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Abstract

Gama and Nguyen [‘Finding short lattice vectors within Mordell’s inequality’, in: Proceedings of the
40th Annual ACM Symposium on Theory of Computing, New York, 2008, 257–278] have presented slide
reduction which is currently the best SVP approximation algorithm in theory. In this paper, we prove
the upper and lower bounds for the ratios ‖b∗i ‖/λi(L) and ‖bi‖/λi(L), where b1, . . . , bn is a slide reduced
basis and λ1(L), . . . , λn(L) denote the successive minima of the lattice L. We define generalised slide
reduction and use slide reduction to approximate i-SIVP, SMP and CVP. We also present a critical slide
reduced basis for blocksize 2.
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1. Introduction

Let Rm be m-dimensional Euclidean space. A lattice L in Rm is the set L(b1, . . . , bn) =

{
∑n

i=1 xibi : xi ∈ Z} of all integer linear combinations of n linearly independent vectors
b1, . . . , bn inRm (m ≥ n). The integers n and m are called the rank and dimension of the
lattice, respectively. There are many computational problems on lattices, which play
an important role in many areas of computer science, mathematics and engineering,
including cryptography, cryptanalysis, combinatorial optimisation, communication
theory and algebraic number theory.

The most famous problem on lattices is the shortest vector problem (SVP), which
asks for the shortest nonzero vector in an input lattice. Slide reduction, presented by
Gama and Nguyen [8], is currently the best SVP approximation algorithm in theory,
although preliminary experiments suggest that it might not be the best algorithm in
practice. Several generalisations and variants of SVP naturally arise both in the
theoretical study of lattices and in their applications. The most common generalisation
of SVP encountered in computer science is the i-shortest independent vectors problem
(i-SIVP): given a lattice, find i linearly independent lattice vectors v1, . . . , vi such
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that the maximum length max{‖v j‖ : 1 ≤ j ≤ i} is minimised. SVP is recovered as a
special case of i-SIVP by setting i = 1. At the other end of the spectrum, for i = n,
this is the classic SIVP problem arising in the construction of cryptographic functions
with worst-case/average-case connection [1, 16, 18]. For arbitrary i, i-SIVP is the
computational problem naturally associated with the successive minima λ1, . . . , λn,
which are defined as follows: the ith successive minimum λi is the radius of the
smallest sphere centred in the origin containing i linearly independent lattice vectors,

λi = λi(L) := inf{r : dim(span(L ∩ B(0, r))) ≥ i},

where B(0, r) = {x ∈ Rm : ‖x‖ ≤ r} is the m-dimensional ball of radius r centred in 0.
Clearly, λ1 ≤ λ2 ≤ · · · ≤ λn.

Closely related to the successive minima problem is the (γ-approximate) successive
minima problem (SMP): given a lattice, find linearly independent vectors v1, . . . , vn

of length at most ‖v j‖ ≤ γλ j for all j = 1, . . . , n. This is also a classic mathematical
problem in the study of lattices that subsumes both SVP and SIVP as special cases.
Another important generalisation of SVP is the closest vector problem (CVP): given
a lattice basis B ∈ Rm×n and a target vector x ∈ Rm, find a lattice vector By closest
to the target x, that is, find an integer vector y ∈ Zn such that ‖By − x‖ ≤ ‖Bz − x‖
for any other z ∈ Zn. The special case x = 0 of CVP is SVP. Importantly, SVP,
i-SIVP, SMP and CVP are all NP-hard problems. That is, they cannot be solved in
subexponential time under standard complexity assumptions. The hardness of solving
the above problems has led computer scientists to consider approximation versions of
these problems.

In this paper, we prove the upper and lower bounds for the ratios ‖b∗i ‖/λi(L)
and ‖bi‖/λi(L), where b1, . . . , bn is a slide reduced basis of a lattice L. We define
generalised slide reduction and use slide reduction to solve i-SIVP, SMP and CVP
approximately. We also present a critical slide reduced basis for blocksize 2.

2. Preliminaries

Let ‖ · ‖ be the Euclidean norm of Rm. We denote the field of real numbers by R and
the integer ring by Z. We use bold letters to denote vectors, in column notation. The
notation [x] denotes the largest integer which is less than or equal to x, dxe denotes the
smallest integer which is not less than x, and dxc denotes the integer nearest to x.

2.1. Lattice

Hermite’s constant. The Hermite invariant of a lattice is defined by γ(L) =

(λ1(L)/ vol(L)1/n)2. Hermite’s constant γn is the maximal value of γ(L) over all n-
dimensional lattices. The exact value of Hermite’s constant γn is known for 1 ≤ n ≤ 8
and n = 24, where γ2 =

√
4/3 is frequently used. For other values of γn, it is known

that γn ≤ 1 + n/4 (see [14]) and the best numerical upper bounds known are those
given in [4]. The best asymptotic bounds are (see [5, 17])

n
2πe

+
log(πn)

2πe
+ o(1) ≤ γn ≤

1.744n
2πe

(1 + o(1)).

Thus, γn is essentially linear in n, but it is unknown if (γn)n≥1 is an increasing sequence.
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Orthogonalisation. Given an ordered lattice basis B = (b1, . . . , bn) ∈ Rm×n, we
associate the Gram–Schmidt orthogonalisation b∗1, . . . , b∗n ∈ R

m, which can be
computed together with the Gram-Schmidt coefficients µi, j = 〈bi, b∗j〉/〈b

∗
j , b∗j〉 by

the recursion b∗1 = b1, b∗i = bi −
∑i−1

j=1 µi, jb∗j , for i = 2, . . . , n. We have µi,i = 1 and
µi, j = 0 for i < j. From the above equations we have the unique Gram–Schmidt
decomposition B = QDµ, where Q = (b∗1/‖b

∗
1‖, . . . , b∗n/‖b

∗
n‖) is an orthogonal matrix,

D = diag(‖b∗1‖, . . . , ‖b
∗
n‖), µ = (µi, j)t

1≤i, j≤n. Obviously, B∗ = QD = (b∗1, . . . , b∗n).

