30C45, 30A32

BULL. AUSTRAL. MATH. SOC. VOL. 35 (1987) 387-396

ON CERTAIN INEQUALITIES FOR SOME REGULAR

FUNCTIONS DEFINED ON THE UNIT DISC

Ming-Po Chen and Ih-Ren Lan

In this paper we obtain some inequalities for some regular functions f defined on the unit disc. Our results include or improve several previous results.

1. Introduction.

Let A(p) denote the class of function $f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n$

which are regular in the unit disc $E = \{z : |z| < 1\}$. If $g(z) = z^p + \sum_{n=p+1}^{\infty} b_n z^n$

and
$$h(z) = z^p + \sum_{n=p+1}^{\infty} c_n z^n$$
 belong to $A(p)$, we define the Hadamard

product or convolution of g and h by $(g^*h)(z) = z^p + \sum_{n=p+1}^{\infty} b_n c_n z^n$.

$$z \in E$$
. For $f \in A(p)$, define

(1)
$$D^{n+p-1}f(z) = f(z) * \left(\frac{z^p}{(1-z)^{n+p}}\right),$$

Received 26 May 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 \$A2.00 + 0.00.

where n is any integer greater than -p . Then

(2)
$$D^{n+p-1}f(z) = \left(\frac{z^p(z^{n-1}f(z))^{(n+p-1)}}{(n+p-1)!}\right)$$

It can be shown that (2) yields the following identity

(3)
$$z(D^{n+p-1}f(z))' = (n+p)D^{n+p}f(z) - nD^{n+p-1}f(z) .$$

In this note we give certain inequalities for $f \in A(p)$ which satisfies the condition

(4)
$$\operatorname{Re}\left\{\frac{D^{n+p-1}f(z)}{z^{p}}\right\} > \alpha$$

and for the integral (5) of functions satisfying (4),

(5)
$$F(z) = \frac{p+c}{z^{C}} \int_{0}^{z} u^{C-1} f(u) du .$$

For the existence of the integral in (5), the power represents the principal branch. These inequalities include or improve several results given by Bernardi [1], Goel and Sohi [2], Jack [3], Libera [4], Obradovic [5,6], Owa [7], Shukla and Kumar [8], Singh and Singh [9], Soni [10] and Strohacker [11].

To prove the inequalities, we need the following lemma of Jack [3].

LEMMA. Let w(z) be regular in the unit disc, with w(0) = 0. Then if |w| attains its maximum value on the circle |z| = r at a point z_{γ} , we have

$$z_1 \omega'(z_1) = k \omega(z_1)$$

where k is real and $k \ge 1$.

2. Main results.

THEOREM 1. Let $f \in A(p)$ for some $p \in N$ and satisfy the condition

(6)
$$Re\left\{\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)}\right\} > \alpha , z \in E ,$$

for some integer n greater than -p and $\alpha < 1$, then

-- ---

$$Re\left\{\frac{D^{n+p}F(z)}{D^{n+p-1}F(z)}\right\} > \gamma(\alpha,n,p,c),$$

388

where F is defined as in (5), c+p>0, $c \ge 2(1-\alpha)(n+p) - (p+1)$ and $\gamma(\alpha,n,p,c) = \{2(n-c) + 2\alpha(p+n) - 1 + (p+1) \}$

$$\sqrt{(2(c-n)+2\alpha(p+n)-1)^2+8(p+c)} \ (4(p+n)) \ .$$

For a = [2(c+p-1)(n+p-1) - 1]/[2(n+p)(c+p-1)] and $c \ge -p+2$ in Theorem 1, it is easy to obtain that $\gamma(\alpha,n,p,c) = (n+p-1)/(n+p)$, thus Theorem 1 implies a result by Soni [10].

COROLLARY 1. Let $f \in A(p)$ satisfy the condition

$$Re\left\{\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)}\right\} > \left[2(c+p-1)(n+p-1)-1\right]/\left[2(n+p)(c+p-1)\right]$$

 $z \in E$, p a positive integer, n any integer greater than -p and $c \ge -p+2$.

