
JFP 19 (3 & 4): 439–468, 2009. c© 2009 Cambridge University Press

doi:10.1017/S095679680900731X Printed in the United Kingdom

439

An induction principle for nested datatypes
in intensional type theory

RALPH MATTHES

IRIT, CNRS and Université Paul Sabatier,

118 route de Narbonne, F-31062 Toulouse Cedex 9, France

(e-mail: ralph.matthes@irit.fr)

Abstract

Nested datatypes are families of datatypes that are indexed over all types such that the

constructors may relate different family members (unlike the homogeneous lists). Moreover,

the argument types of the constructors refer to indices given by expressions in which the

family name may occur. Especially in this case of true nesting, termination of functions

that traverse these data structures is far from being obvious. A joint paper with A. Abel

and T. Uustalu (Theor. Comput. Sci., 333 (1–2), 2005, pp. 3–66) proposed iteration schemes

that guarantee termination not by structural requirements but just by polymorphic typing.

They are generic in the sense that no specific syntactic form of the underlying datatype

“functor” is required. However, there was no induction principle for the verification of the

programs thus obtained, although they are well known in the usual model of initial algebras

on endofunctor categories. The new contribution is a representation of nested datatypes in

intensional type theory (more specifically, in the calculus of inductive constructions) that is

still generic and covers true nesting, guarantees termination of all expressible programs, and

has an induction principle that allows to prove functoriality of monotonicity witnesses (maps

for nested datatypes) and naturality properties of iteratively defined polymorphic functions.

1 Introduction

The algebra of programming (Bird & de Moor 1997) shows the benefits of

programming recursive functions in a structured fashion, in particular with iterators:

there are equational laws that allow a calculational way of verification. Also for

nested datatypes (Bird & Meertens 1998), already intuitively introduced in the

abstract, laws have been important from the beginning.

In previous work, the author concentrated on polymorphic lambda-calculi with

nested datatypes that guarantee termination of all functions that follow the proposed

iteration schemes. See, in particular, the comprehensive paper with Abel and Uustalu

(Abel et al. 2005). Laws were not given, but the schemes were more general than

previous work (Bird & Paterson 1999b; Hinze 2000; Martin et al. 2004), in that

they impose minimal conditions on the datatype “functor” F of rank 2 (F is a

function that takes type transformations to type transformations) whose least fixed

With financial support by the European Union FP6-2002-IST-C Coordination Action 510996 “Types
for Proofs and Programs.”

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


440 R. Matthes

point μF is still a type transformation and not just a type. There is no need to

require continuity properties or that F belong to some given set of higher-order

functors that is generated from some closure properties.1 Since the ambient calculus

is not a category, and the “functors” are no functors, since no functoriality laws are

required, the laws of program transformation and verification were not considered.

The present paper proposes a combination of two worlds: the world of terminating

programs known from type theory and the categorical laws used in advanced

functional programming.

The advantages of Mendler’s style (Mendler 1987) are once more demonstrated2:

the approach is very flexible, since no syntactic criterion on the form of recursive

calls is applied for termination checking. It is type-based termination: the types of

the recursive calls ensure that there is no infinite reduction sequence starting with

a well-typed term. For a discussion and the example of the map function for lists,

see Section 3.1 of Abel et al. (2005). However, there has not been any contribution

on the verification of programs in Mendler’s style for nested datatypes. For truly

nested datatypes (for a definition, see page 446), this is even more important,

since there termination is very unintuitive. On the other hand, plain heterogeneous

families can be used well in the conventional style of iteration that directly follows

the concept of initial algebras. This conventional style is available in the calculus

of inductive constructions (CIC; Coquand & Paulin 1990) on which the theorem

proving environment Coq is based and also in other systems.

We want to carry out verification in the same system in which we write our

programs, and we want a termination guarantee. Moreover, we insist on decidable

type checking. Thus, as our ambient calculus, we have chosen the CIC, in the current

form in which it is implemented in the Coq proof assistant (Coq Development Team

2006). We will only need concepts and features of Coq that are explained in the

Coq textbook (Bertot & Castéran 2004).

It will turn out that after having introduced noncanonical elements into Mendler’s

style, following Uustalu & Vene (2002), the CIC supports reasoning on inductive

types in Mendler’s style very well. A naive lifting of this approach to nested datatypes

can also be expressed in the CIC. Unfortunately, this does not give enough reasoning

power, since one programs polymorphic functions on nested datatypes for which

naturality laws are needed if more serious verification is aimed at. In order to enrich

Mendler’s style beyond the plain lifting to families of datatypes, one has to lead

the realm of inductive families toward simultaneous inductive–recursive definitions

as proposed by Dybjer since 1991, available in final journal version (Dybjer 2000),

while Dybjer and Setzer found a finite axiomatization (Dybjer & Setzer 2003). The

single inductive–recursive definition we will use will not directly be an instance of

these proposals due to two reasons:

1 This is not to say that all of the operational behaviors of the cited proposals were covered; see Section
9 of our previous work (Abel et al. 2005) that explains in which way efolds (Martin et al. 2004) are
indeed reconstructed and how gfolds (Bird & Paterson 1999b) resist this effort.