Orthogonal projections. Given an ordered lattice basis B = (b1, . . . , bn) ∈ Rm×n, we
associate the orthogonal projections:

πi : span(b1, . . . , bn) 7→ span(b1, . . . , bi−1)⊥, i = 1, . . . , n,

where span(b1, . . . , bn) denotes the linear space generated by the vectors b1, . . . , bn.
Let Li denote the lattice Li = πi(L). The lattice Li has rank n − i + 1 and basis
(πi(bi), πi(bi+1), . . . , πi(bn)). We have πi(bi) = b∗i and πi(b j) =

∑ j
k=i µ j,kb∗k. We will use

the notation B[i, j] for the projected block (πi(bi), πi(bi+1), . . . , πi(b j)). If B has integer
coefficients, then B[i, j] has rational coefficients for i > 1, and integer coefficients for
i = 1.

Duality. If L is a lattice, the dual lattice of L is L× = {y ∈ span(B) : 〈x, y〉 ∈ Z, ∀x ∈ L}.
For any basis B of L, B−t , B(BtB)−1 is a basis of L×. However, in lattice reduction, it
is more convenient to consider the reversed dual basis [7] defined as B−s = RmB−tRn,
where Rn is the reversed identity matrix: Rn(i, j) = δi,n− j+1, where δi, j denotes
Kronecker’s symbol. The lattice generated by the reversed dual basis is isometric
to the standard dual lattice, and has therefore the same mathematical properties. The
main advantage is that the reversed duality preserves upper triangular, lower triangular,
diagonal and orthogonal matrices. It is fully compatible with the matrix product,
because (QDµ)−s = Q−sD−sµ−s.

2.2. Lattice reduction

Size reduction. We call a basis b1, . . . , bn ∈ R
m size-reduced, if |µi, j| ≤

1
2 , for all

1 ≤ j < i ≤ n. The basis vector bi is size-reduced, if |µi, j| ≤
1
2 , for 1 ≤ j < i. After size

reduction, a basis will be almost orthogonal and appropriately shortened.

LLL reduction. A basis B = (b1, . . . , bn) ∈ Rm×n is LLL-reduced [12] with factor
ε ≥ 0 if it is size-reduced and every 2 × 2 block B[i,i+1] satisfies Lovász’s condition:
‖b∗i ‖

2 ≤ (1 + ε)(‖b∗i+1‖
2 + µ2

i+1,i‖b
∗
i ‖

2). Lovász’s condition combined with size
reduction implies Siegel’s condition: ‖b∗i ‖

2 ≤ (4/3)(1 + ε)2‖b∗i+1‖
2. The LLL algorithm

[12] outputs an LLL-reduced basis in polynomial time in 1/ε and size(B).

HKZ reduction. A basis B = (b1, . . . , bn) ∈ Rm×n is HKZ-reduced [10] if it is size-
reduced, and b∗i is a shortest vector of L(B[i,n]) for all i ∈ [1, n − 1].

k-BKZ reduction. A basis B = (b1, . . . , bn) ∈ Rm×n is k-BKZ reduced [19], that
is, it is a block Korkin-Zolotarev basis with blocksize k, if it is size-reduced, and
πi(bi), πi(bi+1), . . . , πi(bi+k−1) are HKZ-reduced for i = 1, . . . , n − k + 1.
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In HKZ reduction or k-BKZ reduction there is a basic subroutine, namely, SVP
reduction.

SVP reduction. A basis B is SVP-reduced if the first basis vector b1 reaches the first
minimum, that is, ‖b1‖ = λ1(L(B)). There is a natural relaxation: a basis B is (1 + ε)-
SVP-reduced for ε ≥ 0 if the first basis vector satisfies ‖b1‖ ≤

√
1 + ε · λ1(L(B)). If the

basis is a projected block B[i, j], this implies that

‖b∗i ‖
j−i+1 ≤ ((1 + ε) · γ j−i+1)( j−i+1)/2 vol(B[i, j]).

DSVP reduction. For ε ≥ 0, a basis B is (1 + ε)-DSVP-reduced (where D stands for
dual) if the reversed dual basis B−s is (1 + ε)-SVP-reduced. If the basis is a projected
block B[i, j], this implies that:

vol(B[i, j]) ≤ ((1 + ε) · γ j−i+1)( j−i+1)/2‖b∗j‖
j−i+1.

By simplifying the combination of k-BKZ reduction and (1 + ε)-DSVP reduction,
Gama and Nguyen [8] introduced the following new blocksize reduction notion based
on duality for lattices of rank n, where n is an exact multiple of the blocksize k.

Slide reduction. A basis B of an n-rank lattice L, where n = pk, is slide reduced with
a factor ε ≥ 0 if it is size-reduced and satisfies the following two sets of conditions:

(1) primal conditions: for all i ∈ [0, p − 1], the block B[ik+1,ik+k] is HKZ-reduced;
(2) dual conditions: for all i ∈ [0, p − 2], the block B[ik+2,ik+k+1] is (1 + ε)-DSVP-

reduced.

3. Slide reduced basis and successive minima

3.1. Previous work and remark. The successive minima are some of the most
fundamental mathematical parameters describing the geometry of a lattice, and yield
a measure of the reducedness of a lattice basis. A basis is ‘reduced’, when the values
‖bi‖/λi for i = 1, 2, . . . , n are ‘small’.

T 3.1 (Lenstra et al. [12]). Every basis b1, . . . , bn of a lattice L which is LLL-
reduced with ε ∈ [0, 3) satisfies

α1−i ≤
‖b∗i ‖

2

λi(L)2
≤
‖bi‖

2

λi(L)2
≤ αn−1,

with α = 4(1 + ε)/(3 − ε) for i = 1, . . . , n. In particular, for ε = 0,(3
4

)i−1

≤
‖b∗i ‖

2

λi(L)2
≤
‖bi‖

2

λi(L)2
≤

(4
3

)n−1

, i = 1, . . . , n. (3.1)

T 3.2 (Mahler [13] and Lagarias et al. [11]). Every HKZ-reduced basis b1,
. . . , bn of a lattice L satisfies

4
i + 3

≤
‖bi‖

2

λi(L)2
≤

i + 3
4

,

for i = 1, . . . , n.
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T 3.3 (Schnorr [20]). Every k-BKZ basis b1, . . . , bn of a lattice L satisfies

‖b∗i ‖
2

λi(L)2
≤ γ2(n−i)/(k−1)

k for i = 1, . . . , n,

4
i + 3

γ−2(i−1)/(k−1)
k ≤

‖bi‖
2

λi(L)2
≤ γ2(n−i)/(k−1)

k

i + 3
4

for i = 1, . . . , n.