Then

$$Re\{\frac{D^{n+p}F(z)}{D^{n+p-1}F(z)}\} > (n+p-1)/(n+p)$$

The second corollary which can be derived from Theorem 1 was proved by Obradovic [6]. Take p = 1, n = 0 and $\alpha < 1$ and note that

$$\frac{zf'(z)}{f(z)} = \frac{Df(z)}{f(z)} = -c + \frac{z^c f(z)}{\int_0^z u^{c-1} f(u) du}$$

and $\gamma(\alpha, 0, 1, c) + c = [2c + 2a - 1 + \sqrt{(2c + 2a - 1)^2 + 8(c + 1)}]/4$, so we get:

COROLLARY 2. Let $f \in S^*(a)$, $0 \leq \alpha < 1$, and let $c > max\{-1, -2\alpha\}$, then we have

$$Re \frac{z^{c}f(z)}{\int_{0}^{z} u^{c-1}f(u)du} > [2c+2\alpha-1+\sqrt{(2c+2\alpha-1)^{2}+8(c+1)}]/4, \ z \in E,$$

where $S^*(\alpha) = \{f \in A(1) : Re[(zf'(z))/f(z)] > \alpha\}$.

Proof of Theorem 1. Suppose $f \in A(p)$ satisfies the conditions in the theorem and write

(7)
$$\frac{D^{n+p}F(z)}{D^{n+p-1}F(z)} = \frac{1-(2\gamma-1)\omega(z)}{1-\omega(z)}$$

where
$$\gamma = \gamma(\alpha, n, p, c)$$
. By (3),
 $z(D^{n+p-1}F(z))' = (n+p)D^{n+p}F(z) - nD^{n+p-1}F(z)$
 $= \left((n+p)\frac{(1-(2\gamma-1)w(z))}{1-w(z)} - n\right)D^{n+p-1}F(z)$.

It is easy to use (5) and (7) to derive that (8) $(c+p)D^{n+p} f(z) = z(D^{n+p}F(z))' + c(D^{n+p}F(z))$ $= z\left\{\frac{(1-(2\gamma-1)w(z))}{1-w(z)}D^{n+p-1}F(z)\right\}' + cD^{n+p}F(z)$ $= D^{n+p-1}F(z)\left\{\frac{2(1-\gamma)zw'(z)}{(1-w(z))^2} + \frac{1-(2\gamma-1)w(z)}{1-w(z)} - n + c\right\}\right\},$ $(c+p)D^{n+p-1}f(z) = z(D^{n+p-1}F(z))' + c(D^{n+p-1}F(z))$ $= D^{n+p-1}F(z)\left\{(n+p)\frac{(1-(2\gamma-1)w(z))}{1-w(z)} - n + c\right\}.$

From the above two identities, we conclude that

$$\frac{p^{n+p}f(z)}{p^{n+p-1}f(z)} = \frac{2(1-\gamma)z\omega'(z)}{(1-\omega(z))[p+c-((2\gamma-1)(n+p)+c-n]\omega(z)]} + \frac{1-(2\gamma-1)\omega(z)}{1-\omega(z)},$$

If $|w(z)| \neq 1$, there exists $z_1 \in E$, so that $|w(z_1)| = 1$, then by Jack's lemma, there exists $k \geq 1$, such that $z_1 w'(z_1) = k w(z_1)$.

