ON CERTAIN INEQUALITIES FOR SOME REGULAR

FUNCTIONS DEFINED ON THE UNIT DISC

Ming-Po Chen and Ih-Ren Lan

In this paper we obtain some inequalities for some regular functions f defined on the unit disc. Our results include or improve several previous results.

1. Introduction.

Let $A(p)$ denote the class of function $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ which are regular in the unit disc $E=\{z:|z|<1\}$. If $g(z)=z^{p}+\sum_{n=p+1}^{\infty} b_{n} z^{n}$ and $h(z)=z^{p}+\sum_{n=p+1}^{\infty} c_{n} z^{n}$ belong to $A(p)$, we define the Hadamard product or convolution of g and h by $\left(g^{*} h\right)(z)=z^{p}+\sum_{n=p+1}^{\infty} b_{n} c_{n} z^{n}$. $z \in E$. For $f \in A(p)$, define

$$
\begin{equation*}
D^{n+p-1} f(z)=f(z) *\left(\frac{z^{p}}{(1-z)^{n+p}}\right), \tag{1}
\end{equation*}
$$

Received 26 May 1986.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 $\$ \mathrm{~A} 2.00+0.00$.
where n is any integer greater than $-p$. Then
(2)

$$
D^{n+p-1} f(z)=\left(\frac{z^{p}\left(z^{n-1} f(z)\right)^{(n+p-1)}}{(n+p-1)!}\right)
$$

It can be shown that (2) yields the following identity

$$
\begin{equation*}
z\left(D^{n+p-1} f(z)\right)^{\prime}=(n+p) D^{n+p} f(z)-n D^{n+p-1} f(z) . \tag{3}
\end{equation*}
$$

In this note we give certain inequalities for $f \in A(p)$ which satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+p-1} f(z)}{z^{p}}\right\}>\alpha \tag{4}
\end{equation*}
$$

and for the integral (5) of functions satisfying (4),

$$
\begin{equation*}
F(z)=\frac{p+c}{\dot{z}^{c}} \int_{0}^{z} u^{c-1} f(u) d u \tag{5}
\end{equation*}
$$

For the existence of the integral in (5), the power represents the principal branch. These inequalities include or improve several results given by Bernardi [1], Goel and Sohi [2], Jack [3], Libera [4], Obradovic [5,6], Owa [7], Shukla and Kumar [8], Singh and Singh [9], Soni [10] and Strohacker [11].

To prove the inequalities, we need the following lemma of Jack [3].
LEMMA. Let $w(z)$ be regular in the unit disc, with $w(0)=0$.
Then if $|\omega|$ attains its maximom value on the circle $|z|=r$ at a point z_{1}, we have

$$
z_{1} w^{\prime}\left(z_{1}\right)=\operatorname{kov}\left(z_{1}\right)
$$

where k is real and $k \geqq 1$.
2. Main results.

THEOREM 1. Let $f \in A(p)$ for some $p \in N$ and satisfy the condition
(6)

$$
\operatorname{Re}\left\{\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}\right\}>\alpha, \quad z \in E,
$$

for some integer n greater than $-p$ and $\alpha<1$, then

$$
\operatorname{Re}\left\{\frac{D^{n+p_{F}}(z)}{D^{n+p-1} F(z)}\right\}>\gamma(\alpha, n, p, c),
$$

where F is defined as in (5), $c+p>0, c \geqq 2(1-\alpha)(n+p)-(p+1)$ and $\gamma(\alpha, n, p, c)=\{2(n-c)+2 \alpha(p+n)-1+$

$$
\left.\sqrt{(2(c-n)+2 \alpha(p+n)-1)^{2}+8(p+c)}\right\} /(4(p+n))
$$

For $a=[2(c+p-1)(n+p-1)-1] /[2(n+p)(c+p-1)]$ and $c \geqq-p+2$ in Theorem 1 , it is easy to obtain that $\gamma(\alpha, n, p, c)=(n+p-1) /(n+p)$, thus Theorem 1 implies a result by Soni [10].

COROLLARY 1. Let $f \in A(p)$ satisfy the condition

$$
\operatorname{Re}\left\{\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}\right\}>[2(c+p-1)(n+p-1)-1] /[2(n+p)(c+p-1)]
$$

$z \in E, p$ a positive integer, n any integer greater than $-p$ and $c \geqq-p+2$.