In particular, for k = 2, this implies that

‖b∗i ‖
2

λi(L)2
≤

(4
3

)n−i

, i = 1, . . . , n,

4
i + 3

(3
4

)i−1

≤
‖bi‖

2

λi(L)2
≤

(4
3

)n−1 i + 3
4

, i = 1, . . . , n, (3.2)

which is almost the upper bound of (3.1).

T 3.4 (Gama and Nguyen [8]). A slide reduced basis B = (b1, . . . , bn) ∈ Rm of
a lattice L with blocksize k dividing n and factor ε ≥ 0 satisfies the following two
inequalities:

‖b1‖ ≤ (γk

√
1 + ε)(n−1)/2(k−1) vol(L)1/n,

‖b1‖ ≤ (γk

√
1 + ε)(n−k)/(k−1)λ1(L).

Clearly slide reduction achieves Mordell’s inequality: γn ≤ γ
(n−1)/(k−1)
k . Further,

the process of proving Theorem 3.4 in [8] indicates that it is enough that the
blocks B[ik+1,ik+k] for i ∈ [0, p − 1] are SVP-reduced. Thus, if we only search for the
approximate solution of λ1(L), the complexity of the slide reduction algorithm can be
greatly reduced.

R 3.1. LLL reduction [12] is the first polynomial time lattice reduction
algorithm, but the upper bounds of the ratios ‖bi‖/λi(L) are rather large. (This assertion
follows from Hermite’s inequality γk ≤ (

√
4/3)k−1). From the computational point of

view, HKZ reduction is the most natural one. However, HKZ-reduced bases are not
easy to find for lattices of higher dimensions (see Kannan [9] and Schnorr [19] for
algorithms). No polynomial time algorithm is known for k-BKZ reduction. Then,
Schnorr and Euchner [21] presented a practical ‘approximate’ algorithm performing
k-BKZ reduction: transform an arbitrary lattice basis into a (1 + ε)-approximate
k-BKZ basis with factor ε > 0, which by definition satisfies, for i = 1, . . . , n,

‖b∗i ‖
2 ≤ (1 + ε)λ1(πi(L(b1, . . . , bmin(i+k−1,n))))2.

However, the Schnorr and Euchner algorithm is not proven to be polynomial time.
Fortunately, slide reduction [8] is a polynomial-time blocksize reduction algorithm,

which is currently the best SVP approximation algorithm in theory. Hence, it is very
important to present the values ‖bi‖/λi for a slide reduced basis of a lattice.
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3.2. Our result on successive minima. We are going to extend Theorems 3.1–3.4
to the following main theorem for slide reduced bases. It will be proved in Section 3.3.

T 3.5. Every slide reduced basis b1, . . . , bn of a lattice L with blocksize k and
factor ε = 0, where n = pk, satisfies:

(1) the upper bounds for the ratios ‖b∗i ‖/λi(L):

‖b∗lk+ j‖

λlk+ j(L)
≤ γ

(k− j+1)/(k− j)
k− j+1 γ

(p−l−2)k/(k−1)
k , l = 0, . . . , p − 2, j = 1, . . . , k − 1,

‖b∗lk+k‖

λlk+k(L)
≤ γ2γ

(p−l−2)k/(k−1)
k , l = 0, . . . , p − 2,

‖b∗(p−1)k+ j‖

λ(p−1)k+ j(L)
≤ 1, j = 1, . . . , k;

(2) the upper and lower bounds for the ratios ‖bi‖/λi(L):√
3

i + 3
γ−1γ(k−[i]k)/(k−1)

k ≤
‖bi‖

λi(L)
≤

√
i + 3

3
−

1
12

[ i
k

]
γγ(n−2k)/(k−1)

k , 1 ≤ i ≤ n,

where [i]k = [i/k]k and γ = max{γi : 2 ≤ i ≤ k}.

Clearly, our upper bound for ‖bi‖/λi(L) is better than that in Theorem 3.3 for
1 ≤ i ≤ k in general. In particular, for k = 2, ε = 0, it implies that

‖b∗i ‖
2

λi(L)2
≤

(4
3

)n−i

, i = 1, . . . , n − r,

4
i + 3

(3
4

)i−1

≤
‖bi‖

2

λi(L)2
≤

(4
3

)n−1( i + 3
4
−

1
16

[ i
2

])
, i = 1, . . . , n. (3.3)

The upper bound of (3.3) is better than that of (3.2). This is enough, because a slide
reduced basis can be obtained in polynomial time while the k-BKZ basis cannot! It is
remarkable that if the blocksize k is a fixed fraction of the rank, that is, if p is fixed,
then the upper bounds of Theorem 3.5 are polynomial in k.

3.3. Proof of Theorem 3.5.

L 3.6 (Schnorr [20]). We have λ1(Li) ≤ λi(L) for i = 1, . . . , n.

This is because there are i linearly independent vectors v1, . . . , vi of length
at most λi(L) in L and at least one of these vectors vt satisfies πi(vt) , 0;
otherwise v1, . . . , vi ∈ span(b1, . . . , bi−1), which is impossible. Hence, λ1(Li) ≤
‖πi(vt)‖ ≤ λi(L).

L 3.7. (1) If b1, . . . , bn is a slide reduced basis, then so is πlk+1(blk+1), . . . ,
πlk+1(bqk) for 0 ≤ l < q ≤ p.