Write $w(z_1) = u + iv$ and take the real part of the above identity. After some computations, one has

(9) Re
$$\left\{ \frac{D^{n+p}f(z)}{D^{n+p-1}f(z)} - a \right\} \mid z = z_1$$

$$= \gamma - \alpha + 2(1-\gamma)k \operatorname{Re}\left\{ \frac{u+iv}{(1-(u+iv))[p+c-((2\gamma-1)(n+p)+c-n)(u+iv)]} \right\}$$

$$= \gamma - \alpha + 2(1-\gamma)k \left\{ \frac{(u-1+iv)(a-bu+ibv)}{2(1-u)((a-bu)^2+b^2v^2)} \right\}$$

390

$$= \gamma - \alpha + \left\{ \frac{-(1-\gamma)k(a+b)}{a^2 - 2abu + b^2} \right\}$$

where we write a = p + c, $b = (2\gamma - 1)(n + p) + c - n$. Put $g(u) = (a + b)/(a^2 - 2abu + b^2) .$

The condition $c \ge 2(1-\alpha)(n+p) - (p+1)$ and the definition of $\gamma(\alpha,n,p,c)$ imply $b \ge 0$ and $\gamma < 1$, also a = p+c > 0. Then g(u) is increasing and thus $1/(a+b) = g(-1) \le g(u)$. We have from (9) and $k \ge 1$ that

$$\operatorname{Re}\left.\left\{\frac{\underline{D}^{n+p}f(z)}{\underline{D}^{n+p-1}f(z)} - \alpha\right\}\right|_{z = z_{1}} \leq \gamma - \alpha + \frac{-(1-\gamma)}{\alpha+b}$$

$$\left[2(n+p)\gamma^{2} + (2(c-n) - 2\alpha(n+p) + 1)\gamma + 2\alpha(n-c) - 1\right]/(\alpha+b) = 0$$

since γ is a root of the polynomial

=

$$2(n+p)x^{2} + (2(c-n)-2\alpha(n+p)+1)x + 2\alpha(n-c)-1 = 0.$$

This contradicts assumption (6), so the proof is completed.

We prove the remaining theorems for p = 1 only, the general case can be obtained by the same method.

THEOREM 2. Suppose $f \in A(1)$, $\alpha < 1 \leq \beta$, $n \in N_0$ and

$$Re\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\right\} > \alpha$$
then
$$Re\left(\frac{D^{n}f(z)}{z}\right) \xrightarrow{\frac{1}{2(n+1)(1-\alpha)\beta}} > \frac{\beta}{1+\beta}$$
for $z \in E$

Proof. Suppose f satisfies the conditions in the theorem, let $\gamma = \beta/(1+\beta)$ and let w(z) be a regular function such that

(10)
$$\left(\frac{\underline{D}^{n}f(z)}{z}\right)^{\frac{1}{2(n+1)(1-\alpha)\beta}} = \frac{1-(2\gamma-1)\omega(z)}{1-\omega(z)}$$

then w(0) = 0 . The theorem will follow if we can show that |w(z)| < 1 in E .

Now by differentiating (10) logarithmically, we get

$$\frac{-(2\gamma-1)z\omega'(z)}{1-(2\gamma-1)\omega(z)} - \frac{-z\omega'(z)}{1-\omega(z)} = \frac{1}{2(1-\alpha)\beta} \left\{ \frac{D^{n+1}f(z)}{D^{n}f(z)} - 1 \right\} ,$$

where we use identity (3) for p = 1, so

(11)
$$\frac{D^{n+1}f(z)}{D^n f(z)} = \frac{4(1-\alpha)\beta(1-\gamma)zw'(z)}{[1-w(z)][1-(2\gamma-1)w(z)]} + 1.$$

If $|w(z)| \neq 1$ in E, by Jack's lemma, there exist $z_1 \in E$ and a real $k \ge 1$, such that $|w(z_1)| = 1 \ge |w(z)|$, $\forall |z| \le |z_1| = r < 1$, and $z_1 w'(z_1) = kw(z_1)$. Let $w(z_1) = u + iv$, then

(12)
Re
$$\{z_1 \omega'(z_1)/[(1-\omega(z_1))(1-(2\gamma-1)\omega(z_1))]\}$$

 $= -\gamma k/[2(2\gamma^2 - 2\gamma + 1 - (2\gamma-1)u)]$.
Put
 $g(u) = 1/[2\gamma^2 - 2\gamma + 1 - (2\gamma-1)u]$
 $g(-1) = 1/(2\gamma^2), g(1) = 1/(2(1-\gamma)^2)$.