2 For inductive types, i.e., not inductive families, this is developed with many examples in Uustalu’s PhD
thesis (1998).

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 441

• We make use of impredicativity in our system (not in the formulation but in

its justification), and those systems are predicative.

• The map function mapμF for the inductive family μF that we define simulta-

neously with the inductive generation of μF involves the inductive family not

only in the source type constructor but also in the target type constructor, and

that is excluded right from the outset in those systems.

The first problem is overcome by Capretta’s unpublished note (Capretta 2004)

that aims at a justification of simultaneous inductive–recursive definitions in the

impredicative CIC. The second problem, however, is not dealt with in that note.

The idea for our construction is nevertheless taken from Capretta, but the induction

principle for the inductive family is genuinely new work. It profits from the fact that

our map function mapμF will not be recursive at all.3 It is defined by case analysis

on the inductive constructor – this definition principle is called inversion in theorem

provers like Coq. The system is not just “simultaneous induction–inversion,” since

iteration in Mendler’s style also has to be justified simultaneously with the inductive

generation process.

The next section introduces the important concepts for this paper and discusses

how Mendler’s style for nested datatypes can also be used in the CIC. The

problems will be shown and partial solutions sketched. Section 3 contains the precise

description of the extension of the CIC we propose under the name LNMIt for “logic

for natural Mendler-style iteration.” It will be proven in LNMIt that the iterator

only produces natural transformations – under well-motivated assumptions – and

that the computation rule for the Mendler-style iterator uniquely determines that

iterator (again under reasonable assumptions). An essential ingredient of this system

is a generalized datatype constructor In that can produce noncanonical elements

of the nested datatype μF . In Section 4, we look back at the canonical elements

with which we started in Section 2 and see that LNMIt is well behaved for those

canonical elements. Section 5 proves that LNMIt can be defined within the CIC

with impredicative Set plus proof irrelevance. Section 6 gives a further illustration

of the richness of the allowed nested datatypes with a study of the evaluation of

explicit flattenings as an example of true nesting. Some conclusions are drawn, and

further work is indicated. Coq vernacular files for the results are provided on the

author’s web page (Matthes 2008).

This paper is based on a workshop contribution (Matthes 2006). The most

important conceptual change is the clarification of the role of impredicativity: while

the earlier paper just assumed Set to be impredicative, the specification of LNMIt

is now done with predicative Set (the default type-theoretic system of Coq, since

version 8.0 is the “pCIC,” which stands for the predicative calculus of (co)inductive

constructions4), and only the justification is done impredicatively. This also required

3 For canonical elements of μF , the expected recursive equation does hold (see Section 4), but the general
definition involves no recursive calls.

4 The impredicative CIC proves the negation of the law of excluded middle in Set , following an idea by
Hurkens (see the FAQ on the Coq home page). Whether LNMIt alone is incompatible with the law
of excluded middle in Set would certainly be an interesting question.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


442 R. Matthes

a modularization of the Coq scripts. Moreover, closure properties of the datatype

“functors” F and case studies with the representation of explicit flattening in untyped

lambda-calculus and operations on “bushy” lists have been added.

2 Toward the system

In this paper, the only nested datatypes we study are fixed points of endofunctions

on type transformations. More precisely, this will mean the following: Let κ0 stand

for the universe of (mono)types that will be interpreted as sets of computationally

relevant objects. In the pCIC (as defined in the Coq manual), this will be the sort

Set . Hence, κ0 := Set . Then, let κ1 be the kind of type transformations; hence

κ1 := κ0 → κ0. A typical example would be List of kind κ1, where List A is the

type of finite lists with elements from type A. Finally, the endofunctions on type

transformations shall be the type constructors of kind κ2 := κ1 → κ1. A prominent

example is self-composition λXκ1λAκ0 .X(X A).

In this section, we fix a type constructor F of kind κ2. It need not be closed and

might even just be a variable.5 We are interested in its least fixed point μF of kind

κ1. This type transformation μF is to be seen as the inductive family (μF A)A:Set in

which the index runs through all types in Set .

Our running example will be that of “bushes” (Bird & Meertens 1998). Define

BushF := λXκ1λAκ0 . 1 + A × X(X A)

with one-element type 1 (the only element is denoted by tt), product × with pairing

notation (·, ·) and disjoint sum + with injections inl and inr . Its least fixed point

μBushF shall be denoted Bush (its existence will be discussed below) and being

fixed point of BushF can intuitively be expressed by the equation

Bush A = 1 + A × Bush(Bush A).

Compare this with the equation for List:

List A = 1 + A × List A.