(2) If b1, . . . , bk is an HKZ-reduced basis, then so is πi(bi), . . . , πi(b j) for 1 ≤ i ≤
j ≤ k.

https://doi.org/10.1017/S0004972713000257 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000257


396 J. Li and W. Wei [7]

This follows easily from (πi(bl))∗ = b∗l , 〈πi(bq), (πi(bl))∗〉/〈(πi(bl))∗, (πi(bl))∗〉 =
〈bq, b∗l 〉/〈b

∗
l , b∗l 〉 for 1 ≤ i ≤ l ≤ q, where (πi(bl))∗ denotes the component of πi(bl)

which is orthogonal to πi(bi), πi(bi+1), . . . , πi(bl−1). This is a property of forward
(backward) shrinkage. The same properties hold for an LLL-reduced basis [12],
a k-BKZ-reduced basis [19], a semi block 2k-reduced basis [19], a semi k-reduced
basis [19] and a 2k-Block-Rankin-reduced basis [6]. Furthermore, the reversed dual
basis has the aforesaid property.

L 3.8. If the block B[ik+2,ik+k+1] is (1 + ε)-DSVP-reduced, that is, B−s
[ik+2,ik+k+1]

is (1 + ε)-SVP-reduced, then B[ik+l,ik+k+1] is also (1 + ε)-DSVP-reduced for 2 ≤ l ≤ k.
Hence,

vol(B[ik+l,ik+k+1]) ≤ ((1 + ε) · γk−l+2)(k−l+2)/2‖b∗ik+k+1‖
k−l+2. (3.4)

P. Given a vector b = (b1, b2, . . . , bm)t, we denote b = (bm, bm−1, . . . , b1)t. Let
B[ik+2,ik+k+1] = (d2, . . . , dk+1) and

B−t
[ik+2,ik+k+1] , B[ik+2,ik+k+1](Bt

[ik+2,ik+k+1]B[ik+2,ik+k+1])−1 = (c2, . . . , ck+1),

where dl, cl ∈ R
m. Then

dt
l · c j = δl, j, 2 ≤ l, j ≤ k + 1, (3.5)

and B−s
[ik+2,ik+k+1] = RmB−t

[ik+2,ik+k+1]Rk = (ck+1, . . . , c2). Since B−s
[ik+2,ik+k+1] is (1 + ε)-

SVP-reduced, we have ‖ck+1‖ ≤
√

1 + ελ1(L(ck+1, . . . , c2)). From (3.5), we easily
get the right inverse of Bt

[ik+l,ik+k+1]: B−t
[ik+l,ik+k+1] = (cl, . . . , ck+1) for 2 ≤ l ≤ k.

Then B−s
[ik+l,ik+k+1] = RmB−t

[ik+l,ik+k+1]Rk−l+2 = (ck+1, . . . , cl). Consequently, ‖ck+1‖ ≤
√

1 + ελ1(L(ck+1, . . . , c2)) ≤
√

1 + ελ1(L(ck+1, . . . , cl)), that is B[ik+l,ik+k+1] is (1 + ε)-
DSVP-reduced for 2 ≤ l ≤ k. �

P 3.9. Let b1, . . . , bn be a slide reduced basis of a lattice L with blocksize k
and factor ε ≥ 0, where n = pk. Then, for l = 0, . . . , p − 2 and l + 1 ≤ q ≤ p − 1,

‖b∗lk+ j‖ ≤ (γk− j+1
√

1 + ε)(k− j+1)/(k− j)(γk

√
1 + ε)(q−l−1)k/(k−1)‖b∗qk+1‖, j = 1, . . . , k − 1,

(3.6)

‖b∗lk+k‖ ≤ γ2(1 + ε)(γk

√
1 + ε)(q−l−1)k/(k−1)‖b∗qk+1‖. (3.7)

In particular, ‖b∗lk+1‖ ≤ (γk

√
1 + ε)(q−l)k/(k−1)‖b∗qk+1‖, for 0 ≤ l ≤ q ≤ p − 1.

P. Since B[lk+1,lk+k] is HKZ-reduced, B[lk+ j,lk+k] is SVP-reduced for j ∈ [1, k − 1].
This implies ‖b∗lk+ j‖ ≤ γ

1/2
k− j+1 vol(B[lk+ j,lk+k])1/(k− j+1), which is equivalent to

‖b∗lk+ j‖
k− j ≤ γ

(k− j+1)/2
k− j+1 vol(B[lk+ j+1,lk+k]). (3.8)

From Lemma 3.8, by eliminating ‖b∗lk+k+1‖ on the left-hand side of (3.4), this yields

vol(B[lk+ j+1,lk+k]) ≤ ((1 + ε) · γk− j+1)(k− j+1)/2‖b∗lk+k+1‖
k− j. (3.9)
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Combining (3.8) with (3.9), we obtain ‖b∗lk+ j‖ ≤ (γk− j+1
√

1 + ε)(k− j+1)/(k− j)‖b∗lk+k+1‖.

In particular, this yields ‖b∗lk+k+1‖ ≤ (γk

√
1 + ε)(q−l−1)k/(k−1)‖b∗qk+1‖. Putting the above

two formulas together, we obtain (3.6). Setting j = k − 1 in (3.9), we get ‖b∗lk+k‖ ≤

γ2(1 + ε)‖b∗lk+k+1‖, which implies (3.7). �

T 3.10. Let b1, . . . , bn be a slide reduced basis of a lattice L with blocksize k
and factor ε ≥ 0, where n = pk.

(1) For l = 0, . . . , p − 2,

‖b∗lk+ j‖ ≤ (γk− j+1

√
1 + ε)(k− j+1)/(k− j)(γk

√
1 + ε)(p−l−2)k/(k−1)λlk+ j(L), 1 ≤ j ≤ k − 1,

‖b∗lk+k‖ ≤ γ2(1 + ε)(γk

√
1 + ε)(p−l−2)k/(k−1)λlk+k(L).

(2) ‖b∗(p−1)k+ j‖/λ(p−1)k+ j(L) ≤ 1, 1 ≤ j ≤ k − 1.