Then

$$
\operatorname{Re}\left\{\frac{D^{n+p_{F}}(z)}{D^{n+p-1} F(z)}\right\}>(n+p-1) /(n+p)
$$

The second corollary which can be derived from Theorem 1 was proved by Obradovic [6]. Take $p=1, n=0$ and $\alpha<1$ and note that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{D f(z)}{f(z)}=-c+\frac{z^{c} f(z)}{\int_{0}^{z} u^{c-1} f(u) d u}
$$

and $\gamma(\alpha, 0,1, c)+c=\left[2 c+2 a-1+\sqrt{(2 c+2 \alpha-1)^{2}+8(c+1)}\right] / 4$, so we get:
COROLLARY 2. Let $f \in S^{*}(a), 0 \leqq \alpha<1$, and let $c>\max \{-1,-2 \alpha\}$, then we have

$$
\operatorname{Re} \frac{z^{c} f(z)}{\int_{0}^{2} u^{c-1} f(u) d u}>\left[2 c+2 \alpha-1+\sqrt{(2 c+2 \alpha-1)^{2}+8(c+1)}\right] / 4, z \in E,
$$

where $S^{*}(\alpha)=\left\{f \in A(1): \operatorname{Re}\left[\left(z f^{\prime}(z)\right) / f(z)\right]>\alpha\right\}$.
Proof of Theorem 1. Suppose $f \in A(p)$ satisfies the conditions in the theorem and write

$$
\begin{equation*}
\frac{D^{n+p_{F}}(z)}{D^{n+p-1} F(z)}=\frac{1-(2 y-1) w(z)}{1-w(z)} \tag{7}
\end{equation*}
$$

where $\gamma=\gamma(\alpha, n, p, c)$. By (3),

$$
\begin{aligned}
z\left(D^{n+p-1} F(z)\right)^{\prime} & =(n+p) D^{n+p_{F}(z)-n D^{n+p-1} F(z)} \\
& =\left((n+p) \frac{(1-(2 \gamma-1) \omega(z))}{1-\omega(z)}-n\right) D^{n+p-1} F(z) .
\end{aligned}
$$

It is easy to use (5) and (7) to derive that
(8) $(c+p) D^{n+p} f(z)=z\left(D^{n+p_{F}(z)}\right)^{\prime}+c\left(D^{\left.n+p_{F}(z)\right)}\right.$

$$
\begin{aligned}
= & z\left[\frac{(1-(2 \gamma-1) w(z))}{1-w(z)} D^{n+p-1} F(z)\right) \prime+c D^{n+p_{F}}(z) \\
= & D^{n+p-1} F(z)\left\{\frac{2(1-\gamma) z w^{\prime}(z)}{(1-w(z))^{2}}\right. \\
& \left.+\frac{1-(2 \gamma-1) w(z)}{1-w(z)}\left[(n+p) \frac{(1-(2 \gamma-1) w(z))}{1-w(z)}-n+c\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
(c+p) D^{n+p-1} f(z) & =z\left(D^{n+p-1} F(z)\right)^{\prime}+c\left(D^{n+p-1} F(z)\right) \\
& =D^{n+p-1} F(z)\left((n+p) \frac{(1-(2 \gamma-1) w(z))}{1-w(z)}-n+c\right) .
\end{aligned}
$$

From the above two identities, we conclude that

$$
\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}=\frac{2(1-\gamma) z w^{\prime}(z)}{(1-w(z)[p+c-((2 \gamma-1)(n+p)+c-n] w(z)}+\frac{1-(2 \gamma-1) w(z)}{1-w(z)} .
$$

If $|w(z)| \nmid 1$, there exists $z_{1} \in E$, so that. $\left|w\left(z_{1}\right)\right|=1$, then by Jack's lemma, there exists $k \geqq 1$, such that $z_{1} w^{\prime}\left(z_{1}\right)=k w\left(z_{1}\right)$.

