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We suggest four new measures of importance for repairable multistate systems based on
the classical Birnbaum measure. Periodic component life cycles and general semi-Markov
processes are considered. Similar to the Birnbaum measure, the proposed measures are
generic in the sense that they only depend on the probabilistic properties of the compo-
nents and the system structure. The multistate system model encodes physical properties
of the components and the system directly into the structure function. As a result, cal-
culating importance is easy, especially in the asymptotic case. Moreover, the proposed
measures are composite measures, combining importance for all component states into a
unified quantity. This simplifies ranking of the components with respect to importance.
The proposed measures can be characterized with respect to two features: forward-looking
versus backward-looking and with respect to how criticality is measured. Forward-looking
importance measures focus on the next component states, while backward-looking impor-
tance measures focus on the previous component states. Two approaches to measuring
criticality are considered: probability of criticality versus expected impact. Examples show
that the different importance measures may result in unequal rankings.

Keywords: Birnbaum importance, component criticality, multistate systems, repairable compo-
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1. INTRODUCTION

A main problem in reliability theory is to determine how the reliability of a complex system
can be determined from knowledge of the reliabilities of its components. A weakness of
traditional binary reliability theory is that the system and the components are always
described just as functioning or failed. This approach often represents an oversimplification
in real-life situations where the system and their components are capable of assuming a
whole range of levels of performance, varying from perfect functioning to complete failure.
In order to allow more detailed system models, multistate systems were introduced in the
mid-1980s. The methodology for such systems has been developed continuously since then.
For an extensive introduction to multistate systems, we refer to [22].
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The main topic of the present paper is importance measures for multistate systems.
Recent reviews of papers on importance measures can be found in [1,14]. There are two
main reasons for calculating importance of components in a system. Firstly, it permits the
analyst to determine which components merit the most additional research and development
to improve overall system reliability at minimum cost or effort. Secondly, it may be used in
diagnostics as a way of generating a list of components ordered with respect to how likely
they are to have caused the system failure. In general, no measure of importance can be
expected to be universally best irrespective of usage purpose. Thus, comparing different
measures is often of interest. Classical approaches to importance include Birnbaum [3],
Fussell and Vesely [12], Barlow and Proschan [2] and Natvig [19]; see also Natvig [20] and
Natvig and G̊asemyr [23]. All these classical measures can be described as generic in the
sense that they depend only on the probabilistic properties of the components and the
system structure.

One of the first papers on multistate systems is [13]. By studying how component
improvement impacts the overall system reliability behavior, a notion of component impor-
tance was proposed. More specifically, the paper introduced a reliability importance vector
where the ith entry of the vector represented the impact on the system reliability, given
that the component was improved from state i − 1 to state i. This approach can be viewed
as a natural extension of the Birnbaum measure to the multistate case. A similar approach
is essentially used in [21,25] for repairable systems.

For multistate systems with binary components, Levitin and Lisnianski [17] proposed
sensitivity measures to quantify how much the system reliability is affected by perturbations
in the components and in the stochastic system demand. Zio and Podofillini [39] extended
this to multistate systems with multistate components. This work was further developed in
[18]; see also Zio et al. [41], Zio and Podofillini [40] and Zio et al. [42].

Reliability importance vectors contain a lot of useful information about how the compo-
nents affect the system. In particular, for a given component, the most important component
state with regard to its impact on system reliability can be identified. However, as pointed
out by Ramirez-Marquez et al. [28], the most critical system component state may not
always correspond to the most critical system component. In order to simplify the com-
parison, Ramirez-Marquez and Coit [26] introduced composite importance measures which
combine importance for all component states into a unified quantity; see also Ramirez-
Marquez and Coit [27]. In [28], many different variations of composite importance measures
are presented. A common idea behind these measures is that the importance of a component
is quantified with respect to the impact on the system of fixing the component state at some
level. Moreover, system performance is typically evaluated relative to the external demand
the system is subject to. Both constant and variable demand models are considered.

Si et al. [30] study integrated importance measure of component states for maintenance
processes. To describe the impact of each component state in a maintenance process, a cost
function of multistate systems is defined. Considering probability distributions, component
transition rates and system maintenance costs, the integrated importance measure of com-
ponent states is described. The resulting characteristics are discussed in both series systems
and parallel systems; see also Si et al. [31]. In [8], this work is extended to general semi-
Markov models. A similar framework is used in [9] coupled with a general system model
expressed in terms of multi-valued decision diagrams. In [10], the proposed methodology is
applied to a submarine blowout preventer system.

Si et al. [32] extend the integrated importance measure to estimate the effect of a
component residing at certain states on the performance of entire multistate systems. It is
pointed out that many common importance measures do not consider how transition rates
between different component states may affect the system. Thus, the authors present two
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new measures where these transition rates play a central role. Based on the first measure,
one may identify at which state a component should be kept in order to ensure a desired level
of system performance. The second measure indicates which group of states one should keep
the components at to provide the desired level of system performance and which component
is the most important to keep at states above a certain level. It is shown that the state
and component rankings according to the suggested importance measures depend on the
transition rates of the components, on the system structure and on the desired system
performance.

Recent papers on importance measures take a decision-oriented approach, where the
importance measures are used as tools for optimizing performance and minimize cost. Papers
in this category are, for example, Borgonovo and Apostolakis [4], Wu and Coolen [36], Wu
et al. [37], Cai et al. [5,6], Skutlaberg and Natvig [34] and Zhu et al. [38]. In order to facil-
itate this, the modeling framework must be extended to include additional elements such
as objective functions, cost functions and demand models. This is indeed a very interest-
ing development which makes importance measures applicable to a much wider range of
problems.

Based on the cost-reliability relation, Si et al. [33] proposes a generalized Birn-
baum importance measure to quantify the contribution of individual components to
system reliability improvement by considering reliability range, manufacturing complex-
ity and technology feasibility. The generalized measure can be applied to system reliability
optimization.

In the present paper, we focus on generic importance measures. We believe that such
measures are especially useful in cases where knowledge about the operating environment
and other external factors are unavailable or uncertain, for example, in early design phases.
At the same time, generic measures can often easily be put into a decision-making context
by including decisions and suitable objective functions.

In order to make component ranking straightforward, we have chosen to work with
composite importance measures. While such measures are very easy to work with, there is
a risk of oversimplifying the analysis. In particular, a single importance measure will never
represent the full picture. In order to gain better insight into the strengths and weaknesses
of a given system, it is often useful to apply more than one measure. Thus, in the present
paper, we propose four different generalizations of the classical Birnbaum measure. All
these are true generalizations in the sense that they are reduced to the classical measure
in the binary case. In the multistate case, however, the measures highlight different aspects
of the system under consideration. The measures can be characterized along two axes:
forward-looking versus backward-looking and with respect to how criticality is measured.
Forward-looking importance measures focus on the next component states. According to
this approach, the most important component is the one that has the highest probability
of changing the system state. Backward-looking importance measures focus on the previous
component states. According to this approach, the most important component is the one
that has the highest probability of having changed the system state. Furthermore, two
approaches to measuring criticality are considered: probability of criticality versus impact
of criticality.

