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Abstract. A new semianalytical theory of asteroid motion is presented. The theory is developed on 
the basis of Kaula's expansion of the disturbing function including terms up to the second order 
with respect to the masses of disturbing bodies. The theory is constructed in explicit form that gives 
the possibility to study separately the influence of different perturbations in the dynamics of minor 
planets. The mean-motion resonances with major planets as well as mixed three-body resonances 
can also be taken into account. For the non-resonant case the formulas obtained can be used for 
deriving the second transformation to calculate the proper elements of an asteroid orbit in closed 
form with respect to inclinations and eccentricities. 
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1. Introduction 

In order to deal with the long-time behaviour of asteroids, one of the modern 
fast and accurate integration schemes for the equations of motion in Cartesian 
coordinates might be employed. In the case when we are interested in some special 
perturbations, we can calculate the amplitudes at certain frequencies with the aid 
of fast Fourier transform. But we cannot tell for sure, which effect or interplay 
of effects has really caused this calculated value of amplitudes (see, for example, 
the discussion concerning Veritas (Milani et al, 1997; Nesvorny and Morbidelli, 
1999). For some problems it might be more efficient or more informative to use 
a semianalytical approach that gives the averaged equations of motion in explicit 
form. The averaging procedure is connected with the elimination of short-periodic 
terms from the initial Hamiltonian describing the motion of asteroids under the 
influence of selected planets. This procedure can be realized, for example, by 
means of Lie-series methods ( Hori, 1966; Deprit, 1969). As a result, we obtain 
the averaged Hamiltonian which contains only secular, long-periodic and resonant 
terms. The number of these terms (at least in the first two succesive approximations 
with respect to the small parameter of the problem) is substantially less than 
the number of short-periodic terms which are eliminated from the Hamiltonian. 
Finally, we can integrate the system of the averaged differential equations of motion 
numerically. 

The main advantages of semianalytical methods in comparison with the direct 
numerical integration of equations of motion are connected with the possibilities: 

— to eliminate the non-essential short-periodic perturbations from the Hamil­
tonian (and this is possible up to any desired order in the small parameter of the 
problem); 

— to investigate the "pure" dynamical picture defined only by secular, long-
periodic and resonant perturbations; 

— to increase substantially the step-size of numerical integration. 
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Here, we present a new semianalytical theory which can be used for numerical 
integration of averaged equations of motion as well as for the construction of the 
second transformation for the derivation of proper elements of asteroid orbits in 
the non-resonant case. The theory considers the perturbations of the second or­
der explicitly that allows to select certain resonant harmonics (e.g. certain mixed 
resonances, see Nesvorny and Morbidelli, 1999) and to reveal a minimal set of per­
turbations causing certain characteristics in the observed orbital dynamics. Since 
we have employed Kaula's expansion of the disturbing function, the solution is 
obtained in closed form w.r.t. inclinations (via inclination functions) and eccen-
tricites (via Hansen coefficients). It is to be understood that the theory can be used 
only for the case of reasonable convergency with respect to the parameter a (ratio 
of semi-major axes). 

2. Averaging procedure 

For the construction of perturbation theory of the second order we use the averaging 
procedure based on the Deprit modification of the Lie-series method (Deprit, 
1969); in this procedure the short-periodic perturbations supposedly non-essential 
are eliminated. 

Let us consider the Hamiltonian of the problem in the form 

F = F0 + FU 

with the unperturbed part 

(i = G0MSun, 

(Go is the Newton's gravitational constant, M stands for mass) and with the 
disturbing function which can be expressed in the classical form (Kaula, 1966; 
Yuasa, 1973) 

Fi = T, E ft
P(L,G,H,LB,GB,HB)cos<l>f, (1) 

B i=(iu...,i6) 

<f>F = ill + hh + hg + UgB + i$h + i6hB, 

in the extended phase space of variables (X, G, H, K, l,g, h, t). Here K is conjugate 
to the time variable t and X, G,H,l,g,h are the usual Delaunay elements. The index 
B refers to the perturbing body. The motions of the perturbing bodies are supposed 
to be known functions off; then the disturbing function (1) depends explicitly upon 
the time only via the elements LB,GB, HB jB,9B,hB-

We assume that F\ is of the order of the small parameter MB/MSUU which 
allows to construct a perturbation theory by means of successive approximations. 
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According to Deprit's method in the first approximation we should solve the 
differential equation 

{FoW} + Ft = F? 

(where {F0, W\} are the Poisson brackets in the extended phase space) in order to 
derive the generating function W\ of the corresponding canonical transformation. 

We would like to point out that in the formulae for the determination of the new 
Hamiltonian and the generating function in all the components the new (mean) 
elements should be substituted instead of the old (osculating) ones; below we will 
omit that for simplicity. 