Write $w\left(z_{1}\right)=u+i v$ and take the real part of the above identity. After some computations, one has
(9) $\left.\operatorname{Re}\left\{\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-a\right\} \right\rvert\, z=z_{1}$

$$
\begin{aligned}
& =\gamma-\alpha+2(1-\gamma) k \operatorname{Re}\left\{\frac{u+i v}{(1-(u+i v))[p+c-((2 \gamma-1)(n+p)+c-n)(u+i v)]}\right\} \\
& =\gamma-\alpha+2(1-\gamma) k\left\{\frac{(u-1+i v)(a-b u+i b v)}{2(1-u)\left((a-b u)^{2}+b^{2} v^{2}\right.}\right\}
\end{aligned}
$$

$$
=\gamma-\alpha+\left\{\frac{-(1-\gamma) k(a+b)}{a^{2}-2 a b u+b^{2}}\right\}
$$

where we write $a=p+c, b=(2 \gamma-1)(n+p)+c-n$. Put

$$
g(u)=(a+b) /\left(a^{2}-2 a b u+b^{2}\right)
$$

The condition $c \geqq 2(1-\alpha)(n+p)-(p+1)$ and the definition of $\gamma(\alpha, n, p, c)$ imply $b \geqq 0$ and $\gamma<1$, also $a=p+c>0$. Then $g(u)$ is increasing and thus $1 /(a+b)=g(-1) \leqq g(u)$. We have from (9) and $k \geqq 1$ that

$$
\begin{aligned}
& \left.\quad \operatorname{Re}\left\{\frac{D^{n+p_{f}}(z)}{D^{n+p-1} f(z)}-\alpha\right\}\right|_{z=z_{1}} \leqq \gamma-\alpha+\frac{-(1-\gamma)}{a+b} \\
& =\left[2(n+p) \gamma^{2}+(2(c-n)-2 \alpha(n+p)+1) \gamma+2 \alpha(n-c)-1\right] /(a+b)=0 .
\end{aligned}
$$

since γ is a root of the polynomial

$$
2(n+p) x^{2}+(2(c-n)-2 \alpha(n+p)+1) x+2 \alpha(n-c)-1=0
$$

This contradicts assumption (6), so the proof is completed.
We prove the remaining theorems for $p=1$ only, the general case can be obtained by the same method.

THEOREM 2. Suppose $f \in A(1), \alpha<1 \leqq \beta, n \in N_{0}$ and

$$
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}>\alpha
$$

then

$$
\operatorname{Re}\left(\frac{D^{n} f(z)}{z}\right)^{\frac{1}{2(n+1)(1-\alpha) \beta}}>\frac{\beta}{1+\beta}
$$

for $z \in E$.
Proof. Suppose f satisfies the conditions in the theorem, let $\gamma=\beta /(1+\beta)$ and let $w(z)$ be a regular function such that

$$
\begin{equation*}
\left(\frac{D^{n} f(z)}{z}\right)^{\frac{1}{2(n+1)(1-\alpha) \beta}}=\frac{1-(2 \gamma-1) w(z)}{1-w(z)} \tag{10}
\end{equation*}
$$

then $w(0)=0$. The theorem will follow if we can show that $|w(z)|<1$ in E.

Now by differentiating (10) logarithmically, we get

$$
\frac{-(2 \gamma-1) z \omega^{\prime}(z)}{1-(2 \gamma-1) \omega(z)}-\frac{-z \omega^{\prime}(z)}{1-w(z)}=\frac{1}{2(1-\alpha) \beta}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right\},
$$

where we use identity (3) for $p=1$, so

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{D^{n} f(z)}=\frac{4(1-\alpha) \beta(1-\gamma) z w^{\prime}(z)}{[1-w(z)][1-(2 \gamma-1) w(z)]}+1 \tag{11}
\end{equation*}
$$

If $|w(z)| \neq 1$ in E, by Jack's lemma, there exist $z_{1} \in E$ and a real $k \geqq 1$, such that $\left|w\left(z_{1}\right)\right|=1 \geqq|w(z)|, \forall|z| \leqq\left|z_{1}\right|=r<1$, and $z_{1} w^{\prime}\left(z_{1}\right)=k w\left(z_{1}\right)$. Let $w\left(z_{1}\right)=u+i v$, then

$$
\begin{equation*}
\operatorname{Re}\left\{z_{1} w^{\prime}\left(z_{1}\right) /\left[\left(1-w\left(z_{1}\right)\right)\left(1-(2 \gamma-1) w\left(z_{1}\right)\right)\right]\right\} \tag{12}
\end{equation*}
$$

