tx and t2 are ordinary, it readily follows that either 

St* = H(T[t2, r] ) or @* = H(T[r\ tx] ); 
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a contradiction by (1). Hence 

p £ Tx(r) and \Tx(r) n T[tl9 t2] | = 2. 

Then T(t2, r) c int(^P) and 11.3 imply that 

r ( ^ / + ( r ) ) c bd(^*) for U+(r) c (r, r'). 

Let <%' be the closed region in ^ * bounded by T[r, rf] and T^r). Thus 

T(U+(r)) c bd(^ r) 

as well. But now 

T(U+(r)) c bd(^2*) O bd(#') 

and 

T(r,r ') n (T[t2,r) U T(r', ^ J ) = 0 

clearly imply that 

T[t2, r) U T(r', tx] a & and r[/2 , tx] <z & = &*. 

Let T[z2, z j be the maximal subarc of T contained in 9t\ zx < z2 in [tx, t2]. 
Then 

[r, r'] c (f2, *,) c (z2, z^. 

As ^ £ (z2, r) we have that (z2, r) is both simple and ordinary; a 
contradiction by 12. 

Let r' = tx. Then 

i » n r[/2> tx\ = {/>, r(r)}. 
Symmetrically, we obtain that 

Tx(s) n T[t2,tx] = {p,T(s)}. 

Thus/? e r,(r) n T^j) and in fact,/? e bd(^*). From (1), 

bd(^*) c T[r, J ] U r,(r) U Tx(s). 

If (t2, r) is ordinary then (72, r) is of order two. Since r is also 
ordinary, 

T[t2, r] c bd(//(r[?2, r] ) ) 

implies that there is a £/+(0 c (r, s) such that 

r ( l / + ( r ) ) c int(H(T[t2, r] ) ). 

Since (/2, ^ ) is simple, it follows that 

®* c //(T[/2, r] ) 

and thus 
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T(t29 r) c bd(^*); 

a contradiction by (1). Thus (t2, r) is not ordinary and similarly, (s, t{) is 
not ordinary. Let u2 e (/2, r), ux e (.y, ^) and thus 

(r, 5) c (w2, Wl) c (f2, *,). 

We recall that (r, 5) is ordinary and simple. Since ri(r)[ri(1s) ] meets 
T[r, s] at only r(r)|T(.s) ], we have that 

<T(r), r ( j ) > H T(r, s) = 0 

and thus (r, 5) is of order two by 8. Next 

T[r, s] n r [ /„ t2] = 0. 

Since p e T^r) and (th t2) is of order two, it follows that 

(2) r,(r) n r(*„ ^ = 0 
or T^r) cuts r at tl9 t2 and exactly one point of (th t2). As T^r) does not 
cut r in (t2, t{), we have that T is of odd order in the latter case; a 
contradiction. Thus (2) and symmetrically, 

(3) T}(s) n T(th t2) = 0. 

But then bd(^) = r [ ^ , t2] implies t h a t ^ n ^ * = {/?} and t h u s ^ U ^ * is 
bounded by 13. Since T c Çft U ^* , this is a contradiction and hence (r, s) 
is not ordinary and n(T) ^ 3. 

Figure 5. 

We note the arguments in the proof of Theorem 4 not only show that 
n(T) ^ 2 but also indicate how T may be constructed. For example, the 
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curve r in Figure 5 is of even order with ind(T) > 0, m(Y) = s(Y) = 1, 
p = Y(tx) = Y(t2)9 (*i, t2) of order two, ind T[/2, tx] ) = 0 and r and s cusps 
in (/2, *,). 

Proof of Theorem 5. Let Y be an ordinary curve with the strong double 
points p = Y(tx) = Y(t2)9 tx ¥= t2, and q = T(u{) = T(u2); ux ¥* u2. By 
suitable labelling, either tx < ux < t2 < u2 < tx or tx < t2 < ux < 
u2 < tx. 

Case 1. tx < ux < t2 < u2 < tx. 
As (tX9 t2) is ordinary and simple [tl9 t2] has a convex cover [sx, s2]. Let 

r[v1? v2] be the maximal subarc of T contained in H(T[sx, s2]) and 
containing T[sx, s2]. Then either 

[sl9 s2] c (tl9 t2) or [sl9 s2] = [tl9 t2]\ 

cf. Case 2 of the proof of 4. 
Suppose [sX9 s2] c (tl9 t2). Then the quoted argument yields that 

(/,, t2) c (vl9 v2). We now apply 12 repeatedly. If r(vj) G T[S]9 S2] then 
V] = u2 and ux G [SX9 S2). Hence 

v2 « {ul9 u2) and T(v2) « IX^, s2). 

But then (^2, v2) is simple; a contradiction by 12. Hence T(v2) ^ T[s{9 s2] 
and (vl5 ^j) is not simple. Symmetrically, (s2, v2) is not simple and thus 

{ul9 u2} c (Vl, sx) n (j2, v2). 

As this is impossible, we obtain that [sx, s2] = [tx, t2]. 
By the preceding, (tl9 t2) is of order two and symmetrically, (t29 tx) is of 

order two. The line Tx(tx) supports both //(T[/2, tx] ) and H(T[tX9 t2] ) and 
thus 

r,(*,) n r = {p}. 