We put 
F\ = [^l]sec 

as the part of the initial Hamiltonian which contains only secular, long-periodic and 
resonant terms (in the case of the commensurability between the mean motion of the 
asteroid n and that of the perturbing body n# defined by n : ng ~ 7 : 7B, where 
7, 7B are some integers). Then the Hamilton-Jacobi equation for the generating 
function W\ has the following form: 

dW1 dWi 

Here [-Fi]Short-Per
 i s the part of initial Hamiltonian (1) containing only short-

periodic terms. 
Putting lB = fiBt + 1% (here lB is a constant), we find: 

Wi = £ £ Af/fsin^f. (3) 
B i=(iit...,i6) 

To simplify the further computations we introduce here 

' 0, for secular, long-periodic 
and resonant (with body "B") terms, 

A f = < 
. l/(hn + hns), otherwise. 

One can show that neglecting the explicit dependence of gs and hs upon time 
when solving equation (2) introduces an error of the third order. 

In the second order we have the following Hamilton-Jacobi equation 

{F0, W2} + 1-{FX + F^, Wi] = Ft (4) 

for the generating function W2. In the same way, we define the corresponding part 
of the second order Hamiltonian which contains only secular, long-periodic and 
resonant terms as 

n = \{Fi + F^Wx}sec 
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to find W2 from 

_ 0W2 W 2 , l f p , _ „ . . 
~n~dl df 2* * ' ' Wl^short-Per = °-

Note that F% and W2 contain the mixed terms arising from the interaction of 
two perturbing bodies with the asteroid. 

For two bodies (e.g., Jupiter (J) and Saturn (S)) we have 

Ft = i f + i f , F{ = i f* + i f*, 

Wx = Wf + W1
S. 

Then the second Poisson bracket on the l.h.s. of (4) is a sum of four terms: 

i { i f + i f* + i f + Ff*, W( + Wf} = 

= \{Fi + i f *, Wf } + ± { i f + i f*, Wf}+ 

+ \ {Fx + i f *, Wf } + 1-{F? + i f *, ttf }. (5) 

The first two terms describe the direct perturbations of the second order from the 
perturbing bodies (Jupiter or Saturn, respectively). 

With Ff + Ff* written as 

Ff + Ff*= Y, *ff?™4f, 
j=(h,—,J6) 

where 

6 ?-{l 
2, for secular, long-periodic and resonant (with body "B") terms, 
1 otherwise, 

we find 

= ; £ £ £ ff 
i j k=-l,+l 

+3ff^k(Af)2Sfidi]oos{^-k<f>f) 

l L n + ~dG2z + ~dHJS) & '•' + kAi 6i 

Two last Poisson brackets in formula (5) represent the mixed perturbations: 

i{if + Ff*, Wf) + ~{Ff + i f *, tff } = 
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,J,dff; , *'/, , dff; \JRS\ 

+3fff^ki1j1((Af)26f + (A?)26f)} cos(^ - Atff). 

Let us write 

(7) 

F: = Fr + F?* + Fi 
then Ff* is given by 

n-B S i 
^2* = H^I +Fr,wn (8) 

that is, as the part of (6) which contains secular and long-periodic terms determined 
by the following conditions: 

h - kji = i2- kj2 = 0 

and in the resonant case n : ns ~ 7 : 7B also the resonant terms satisfying the 
equation: 

k - kji 7B 
h ~ kj2 7 

The function F/5* is determined by 

FiS* = \{F( + F?*, Wf }sec + ^{if + if*, WfW, (9) 

that is, as the part of (7) containing only secular, long-periodic and resonant terms. 
Notice, that the trigonometric arguments in (7) 

<t>i - ktf - (h - kji)l + i2lj - kj2ls + (h ~ kh)g + (i5 - kj5)h+ 
+Ugj + iehj - kj4gs - kj6hs 

give the resonant components not only in the case of mean motion commensura-
bilities but also for mixed resonances. 

Similarly, let us write W2 as 

w2 = wi + wi + wis, 

then Wf (B = J, S) is given by 

j k=-i,+i 

8L n r 8GJ3T dH » + W* + ifcj>)(Af6? + k*?6f) + 

+3f»jkA?26fi1jl}sm(<l>?-k<f>f) (10) 
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with 

A ^ = < 

0, for secular, long-periodic 
and resonant with "B" terms, 

- l/((*i - kh)n + (h - kj2)nB), otherwise. 

Finally, 

^/5 = l E E £ 4sf[//(#i1 + ^i3 + S5) + 
i j fc=-l,+l dL dH 

df? df? df? 
+k f^it'1 + it1'+ jHi5)]^s> + *&?)+ 

+3ffffjkidi((Aff6f + (Aff'Sf)] sin(^J - k<f,f), (11) 

where 

f°, 
AlS = < 

for secular, long-periodic and 
resonant terms, 

. l/((«i - kji)n + i2nj - kjzns), otherwise. 