A list of A’s either corresponds to the element of 1, called empty list [], or an element

a of A, followed by a list � of A’s (denoted by a :: �). Likewise, a bush of A’s is

either the empty bush or an element of A, followed by a bush of bushes of A. This

is list-like, with the difference that the ith element is of type Bush i A, i � 0. As the

inventors of Bush wrote, “at each step down the list, entries are ‘bushed’” (Bird &

Meertens 1998). For a given fixed type A, one can fully understand the inductive

definition of List A. The family member Bush A of the inductive family Bush cannot

be understood in isolation, since the recursion refers to all the types Bush i A. This is

the feature that constitutes a nested datatype and not just a parameterized inductive

datatype: inhabitants of μF A are constructed from inhabitants of types that involve

μF A′ for a type A′ �= A. If A is instantiated with a type variable, it also becomes

5 Later on, certain categorically motivated properties and some extensionality will be required.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 443

clear that A′ cannot be a smaller type, in whatever sense of the word. Hence, this is

in no way a construction by recursion on the family index.

2.1 Mendler’s style

There are different possibilities to specify μF . We follow the Mendler-style formu-

lation for higher kinds that has been embodied in system MItω (Abel et al. 2005).6

First, we need an abbreviation for polymorphic function space: For X,Y : κ1, define

the type

X ⊆ Y := ∀A : Set . XA → YA.

The expression X ⊆ Y is of kind Type (which is also the kind of Set and does itself

not allow impredicative constructions), since we want to work in the pCIC, i.e., with

predicative Set . In the sequel, we will also write types as superscripts to variables

instead of after the colon, as in ∀ASet . XA → YA, if this does not lead to multiple

superscripts.

Three ingredients specify μF: an introduction rule for constructing elements of

μF A, an elimination rule for using elements of μF A in a disciplined fashion (which

in our case is plain iteration), and a reduction rule for computing the iteration.

Introduction and elimination are provided by two constants:

in : F(μF) ⊆ μF,

MIt : ∀Gκ1 . (∀Xκ1 . X ⊆ G → FX ⊆ G) → μF ⊆ G.

The reduction rule is

MIt G sA (in A t) −→ s (μF) (MIt G s)A t.

Here, t : F(μF)A and s : ∀Xκ1 . X ⊆ G → FX ⊆ G. The latter is called the step term

of the iteration, since it provides the inductive step that extends the function from

the type transformation X that is to be viewed as approximation to μF to a function

from FX to G. Here, function means an inhabitant of the universally quantified

implication and hence a polymorphic function.

In the example of bushes, in has type ∀ASet . 1 + A × Bush(Bush A) → Bush A,

which allows to define

bnil : ∀ASet .Bush A,

bcons : ∀ASet . A → Bush(Bush A) → Bush A

by bnil := λASet . in A (inl tt) and bcons := λASetλaAλbBush(Bush A). in A (inr(a, b)).

We define a function BtL : Bush ⊆ List (BtL is a shorthand for BushToList) that

gives the list of all elements in the bush:

BtL := MIt List
(
λXκ1λitX⊆ListλAλtBushF X A.match twith inl �→ []

| inr(aA, bX(X A)) �→ a :: flat map (X A)A (it A)(it (XA) b)
)
.

6 That system contains nested datatypes of arbitrary ranks; here we concentrate on the case κ = κ1 and
therefore omit the superscripts altogether.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


444 R. Matthes

Here, we used the operation flat map : ∀ASet∀BSet . (A → List B) → List A → List B,

where flat map f � concatenates all the lists f a for the elements a of �. Moreover,

pattern matching is used intuitively. Note that when the term t of type BushF X A

is matched with inr(a, b), the variable b is of type X(X A). This is the essence of

Mendler’s style: the recursive calls come in the form of uses of it that does not

have type Bush ⊆ List but just X ⊆ List , and the type arguments of the datatype

constructors are replaced by variants that only mention X instead of Bush . So, the

definitions have to be uniform in the type transformation variable X, but this is

already the only requirement to ensure termination (see below). Writing −→+ for

the transitive closure of all the reduction rules, one easily verifies

BtLA (bnil A) −→+ [],

BtLA (bcons Aa b) −→+ a :: flat map (BtLA)(BtL (Bush A) b),

where we have omitted the type arguments to flat map. The recursive call

BtL (Bush A) b is already with a different type parameter (this is called polymorphic

recursion), but the mapping goes beyond usual intuitions of recursive calls: it is the

function BtLA that is mapped over the result of the other recursive call.

In what follows, type and constructor arguments will be omitted if they may

be reconstructed mechanically. In Coq, this will be possible by the mechanism of

implicit arguments that is available since version 8.0. The reduction rule is thus

written as

MIt s (in t) −→ s (MIt s) t.

However, it should be kept in mind that the formal parameter X in the type of s

is instantiated with μF . In Abel et al. (2005), a direct definition within Fω (Girard

1972) of a slight reformulation, using a function symbol of arity 1 instead of the

constant MIt , is shown. That translation also simulates the reduction rule, in the

sense that a reduction step with our new rule is transformed into at least one rewrite

step of Fω . Thus, since this mentioned transformation behaves well with respect

to both type and term substitution, strong normalization follows from that of Fω .