$$
=-\gamma k /\left[2\left(2 \gamma^{2}-2 \gamma+1-(2 \gamma-1) u\right)\right]
$$

$$
g(u)=1 /\left[2 \gamma^{2}-2 \gamma+1-(2 \gamma-1) u\right]
$$

$$
g(-1)=1 /\left(2 \gamma^{2}\right), g(1)=1 /\left(2(1-\gamma)^{2}\right)
$$

$\gamma \geqq 1 / 2$ implies $g(u)$ is an increasing function of u,

$$
1 /\left(2 \gamma^{2}\right) \leqq g(u) \leqq 1 /\left(2(1-\gamma)^{2}\right)
$$

Applying (11) and (12), one has

$$
\begin{aligned}
& \left.\quad \operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-\alpha\right\}\right|_{z=z_{1}} \\
& =[4(1-\alpha) \beta(1-\gamma)(-\gamma k)] /\left[2\left(2 \gamma^{2}-2 \gamma+1-(2 \gamma-1) u\right)\right]+1-\alpha \\
& =1-\alpha-2(1-\alpha) \beta(1-\gamma) \gamma k g(u) \\
& \leqq 1-\alpha-(1-\alpha) B(1-\gamma) / \gamma=0
\end{aligned}
$$

which contradicts the assumption. Thus the theorem is proved.
Replacing n by $n+1$ and $\alpha=1 / 2, \beta=1$ in Theorem 2 , we obtain: COROLLARY 3. If $f \in A(1), z \in E$ and $\operatorname{Re}\left\{\frac{D^{n+2} f(z)}{D^{n+1} f(z)}\right\}>1 / 2$, then $\operatorname{Re}\left(\frac{D^{n+1} f(z)}{z}\right)^{\frac{1}{n+2}} 1 / 2$.

This is Theorem 3 of [9] by Singh and Singh. Under the condition of

Corollary 3, taking $n=0$, we have the known result of Strohacker [11], that is , $\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0$ implies $\operatorname{Re}\left\{\sqrt{f^{\prime}(z)}\right\}>1 / 2$. By considering $n=0, \beta=1$ in Theorem 2, one obtains:

COROLLARY 4. If $f \in A(1)$ and
$\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha$, then $\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\frac{1}{2(1-\alpha)}}>1 / 2, z \in E$.
This is Theorem 2 of Jack [3]. Recently Obradovic [5] proved the following result which can be derived from Theorem 2 by taking $n=0$ and $\quad \beta=1 /(2(1-\alpha))$.

COROLLARY 5. If $f \in A(1)$ and
$\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha$, then $\operatorname{Re}\left(\frac{f(z)}{z}\right)>1 /(3-2 \alpha), z \in E$.
Note that $f \in K(\alpha)$, denoting the class

$$
\left\{f \in A(1): \operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)>\alpha\right\},
$$

is equivalent to $\operatorname{Re}\left(D^{2} f / D f(z)\right)>(1+\alpha) / 2$. So replacing α by $(1+\alpha) / 2, n$ by 1 and β by $1 /(1-\alpha)$ in Theorem 2, one obtains Corollary 6 which was proved by Obradovic and Owa [7].

COROLLARY 6. If $f \in K(\alpha)$, then $\operatorname{Re} \sqrt{f^{\prime}(z)}>1 /(2-\alpha)$.
THEOREM 3. Suppose $R e c>-1, \alpha<1, n \in N_{0}=N \cup\{0\}, f \in A(1)$ and satisfies
$\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{z}\right\}>\alpha$, for $z \in E$, then $\operatorname{Re}\left\{\frac{D^{n+1} F(z)}{z}\right\}>\gamma(\alpha, c)$, for $z \in E$, where $\gamma(\alpha, c)=\{\alpha+\operatorname{Re}[1 /(2(c+1))]\} /\{1+\operatorname{Re}[1 /(2(c+1))]\}$ and $F(z)$ is defined as in (5) for $p=1$.

Proof. As in Theorem 1, we assume the function f satisfies the conditions in the theorem and write

$$
\begin{equation*}
\frac{D^{n+1} F(z)}{z}=\frac{1-(2 \gamma-1) w(z)}{1-w(z)} \tag{13}
\end{equation*}
$$

where $\gamma=\gamma(\alpha, c)$ and $w(z)$ a regular function in E, then $w(0)=0$. It is sufficient to show that $|\omega(z)|<1, \forall z \in E$.