We have chosen a modeling framework where the physical properties of the components
and the system are encoded directly into the model. This eliminates the need for weight
factors in the construction of the composite measures. Instead, the impacts of the individual
states are combined in a natural way without introducing extra parameters. As a result, cal-
culating the importance measures can be done very efficiently, especially in the asymptotic
case.

In the first sections of the paper, each component follows periodic life cycles, starting
out in the top state, and then transiting through the lower states until they fail. Then,
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they are repaired or replaced, and a new life cycle starts. In the second part of the paper,
the life cycles of the components are modeled using general semi-Markov processes. The
semi-Markov models used in this paper are similar to the ones considered in [8].

2. MULTISTATE SYSTEMS

Before we introduce the importance measures, we briefly describe the modeling framework.
We define a multistate system similar to a binary system as an ordered pair (C, φ), where
C = {1, . . . , n} is the component set and φ is the structure function. Moreover, we let X(t) =
(X1(t), . . . , Xn(t)), where Xi(t) is the state variable of component i at time t. Contrary to
a binary system, however, both the components and the system may be in multiple states
(not just 0 and 1). More specifically, if i ∈ C, we let Si = {0, 1, . . . , ri} denote the set of
states for component i.

In the simplest cases, we assume that each component starts out by being in its top-
level state, that is, state ri for component i. Then, at random points of time, the component
transits downwards through the state set until it reaches state 0. At this stage, the compo-
nent is repaired or replaced by a new component, and a new life cycle starts. In Section 4,
we consider more general semi-Markov processes.

For each component i ∈ C, we also introduce a function fi : Si → R representing the
physical state of the component as a function of the state. Thus, if Xi(t) = xi ∈ Si, then
the physical state of component i at time t is fi(Xi(t)) = fi(xi). If, for example, component
i is a pipeline, then the physical state of the component at a given point of time may be
the capacity of the pipeline at this point of time. Being a physical property of the pipeline,
this may be any non-negative number, and the function fi provides a convenient way of
encoding this directly into the model.

Note that the functions f1, . . . , fn do not necessary need to be nondecreasing. By avoid-
ing this restriction, additional useful modeling flexibility is gained. This allows, for example,
for the inclusion of burn-in phases, maintenance as well as minimal or partial repairs of a
components as part of its life cycle before it reaches its failure state.

The structure function φ represents the state of the system expressed as a function of
the states of the components. It is common in multistate reliability theory to assume that φ
also assumes values in a set of non-negative integers. In this context, however, the structure
function represents the physical state of the system. This function is expressed as a function
of the physical states of the components:

φ(X(t)) = φ(f1(X1(t)), . . . , fn(Xn(t))).

Thus, the physical state of the system is a function of the physical states of the com-
ponents. The advantage with this approach is that the system state is expressed in terms
of physical quantities rather than being encoded more abstractly as non-negative integers.

In the following we will also use the standard notation from reliability theory,
φ(xi,X)which is defined as follows:

φ(xi,X) = φ(X1, . . . , Xi−1, xi,Xi+1, . . . , Xn).

In cases where the index i is obvious from the context, we simply write φ(x,X).

3. CRITICALITY AND IMPORTANCE IN MULTISTATE SYSTEMS

In order to extend the definition of criticality and importance, we consider a multistate sys-
tem (C, φ). Let i ∈ C, and let Si = {0, 1, . . . , ri} be the set of states for this component. We
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then introduce X+
i (t) and X−

i (t) as, respectively, the next and previous state of component
i, i = 1, . . . , n. With more than two possible states for each component, the mathematical
expressions for X+

i (t) and X−
i (t) are different. More specifically, we have

X+
i (t) =

{
Xi(t) − 1 for Xi(t) > 0,

ri for Xi(t) = 0.

X−
i (t) =

{
Xi(t) + 1 for Xi(t) < ri,

0 for Xi(t) = ri.

Based on X+
i (t) and X−

i (t), we introduce two notions of criticality. We say that
component i is n-critical at time t if

φ(Xi(t),X(t)) �= φ(X+
i (t),X(t)). (3.1)

Hence, component i is n-critical at time t if changing the component to its next state
would result in a system state change as well. Similarly, we say that component i is p-critical
at time t if

φ(X−
i (t),X(t)) �= φ(Xi(t),X(t)). (3.2)

Hence, component i is p-critical at time t if changing the component back to its previous
state would result in a system state change as well.

We then proceed by introducing two possible generalizations of the Birnbaum measure
to multistate systems. We define the n-Birnbaum measure of importance of component
i at time t, denoted I

(i)
NB(t), as the probability that the component is n-critical at time

t. Similarly, we define the p-Birnbaum measure of importance of component i at time t,
denoted I

(i)
PB(t), as the probability that the component is p-critical at time t. Hence, using

Eqs. (3.1) and (3.2), we get

I
(i)
NB(t) = P [φ(Xi(t),X(t)) �= φ(X+

i (t),X(t))], (3.3)

I
(i)
PB(t) = P [φ(X−

i (t),X(t)) �= φ(Xi(t),X(t))]. (3.4)

We observe that I
(i)
NB(t) is the probability that the system state will change if component

i enters its next state, while I
(i)
PB(t) is the probability that the system state changed as a

result of the most recent state change for component i. Thus, I
(i)
NB(t) is forward-looking,

while I
(i)
PB(t) is backward-looking.

It is easy to verify that in the binary case I
(i)
NB(t) = I

(i)
PB(t) = I

(i)
B (t), where I

(i)
B (t) denotes

the well-known Birnbaum measure introduced by Birnbaum [3]. In the multistate case,
however, we may have I

(i)
NB(t) �= I

(i)
PB(t). In order to take a closer look at the difference

between the two importance measures, we rewrite Eqs. (3.3) and (3.4) by conditioning on
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the state of component i and get

I
(i)
NB(t) =

ri∑
u=1

P [φ(u,X(t)) �= φ(u − 1,X(t))] · P [Xi(t) = u]

+ P [φ(0,X(t)) �= φ(ri,X(t))] · P [Xi(t) = 0], (3.5)

I
(i)
PB(t) =

ri−1∑
u=0

P [φ(u + 1,X(t)) �= φ(u,X(t))] · P [Xi(t) = u]

+ P [φ(0,X(t)) �= φ(ri,X(t))] · P [Xi(t) = ri]. (3.6)

Changing the summation index in Eq. (3.6), this expression becomes

I
(i)
PB(t) =

ri∑
u=1

P [φ(u,X(t)) �= φ(u − 1,X(t))] · P [Xi(t) = u − 1]

+ P [φ(0,X(t)) �= φ(ri,X(t))] · P [Xi(t) = ri]. (3.7)

Comparing Eqs. (3.5) and (3.7), we observe that P [Xi(t) = u] in Eq. (3.5) is replaced by
P [Xi(t) = u − 1] in Eq. (3.7), u = 1, . . . , ri. Moreover, P [Xi(t) = 0] in Eq. (3.5) is replaced
by P [Xi(t) = ri] in Eq. (3.7). From this, it follows that if P [Xi(t) = 0] = P [Xi(t) = 1] =
· · · = P [Xi(t) = ri], we will have I

(i)
NB(t) = I

(i)
PB(t). In general, however, the two importance

measures will be different.