Recall that no requirement at all is imposed on F : κ2 for this result, which is

still obtained by a Church encoding, i.e., a generalization of the construction of

polymorphic Church numerals that works uniformly in F .

2.2 Mendler’s style with noncanonical elements

The aim of this work is to provide a dependently typed analog of the elimination

rule: a rule in the format of an induction principle that given some predicate

P : ∀ASet . μFA → Prop with Prop the sort of propositions in the pCIC, allows to

conclude that P holds universally, i.e., proves the proposition ∀ASet ∀rμFA. PA r from

a suitable inductive step. (The argument A is written as an index to P for enhanced

clarity; for this purpose, indexing will often be done in the sequel.) Strictly speaking,

the author does not have a proposal for such an induction principle that would be

justifiable in the CIC or a consistent extension thereof: the least solution μF that is

generated just from in : F(μF) ⊆ μF cannot yet be treated by the author.

The way out will be a more liberal datatype constructor than in. The straightfor-

ward generalization of the rule μI by Uustalu & Vene (1997) – later used as the

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 445

introduction rule of system UVIT in the author’s thesis (Matthes 1998) and called

mapwrap in the journal version (Uustalu & Vene 2002) – to nested datatypes would

have a datatype constructor in ′ of type

∀Xκ1 . X ⊆ μF → FX ⊆ μF.

If in ′ is instantiated with X := μF and given the polymorphic identity on μF as an

argument, the result type is F(μF) ⊆ μF , which previously was the type of in. By

further instantiation to a type A and application to a term of type F(μF)A, we get

elements of μF A that will be called canonical.

In the example of bushes, one would define the generalized datatype constructors

as follows:

bnil ′ : ∀Xκ1∀ASet . X ⊆ Bush → Bush A,

bnil ′ := λXκ1λASetλjX⊆Bush . in ′ X j A (inl tt),

bcons ′ : ∀Xκ1∀ASet . X ⊆ Bush → A → X(X A) → Bush A,

bcons ′ := λXκ1λASetλjX⊆BushλaAλbX(X A). in ′ X j A (inr(a, b)),

and one would obtain from them bnil and bcons with the previously shown typing

by

bnil := λASet . bnil ′ Bush A (λASetλxBush A. x),

bcons := λASetλaAλbBush(Bush A). bcons ′ Bush A (λASetλxBush A. x) a b.

Terms of the form bnil A or bcons Aa b would denote “canonical bushes.”

The single datatype constructor in ′ specifies the inductive family μF in the

impredicative CIC, since the reference to μF in the antecedent is strictly positive.

Impredicativity of Set is needed here in order to ensure that μF A is a type in Set

and not only in Type. Then, the CIC will have canonical elimination rules associated

with μF , and Coq will generate them. The minimality scheme for sort Set (as it is

called in Coq) will be typed by

∀Gκ1 . (∀Xκ1 . X ⊆ μF → X ⊆ G → FX ⊆ G) → μF ⊆ G.

This is the lifting of the type of Mendler’s recursor (Mendler 1987) to nested

datatypes. And the generated induction principle has a type that supports the

following reasoning: given a predicate P as above, i.e., P : ∀ASet . μFA → Prop, we

may deduce P holds universally, i.e., ∀ASet ∀rμFA. PA r, if for every X : κ1 and every

j : X ⊆ μF , from the inductive hypothesis

∀ASet ∀xXA. PA(jA x)

we can infer (this is called the inductive step)

∀ASet ∀tFXA. PA(in ′ j t).

In other words, the principle is as follows:

∀P : ∀ASet . μFA → Prop.
(

∀Xκ1∀jX⊆μF .
(
∀ASet ∀xXA. PA(jA x)

)
→ ∀ASet ∀tFXA. PA(in ′ j t)

)
→ ∀ASet ∀rμFA. PA r.

Note that the link in the inductive step comes from j and not from the argument

t. What does the inductive step require in the case of canonical elements, i.e., for

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


446 R. Matthes

X := μF and j the polymorphic identity on μF? The inductive hypothesis in this

case is – after normalizing away the β-redex that is implicitly done in the CIC –

the proposition ∀ASet ∀rμFA. PA r, which amounts to the conclusion of the whole

induction principle. The induction step in this case is thus a triviality. Therefore,

the case that is dedicated to deal with the canonical elements of the family μF

does in no way contribute to the induction step. Hence, the conclusion of the

induction principle can only be justified from the induction step in the cases that

produce noncanonical elements. We conclude that our reasoning is entirely based

on noncanonical elements.7

By ignoring the additional hypothesis X ⊆ μF in the step term of the above-

mentioned minimality scheme, we can get back MIt with the original type, and the

following equation holds even with respect to convertibility8:

MIt s (in ′ j t) = s (λA. (MIt s)A ◦ jA) t,

where s : ∀Xκ1 . X ⊆ G → FX ⊆ G; j : X ⊆ μF; t : FXA; and g ◦ f denotes

function composition λx. g(f x) (for types of f and g that fit together). So, here X

is instantiated with X itself, and the shown first argument to s gets type X ⊆ G;

hence both sides of the equation get type GA. Note also that we no longer indicate

the type Set of bound variables named A, B, or C .