 $\gamma \geq 1/2$ implies g(u) is an increasing function of u , $1/(2\gamma^2) \leq g(u) \leq 1/(2(1-\gamma)^2) \ .$

Applying (11) and (12), one has

$$\operatorname{Re} \left\{ \frac{D^{n+1}f(z)}{D^{n}f(z)} - \alpha \right\} \bigg|_{z=z_{1}}$$

$$= \left[4(1-\alpha)\beta(1-\gamma)(-\gamma k) \right] / \left[2(2\gamma^{2}-2\gamma+1-(2\gamma-1)u) \right] + 1 - \alpha$$

$$= 1 - \alpha - 2(1-\alpha)\beta(1-\gamma)\gamma kg(u)$$

$$\leq 1 - \alpha - (1-\alpha)\beta(1-\gamma)/\gamma = 0$$

which contradicts the assumption. Thus the theorem is proved.

Replacing *n* by *n+1* and $\alpha = 1/2$, $\beta = 1$ in Theorem 2, we obtain: COROLLARY 3. If $f \in A(1)$, $z \in E$ and

Re
$$\left\{\frac{D^{n+2}f(z)}{D^{n+1}f(z)}\right\} > 1/2$$
, then Re $\left(\frac{D^{n+1}f(z)}{z}\right)^{\frac{1}{n+2}} 1/2$.

This is Theorem 3 of [9] by Singh and Singh. Under the condition of

Corollary 3, taking n = 0, we have the known result of Strohacker [11], that is, $\operatorname{Re}\{1 + zf''(z)/f'(z)\} > 0$ implies $\operatorname{Re}\{\sqrt{f'(z)}\} > 1/2$. By considering n = 0, $\beta = 1$ in Theorem 2, one obtains:

COROLLARY 4. If $f \in A(1)$ and

$$Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha$$
, then $Re\left(\frac{f(z)}{z}\right) \xrightarrow{\frac{1}{2(1-\alpha)}} > 1/2$, $z \in E$.

This is Theorem 2 of Jack [3]. Recently Obradovic [5] proved the following result which can be derived from Theorem 2 by taking n = 0and $\beta = 1/(2(1-\alpha))$.

COROLLARY 5. If $f \in A(1)$ and

$$Re\left(rac{zf'(z)}{f(z)}
ight) > lpha$$
, then $Re\left(rac{f(z)}{z}
ight) > 1/(3-2lpha)$, $z \in E$.

Note that $f \in K(\alpha)$, denoting the class

 $\{f \in A(1) : \operatorname{Re}(1 + zf''(z)/f'(z)) > \alpha\}$,

is equivalent to $\operatorname{Re}(D^2 f/Df(z)) > (1+\alpha)/2$. So replacing α by $(1+\alpha)/2$, n by 1 and β by $1/(1-\alpha)$ in Theorem 2, one obtains Corollary 6 which was proved by Obradovic and Owa [7].

COROLLARY 6. If $f \in K(\alpha)$, then $Re\sqrt{f'(z)} > 1/(2-\alpha)$.

THEOREM 3. Suppose Re c>-1, $\alpha < 1$, $n \in N_0 = N \cup \{0\}$, $f \in A(1)$ and satisfies

$$Re \left\{\frac{D^{n+1}f(z)}{z}\right\} > \alpha, \text{ for } z \in E, \text{ then } Re \left\{\frac{D^{n+1}F(z)}{z}\right\} > \gamma(\alpha, c),$$

for $z \in E$, where $\gamma(\alpha, c) = \{\alpha + Re[1/(2(c+1))]\}/\{1 + Re[1/(2(c+1))]\}$ and F(z) is defined as in (5) for p = 1.