Example 3.1: We consider a multistate system (C, φ), where C = {1, 2}. Both components
have three possible states, 0, 1, 2. For simplicity, we assume that these states are identical
to the physical states, that is, fi(u) = u, u = 0, 1, 2 and i = 1, 2. Moreover, the structure
function is given by the following equation:

φ(X1(t),X2(t)) = min(f1(X1(t)), f2(X2(t))).

For a given t, we assume that P [X1(t) = u] = pu and P [X2(t) = u] = qu, u = 0, 1, 2. It
is then easy to see that

P [φ(0,X2(t)) �= φ(2,X2(t))] = q1 + q2,

P [φ(1,X2(t)) �= φ(0,X2(t))] = q1 + q2,

P [φ(2,X2(t)) �= φ(1,X2(t))] = q2,

P [φ(X1(t), 0) �= φ(X1(t), 2)] = p1 + p2,

P [φ(X1(t), 1) �= φ(X1(t), 0)] = p1 + p2,

P [φ(X1(t), 2) �= φ(X1(t), 1)] = p2.

Inserting this into Eqs. (3.5) and (3.7), we get after some simplifications that

I
(1)
NB(t) = q1 + q2 − p2q1,

I
(2)
NB(t) = p1 + p2 − p1q2,
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I
(1)
PB(t) = q1 + q2 − p1q1,

I
(2)
PB(t) = p1 + p2 − p1q1.

We observe that I
(1)
PB(t) > I

(2)
PB(t) if and only if q1 + q2 > p1 + p2. However, assuming

that q1 + q2 > p1 + p2 and at the same time choosing p1 < p2 and q1 > q2, it is possible to
obtain the opposite ranking with respect to the n-Birnbaum measure.

Assume, for example, that p1 = 0.20, p2 = 0.35, q1 = 0.40 and q2 = 0.20. We then get
I
(1)
NB(t) = 0.46, while I

(2)
NB(t) = 0.51. Furthermore, I

(1)
PB(t) = 0.52, while I

(2)
PB(t) = 0.47. That

is, I
(1)
NB(t) < I

(2)
NB(t), while I

(1)
PB(t) > I

(2)
PB(t).

Example 3.2: In this example, we also consider a multistate system (C, φ), where C =
{1, 2}, and where both components have three possible states, 0, 1, 2. As in the previous
example, we let f1(u) = u, u = 0, 1, 2. However, in this case, we let f2(0) = 0, f2(1) = 2
and f2(2) = 1. Thus, component 2 starts out in its intermediate physical state 1 before its
best physical state 2 is reached. The structure function is once again

φ(X1(t),X2(t)) = min(f1(X1(t)), f2(X2(t))),

and for a given t, we let P [X1(t) = u] = pu and P [X2(t) = u] = qu, u = 0, 1, 2. We now get

P [φ(0,X2(t)) �= φ(2,X2(t))] = q1 + q2,

P [φ(1,X2(t)) �= φ(0,X2(t))] = q1 + q2,

P [φ(2,X2(t)) �= φ(1,X2(t))] = q1,

P [φ(X1(t), 0) �= φ(X1(t), 2)] = p1 + p2,

P [φ(X1(t), 1) �= φ(X1(t), 0)] = p1 + p2,

P [φ(X1(t), 2) �= φ(X1(t), 1)] = p2.

Inserting this into Eqs. (3.5) and (3.7), we get

I
(1)
NB(t) = q1 + q2 − p2q2,

I
(2)
NB(t) = p1 + p2 − p1q2,

I
(1)
PB(t) = q1 + q2 − p1q2,

I
(2)
PB(t) = p1 + p2 − p1q1.

We now assume that P [f1(X1(t)) = u] = P [f2(X2(t)) = u], u = 0, 1, 2. This implies that
p2 = q1 and p1 = q2. Focussing first on the n-Birnbaum measure, it follows that

I
(1)
NB(t) > I

(2)
NB(t) if and only if p2 < p1.

Assume more specifically that p2 = q1 = 0.3 and p1 = q2 = 0.4. We then get

I
(1)
NB(t) = 0.58 and I

(2)
NB(t) = 0.54.

Thus, even though f1(X1(t)) and f2(X2(t)) have the same distribution, and the struc-
ture function is symmetric with respect to f1 and f2, component 1 has higher importance
than component 2 when the n-Birnbaum measure is used. If instead p2 > p1, the ranking is
reversed. Similar results hold for the p-Birnbaum measure.
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3.1. Importance Based on Expected Physical Criticality

The importance measures introduced so far are based on a binary notion of criticality: either
a component is critical or it is not critical. At the same time, our definition of the structure
function φ is assumed to represent some physical quantity. In this section, we utilize this as
a basis for two new importance measures. More specifically, for a given multistate system
(C, φ), we introduce Δ(i)

N (t) and Δ(i)
P (t) defined for t > 0 and i ∈ C as follows:

Δ(i)
N (t) = |φ(Xi(t),X(t)) − φ(X+

i (t),X(t))|,
Δ(i)

P (t) = |φ(Xi(t)−,X(t)) − φ(Xi(t),X(t))|.

Hence, Δ(i)
N (t) denotes the absolute value of the change in the system state as a result of

component i changing from its current state Xi(t) to its next state X+
i (t). Similarly, Δ(i)

P (t)
denotes the absolute value of the change in the system state as a result of component i
changing from its previous state X−

i (t) to its current state Xi(t).
The n*-Birnbaum measure of importance of component i at time t, denoted I

∗(i)
NB (t), is

defined as the expected value of Δ(i)
N (t):

I
∗(i)
NB (t) = E|φ(Xi(t),X(t)) − φ(X+

i (t),X(t))|. (3.8)

Similarly, the p*-Birnbaum measure of importance of component i at time t, denoted
I
∗(i)
NB (t), is defined as the expected value of Δ(i)

P (t):

I
∗(i)
PB (t) = E|φ(X−

i (t),X(t)) − φ(Xi(t),X(t))|. (3.9)

We observe that I
∗(i)
NB (t) is the expected physical impact on the system given that com-

ponent i enters its next state, while I
∗(i)
PB (t) is the expected impact of the most recent state

change for component i. Thus, I
∗(i)
NB (t) is forward-looking, while I

∗(i)
PB (t) is backward-looking.

The main difference between these measures and the previously introduced measures is in
the way we quantify criticality. The expected physical impact can potentially capture more
detailed information about the system than a simple probability.

Note that in the binary case, all the different measures are the same:

I
(i)
NB(t) = I

(i)
PB(t) = I

∗(i)
NB (t) = I

∗(i)
PB (t) = I

(i)
B (t).