With these iteration and induction principles, one may try to program and verify

functions on nested datatypes. This will be especially interesting in the case of truly

nested datatypes, since they are not directly supported by the CIC. Here, truly nested

datatype shall mean that the inductive family has at least one datatype constructor

for which one of the argument types has a nested call to the family name; i.e.,

the family name appears somewhere inside the type argument of the family name

occurrence in the argument type of that datatype constructor. Nested datatypes

that are not truly nested are called linear nested datatypes by Bird & Paterson

(1999b). Bush is a truly nested datatype: The second term argument to bcons has

type Bush(Bush A). Here Bush occurs with argument Bush A that makes a reference

to Bush. Another canonical example is a higher-order representation of de Bruijn

terms with an explicit notion of flattening for which elimination of flattening can be

programmed (Abel et al. 2005; see also Section 6). Another extension of de Bruijn

terms that yields a truly nested datatype TermE is described by Bird & Paterson

(1999a).

2.3 Enriching Mendler’s style with laws

The running reference of the present work (Abel et al. 2005) shows some programs

on nested datatypes (including on truly nested datatypes) but does not at all aim at

verifying them. It turns out, however, that the induction principle of the system just

described would be too weak for that purpose. Here is an intuitive argument why

7 This is unfortunate, since it does not support intuitive reasoning. But, fortunately, proof assistants like
Coq allow to ensure sound proofs also in those situations.

8 This rule also appeared in Peter Aczel’s presentation at TYPES 2003.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 447

this is so: One of the first programs for a nested datatype is a map function that

applies some function f : A → B to all elements of type A contained in the data

structure of type μF A,

mapμF : ∀A∀B. (A → B) → μF A → μF B,

just as the usual function

map : ∀A∀B. (A → B) → List A → List B

for lists. It is well known that map satisfies the functor laws of category theory. We

would like to establish the functor laws for this generic mapμF as well, namely, that

mapμF behaves as the morphism part of a functor whose object part is just μF . With

our induction principle, this will not be possible, since we do not know anything

about the parameter X itself.

The first main idea here is to require that X is accompanied by some map term

m : monX, where mon stands for “monotonicity,”

monX := ∀A∀B. (A → B) → XA → XB,

(monX has type Type) and require that m is functorial: it satisfies

fct1 m := ∀A∀xXA. mAA (λy.y) x = x,

fct2 m := ∀A,B, C ∀fA→B ∀gB→C ∀xXA. mAC (g ◦ f) x = mB C g (mAB f x)

that are called the first and the second functor law in the sequel. The equality sign =

means propositional equality which is implemented by the inductively defined Leibniz

equality in the CIC. It is the basis of the rewriting mechanism of Coq that goes

beyond definitional equality of the CIC. Definitional equality comes in the form

of the fixed built-in and automatically animated convertibility relation 
 which

is implemented as one fixed strongly normalizing and confluent rewrite system.9

Universally quantified equations such as fct1 m and fct2 m have the impredicative

kind Prop of computationally irrelevant types. We may place such equations as

further premisses into our datatype declarations. The functor laws will not be

sufficient, though.

Rewriting in intensional theories such as the CIC with Leibniz equality cannot take

place under binders such as λ-abstraction, unlike convertibility that can be applied

to arbitrary subterms: in the CIC, we do not have extensionality for function spaces

with respect to this propositional equality. The addition of extensionality as an axiom

without extra rules for definitional equality would destroy canonicity in the sense

that not every closed term of the type of natural numbers would be definitionally

equal to a numeral (a term of the form Si0 with S the successor function). There are

deep studies (Hofmann 1995; Altenkirch 1999; Oury 2005) on a reconciliation of

intensional type theory with extensionality for function spaces. However, the present

paper will stick with the CIC.

9 The CIC is an intensional type theory in the sense that there is no rule that infers 
 from =. This
would be the equality reflection rule of extensional type theory.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


448 R. Matthes

Since the additional functoriality conditions are just equations and therefore do not

affect convertibility, truly nested datatypes with their tendency to favor programming

with functional arguments (Abel et al. 2005) call for a special attention to means

to ensure that rewriting can nevertheless take place. The second main idea here is

that most of the functionals that occur during programming only depend on the

extension of their function arguments. This is typically so for map terms; hence we

define

extm := ∀A∀B∀f, g : A → B. (∀aA. fa = ga) → ∀rXA. mAB f r = mAB g r.

With these definitions, we might now define (strictly speaking, only with impredica-

tive Set) the type transformation μF by

in ′′ : ∀Xκ1 ∀mmonX. extm → fct1 m → fct2 m → X ⊆ μF → FX ⊆ μF.