Proof. As in Theorem 1, we assume the function f satisfies the conditions in the theorem and write

(13)
$$\frac{D^{n+1}F(z)}{z} = \frac{1-(2\gamma-1)w(z)}{1-w(z)}$$

where $\gamma = \gamma(\alpha, c)$ and w(z) a regular function in E, then w(0) = 0. It is sufficient to show that $|w(z)| < 1, \forall z \in E$.

Taking the logarithmic derivative of (13), one obtains

(14)
$$\frac{z(D^{n+1}F(z))'}{D^{n+1}F(z)} - 1 = \left\{\frac{2(1-\gamma)z\omega'(z)}{[1-\omega(z)][1-(2\gamma-1)\omega(z)]}\right\}.$$

From (13), (14) and (8) with p = 1, we have

(15)
$$(c+1) \left(\frac{D^{n+1}f(z)}{z} \right) = (D^{n+1}F(z))' + c \frac{D^{n+1}F(z)}{z}$$
$$= \frac{2(1-\gamma)z\omega'(z)}{(1-\omega(z))^2} + (1+c) \left(\frac{1-(2\gamma-1)\omega(z)}{1-\omega(z)} \right) .$$

If $|w(z)| \neq 1$, there exists $z_j \in E$, so that $|w(z)| \leq |w(z_j)| = 1$, for all $z \in E$, then by Jack's lemma, there exists $k \geq 1$, such that

$$z_1 w'(z_1) = k w(z_1)$$

Write $w(z_1) = u + iv$ so that $z_1 w'(z_1)/(1 - w(z_1))^2 = -k/(2(1-u))$ and take the real part of (15). After some computations we have

$$\operatorname{Re} \left(\frac{p^{n+1}f(z)}{z} - \alpha \right) \Big|_{z=z_{1}} = \frac{-(1-\gamma)k}{1-u} \cdot \operatorname{Re} \left(\frac{1}{c+1} \right) + \gamma - \alpha$$

$$\leq \frac{-(1-\gamma)}{2} \cdot \operatorname{Re} \left(\frac{1}{c+1} \right) + \gamma - \alpha$$

$$= \gamma \left\{ 1 + \frac{1}{2} \quad \operatorname{Re} \left(\frac{1}{c+1} \right) \right\} - \alpha - \frac{1}{2} \operatorname{Re} \left(\frac{1}{c+1} \right)$$

$$= 0 ,$$

which contradicts the assumption. So |w(z)| < 1, for $z \in E$. Thus we have proved the theorem.

From (3) and (8),

$$\frac{D^{n+2}F(z)}{z} = (c+1) \frac{D^{n+1}f(z)}{z} + (n+1-c) \frac{D^{n+1}F(z)}{z}$$

A few computations lead to:

COROLLARY 7. If $-1 < c \leq n+1$ and under the conditions of Theorem 3, then we have

(16) Re
$$\frac{D^{n+2}F(z)}{z} > \alpha + [(n+1-c)(1-\alpha)]/[(n+2)(2c+3)]$$

This result improves the estimations of theorem 3.3 of Shukla and Kumar $[\delta]$.

If
$$-1 < c \leq n+1$$
 and $\alpha = -(n+1-c)/[(c+1)(2n+5)] > -1/2(c+1))$,
(16) implies $\operatorname{Re}\{D^{n+2}F(z)/z\} > 0$. From this result, considering real c and α replaced by 0 and $-1/(2(c+1))$ respectively in Theorem 3, we derive the following two Corollaries which are theorems 2 and 4 obtained by Singh and Singh in [9].

COROLLARY 8. If $f \in M_n(0)$, then (i) $\forall c > -1$, $F \in M_n(0)$; (ii) for $-1 < c \le n+1$, $F \in M_{n+1}(0)$, where $n \in N_0$ and

 $M_n(\alpha) = \{f \in A(1) : Re[D^{n+1}f(z)/z] > \alpha , z \in E\}.$

COROLLARY 9. If $f \in A(1)$ and $Re [D^{n+1}f(z)/z] > -1/(2(c+1))$, c > -1, then $F \in M_n(0)$.