In order to show how these measures can be computed, we expand Eqs. (3.8) and (3.9)
by conditioning on the state of component i and get

I
∗(i)
NB (t) =

ri∑
u=1

E|φ(u,X(t)) − φ(u − 1,X(t))| · P [Xi(t) = u]

+ E|φ(0,X(t)) − φ(ri,X(t))| · P [Xi(t) = 0], (3.10)

I
∗(i)
PB (t) =

ri−1∑
u=0

E|φ(u + 1,X(t)) − φ(u,X(t))| · P [Xi(t) = u]

+ E|φ(0,X(t)) − φ(ri,X(t))| · P [Xi(t) = ri]. (3.11)
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Again, we change the summation index in Eq. (3.11) and get

I
∗(i)
PB (t) =

ri∑
u=1

E|φ(u,X(t)) − φ(u − 1,X(t))| · P [Xi(t) = u − 1]

+ E|φ(0,X(t)) − φ(ri,X(t))| · P [Xi(t) = ri]. (3.12)

Using the same arguments as in the previous section, it follows that I
∗(i)
NB (t) = I

∗(i)
PB (t) if

P [Xi(t) = 0] = P [Xi(t) = 1] = · · · = P [Xi(t) = ri]. In general, however, the two importance
measures will be different.

Example 3.3: Consider a multistate system (C, φ), where C = {1, 2}, and where S1 =
{0, 1} and S2 = {0, 1, 2}. Moreover, we assume that

f1(u) = 2u, u ∈ S1,

f2(u) = u, u ∈ S2.

As before, the structure function is given by

φ(X1(t),X2(t)) = min(f1(X1(t)), f2(X2(t))).

Finally, we again assume that the component state processes are independent, and that
for a given t, we have

P [X1(t) = u] = pu > 0, u ∈ S1,

P [X2(t) = u] = qu > 0, u ∈ S2.

Noting that component 1 only has two states, we get

E|φ(1,X2(t)) − φ(0,X2(t))| = E|φ(0,X2(t)) − φ(1,X2(t))| = q1 + 2q2.

Inserting this into Eq. (3.10) and using that p0 + p1 = 1, we get

I
∗(1)
NB (t) = (q1 + 2q2)p1 + (q1 + 2q2)p0 = q1 + 2q2.

For component 2, we have

E|φ(X1(t), 1) − φ(X1(t), 0)| = p1,

E|φ(X1(t), 2) − φ(X1(t), 1)| = p1,

E|φ(X1(t), 0) − φ(X1(t), 2)| = 2p1.

Inserting this into Eq. (3.10) and using that q0 + q1 + q2 = 1, we get

I
∗(2)
NB (t) = p1q1 + p1q2 + 2p1q0 = (1 + q0)p1.

We also have

E[f1(X1(t))] = 0 · p0 + 2 · p1 = 2p1,

E[f2(X2(t))] = 0 · q0 + 1 · q1 + 2 · q2 = q1 + 2q2.

In order to make the comparison between the components as fair as possible, we assume
that their distributions are so that E[f1(X1(t))] = E[f2(X2(t))], that is, 2p1 = q1 + 2q2. This
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implies that

I
∗(1)
NB (t) = 2p1,

I
∗(2)
NB (t) = (1 + q0)p1.

Since we have assumed that q1 > 0 and q2 > 0, it follows that q0 < 1. Hence, we conclude
that even though both components have the same expected performance, we can still have
I
∗(1)
NB (t) > I

∗(2)
NB (t).

4. IMPORTANCE MEASURES FOR SEMI-MARKOV PROCESSES

In the previous sections, we assumed that each life cycle of a component was deterministic
with respect to the states the component transited through. As a result the next and previous
states at a given point of time, denoted, respectively, X+

i (t) and X−
i (t) were both determined

with probability one by the current state Xi(t). We now relax this assumption and allow the
components to follow a general semi-Markov process, where the state transitions follow a
Markov chain, referred to as the built-in Markov chain. Thus, each time component i enters
a state u ∈ Si, it remains there for a random amount of time, and then makes a transition
into state v ∈ Si with probability P

(i)
uv . The full matrix of transition probabilities for the

built-in Markov chain for component i is denoted P (i), i ∈ C. Given this matrix, we have
that

P (X+
i (t) = v|Xi(t) = u) = P (i)

uv , u, v ∈ Si. (4.1)

In order to find a similar expression for the conditional distribution of X−
i (t), we need

the transition matrix for the backwards version of the built-in Markov chain, which we
denote by Q(i). It then follows that

P (X−
i (t) = v|Xi(t) = u) = Q(i)

uv , u, v ∈ Si. (4.2)

Within this more general context, the definitions of I
(i)
NB(t) and I

(i)
PB(t) given in Eqs.

(3.3) and (3.4) are still valid. However, Eqs. (3.5) and (3.6) have to be modified as follows:

I
(i)
NB(t) =

∑
u,v∈Si

P [φ(u,X(t)) �= φ(v,X(t))] · P [Xi(t) = u] · P (i)
uv , (4.3)

I
(i)
PB(t) =

∑
u,v∈Si

P [φ(u,X(t)) �= φ(v,X(t))] · P [Xi(t) = u] · Q(i)
uv . (4.4)

Note that the measures I
(i)
NB(t) and I

(i)
PB(t) defined, respectively, in Eqs. (4.3) and (4.4)

are essentially the same measures as we introduced previously in, respectively, Eqs. (3.3)
and (3.4). The only difference is that the mathematical expressions now must to take into
account that a more general probability model is used for the component processes.

We, henceforth, focus on the asymptotic properties of the processes and ommit the
time t from the notation. For component i ∈ C, we denote the stationary probabilities of
the built-in Markov chain by π

(i)
u , u ∈ Si. We then have the following well-known relation
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between the transition matrices P (i) and Q(i) (see, e.g., [29]):

Q(i)
uv =

π
(i)
v

π
(i)
u

P (i)
vu , u, v ∈ Si. (4.5)

Note that if the stationary distribution of the built-in Markov chain is uniform, that is,
if π

(i)
u = 1/(ri + 1), for all u ∈ Si, we have

Q(i) = (P (i))T , i ∈ C.

It is well-known that an irreducible aperiodic finite Markov chain has a uniform sta-
tionary distribution if and only if P (i) is a doubly stochastic matrix, that is, all row sums
and column sums are equal to 1.

In order to proceed, we now introduce the times spent in each state between the
transitions. More specifically, we let

W
(i)
ku = the kth waiting time in state u for component i.

We assume that all the waiting times are independent, and that for all components
i ∈ C and states u ∈ Si, the waiting times W

(i)
1u ,W

(i)
2u , . . . are identically distributed with

finite mean μ
(i)
u . Then, it follows from standard renewal theory (see, e.g., [29]) that the

stationary distribution of Xi is given by

P [Xi = u] =
π

(i)
u μ

(i)
u∑

v∈Si
π

(i)
v μ

(i)
v

, u ∈ Si, i ∈ C. (4.6)

Combining Eq. (4.6) with Eqs. (4.3) and (4.4), we get the following expressions for the
stationary importance measures:

I
(i)
NB =

∑
u,v∈Si

P [φ(u,X) �= φ(v,X)] · π
(i)
u μ

(i)
u∑

v∈Si
π

(i)
v μ

(i)
v

· P (i)
uv , (4.7)

I
(i)
PB =

∑
u,v∈Si

P [φ(u,X) �= φ(v,X)] · π
(i)
u μ

(i)
u∑

v∈Si
π

(i)
v μ

(i)
v

· Q(i)
uv . (4.8)

Using these formulas, it is easy to establish a sufficient condition for when I
(i)
NB = I

(i)
PB.