This time, it is much harder to obtain canonical elements: when instantiating X to

μF , we first need to find a map term mapμF : mon(μF) and then show extensionality

and functoriality for mapμF , before the polymorphic identity on μF can be given as

a further argument to in ′′.

In order to avoid overly long formulae in the sequel, the map term m and the

three proofs e, f1, and f2 of extm, fct1 m, and fct2 m are organized as a dependently

typed record EX (expressing that X is an extensional functor), where the type of

the fields e, f1, f2 depends on the field m. Given a record ef , i.e., an element of type

EX, Coq’s notation for its field m is m ef , and likewise for the other fields. We adopt

this notation instead of the more common ef .m.

Canonical elements can now be obtained from the following preservation property

for F: there has to be a term (FpE stands for “F preserves extensional functors”)

FpE : ∀Xκ1 .EX → E(FX).

Note that it would be too demanding to require that monotone X’s are transported

to monotone FX’s and that extensionality and the functoriality properties are each

preserved separately. In particular, advanced examples require extensionality in order

to establish functoriality (see the remark in the proof of Lemma 1). Lemma 1 also

provides a closed such term FpE in the case of F := BushF .

With FpE and the Mendler recursor (technically speaking, the minimality scheme

for sort Set generated from in ′′ by Coq), one can define mapμF , and one does not

even need the possibility to make recursive calls in the definition (but the argument

of type X ⊆ μF of the step term is essential). Then, induction simultaneously

establishes the three properties for mapμF , always using the preservation property

of F embodied in FpE. Notice that this just requires preservation of properties.

Functoriality of F is not expressed at all.

However, there is a problem with this approach. Recall the definition of BtL :

Bush ⊆ List given earlier in the paper that makes still perfectly sense in the

system we are now considering. The type transformation List is called the target

constructor of the Mendler iteration. (In general, it is the instance for the variable

G in that scheme.) In our case, G := List is monotone in the sense that there

exists the operation map for lists. The term mapμBushF , which we did not describe

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 449

in detail, shall be denoted by bush . A natural question is whether BtL behaves as

a natural transformation from (Bush , bush) to (List ,map). In general, for X,Y : κ1,

mX : monX, mY : monY , and j : X ⊆ Y , we define the proposition

j ∈ N(mX, mY ) := ∀A∀B∀fA→B∀tXA. jB (mX AB f t) = mY AB f (jA t),

which just says that j is a natural transformation from (X,mX) to (Y ,mY ). Note that

functoriality of either side is not required. For BtL, this would mean the following

property:

∀A∀B∀fA→B∀tBush A.BtL(bush f t) = map f (BtL t).

However, a proof does not seem possible, and this is not due to the specific situation

of BtL. More generally, one would want to prove that for a monotone target

constructor G—with map term mG : monG—and a step term s : ∀Xκ1 . X ⊆ G →
FX ⊆ G with “reasonable” properties (see below), MIt s : μF ⊆ G behaves like a

natural transformation from (μF,mapμF ) to (G,mG).

The “reasonable” property above would be

∀Xκ1∀ef EX∀itX⊆G. it ∈ N(m ef , mG) → s it ∈ N(m(FpE ef ), mG).

Any inductive proof of MIt s ∈ N(mapμF , mG) will break down, since there is no

information available about the argument of type X ⊆ μF of in ′′. Let us call this

argument j. Then, we would need j ∈ N(m, mapμF ) in order to complete that proof

attempt. Hence, instead of in ′′, we want a datatype constructor In of type

∀Xκ1 ∀ef EX∀jX⊆μF . j ∈ N(m ef , mapμF ) → FX ⊆ μF.

This constructor declaration cannot define μF , since mapμF : mon(μF) refers to the

μF defined through in ′′. So, this mapμF has to be defined anew, by recursion on the

fixed point μF about to be defined by In . The situation is thus: the inductive family

μF has to be given simultaneously with the recursive function mapμF whose type is

isomorphic with μF ⊆ G, where

G := λA∀B. (A → B) → μF B.

The type transformation G is a syntactic form of the right Kan extension of μF

along the identity and has been used by the author to define map functions for

nested datatypes since Matthes (2001). So, we may say that μF is the source type

constructor of mapμF and that the recursion is over μF . Unfortunately, the target

type constructor G involves μF again, which excludes this situation from being

covered by previous formulations of simultaneous induction–recursion (see Sec-

tion 1). Nevertheless, it is a simultaneous inductive–recursive definition in a broad

sense, and Capretta’s idea (Capretta 2004) for its justification remains applicable, as

will be seen in Section 5.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


450 R. Matthes

Parameters

F : κ2

FpE : ∀Xκ1 .EX → E(FX)

Constants

μF : κ1

mapμF : mon(μF)

In : ∀Xκ1 ∀ef EX∀jX⊆μF . j ∈ N(m ef , mapμF ) → FX ⊆ μF

MIt : ∀Gκ1 . (∀Xκ1 . X ⊆ G → FX ⊆ G) → μF ⊆ G

μFInd : ∀P : ∀A. μFA → Prop.