Taking the logarithmic derivative of (13), one obtains

$$
\begin{equation*}
\frac{z\left(D^{n+1} E(z)^{\prime}\right.}{D^{n+1} F(z)}-1=\left\{\frac{2(1-\gamma) z w^{\prime}(z)}{[1-w(z)][1-(2 \gamma-1) w(z)]}\right\} \tag{14}
\end{equation*}
$$

From (13), (14) and (8) with $p=1$, we have

$$
\begin{gather*}
(c+1)\left[\frac{D^{n+1} f(z)}{z}\right]=\left(D^{n+1} F(z)\right)^{\prime}+c \frac{D^{n+1} F(z)}{z} \tag{15}\\
=\frac{2(1-\gamma) z w^{\prime}(z)}{(1-w(z))^{2}}+(1+c)\left(\frac{1-(2 \gamma-1) w(z)}{1-w(z)}\right)
\end{gather*}
$$

If $|w(z)| \neq 1$, there exists $z_{1} \in E$, so that $|w(z)| \leqq|w(z)|=1$, for all $z \in E$, then by Jack's lemma, thexe exists $k \geqq 1$, such that

$$
z_{1} w^{\prime}\left(z_{1}\right)=\operatorname{kw}\left(z_{1}\right)
$$

Write $w\left(z_{1}\right)=u+i v$ so that $z_{1} w^{\prime}\left(z_{1}\right) /\left(1-w\left(z_{1}\right)\right)^{2}=-k /(2(1-u)$ and take the real part of (15). After some computations we have

$$
\begin{aligned}
\left.\operatorname{Re}\left(\frac{D^{n+1} f(z)}{z}-\alpha\right)\right|_{z=z} & =\frac{-(1-\gamma) k}{1-u} \cdot \operatorname{Re}\left(\frac{1}{c+1}\right)+\gamma-\alpha \\
& \leqq \frac{-(1-\gamma)}{2} \cdot \operatorname{Re}\left(\frac{1}{c+1}\right)+\gamma-\alpha \\
& =\gamma\left\{1+\frac{1}{2} \operatorname{Re}\left(\frac{1}{c+1}\right)\right\}-\alpha-\frac{1}{2} \operatorname{Re}\left(\frac{1}{c+1}\right) \\
& =0
\end{aligned}
$$

which contradicts the assumption. So $|\omega(z)|<1$, for $z \in E$. Thus we have proved the theorem.

From (3) and (8),

$$
\frac{D^{n+2} F(z)}{z}=(c+1) \frac{D^{n+1} f(z)}{z}+(n+1-c) \frac{D^{n+1} F(z)}{z}
$$

A few computations lead to:
COROLLARY 7. If $-1<c \leqq n+1$ and wnder the conditions of Theorem 3, then we have
(16) $\quad \operatorname{Re} \frac{D^{n+2} F(z)}{z}>\alpha+[(n+1-c)(1-\alpha)] /[(n+2)(2 c+3)]$.

This result improves the estimations of theorem 3.3 of Shukla and Kumar [8].

If $-1<c \leqq n+1$ and $\alpha=-(n+1-c) /[(c+1)(2 n+5)]>-1 / 2(c+1))$,
(16) implies $\operatorname{Re}\left\{D^{n+2} F(z) / z\right\}>0$. From this result, considering real c and α replaced by 0 and $-1 /(2(c+1))$ respectively in Theorem 3 , we derive the following two Corollaries which are theorems 2 and 4 obtained by Singh and Singh in [9].

COROLLARY 8. If $f \in M_{n}(0)$, then $(i) \quad \forall c>-1, F \in M_{n}(0)$;
(ii) for $-1<c \leqq n+1, F \in M_{n+1}(0)$, where $n \in N_{0}$ and
$M_{n}(\alpha)=\left\{f \in A(1): \operatorname{Re}\left[D^{n+1} f(z) / z\right]>\alpha, z \in E\right\}$.
COROLLARY 9. If $f \in A(1)$ and $\operatorname{Re}\left[D^{n+1} f(z) / z\right]>-1 /(2(c+1))$, $c>-1$, then $F \in M_{n}(0)$.