Theorem 4.1: Assume that μ
(i)
0 = · · · = μ

(i)
ri . Then, I

(i)
NB = I

(i)
PB.

Proof: If μ
(i)
0 = · · · = μ

(i)
ri , the stationary distribution given in Eq. (4.6) is simplified to

P [Xi = u] = π(i)
u , u ∈ Si, i ∈ C.
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Inserting this into Eqs. (4.7) and (4.8), we get

I
(i)
NB =

∑
u,v∈Si

P [φ(u,X) �= φ(v,X)] · π(i)
u · P (i)

uv ,

I
(i)
PB =

∑
u,v∈Si

P [φ(u,X) �= φ(v,X)] · π(i)
u · Q(i)

uv .

We then insert the expression for Q
(i)
uv given in Eq. (4.5) into the last equation and get

I
(i)
PB =

∑
u,v∈Si

P [φ(u,X) �= φ(v,X)] · π(i)
v · P (i)

vu .

Hence, by interchanging u and v, we get that I
(i)
NB = I

(i)
PB as stated. �

Another special case occurs when the transition matrix P (i) is doubly stochastic.

Theorem 4.2: Assume that the transition matrix P (i) is doubly stochastic. Then, we have

I
(i)
NB =

∑
u,v∈Si

P [φ(u,X) �= φ(v,X)] · μ
(i)
u∑

v∈Si
μ

(i)
v

· P (i)
uv ,

I
(i)
PB =

∑
u,v∈Si

P [φ(u,X) �= φ(v,X)] · μ
(i)
u∑

v∈Si
μ

(i)
v

· P (i)
vu .

Proof: If the transition matrix P (i) is doubly stochastic, it is easy to see that the stationary
distribution of the built-in Markov chain is uniform. Hence, the stationary distribution given
in Eq. (4.6) is simplified to

P [Xi = u] =
μ

(i)
u∑

v∈Si
μ

(i)
v

, u ∈ Si, i ∈ C. (4.9)

Moreover, the transition matrix Q(i) is equal to (P (i))T . That is,

Q(i)
uv = P (i)

vu , for all u, v ∈ Si.

By combining these observations, the stated result follows. �

We observe that by Eqs. (4.7) and (4.8), I
(i)
NB and I

(i)
PB depend both on the stationary

distributions and the transition matrices P (i) and Q(i). Thus, even if two components
have equal stationary distributions, they may still have different importance. The following
example illustrates this.
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Example 4.3: We consider once again a multistate system (C, φ), where C = {1, 2}, and
where both components have three possible states, 0, 1, 2. For simplicity, we again let fi(u) =
u, u = 0, 1, 2, i = 1, 2. Moreover, as before, the structure function is given by

φ(X1(t),X2(t)) = min(f1(X1(t)), f2(X2(t))).

The transition matrices of the built-in Markov chains are

P (1) =

⎡
⎣0.1, 0.3, 0.6

0.6, 0.1, 0.3
0.3, 0.6, 0.1

⎤
⎦ , P (2) =

⎡
⎣0.7, 0.1, 0.2

0.2, 0.7, 0.1
0.1, 0.2, 0.7

⎤
⎦ ,

while the mean waiting times are

μ
(i)
0 = 2.5, μ

(i)
1 = 3.5, μ

(i)
2 = 4.0, i = 1, 2.

It is easy to see that both P (1) and P (2) are doubly stochastic, implying that the sta-
tionary distributions of the built-in Markov chains are uniform. Hence, we may calculate
importance using Theorem 4.2. In particular, the stationary distributions can be calculated
using the simplified formula given in Eq. (4.9), and we get

P [Xi = 0] = 0.25, P [Xi = 1] = 0.35, P [Xi = 2] = 0.40, i = 1, 2.

We now focus on I
(i)
NB. The corresponding results for I

(i)
PB are obtained in a similar

fashion and are approximately the same in this case. In order to calculate I
(i)
NB, we need to

compute a sum overall u, v ∈ Si. Since, however, we obviously have

P [φ(u,X2) �= φ(v,X2)] = 0 if u = v,

only the terms where u �= v need to be included. Moreover, by symmetry, we of course also
have

P [φ(u,X2) �= φ(v,X2)] = P [φ(v,X2) �= φ(u,X2)].

Using this, we get the following non-zero probabilities for component 1:

P [φ(0,X2) �= φ(1,X2)] = P [X2 = 1] + P [X2 = 2] = 0.75,

P [φ(0,X2) �= φ(2,X2)] = P [X2 = 1] + P [X2 = 2] = 0.75,

P [φ(1,X2) �= φ(0,X2)] = P [φ(0,X2) �= φ(1,X2)] = 0.75,

P [φ(1,X2) �= φ(2,X2)] = P [X2 = 2] = 0.40,

P [φ(2,X2) �= φ(0,X2)] = P [φ(0,X2) �= φ(2,X2)] = 0.75,

P [φ(2,X2) �= φ(1,X2)] = P [φ(1,X2) �= φ(2,X2)] = 0.40.

Moreover, since these probabilities only depend on the stationary distribution of compo-
nent 2, and both components have the same stationary distribution, we get exactly the same
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probabilities for component 2. Thus, we have all the quantities needed in order to compute
the importance measures using the formula for I

(i)
NB given in Theorem 4.2, and we get

I
(1)
NB = 0.55425, I

(2)
NB = 0.18475.

We observe that component 1 is much more important than component 2, even though
they both have exactly the same stationary distributions. The reason for this is that com-
ponent 2 has a much higher probability of staying in the same state when a transition
happens compared to component 1, that is, 0.7 versus 0.1. Hence, for component 2, most
of the weight from the transition probabilities are put on terms where u = v, and for
these terms P [φ(X1, u) �= φ(X1, v)] = 0. For component 1, on the other hand, most of the
weight from the transition probabilities are put on terms where u �= v, and for these terms
P [φ(u,X2) �= φ(v,X2)] > 0.

In many applications, transitions from one state directly back to the same state does not
make sense. In order to avoid this, we may, for example, replace the matrices of transition
probabilities of the built-in Markov chains with the following matrices:

P (1) =

⎡
⎣0.0, 0.1, 0.9

0.9, 0.0, 0.1
0.1, 0.9, 0.0

⎤
⎦ , P (2) =

⎡
⎣0.0, 0.9, 0.1

0.1, 0.0, 0.9
0.9, 0.1, 0.0

⎤
⎦ .

We observe that in these transition matrices, all the diagonal terms are 0.0. Thus, the
probability of staying in the same state after a transition has happened is zero.