(
∀Xκ1 ∀ef EX∀jX⊆μF∀nj∈N(m ef ,mapμF ).

(
∀A∀xXA. PA(jA x)

)
→ ∀A∀tFXA. PA(In ef j n t)

)

→ ∀A∀rμFA. PA rRules

mapμF f (In ef j n t) 
 In ef j n (m(FpE ef ) f t)

MIt s (In ef j n t) 
 s (λA. (MIt s)A ◦ jA) t

λAλxμF A. (MIt s)A x 
 MIt s

Fig. 1. Specification of LNMIt .

3 The system

We will call LNMIt (“logic for natural Mendler-style iteration of rank 2”)10 the

extension of the pCIC by the following ingredients and later prove that they can

already be defined in the CIC with impredicative Set plus proof irrelevance. (In sort

Prop, every proposition has at most one proof with respect to =.)

3.1 Logic for natural Mendler-style iteration of rank 2

Assume F : κ2 and FpE : ∀Xκ1 .EX → E(FX), possibly in some typing context that

will become the typing context of all the constants to be introduced11; F and FpE
will be parameters of the extension of the pCIC by μF , mapμF , In , MIt , and μFInd

that are specified as shown in Figure 1. The nested datatype μF has kind κ1; the

map function mapμF has type mon(μF); the datatype constructor In is of the type

already shown before, as well as the iterator MIt . The equational rules for mapμF

and MIt hold even definitionally, that is, with respect to the convertibility relation

we denote by 
.

We may say that the induction principle μFInd is just the obvious adaptation

of the principle we had for the system based on in ′, given the two new arguments

ef : EX and n of type j ∈ N(m ef , mapμF ) of the datatype constructor In . Despite

this simplicity, it is problematic due to the occurrence of mapμF in the type of n

(see the discussion in the previous section). The definitional rule for mapμF may

seem curious, since mapμF does not appear on the right-hand side. For canonical

elements, as discussed in Section 4, the behavior will nevertheless be the ordinary

10 For rank 1, naturality does not make any sense because for inductive types, only a nonpolymorphic
function from a monotype μF to a monotype B is defined.

11 All the examples so far have been carried out in the empty typing context.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 451

recursive one. Since definitional equality is contained in propositional equality, the

rule for mapμF immediately implies

∀Xκ1∀ef EX∀jX⊆μF∀nj∈N(m ef ,mapμF ). (In ef j n)FX⊆μF ∈ N(m(FpE ef ), mapμF ).

MIt ’s definitional behavior even ignores the arguments ef and n. And the last rule

(with the implicit proviso that x does not occur free in s) is just there for technical

reasons, which will become clear in the proof of Theorem 3.

The fact that LNMIt has the first two definitional equations and not just

propositional ones brings the termination guarantee in Section 5, where LNMIt

is defined within the extension of the CIC by only one propositional axiom. The

convertibility relation of the CIC is decidable through an implementation as a

strongly normalizing and confluent term rewrite system. Although we cannot say

that the left-hand sides of the two equations will be rewritten to the corresponding

right-hand sides, we know by confluence that both sides will be normalized to the

same term. Evidently, the left-hand sides are not normal (for the translation into the

CIC), so that the calculated normal form will not contain instances of the left-hand

sides; hence the calculated normal form is also normal with respect to the extension

of the rewrite system of the CIC by the two rewrite rules

mapμF f (In ef j n t) −→ In ef j n (m(FpE ef ) f t),

MIt s (In ef j n t) −→ s (λA. (MIt s)A ◦ jA) t.

The stronger result that this extended rewrite system is strongly normalizing would

require an extension of the proof of strong normalization of the CIC, but we content

ourselves with having normal forms.

The datatype functors F : κ2 that are covered by LNMIt include all the nested

hofunctors (Martin et al. 2004). This is to say that for every nested hofunctor F ,

there exists the associated polymorphic operation FpE, i.e., a closed term of type

pEF := ∀Xκ1 .EX → E(FX).

This will be made explicit in the following. For op ∈ {×,+} and X,Y : κ1, define

X opY := λA.XAopYA : κ1. For X,Y : κ1, define X ◦ Y := λA.X(YA) : κ1.