3. Application to Kaula's Expansion of the Disturbing Function 

For asteroids moving relatively far from the perturbing bodies we will employ 
Kaula's expansion of the disturbing function (Kaula, 1966; Fominov, 1980) for 
each perturbing body "B" (ag = a/aB): 

CO 71 71 Tl 

l a Zv Z^ Zv Zv Z^ Z ^ 2 n + 1 
D n=2m=0p=0h=0q=-co j=-co 

X 

x Fnmp (I) Fnmh (IB) Hnpq (e) Gnhj (eB) cos OB , 

where 

O s = (n - 2p + q) M - (n - Ih + j) MB + 
+ (n — 2p)u> — (n — 2/i)u>B -f m (Q. — Q.B), 

and 
y-n,n—2p y—n—\,n—Ih 

Hnpq (C) = Xn'_2p+q (e) , Gnhj (fiB) = *„_2fc+j O^) • 

Here, a,e,I,Q.,cj,M and aB,eB,IB,Q,B,ojB,MB are Keplerian elements of the 
asteroid and disturbing body, respectively; Fnmp (I) are normalized Kaula in­
clination functions, X"-p (e) are the classical Hansen coefficients and \iB is the 
gravitational constant of the perturbing body: \iB = GQMB/MSUU-
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With the aid of the averaging procedure described above we can construct the 
averaged Hamiltonian up to the second order 

F* = F0* + F? + F2*, 

F* = Ff* + if*, F2* = F(* + Ff* + F2
JS* 

and the generating function 
W = Wi + W2, 

w1 = w? + wf, w2 = wi + wi + wis. 
The part of the Hamiltonian of the first order containing only secular and long-
periodic terms reads 

oo n n n n 

aB n=2m=0p=0h=0An+ l 

x Xon~l,n~2h (es)cos [(n - 2p)u - (n - 2h)uB + m(« - £2B)1 • (12) 

Resonant terms appear in development (12) in the case n : nB « 7 : 75 , if 

n - 2p + g _ 7s 
n-2h + j 7 ' 

In this case the corresponding resonant terms have to be included in Ff*. Note, 
that in (12) there are no summations with respect to indices q and j which reduces 
the problem of convergency of the series with respect to Hansen coefficients. 

According to (3), the generating function Wf of the first order is 

00 n n n oo oo 

wf = ^ E E £ £ E E «B* 
° n=2m=0p=0h=0q=-oo j=-oo 

X ^npqhj7^—^Fnmp(I)Fnmh(lB)Hnpq(e)Gnhj(eB) S h l O 5 , 

where 

{ 0, for secular, long-periodic 

and resonant (with B) terms, 

l/((n - 2p + g)n - (n - 2h + j)nB), otherwise. 

Using the expressions for the partials (s = sin 1/2) 
d n fa d 1 - e2 d 

- ^ = 2 , / - -*- + 

dZ, \ fj,da eL de' 
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d 1 1 - e2 d 1 - 2s2 d 
dG ~~ LVY^2 e de+ As ds^ 

d _ 1 1 d 

dn 3n 

from (6) and (8) we get Ff* in the form 

FB* = J_/4y- y- y - *an+n- L_ L _ x 
2 4L al, ^nmphqj ^n'm'p'h'q'j' ^ B 2n + 1 2n' + 1 

X Fnmh(lB)Fn'm'h'(lB)Gnhj(eB)Gnih'j'(eB)Fnim>pi(I)Hnygi(e) X 

x [Fnmp(I)Hnpq(e)A% + 

+(^m p(/)^M(e) + _^L=^ n M ( c )^ m p ( / ) ) A f ] X 

x cos[(n - 2p + q - k(ri - 2p' + q'))M + (n - 2p - k(ri - 2p'))co -
- (n - 2h + j - k(n' - 2ti + j'))MB - (n - 2h - k(n' - 2h'))uB + 
+ ( m - km')(a - aB)]. 