It is again easy to verify that both P (1) and P (2) are doubly stochastic. This implies that
the stationary probabilities are the same as in the previous case. The change in transition
probabilities, however, implies that the importance measures change considerably. In this
case, we get

I
(1)
NB = 0.61175, I

(2)
NB = 0.62575.

implying that component 2 is now slightly more important than component 1.
By comparing transition matrices, we also notice that P (1) = (P (2))T . By Theorem 4.2,

this implies that

I
(1)
PB = I

(2)
NB and I

(2)
PB = I

(1)
NB.

Hence, the importance ranking is reversed if we apply the p-Birnbaum measure instead
of the n-Birnbaum measure.

4.1. Expected Physical Criticality for Semi-Markov Processes

We close this section by briefly showing how the importance measures based on expected
physical criticality, introduced in Section 3.1 can be extended to semi-Markov processes.
We observe that Eqs. (3.8) and (3.9) are valid also in the general case. In order to calculate
the n*-Birnbaum measure and the p*-Birnbaum measure, we again expand Eqs. (3.8) and
(3.9) by conditioning on the state of component i and get formulas similar to Eqs. (4.3)
and (4.4):

I
∗(i)
NB (t) =

∑
u,v∈Si

E|φ(u,X(t)) − φ(v,X(t))| · P [Xi(t) = u] · P (i)
uv , (4.10)

I
∗(i)
PB (t) =

∑
u,v∈Si

E|φ(u,X(t)) − φ(v,X(t))] · P [Xi(t) = u| · Q(i)
uv . (4.11)
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Focussing on the asymptotic properties and using the same arguments as we did for
I
(i)
NB and I

(i)
PB, we get the following analogues to Eqs. (4.7) and (4.8):

I
∗(i)
NB =

∑
u,v∈Si

E|φ(u,X) − φ(v,X)| · π
(i)
u μ

(i)
u∑

v∈Si
π

(i)
v μ

(i)
v

· P (i)
uv , (4.12)

I
∗(i)
PB =

∑
u,v∈Si

E|φ(u,X) − φ(v,X)| · π
(i)
u μ

(i)
u∑

v∈Si
π

(i)
v μ

(i)
v

· Q(i)
uv . (4.13)

Having these formulas, the following results can easily be proved using exactly the same
arguments as we used for the corresponding results for I

(i)
NB and I

(i)
PB.

Theorem 4.4: Assume that μ
(i)
0 = · · · = μ

(i)
ri . Then, I

∗(i)
NB = I

∗(i)
PB .

Theorem 4.5: Assume that the transition matrix P (i) is doubly stochastic. Then, we have

I
∗(i)
NB =

∑
u,v∈Si

E|φ(u,X) − φ(v,X)| · μ
(i)
u∑

v∈Si
μ

(i)
v

· P (i)
uv ,

I
∗(i)
PB =

∑
u,v∈Si

E|φ(u,X) − φ(v,X)| · μ
(i)
u∑

v∈Si
μ

(i)
v

· P (i)
vu .

We close this section by considering an example.

Example 4.6: We consider the multistate system (C, φ) introduced in Example 4.3. In order
to compute I

∗(1)
NB , we start out by determining E|φ(u,X2) − φ(v,X2)| for all u, v ∈ S1. We

note again that

E|φ(u,X2) − φ(v,X2)| = 0 if u = v,

implying that only the terms where u �= v need to be included. Moreover, by symmetry, we
have

E|φ(u,X2) − φ(v,X2)| = E|φ(v,X2) − φ(u,X2)|.
Using this, we get the following non-zero expectations for component 1:

E|φ(0,X2) − φ(1,X2)| = 1 · P [X2 = 1] + 1 · P [X2 = 2] = 0.75,

E|φ(0,X2) − φ(2,X2)| = 1 · P [X2 = 1] + 2 · P [X2 = 2] = 1.15,

E|φ(1,X2) − φ(0,X2)| = E|φ(0,X2) − φ(1,X2)| = 0.75,

E|φ(1,X2) − φ(2,X2)| = 1 · P [X2 = 2] = 0.40,

E|φ(2,X2) − φ(0,X2)| = E|φ(0,X2) − φ(2,X2)| = 1.15,

E|φ(2,X2) − φ(1,X2)| = E|φ(1,X2) − φ(2,X2)| = 0.40.

Moreover, since these expectations only depend on the stationary distribution of compo-
nent 2, and both components have the same stationary distribution, we get exactly the same
expectations for component 2. Thus, we have all the quantities needed in order to compute
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the importance measures using the formula for I
∗(1)
NB and I

∗(2)
NB given in Theorem 4.5. If the

transition matrices are

P (1) =

⎡
⎣0.1, 0.3, 0.6

0.6, 0.1, 0.3
0.3, 0.6, 0.1

⎤
⎦ , P (2) =

⎡
⎣0.7, 0.1, 0.2

0.2, 0.7, 0.1
0.1, 0.2, 0.7

⎤
⎦ ,

we get that

I
∗(1)
NB = 0.66225, I

∗(2)
NB = 0.22075.

In particular, component 1 is much more important than component 2, even though they
both have exactly the same stationary distributions. If the transition matrices are

P (1) =

⎡
⎣0.0, 0.1, 0.9

0.9, 0.0, 0.1
0.1, 0.9, 0.0

⎤
⎦ , P (2) =

⎡
⎣0.0, 0.9, 0.1

0.1, 0.0, 0.9
0.9, 0.1, 0.0

⎤
⎦ ,

we get that

I
∗(1)
NB = 0.71775, I

∗(2)
NB = 0.77975.

Since P (1) = (P (2))T , Theorem 4.5 implies that

I
∗(1)
PB = I

∗(2)
NB and I

∗(2)
PB = I

∗(1)
NB .

Hence, the importance ranking is reversed if we apply the p∗-Birnbaum measure instead
of the n∗-Birnbaum measure.

We observe that these results are very similar to the corresponding results for I
(1)
NB and

I
(2)
NB found in Example 4.3, except that the importance measures are somewhat greater in

this case.

5. A NUMERICAL EXAMPLE

The examples presented in the previous sections are of course extremely simple and carefully
chosen in order to illustrate the theoretical results. For these examples, it was very easy to
calculate the importance measures manually. In this section, we present a somewhat larger
and more realistic example. It should be noted that it is not difficult to do the asymptotic
calculations analytically. Still in many cases, it is more convenient to estimate measures
using Monte Carlo simulation. In a simulation study, it is also possible to estimate non-
asymptotic results as well. For a description of the discrete event simulation procedure we
have applied, see Huseby and Natvig [15,16]. An application of the methodology is given
in [24].

In this example, we consider a directed network flow system consisting of 7 components
representing the directed edges of the network. For an extensive introduction to network
flow systems and reliability, we recommend [35]. The system is illustrated in Figure 1. The
physical state functions of the components, f1, . . . , f7, represent the flow capacity of the
components. The physical state of the system is the amount of flow that can be sent trough
the network from the source node S to the terminal node T .