Since $\gamma(\alpha,c) = \alpha + \{(1-\alpha)\operatorname{Re}[1/(2(c+1))]\}/\{1+\operatorname{Re}[1/(2(c+1))]\} > \alpha$, Theorem 3 may be rewritten as: If $f \in M_n(\alpha)$, then

 $F \in M_n(\gamma(\alpha, c)) \subset M_n(\alpha)$ which implies the theorem 2 of Goel and Sohi [2]. When $n = \alpha = 0$, we have Bernardi's result [1]: If $\operatorname{Re} f'(z) > 0$, then $\operatorname{Re} F'(z) > 0$. If c = 1, we have a result of Libera [4].

COROLLARY 10. If $f \in A(1)$, c > -1, $0 \le \alpha < 1$ and $Re[D^{n+1}f(z)/z] > \alpha - (1-\alpha)/(2(1+c))$ then $F \in M_n(\alpha)$.

This is Theorem 3 in [2] which can be derived from our Theorem 3 by taking $\alpha = \alpha - (1-\alpha)/(2(1+c))$.

Obradovic [5,6] recently gave the following two results which can also be obtained from Theorem 3 by taking $n = c = \alpha = 0$ and n = -1respectively. Note that $D^0f(z) = f(z)$.

COROLLARY 11. Let $f \in A(1)$, then $Re\{f'(z)\} > 0$ implies $Re\{f(z)/z\} > 1/3$.

COROLLARY 12. Let $f \in A(1)$, $\alpha < 1$ and c > -1, then for $z \in E$ Re{f(z)/z} > α implies

$$\operatorname{Re}\left(\frac{c+1}{z^{c+1}}\int^{z}t^{c-1}f(t)dt\right) > \alpha + (1-\alpha)/(3+2c) .$$

We state the following theorem which is proved by a similar method. It improves a result of Goel and Sohi [2].

THEOREM 4. Suppose $\alpha < 1$, $f \in A(1)$ and $Re[D^{n+2}f(z)/z] > \alpha$, then $[D^{n+1}f(z)/z] > [2(n+2)\alpha + 1]/(2n+5), n \in N_{0}.$

References

- [1] S. D. Bernardi, "Convex and starlike functions", Trans. Amer. Math. Soc. 135 (1969), 429-446.
- [2] R. M. Goel and N. S. Sohi, "Subclasses of univalent functions", Tamkang J. Math. 11 (1980), 77-81.
- [3] I. S. Jack, "Functions starlike and convex of order α", J. London Math. Soc. (2) 3 (1971), 469-474.
- [4] R. J. Libera, "Some classes of regular univalent functions", Proc. Amer. Math. Soc., 16 (1965), 755-758.
- [5] M. Obradovic, "Estimates of the real part of f(z)/z for some classes of univalent functions", *Mat. Vesnik* 36(4) (1984), 266-270.
- [6] M. Obradovic, "On certain inequalities for some regular functions in |z| < 1", Internat. J. Math. and Math. Sci. 8 (1985), 677-681.</p>
- [7] M. Obradovic and S. Owa, "On some results of convex functions of order α", Mat. Vesnik, (to appear).
- [8] S. L. Shukla and V. Kumar, "Univalent functions defined by Ruscheweyh derivatives", Internat. J. Math. and Math. Sci., 6 (1983), 483-486.
- [9] S. Singh and R. Singh, "New subclasses of univalent functions", Indian Math. Soc., 43 (1979), 149-159.
- [10] A. K. Soni, "Generalizations of p-valent functions via the Hadamard product", Internat. J. Math. and Math. Sci. 5 (1982) 289-299.
- [11] E. Strohacker, "Beitrage zur theorie der schlichten funkitone", Math. 2., 37 (1933), 256-280.

Institute of Mathematics	Institute of Mathematics
Academia Sinica	Academia Sinica
Nankang, Taipei, Taiwan	Nankang, Taipei, Taiwan
Republic of China	Republic of China