P. (1) Let u be the shortest vector of Llk+ j. Then u can be written as u =∑κ
i=lk+ j αiπlk+ j(bi), where ακ , 0. If κ ≤ (l + 1)k, then ‖b∗lk+ j‖ = ‖u‖ = λ1(Llk+ j). If

κ > (l + 1)k, then πqk+1(u) is a nonzero vector of L(B[qk+1,qk+k]), where q = b(κ − 1)/kc.
Since B[qk+1,qk+k] is HKZ-reduced, ‖b∗qk+1‖ ≤ ‖πqk+1(u)‖ ≤ ‖u‖ = λ1(Llk+ j). Therefore,
‖b∗lk+ j‖/λlk+ j(L) ≤ ‖b∗lk+ j‖/‖b

∗
qk+1‖, which completes the proof by Proposition 3.9 since

q ≤ p − 1.
(2) Since B[(p−1)k+1,n] is HKZ-reduced, the claim holds by Lemma 3.6. �

T 3.11. Let b1, . . . , bn be a slide reduced basis of a lattice L with blocksize k
and factor ε, where n = pk, and γ = max{γi : 2 ≤ i ≤ k}. Then for 1 ≤ j ≤ k

‖blk+ j‖
2

λlk+ j(L)2
≤

( lk + j + 3
3

−
l

12

)
(1 + ε)(n−2)/(k−1)γ2γ

2(p−2)k/(k−1)
k , 0 ≤ l ≤ p − 2,

‖b(p−1)k+ j‖
2

λ(p−1)k+ j(L)2
≤

j + 3
4

+

( (p − 1)k
3

−
p − 1

12

)
(1 + ε)(n−2)/(k−1)γ2γ

2(p−2)k/(k−1)
k .

P. For simplicity, we denote λi(L) by λi. By Mordell’s inequality γn ≤ γ
(n−1)/(k−1)
k

for 2 ≤ k ≤ n, so the sequence (γ1/(i−1)
i )i≥2 decreases. Consequently,

(γk− j+1

√
1 + ε)2(k− j+1)/(k− j) ≤ (1 + ε)2γ2

2γ
2, j = 1, . . . , k − 1. (3.10)

By Theorem 3.10, together with the facts λ1 ≤ λ2 ≤ · · · ≤ λn and µ2
i, j ≤

1
4 , we have the

following.
(1) For l = 0, . . . , p − 2, j = 1, . . . , k − 1,

‖blk+ j‖
2 = ‖b∗lk+ j‖

2 +

lk+ j−1∑
h=1

µ2
lk+ j,h‖b

∗
h‖

2

= ‖b∗lk+ j‖
2 +

l−1∑
t=0

k−1∑
q=1

µ2
lk+ j,tk+q‖b

∗
tk+q‖

2 +

l∑
t=1

µ2
lk+ j,tk‖b

∗
tk‖

2 +

j−1∑
q=1

µ2
lk+ j,lk+q‖b

∗
lk+q‖

2

https://doi.org/10.1017/S0004972713000257 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000257


398 J. Li and W. Wei [9]

≤ (γk− j+1

√
1 + ε)2(k− j+1)/(k− j)(γk

√
1 + ε)2(p−l−2)k/(k−1)λ2

lk+ j

+
1
4

l−1∑
t=0

k−1∑
q=1

(γk−q+1

√
1 + ε)2(k−q+1)/(k−q)(γk

√
1 + ε)2(p−t−2)k/(k−1)λ2

tk+q

+
1
4

l∑
t=1

γ2
2(1 + ε)2(γk

√
1 + ε)2(p−t−1)k/(k−1)λ2

tk

+
1
4

j−1∑
q=1

(γk−q+1

√
1 + ε)2(k−q+1)/(k−q)(γk

√
1 + ε)2(p−l−2)k/(k−1)λ2

lk+q

≤

(
(1 + ε)2γ2

2γ
2(γk

√
1 + ε)2(p−l−2)k/(k−1)

+
1
4

l−1∑
t=0

k−1∑
q=1

(1 + ε)2γ2
2γ

2(γk

√
1 + ε)2(p−t−2)k/(k−1)

+
1
4

l∑
t=1

γ2
2(1 + ε)2(γk

√
1 + ε)2(p−t−1)k/(k−1)

+
1
4

j−1∑
q=1

(1 + ε)2γ2
2γ

2(γk

√
1 + ε)2(p−l−2)k/(k−1)

)
λ2

lk+ j

≤ (1 + ε)2γ2(γk

√
1 + ε)2(p−2)k/(k−1)

(
γ2

2 +
l(k − 1)

4
γ2

2 +
l
4

+
j − 1

4
γ2

2

)
λ2

lk+ j

=

( lk + j + 3
3

−
l

12

)
(1 + ε)(pk−2)/(k−1)γ2γ

2(p−2)k/(k−1)
k λ2

lk+ j.

(2) Similarly, for l = 0, . . . , p − 2, j = k,

‖blk+k‖
2 ≤ (1 + ε)2γ2(γk

√
1 + ε)2(p−2)k/(k−1)

(
1 +

(l + 1)(k − 1)
4

γ2
2 +

l
4

)
λ2

lk+k

=

( lk + k + 2
3

−
l

12

)
(1 + ε)(pk−2)/(k−1)γ2γ

2(p−2)k/(k−1)
k λ2

lk+k.

For l = p − 1, j = 1, . . . , k,

‖b(p−1)k+ j‖
2 ≤

j + 3
4

λ2
(p−1)k+ j +

p − 1
4

(1 + ε)2

× γ2(γk

√
1 + ε)2(p−2)k/(k−1)((k − 1)γ2

2 + 1)λ2
(p−1)k+ j

=

( j + 3
4

+

( (p − 1)k
3

−
p − 1

12

)
× (1 + ε)(pk−2)/(k−1)γ2γ

2(p−2)k/(k−1)
k

)
λ2

(p−1)k+ j.

This completes the proof. �
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T 3.12. Let b1, . . . , bn be a slide reduced basis of a lattice L with blocksize k
and factor ε, where n = pk. Then

λ2
lk+ j

‖blk+ j‖
2
≤

lk + j + 3
3

(1 + ε)2γ2(γk

√
1 + ε)2(l−1)k/(k−1), 1 ≤ lk + j ≤ n.

P. By definition of λi = λi(L),

λ2
lk+ j ≤max{‖bw‖

2 : w = 1, . . . , lk + j}.