In order to express the system state as a function of the component states, we identify
the minimal cut sets in the network. These are K1 = {1, 2}, K2 = {1, 5, 7}, K3 = {2, 3, 4},
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Figure 1. A network flow system.

Table 1. Mean waiting times

Components µ
(i)
0 µ

(i)
1 µ

(i)
2

1 2.5 3.5 4.5
2 2.5 3.5 4.5
3 4.5 5.5 –
4 2.5 3.5 4.5
5 4.5 5.5 –
6 2.5 3.5 4.5
7 2.5 3.5 4.5

K4 = {4, 5, 7}, K5 = {2, 3, 6} and K6 = {6, 7}. According to the well-known max-flow-min
cut theorem (see [11]), we then have1

φ(X(t)) = min
1≤j≤6

∑
i∈Kj

fi(Xi(t)).

The component state functions in this example are given by

f1(u) = f6(u) = 2.5 · u, u = 0, 1, 2,

f2(u) = f7(u) = 1.5 · u, u = 0, 1, 2,

f3(u) = f5(u) = 5.0 · u, u = 0, 1,

f4(u) = 1.0 · I(u = 1) + 2.5 · I(u = 2), u = 0, 1, 2.

We observe that if all components are in their respective top state, the maximal flow
through the network is 8. The mean waiting times for the different states of the components
are given in Table 1.

1 It should be noted that there exist efficient algorithms for calculating the system state without having
to identify all the minimal cut sets. See, for example, [7] where an algorithm of order O(v2 · n) is presented,
and where v and n denote, respectively, the number of nodes and edges in the network. However, in the
simple case considered here with only 6 minimal cut sets, we just use the standard formula.
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Table 2. Estimated importance

Components I
(i)
NB I

(i)
PB I

∗(i)
NB I

∗(i)
PB

1 0.53 0.56 1.34 1.48
2 0.64 0.66 1.24 1.39
3 0.34 0.34 0.83 0.83
4 0.40 0.40 0.77 0.83
5 0.34 0.34 0.83 0.83
6 0.53 0.56 1.34 1.48
7 0.64 0.66 1.24 1.39

Finally, the transition probabilities for the components are

P (1) = P (2) = P (6) = P (7) =

⎡
⎣0.0, 0.0, 1.0

1.0, 0.0, 0.0
0.4, 0.6, 0.0

⎤
⎦ ,

P (3) = P (5) =
[
0.0, 1.0
1.0, 0.0

]
, P (4) =

⎡
⎣0.0, 0.0, 1.0

1.0, 0.0, 0.0
0.6, 0.4, 0.0

⎤
⎦ .

In the simulation, all waiting times were sampled from exponential distributions with
the respective mean values. For the asymptotic results, however, the choice of distribution
is of course not important.

We ran 10,000 simulations of the system over a time frame of 500 time units. The
resulting estimated importance measures are given in Table 2.

Due to the structural symmetry in the network as well as the chosen distribution param-
eters and transition probabilities, the components are grouped into four sets: C1 = {1, 6},
C2 = {2, 7}, C3 = {3, 5} and C4 = {4} with respect to importance. Within these groups, the
importance measures are equal regardless of which measure we use. However, we observe
that the overall ranking depends on the chosen importance measure. If we choose I

(i)
NB or

I
(i)
PB, the components in C2 are the most important components followed by C1, C4 and

C3. On the other hand, if we choose I
∗(i)
NB , the components in C1 are the most important

components followed by C2, C3 and C4. Finally, if we choose I
∗(i)
PB , the components in C1

are still the most important components followed by C2. In this case, the components in C3

and C4 are tied.
This example shows that there is a difference between just being critical and the physical

effect of being critical. The components in C2 have a very high probability of being critical
to the system. However, the components in this set have lower flow capacities compared to
the components in C1. Thus, the ranking of these two sets is reversed when the measures
I
∗(i)
NB or I

∗(i)
PB are used. The same effect can be seen in the ranking between C3 and C4.

The suggested measures allow the analyst to examine criticality from different view-
points which is of interest both in a diagnostic setting as well as when the analysis is done
in order to support decisions regarding improvement of the system.

6. CONCLUSIONS

In the present paper, we have described a framework for modeling repairable multistate
systems emphasizing the physical properties of the components and the system. Within
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this framework, we have generalized the Birnbaum measure to such systems in four differ-
ent ways. Two of the suggested measures define component criticality at a given point of
time relative to the next state of the component. These measures have a forward-looking
focus which is often useful when the analysis is done in order to support decisions regard-
ing improvement of the system. The two other measures define component criticality at a
given point of time relative to the previous state of the component. These measures have a
backward-looking focus which is often useful in a diagnostic setting.

The suggested measures can also be classified with respect to how criticality is measured.
Two of the suggested measures focus on whether a component is critical or not, while the
other two measures include information about the physical effects of being critical. Examples
presented in the paper show that these viewpoints may result in different importance ranking
of the components.

The paper considers both simple periodic component life cycles and more general semi-
Markov processes and presents results on when the various measures are equal or can be
simplified computationally.

The proposed measures can be interpreted as time-dependent measures reflecting com-
ponent importance at a given point of time. Alternatively, the measures can be interpreted as
asymptotic measures, representing component importance given that the system has reached
a stationary status. In cases where the component life cycles are long compared to the time
frame under consideration or when the component processes are not time-homogeneous, it
may be of interest to find non-asymptotic, time-independent importance measures. Future
work within this area will focus on this problem as well as how the proposed measure can
be utilized in a decision-oriented context.

Acknowledgments

The authors thank the reviewers for very helpful comments which lead to significant improvements of the
paper.

References

1. Amrutkar, K.P. & Kamalja, K.K. (2017). An overview of various importance measures of reliability
system. International Journal of Mathematical, Engineering and Management Sciences 2(3): 150–171.

2. Barlow, R.E. & Proschan, F. (1975). Importance of system components and fault tree events. Stochastic
Processes and their Applications 3: 153–173.

3. Birnbaum, Z.W. (1969). On the importance of different components in a multicomponent system. In
P.R. Krishnaia (ed.), Multivariate analysis – II. New York: Academic Press, pp. 581–592.

4. Borgonovo, E. & Apostolakis, G.E. (2001). A new importance measure for risk-informed decision
making. Reliability Engineering & System Safety 72: 193–212.

5. Cai, Z., Si, S., Sun, S., & Li, C. (2016). Optimization of linear consecutive-k-out-of-n system with a
Birnbaum importance-based genetic algorithm. Reliability Engineering & System Safety 152: 248–258.

6. Cai, Z., Si, S., Liu, Y., & Zhao, J. (2018). Maintenance optimization of continuous state systems based
on performance improvement. IEEE Transactions on Reliability 67(2): 651–665.

7. Dinic, E.A. (1970). Algorithm for solution of a problem of maximum flow in a network with power
estimation. Soviet Mathematics – Doklady 11: 1277–1280.

8. Dui, H., Si, S., Zuo, M.J., & Sun, S. (2015). Semi-Markov process-based integrated importance measures
for multi-state systems. IEEE Transactions on Reliability 64(2): 754–765.