Suppose Tx(tx) ¥= Tx(t2). Then Tx(tx) supports T at tx and cuts T at t2. 
Thus r ! ( r ) n r = {/?} yields that Y is of odd order. This is a contradiction 
and hence L = Yx(tx) = Yx(t2) supports Y at both tx and t2. Symmetrically, 
U = Yx(ux) = Yx(u2) meets Y at only # and supports Y at both ux and w2. 
Clearly, L ^ L! and L H L' ^ T. Thus T lies in one of the closed 
half-planes bounded by L and U and ind(T) = 0. This is a contradiction 
and therefore Y is singular. 

Case 2. tx < t2 < ux < u2 < tx. 
Then Y[tX9 t2] D Y[ul9 u2] = 0 and (tX9 t2) and (ul9 u2) are both simple 

and ordinary. As in Case 1, we then obtain that (t]912) and (wl5 u2) are both 
of order two. Let 

9tt = H(Y[tX9 t2] ) and ^w = H(Y[u]9 u2] ). 

If ind(T[/2, tx] ) > 0 then 15 implies that there is a differentiable curve 
T* of even order with 
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ind(r*) > 0, 

m(T*) = s(T*) = s(T) - 1 = 1 and 

n(T) ^ n(T*) - 1. 

Thus by 4, n(T*) is 2 and n(T) IS 1. Hence we may assume that 

ind(r[/2, /,] ) = ind(r[«2, «,] ) = 0. 

Let 01* = H(T[t2, *,] ). 
As in the Case 2 of the proof of 4: 
(1) there exist r < s in (t2, t\) such that 

{r(r), T(s) } c bd(<**), 

T(t2, r) U r(5, /,) c int(^*) 

and if q ¥= T(r) [q ¥= T(s) ] then I » [r,(s) ] meets T in (r, /,] [ [t2, s) ]. 
Next we observe that both 

(2) r[/2, ux\ c i > 2 , tx\ c ̂ w 

and 

(3) T[ux,u2] c /f(r[/2 , Ml] U I > 2 , / J ) 

lead to a contradiction. Since (2) implies that 

p e re2> *il c ^M; 
bd(^w) = T[wl5 w2] and T[ul9 u2] n r [ ^ , /2] = 0 yield that 

/? e int(<0J 

and in particular 

T[t29 t2] = T c int(#M) and ind(r) = 0. 

In case of (3), 

//(r[/2, U]] u r[u2,r,]) ç /f(r[ii2, «,] ) 
implies that T c //(T[w2, ux] ). Thus ind(T[w2, «J ) = 0 now yields that 
ind(r) = 0. 

Since T[/2, ux] U T[u2, tx] and r[wb w2] are curves which meet only at q, 
Tx(ux) = Tx(u2) clearly implies either (2) or (3). Hence Tx(ux) ¥= r,(w2), 
Tx(ux) cuts T at u2 and q £ bd(&f). Since r is ordinary, we have that 

Tx(r) n r(/2 , r) = 0 

and Tx(r) meets T at a point r' e (r, ^] such that 

rj(r) n !> ,> ' ) - 0. 
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Since (r, rf) is ordinary, (r, r') is of order two whenever (r, r') is simple. Let 
St' be the closed region in ai* bounded by T[r, r'] and Tx(r). 

Let r' ¥= tx. If g £ T(r, r') then (r, r') is simple and 

&' = H(T[r, r'] ). 

Clearly since r is ordinary, T[t2, r] c &' and thus 5?' = 9t* and (3). If (r, r') 
contains t/j and not w2

 t n e n (r> O is still simple, 

31' = H(T[r, r'] ) and p e T[/2, W2] C ^ ' . 

Since q e bd(^') and ^(MJ) cuts T at f2, it follows that 

p G I > 2 , f,) C # * \ # ' ; 

a contradiction. The preceding is symmetric in ux and u2 and thus ux < u2 

in (r, r'). But then it is clear that either 

T(r, r') c int(#*) or T[/2, *,] c <T. 

Since T(r, r') c int(^?f) implies (3), there exist Vj < v2 in [t2, tx] such that 
r[v2, V]] is the maximal subarc of Y contained in S%'. Then r < ux < 
u2 < r' in (/2, tx) implies that 

{r(v,), r(v2) } H T[r, r'] = 0 

and ra(T) = 2 yields that (vl5 r) or (r', v2) is simple. Hence «(T) > 0 
by 12. 

Let / = / j . Then ^ ( r ) meets T at exactly /2, r and ^ in [f2, tx] and (r, /,) 
is ordinary. Since (/2, r) is also ordinary, (as in the preceding) r £ (ux, w2) 
implies that (/2, r) or (r, /j) is of order two with ^ * equal to its convex hull. 
This is a contradiction by (1) and thus r e (wls w2) and (r, fj) is of order 
two. Since the preceding arguments are symmetric in r and s; Tx(s) meets T 
at exactly t2, s and tx in \t2, tx] and s <E (wb w2). Since r < s in (t2, tx), 
s G (r, /]). As (r, ^) is of order two, 6 implies that T(tx) £ T,^); a 
contradiction. Thus (72, r) cannot be ordinary and n(T) > 0. 

From the curve represented in Figure 5, it is easy to deduce that there 
exists a differentiable curve T of even order with ind(T) > 0, m(T) = 
s(T) = 2 and n(T) = n2(T) = 1. 
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