It follows from ‖blk+ j‖
2 = ‖b∗lk+ j‖

2 +
∑lk+ j−1

h=1 µ2
lk+ j,h‖b

∗
h‖

2 that

λ2
lk+ j ≤

lk + j + 3
4

max{‖b∗w‖
2 : w = 1, . . . , lk + j}. (3.11)

Since B[lk+1,lk+ j] is HKZ-reduced,

‖b∗lk+q‖ ≤ ‖πlk+q(blk+ j)‖ ≤ ‖blk+ j‖, for q = 1, . . . , j. (3.12)

For t = 0, . . . , l − 1, by Proposition 3.9 and (3.12),

‖b∗tk+q‖ ≤ (γk−q+1

√
1 + ε)(k−q+1)/(k−q)(γk

√
1 + ε)(l−t−1)k/(k−1)‖blk+ j‖, 1 ≤ q ≤ k − 1,

(3.13)

‖b∗tk+k‖ ≤ γ2(1 + ε)(γk

√
1 + ε)(l−t−1)k/(k−1)‖blk+ j‖. (3.14)

From (3.12)–(3.14), together with (3.10), we obtain

‖b∗w‖ ≤ (1 + ε)γ2γ(γk

√
1 + ε)(l−1)k/(k−1)‖blk+ j‖, for w = 1, . . . , lk + j.

Hence, together with (3.11), we complete the proof of Theorem 3.12. �

From the perspective of the proof of Theorem 3.11, the upper bounds for the
ratios ‖bi‖/λi(L) are somewhat loose. Hence, it may be better to use Theorem 3.11
to estimate the lower bound of λi(L). The main Theorem 3.5 consists of
Theorems 3.10–3.12.

4. Generalised slide reduction and several applications

4.1. Generalised slide reduction. The original slide reduction proposed by Gama
and Nguyen [8] claims that the rank of lattices is an exact multiple of the blocksize.
We extend the notion to lattices of any rank as follows.

D 4.1 (Forward generalised slide reduction). A basis B of an n-rank lattice
L, where n = (p − 1)k + r for 1 ≤ r ≤ k, is forward generalised slide reduced with
blocksize k and factor ε ≥ 0 if it is size-reduced and satisfies the following two sets
of conditions:
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(1) primal conditions: the blocks B[1,r] and B[ik+r+1,ik+k+r] for i ∈ [0, p − 2] are HKZ-
reduced;

(2) dual conditions: the blocks B[2,r+1] and B[ik+r+2,ik+k+r+1] for i ∈ [0, p − 3] are
(1 + ε)-DSVP-reduced.

D 4.2 (Backward generalised slide reduction). A basis B of an n-rank
lattice L, where n = (p − 1)k + r for 1 ≤ r ≤ k, is backward generalised slide reduced
with blocksize k and factor ε ≥ 0 if it is size-reduced and satisfies the following two
sets of conditions:

(1) primal conditions: the blocks B[ik+1,ik+k] for i ∈ [0, p − 2] and B[(p−1)k+1,n] are
HKZ-reduced;

(2) dual conditions: the blocks B[ik+2,ik+k+1] for i ∈ [0, p − 2] are (1 + ε)-DSVP-
reduced.

Thus, the blocksize of slide reduction is not limited to the divisors of the rank.
Similar to the original slide reduction, we have the following theorem.

T 4.3. (1) A forward generalised slide reduced basis B = (b1, . . . , bn) ∈ Rm of
a lattice L with blocksize k and factor ε ≥ 0, where n = (p − 1)k + r for 1 ≤ r ≤ k,
satisfies

‖b1‖ ≤ (γr

√
1 + ε)r(2n−r−1)/2n(r−1)(γk

√
1 + ε)(n−r)(n−r−1)/2n(k−1) vol(L)1/n,

‖b1‖ ≤ (γr

√
1 + ε)r/(r−1)(γk(1 + ε))(p−2)k/(k−1)λ1(L).

(2) A backward generalised slide reduced basis B = (b1, . . . , bn) ∈ Rm of a lattice L
with blocksize k and factor ε ≥ 0, where n = (p − 1)k + r for 1 ≤ r ≤ k, satisfies

‖b1‖ ≤ (γk(1 + ε))(pk−1)/2(k−1)
(
γr

γk

)r/2n

vol(L)1/n,

‖b1‖ ≤ (γk(1 + ε))(p−1)k/(k−1)λ1(L).

In particular, the case r = k of Theorem 4.3 is consistent with Theorem 3.4.

C 4.4. Given n = (p − 1)k + r > k for 1 ≤ r ≤ k, Hermite’s constant γn

satisfies

γn ≤min
{
γr(2n−r−1)/n(r−1)

r γ(n−r)(n−r−1)/n(k−1)
k , γ

(pk−1)/(k−1)
k

(
γr

γk

)r/n}
.

Clearly, the slide reduction algorithm [8] also applies to generalised slide reduction.
Furthermore, all properties of slide reduction can be generalised to generalised slide
reduction.

4.2. Approximate i-SIVP and SMP. Theorems 3.4 and 3.5 suggest that slide
reduction can not only approximate SVP in polynomial time, but also approximate
i-SIVP and SMP well. Specifically, we obtain the following theorem.
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T 4.5. Given k = O(log n/ log log n), n = pk, and a factor ε > 0, there exists
a polynomial time algorithm that on input a basis of a lattice L, outputs a
basis b1, . . . , bn satisfying

max
1≤ j≤i

‖b j‖ ≤

√
i + 3

3
−

1
12

[ i
k

]
(1 + ε)(pk−2)/2(k−1)γγ(n−2k)/(k−1)

k λi(L), 1 ≤ i ≤ n,

‖b j‖ ≤

√
n + 3

3
− n/(12k)(1 + ε)(pk−2)/2(k−1)γγ(n−2k)/(k−1)

k λ j(L), j = 1, . . . , n.

P. Let b1, . . . , bn be a slide reduced basis with blocksize k and factor ε. It follows
from Theorem 3.11 that the assertion holds. �

R 4.1. Our new result is currently the best in approximating i-SIVP and SMP
with polynomial complexity.