Since $\gamma(\alpha, c)=\alpha+\{(1-\alpha) \operatorname{Re}[1 /(2(c+1))]\} /\{1+\operatorname{Re}[1 /(2(c+1))]\}>\alpha$, Theorem 3 may be rewritten as: If $f \in M_{n}(\alpha)$, then $F \in M_{n}(\gamma(\alpha, c)) \subset M_{n}(\alpha)$ which implies the theorem 2 of Goel and Sohi [2]. When $n=\alpha=0$, we have Bernardi's result [1]: If $\operatorname{Ref}^{\prime}(z)>0$, then $\operatorname{Re} F^{\prime}(z)>0$. If $c=1$, we have a result of Libera [4].

COROLLARY 10. If $f \in A(1), c>-1,0 \leqq \alpha<1$ and

$$
\operatorname{Re}\left[D^{n+1} f(z) / z\right]>\alpha-(1-\alpha) /(2(1+c)) \text { then } F \in M_{n}(\alpha)
$$

This is Theorem 3 in [2] which can be derived from our Theorem 3 by taking $\alpha=\alpha-(1-\alpha) /(2(1+c))$.

Obradovic $[5,6]$ recently gave the following two results which can also be obtained from Theorem 3 by taking $n=c=\alpha=0$ and $n=-1$ respectively. Note that $D^{0} f(z)=f(z)$.

COROLLARY 11. Let $f \in A(1)$, then $\operatorname{Re}\left\{f^{\prime}(z)\right\}>0$ implies $\operatorname{Re}\{f(z) / z\}>1 / 3$.

COROLLARY 12. Let $f \in A(1), \alpha<1$ and $c>-1$, then for $z \in E$ $\operatorname{Re}\{f(z) / z\}>\alpha$ implies

$$
\operatorname{Re}\left(\frac{c+1}{z^{c+1}} \int^{z} t^{c-1} f(t) d t\right)>\alpha+(1-\alpha) /(3+2 c)
$$

We state the following theorem which is proved by a similar method. It improves a result of Goel and Sohi [2].

THEOREM 4. Suppose $\alpha<1, f \in A(1)$ and $\operatorname{Re}\left[D^{n+2} f(z) / z\right]>\alpha$, then $\left[D^{n+1} f(z) / z\right]>[2(n+2) \alpha+1] /(2 n+5), n \in N_{0}$.

References

[1] S. D. Bernardi, "Convex and starlike functions", Trons. Amer. Math. Soc. 135 (1969), 429-446.
[2] R. M. Goel and N. S. Sohi, "Subclasses of univalent functions", Tamkang J. Math. 11 (1980), 77-81.
[3] I. S. Jack, "Functions starlike and convex of order α ", J. London Math. Soc. (2) 3 (1971), 469-474.
[4] R. J. Libera, "Some classes of regular univalent functions", Proc. Amer. Math. Soc., 16 (1965), 755-758.
[5] M. Obradovic, "Estimates of the real part of $f(z) / z$ for some classes of univalent functions", Mat. Vesnik 36 (4) (1984), 266-270.
[6] M. Obradovic, "On certain inequalities for some regular functions in $|z|<1^{\prime \prime}$. Intermat. J. Math. and Math. Sci. 8 (1985), 677-681.
[7] M. Obradovic and S. Owa, "On some results of convex functions of order $\alpha^{\prime \prime}$. Mat. Vesnik, (to appear).
[8] S. L. Shukla and V. Kumar, "Univalent functions defined by Ruscheweyh derivatives", Intermat. J. Math. and Math. Sci., 6 (1983), 483-486.
[9] S. Singh and R. Singh, "New subclasses of univalent functions", Indion Math. Soc., 43 (1979), 149-159.
[10] A. K. Soni, "Generalizations of p-valent functions via the Hadamard product", Intermat. J. Math. and Math. Sci. 5 (1982) 289-299.
[11] E. Strohacker, "Beitrage zur theorie der schlichten funkitone", Math. 2., 37 (1933), 256-280.

Institute of Mathematics
Academia Sinica
Nankang, Taipei, Taiwan
Republic of China

Institute of Mathematics
Academia Sinica
Nankang, Taipei, Taiwan
Republic of China