9. Dui, H., Li, S., Xing, L., & Liu, H. (2019). System performance-based joint importance analysis guided
maintenance for repairable systems. Reliability Engineering & System Safety 186: 162–175.

10. Dui, H., Zhang, C., & Zheng, X. (2020). Component joint importance measures for maintenances in

submarine blowout preventer system. Journal of Loss Prevention in the Process Industries 63: 1–10.
11. Ford, L.R. & Fulkerson, D.R. (1956). Maximal flow through a network. Canadian Journal of

Mathematics 8: 399–404.

https://doi.org/10.1017/S0269964820000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000340


BIRNBAUM IMPORTANCE MEASURES FOR REPAIRABLE MULTISTATE SYSTEMS 85

12. Fussell, J.B. & Vesely, W.E. (1972). A new methodology for obtaining cut sets for fault trees.

Transactions of the American Nuclear Society 15: 262–263.
13. Griffith, W. (1980). Multi-state reliability models. Journal of Applied Probability 17: 735–744.

14. Hosseini, S., Barker, K., & Ramirez-Marquez, J.E. (2016). A review of definitions and measures of
system resilience. Reliability Engineering & System Safety 145: 47–61.

15. Huseby, A.B. & Natvig, B. (2010). Advanced discrete simulation methods applied to repairable multi-
state systems. In R. Bris, C.G. Soares, & S. Martorell (eds), Reliability, risk and safety. Theory and
applications, vol. 1. London: CRC Press, pp. 659–666.

16. Huseby, A.B. & Natvig, B. (2012). Discrete event simulation methods applied to advanced importance
measures of repairable components in multistate network flow systems. Reliability Engineering & System

Safety 119: 186–198.
17. Levitin, G. & Lisnianski, A. (1999). Importance and sensitivity analisis of multistate systems using the

universal generating function. Reliability Engineering & System Safety 65: 271–282.
18. Levitin, G., Podofillini, L., & Zio, E. (2003). Generalised importance measures for multistate elements

based on performance level restrictions. Reliability Engineering & System Safety 82: 287–298.
19. Natvig, B. (1979). A suggestion for a new measure of importance of system components. Stochastic

Processes and their Applications 9: 319–330.
20. Natvig, B. (1985). New light on measures of importance of system components. Scandinavian Journal

of Statistics 12: 43–54.
21. Natvig, B. (2011). Measures of component importance in nonrepairable and repairable multistate

strongly coherent systems. Methodology and Computing in Applied Probability 13: 523–547.
22. Natvig, B. (2011). Multistate systems reliability theory with applications. New York, USA: John Wiley

and Sons, Inc.
23. Natvig, B. & G̊asemyr, J. (2009). New results on the Barlow-Proschan and Natvig measures of com-

ponent importance in nonrepairable and repairable systems. Methodology and Computing in Applied
Probability 11: 603–620.

24. Natvig, B., Eide, K.A., G̊asemyr, J., Huseby, A.B., & Isaksen, S.L. (2009). Simulation based analysis
and an application to an offshore oil and gas production system of the Natvig measures of component
importance in repairable systems. Reliability Engineering & System Safety 94: 1629–1638.

25. Natvig, B., Huseby, A.B., & Reistadbakk, M. (2011). Measures of component importance in repairable
multistate systems: a numerical study. Reliability Engineering & System Safety 96: 1680–1690.

26. Ramirez-Marquez, J.E. & Coit, D.W. (2005). Composite importance measures for multi-state systems
with multistate components. IEEE Transactions on Reliability 54: 517–529.

27. Ramirez-Marquez, J.E. & Coit, D.W. (2007). Multi-state component criticality analysis for reliability
improvement in multi-state systems. Reliability Engineering & System Safety 92: 1608–1619.

28. Ramirez-Marquez, J.E., Rocco, C.M., Gebre, B.A., Coit, D.W., & Tortorella, M. (2006). New insights on
multi-state component criticality and importance. Reliability Engineering & System Safety 91: 894–904.

29. Ross, S. (2014). Introduction to probability models, 11th ed. San Diego, USA: Academic Press.
30. Si, S., Dui, H., Zhao, X., Zhang, S., & Sun, S. (2012). Integrated importance measure of component

states based on loss of system performance. IEEE Transactions on Reliability 61(1): 192–202.
31. Si, S., Dui, H., Cai, Z., & Sun, S. (2012). The integrated importance measure of multistate coherent

systems for maintenance processes. IEEE Transactions on Reliability 61(2): 266–273.
32. Si, S., Levitin, G., Dui, H., & Sun, S. (2013). Component state-based integrated importance measure

for multi-state systems. Reliability Engineering & System Safety 116: 75–83.
33. Si, S., Liu, M., Jiang, Z., & Jin, T. (2019). System reliability allocation and optimization based on

generalized Birnbaum importance measure. IEEE Transactions on Reliability 68(3): 831–843.
34. Skutlaberg, K. & Natvig, B. (2016). Minimization of the expected total net loss in a stationary multistate

flow network system. Applied Mathematics 7: 793–817.
35. Todinov, M.T. (2013). Flow networks. Oxford, UK: Elsevier Insights.
36. Wu, S. & Coolen, F. (2013). A cost-based importance measure for system components: an extension of

the Birnbaum importance. European Journal of Operational Research 225: 189–195.

37. Wu, S., Chen, Y., Wu, Q., & Wang, Z. (2016). Linking component importance to optimisation of
preventive maintenance policy. Reliability Engineering & System Safety 146: 26–32.

38. Zhu, X., Fu, Y., Yuan, T., & Wu, X. (2017). Birnbaum importance based heuristics for multi-type

component assignment problems. Reliability Engineering & System Safety 165: 209–221.
39. Zio, E. & Podofillini, L. (2003). Monte-Carlo simulation analysis of the effects on different system

performance levels on the importance on multistate components. Reliability Engineering & System
Safety 82: 63–73.

https://doi.org/10.1017/S0269964820000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000340


86 A. B. Huseby et al.

40. Zio, E. & Podofillini, L. (2006). Accounting for components interactions in the differential importance

measure. Reliability Engineering & System Safety 91: 1163–1174.
41. Zio, E., Podofillini, L., & Levitin, G. (2004). Estimation of the importance measures of multistate

elements by monte carlo simulation. Reliability Engineering & System Safety 86: 191–204.
42. Zio, E., Marella, M., & Podofillini, L. (2007). Importance measures-based prioritization for improving

the performance of multi-state systems: Application to the railway industry. Reliability Engineering &
System Safety 92: 1303–1314.

https://doi.org/10.1017/S0269964820000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000340

	1. INTRODUCTION
	2. MULTISTATE SYSTEMS
	3. CRITICALITY AND IMPORTANCE IN MULTISTATE SYSTEMS
	3.1. Importance Based on Expected Physical Criticality

	4. IMPORTANCE MEASURES FOR SEMI-MARKOV PROCESSES
	4.1. Expected Physical Criticality for Semi-Markov Processes

	5. A NUMERICAL EXAMPLE
	6. CONCLUSIONS