4.3. Approximate CVP. Babai [2] showed that, given a lattice L and a point
x ∈ span(L), one can use LLL reduction to find a point v ∈ L satisfying ‖x − v‖2 ≤
2n/2 minu∈L ‖x − u‖2. Schnorr [20] showed that a k-BKZ basis can be used to find
a point v ∈ L satisfying ‖x − v‖2 ≤ nγ2(n−1)/(k−1)

k minu∈L ‖x − u‖2. Note that the LLL
reduction algorithm is polynomial, but the factor 2n/2 is exponential in n; Schnorr [20]
obtained an improved factor nγ2(n−1)/(k−1)

k , but no polynomial time algorithm is known
for k-BKZ reduction. In this section, we use slide reduction, which is polynomial, to
improve the approximate factor.

T 4.6. Given an integer lattice L of rank n, a point x ∈ span(L), k =

O(log n/log log n) and a factor ε > 0, there exists a polynomial time algorithm that
on input of a basis of the lattice L, outputs a lattice vector v satisfying

‖x − v‖2 ≤Cn,k,ε min
u∈L
‖x − u‖2,

where Cn,k,ε = ((4n + 3k)/3)(1 + ε)(dn/kek−2)/(k−1)γ2γ2(dn/ke−2)k/(k−1)
k .

P. Set n = (p − 1)k + r, where 1 ≤ r ≤ k. Clearly, Cn,k,ε is monotonously
increasing in n and Cn,k,ε ≥ 1 for n > k ≥ 1. Let b1, . . . , bn ∈ Z

m be a backward
generalised slide reduced basis of L with blocksize k and factor ε ≥ 0, whose Gram-
Schmidt orthogonalisation is b∗1 = b1, b∗i = b∗i −

∑i−1
j=1 µi, jb∗j , for i = 2, . . . , n. Then let

x =
∑n

i=1 xib∗i . Suppose that ‖b∗β‖ = max(‖b∗(p−1)k+1‖, . . . , ‖b
∗
n‖), (p − 1)k + 1 ≤ β ≤ n.

Let v =
∑n

j=1 v jb j be a lattice point such that
∑n

j=β |x j −
∑n

i= j viµi, j|
2‖b∗j‖

2 is minimal
for all vβ, . . . , vn ∈ Z and v j = dx j −

∑n
i= j+1 viµi, jc for j = β − 1, . . . , 1. Clearly, v =∑n

j=1(
∑n

i= j viµi, j)b∗j . By the construction of v,

‖x − v‖2 =

n∑
j=1

∣∣∣∣∣x j −

n∑
i= j

viµi, j

∣∣∣∣∣2‖b∗j‖2 ≤ 1
4

n∑
j=1

‖b∗j‖
2.
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From Proposition 3.9 and (3.10),

n∑
j=1

‖b∗j‖
2 =

p−2∑
t=0

k−1∑
q=1

‖b∗tk+q‖
2 +

p−1∑
t=1

‖b∗tk‖
2 +

r∑
q=1

‖b∗(p−1)k+q‖
2

≤

p−2∑
t=0

k−1∑
q=1

(γk−q+1

√
1 + ε)2(k−q+1)/(k−q)(γk

√
1 + ε)2(p−t−2)k/(k−1)‖b∗(p−1)k+1‖

2

+

p−1∑
t=1

γ2
2(1 + ε)2(γk

√
1 + ε)2(p−t−1)k/(k−1)‖b∗(p−1)k+1‖

2 +

r∑
q=1

‖b∗(p−1)k+q‖
2

≤

( p−2∑
t=0

k−1∑
q=1

(1 + ε)2γ2
2γ

2(γk

√
1 + ε)2(p−t−2)k/(k−1)

+

p−1∑
t=1

γ2
2(1 + ε)2(γk

√
1 + ε)2(p−t−1)k/(k−1) + r

)
‖b∗β‖

2

≤

(
(p − 1)

(
(k − 1)(1 + ε)2γ2

2γ
2(γk

√
1 + ε)2(p−2)k/(k−1)

+ γ2
2(1 + ε)2(γk

√
1 + ε)2(p−2)k/(k−1)

)
+ r

)
‖b∗β‖

2

≤ ((p − 1)(1 + ε)(pk−2)/(k−1)γ2γ
2(p−2)k/(k−1)
k ((k − 1)γ2

2 + 1) + r)‖b∗β‖
2

≤
4pk − k − p + 1

3
(1 + ε)(pk−2)/(k−1)γ2γ

2(p−2)k/(k−1)
k ‖b∗β‖

2.

This yields

‖x − v‖2 ≤
4pk − (k + p) + 1

3
(1 + ε)(pk−2)/(k−1)γ2γ

2(p−2)k/(k−1)
k

‖b∗β‖
2

4
. (4.1)

Then, we define the hyperplane Hc = cb∗n + span(b1, . . . , bn−1). Thus, L ⊂
⋃

c∈Z Hc,
v ∈Hvn and the distance of Hc and Hc+1 is ‖b∗n‖. Let u ∈ L be the lattice point that is
nearest to x. Following Babai, we consider two cases:
• Case 1. u ∈Hvn , that is, u − v ∈ L(b1, . . . , bn−1). Then u − vnbn is a nearest
lattice point to x′ − vnbn in L(b1, . . . , bn−1), where x′ =

∑n−1
i=1 xib∗i + vnb∗n ∈Hvn .

Consequently, by induction on n,

‖x′ − v‖2 = ‖(x′ − vnbn) − (v − vnbn)‖2 ≤Cn−1,k,ε‖(x′ − vnbn) − (u − vnbn)‖2

= Cn−1,k,ε‖x′ − u‖2 = Cn−1,k,ε(‖x − u‖2 − ‖x − x′‖2).