Here, 

oo n n n oo oo 

^-^nmphqj ~ ^ Z—1 ^ ^ ^ L—* ' 
n = 2 m = O p = 0 h=0 g=—oo j=—oo 

^n'm'p'h'q'j' 2-~i 2-~i 2-j 2-~i l^i 2-j ' 
n ' = 2 m ' = 0 p '=0 /i '=0 q'=—oo j'=—oo 

\dHn BL. = [(»' - 2p' + q')(l - e2) - („' - 2p')Vr^} * U1±nm 

FLp = \[{n'-2p'){l-2s2)-m>}\dJ^, 

A l — an'p'q'h'j'0npqhj + K/Xnpqhj0n'plqlhlj'> 

Af = 2n(n' - 2j/ + ?')Af + 

+ 3*n(n - 2p + g)(n' - 2p' + ? 0 ( < , y )2*»WVi', 
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vnpqhj 

(2, ifn-2p + q = n-2h + j = 0 
or (n - 2p + q) : (n-2h + j) = IB'-1 
in the resonant case, 

. 1, otherwise, 

^n'p'q'h'j' and ^n'p'q'h'j' ' ^ defined by the formulae for Anpq^ 
^ SnPqhj by 

putting primes at the indices, and * at the summation symbol means that one 
should take only the terms with the indices satisfying the conditions: n - 2p + q — 
k(ri - 2p' + q') = n - 2h + j - k(ri - 2b! + f) = 0 or 

n-2p + q- k(n' - 2p' + q') _ 75 
n-2h + j - k(n' - 2h' + j') ~ 7 ' 

Finally, by means of (7) and (9) we get 

?JS* _ 1 t*J »s 
AL a I 0,Q ^—'nmphqi ^-—/n'm'p'h'q'j' J-—* J S 

k=-l,+ l 

1 1 -
X (In + 1) (2ri + i\Fnmh^Ij)Fn'm'h'^Is)Gnh^ej)G^'h'i'{es) x 

x [Fnimipi(I)Fnmp(I)Hnpq(e)Hnipiqi(e)A2' + 

+ f n m p ( / ) ^ m v ( / ) [ f f , l M (e ) JnV, ' ( e ) + kHnpg(eynlplql(e)]Afs + 

+ jHnpq(e)Hnyqi(e) X 

,S,J X[FLp(I))Fn>m>p>(I) + kFnmp(I)F^m,p,(I)]A>> 

X COS[(n - 2p + q - k(ri - 2p' + q'))M + (n - 2p - k(ri - 2p'))u -

-(n-2h + j)Mj + k(n' - 2ti + j')Ms - (n - 2K)UJJ + k(n' - 2ti)us + 

+ (m - km')Q - mQ.j + km'Qs)], 

where 

\ ' = ^n'p'q'h'j'Kpqhj + ^^npqhjK'p'q'h'j'i 

AJ'S = (2n(n' - 2p' + q') + 2kn'(n - 2p + q))AJ'S + 

+ 3kn(n -2p + q)(n' - 2p' + q')[(Aip(]hj)XVglhljl + (^'p'g'h'j'Kpghj], 

1 a I T 

Hlplql = [(n -2p + q)(l- e2) - (n - 2p)^T^\ \-~f~, 

1, \dFn 
Fl'rny = £[(» - 2p)(l - 2s2) - m] 1 ^ " X 

5 ds 
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Here ** by sums means that one should take only the terms with the indices 
satisfying the conditions n~2p+q -k(n' ~2p'+q') = n-2h-\-j = n'-2h'+j' = 
0 or satisfying the conditions of a mean-motion or three-body resonance. The 
components of the generating functions Wf can be easily deduced from formula 
(10) and the function W/ 5 - from formula (11). 

These expressions give the explicit second-order solution for the secular, long-
periodic and resonant (also mixed-resonant) perturbations. 

Presently, we are in the process to implement the perturbations in the motion 
of disturbing bodies and then to apply this formalism to the problem of mixed-
resonances and other perturbations of the second order in the motion of asteroids. 
We are also planning to develop explicitly the second transformation to exclude the 
remaining angular variables and to get the analytical solution in the non-resonant 
case. 

Acknowledgements 

The authors are very grateful to Dr. S.Klioner and Dr. M.Sidlichovsky for some 
useful discussions concerning our work. We would like to express also our grati­
tude to Prof. R.Dvorak and Dr. E.Pilat-Lohinger for the help in our research and 
many useful suggestions. We thank also Dr. C.Ron for his attention to our work. 
A. V. thanks also the German Academician Exchange Service (DAAD) for financial 
support of this research. 

References 

Milani, A., Nobili, A., Knezevic, Z.: 1997, Icarus, 125,13. 
Nesvomy, D., Morbidelli A.: 1987, Astron. J, in press. 
Hori, G.I.: 1966, Publ. Astron. Soc. Japan, 18, 287. 
Deprit, A.: 1969, Celest. Mech, 1,12. 
Kaula, W.M.: 1966, Theory of Satellite Geodesy, Blaisdell Publ. Co., Mass. 
Yuasa, M.: 1973, Publ. Astron. Soc. Japan, 25, 399. 
Fominov A.M.: 1980, Bull. TTA, 10, 621. 

https://doi.org/10.1017/S0252921100072444 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100072444