This implies that

‖x − v‖2 = ‖x − x′‖2 + ‖x′ − v‖2

≤ Cn−1,k,ε‖x − u‖2 + (1 −Cn−1,k,ε)‖x − x′‖2

≤ Cn,k,ε‖x − u‖2.
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• Case 2. u <Hvn , that is, u − v < L(b1, . . . , bn−1). It follows from the construction of
v that πβ(v) is the nearest lattice point to πβ(x) in Lβ. Note that πβ(v) , πβ(u) and they
are all in Lβ, which implies that

‖πβ(x) − πβ(u)‖ ≥
λ1(Lβ)

2
.

Since πβ(bβ), . . . , πβ(bn) is HKZ-reduced, we obtain

‖x − u‖2 ≥ ‖πβ(x) − πβ(u)‖2 ≥
λ1(Lβ)2

4
=
‖b∗β‖

2

4
.

Hence, it follows from (4.1) that

‖x − v‖2 ≤
4pk − k − p + 1

3
(1 + ε)(pk−2)/(k−1)γ2γ

2(p−2)k/(k−1)
k ‖x − u‖2 ≤Cn,k,ε‖x − u‖2.

Algorithm and complexity. A backward generalised slide reduced basis with
blocksize k and factor ε > 0 can be computed in polynomial time from an arbitrary
basis b1, . . . , bn ∈ Z

m by the slide reduction algorithm (see [8, Algorithm 1]).
Then, we enumerate at most kO(k) lattice vectors close to x and find integers
vβ, . . . , vn that minimise

∑n
j=β |x j −

∑n
i= j viµi, j|

2‖b∗j‖
2. Finally, we compute v j = dx j −∑n

i= j+1 viµi, jc for j = β − 1, . . . , 1 (this is the nearest plane algorithm of Babai [2]).
If k = O(log n/ log log n), we obtain the lattice vector v =

∑n
j=1 v jb j with polynomial

arithmetic operations. �

Note that Cn,k,ε ≈ (4/3)nγ2(n−k−1)/(k−1)
k ≤ (4/3)(n−k)/2n, so our new result is better than

the previous results.

4.4. The number of slide reduced bases. Clearly, a slide reduced basis with
blocksize k and factor

√
3/2 − 1 is an LLL-reduced basis with factor 1/3.

Micciancio [15] showed that the number of LLL-reduced bases with factor 1/3 is at
most 2n3/6+n2/2+n/3, so we have the following theorem.

T 4.7. Any given n-dimensional lattice has at most 2n3/6+n2/2+n/3 slide reduced
bases with blocksize k and factor

√
3/2 − 1.

This suggests that the smallest volume problem (see [6] for its definition and further
information) can be solved by enumerating all slide reduced bases of the lattice. The
details of this, and further consequences for the smallest volume problem, will be given
in the full paper.

5. Critical slide reduced basis for blocksize 2

A k-BKZ basis b1, . . . , bn of a lattice L is critical for (k, n) if the value ‖b1‖/λ1(L)
is maximal for all k-BKZ bases of n-rank lattices. Similarly, we call a slide reduced
basis b1, . . . , bn with blocksize k of a lattice L critical for (k, n) if the value ‖b1‖/λ1(L)
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is maximal for all slide reduced bases of n-rank lattices with blocksize k and ε = 0
(denoted by k-slide reduced bases). Bachem and Kannan [3] presented the critical
2-BKZ basis b1, . . . , bn. Afterwards, Schnorr [20] described a slight variant of the
critical 2-BKZ basis of Bachem and Kannan [3], which is also a critical 2-BKZ basis.
We find that Schnorr’s variant in [20] forms a critical 2-slide reduced basis, whose
expression is as follows:

An = (b1, . . . , bn) =



1 1
2
ρ ρ/2

ρ2 ρ2/2
0

. . .
. . .

. . .
. . .

ρn−2 ρn−2/20
ρn−1


where ρ =

√
3/4 and n > 2. The matrices An satisfy the recursion

An =



1 1
2 0 · · · 0
· · · · · · · · · · · ·

0
...

...
... ρ · An−1

0
...


.

T 5.1 (Bachem and Kannan [3]). The column vectors of the matrix An form a
critical 2-BKZ basis.

L 5.2. The column vectors of the matrix An forms a 2-slide reduced basis, where
n > 2.

P. Given the matrix An, we denote its column vector group by B. Clearly, for
i = 0, . . . , [(n − 3)/2]

Bt
[2i+2,2i+3] =

(
0 · · · 0 ρ2i+1 0 0 · · · 0
0 · · · 0 ρ2i+1/2 ρ2i+2 0 · · · 0

)
,

where there are 2i + 1 zeros in front of ρ2i+1. It is easy to get

B−s
[2i+2,2i+3] = RnB−t

[2i+2,2i+3]R2

=


0 · · · 0

1
ρ2i+2

0 0 · · · 0

0 · · · 0 −
1

2ρ2i+2

1
ρ2i+1

0 · · · 0


t

, (c1, c2),
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where there are n − 2i − 3 zeros before 1/ρ2i+2. Then, for any x, y ∈ Z, x2 + y2 , 0,

‖xc1 + yc2‖ =
1

ρ2i+2

√(
x −

y
2

)2

+
3y2

4
≥

1
ρ2i+2

= ‖c1‖.

This shows that B−s
[2i+2,2i+3] is SVP-reduced, that is, B[2i+2,2i+3] is DSVP-reduced.

Together with Theorem 5.1, this implies that B forms a 2-slide reduced basis. �

T 5.3. The column vectors of the matrix An form a critical 2-slide reduced
basis if n is an even number bigger than 2.

P. It is easy to see that the vector bn is a shortest vector in L(b1, . . . , bn) −
L(b1, . . . , bn−1), where ‖bn‖

2 = ρ2n−4(ρ2 + 1/4) = (3/4)n−2. It follows that bn is the
shortest vector in the lattice L(b1, . . . , bn). Therefore, λ1(L) satisfies ‖b1‖/λ1(L) =

γn−2
2 and ‖b1‖/ vol(L)1/n = ρ(1−n)/2 = γ(n−1)/2

2 . It follows from Theorem 3.4 and
Lemma 5.2 that the claim holds. �

The proof of Theorem 5.3 indicates that the upper bounds of Theorem 3.4 with
blocksize 2 are tight, provided that n is an even number bigger than 2 and ε = 0.
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