Lemma 1 (Closure properties of E)

There are closed terms of the following types:

• E(λA.A)

• ∀C.E(λA. C)

• E(λA. option A), where option A is the type that has exactly one more element

than A

• ∀Xκ1∀Y κ1 .EX → EY → E(X op Y ) for op ∈ {×,+, ◦}

Proof

Fairly elementary reasoning. For the last item with op = ◦, note that we need

extensionality of the map term for Y in order to prove the functoriality laws. �

Lemma 2 (Closure properties of pE)

There are closed terms of the following types:

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


452 R. Matthes

• pE(λX.X)

• pE(λXλA.XA) – extensionally, the same as the line before

• ∀Xκ1 .EX → pE(λY .X)

• ∀Fκ2∀Gκ2 . pEF → pEG → pE(λX. (FX) op(GX)) for op ∈ {×,+, ◦}

Proof

A simple consequence of the previous lemma. �

The second lemma may be seen as an inductive definition of nested hofunctors,

with its third clause not being confined just to X’s with EX that stem from

the first lemma. But for our examples, those will suffice. For an illustration

pE BushF is obtained as follows: We have E(λA.1) and hence pE(λXλA.1). We

have E(λA.A) and hence pE(λXλA.A). We have pE(λX.X) and pE(λXλA.X A) and

hence pE(λXλA.X(X A)). Therefore, pE(λXλA.A × X(X A)) and finally pE BushF .

Let us call the obtained term BushFpE.

Unfortunately, the system LNMIt in its present form cannot deal with datatype

functors F that have embedded function spaces. Although they are not excluded

by any syntactic restriction, one will not be able to construct the associated FpE,

since, in order to establish extensionality, one would have to prove Leibniz equality

of functions that call functions f, g that are only extensionally equal.

3.2 Naturality and uniqueness of MIt s

In LNMIt , we can now prove the following theorem that could not be proven in the

systems of Section 2:

Theorem 1 (Naturality of MIt s)

Assume G : κ1, mG : monG, s : ∀Xκ1 . X ⊆ G → FX ⊆ G and that the following

holds:

∀Xκ1∀ef EX∀itX⊆G. it ∈ N(m ef , mG) → s it ∈ N(m(FpE ef ), mG).

Then MIt s ∈ N(mapμF , mG); hence MIt s is a natural transformation for the

respective map terms.

Proof

This is done by induction with

P := λAλrμF A∀B∀fA→B.MIt s(mapμF f r) = mGf (MIt s r).

Assume X, ef , j, n as prescribed. The induction hypothesis is

∀A∀xXA∀B∀fA→B.MIt s(mapμF f (jA x)) = mGf (MIt s (jA x)).

Further assume A, t, B, f. It remains to show

MIt s (mapμF f(In ef j n t)) = mGf (MIt s (In ef j n t)).

Abbreviate it := λA. (MIt s)A ◦ jA. By the equational rules for mapμF and MIt , the

previous equation is equivalent to

s it (m (FpE ef ) f t) = mGf (s it t).

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 453

We want to apply the assumption of the theorem. It suffices to show it ∈
N(m ef , mG). Assume A,B, f, t. Show itB(m ef f t) = mGf (itA t). Its left-hand side

is equivalent to

MIt s (jB(m ef f t)) = MIt s (mapμF f (jA t)),

where we used the assumption n of type j ∈ N(m ef , mapμF ) for the last step. Now,

the induction hypothesis is applicable. �

By the help of this theorem, one can easily show that the function BtL of

Section 212 is natural; i.e., setting again bush := mapμBushF , one can prove

∀A∀B∀fA→B∀tBush A.BtL(bush f t) = map f (BtL t).

The proof in the Coq script (Matthes 2008) only needs in addition a naturality

property of flat map.

With the length function for lists, we get a function that calculates the size of

bushes (indirectly):

sizei := λAλtBush A. length(BtL t).

Thanks to the above naturality of BtL and because map does not change the list

length, we have as immediate consequence that bush does not change the size of

bushes:

∀A∀B∀fA→B∀tBush A. sizei (bush f t) = sizei t.

A more direct definition of the size of bushes is possible although not just

by one direct use of MIt . As is usual with nested datatypes, a more general

polymorphic function has to be found and then instantiated. Define the monotone

type transformation (it is nonstrictly positive and constitutes the continuation monad )

G := λA. (A → nat) → nat

and Btv : Bush ⊆ G (the shorthand stands for “Bush to value”) so that Btv A tBush A

fA→nat gives the “value” of t, obtained as the sum of the values f a for all the

elements a of type A that are contained in t:

Btv := MIt G
(
λXκ1λitX⊆GλAλtBushF X A.match twith inl �→ λfA→nat . 0

| inr(aA, bX(XA)) �→ λfA→nat . f a + it (XA) b (λxXA. it A x f)
)
.

We can now define the more direct size function sized : ∀A.Bush A → nat by

sized := λAλtBush A.Btv A t (λaA. 1).

Note that the naturality statement for Btv according to the theorem would express

equality of elements of type GB, which are functionals. The lack of extensionality

for functions will not allow us to prove such equations, and the theorem is in fact

not applicable because naturality of s it cannot be established, again because that

would require equality of functionals in GB. This unfortunately shows a limit of

the formulation of the theorem that the author was not yet able to overcome in a

12 Notice that no change is needed for the definition of BtL in Section 2 in order to fit into LNMIt .

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


454 R. Matthes

generic fashion. However, by a direct use of the induction principle μFInd , we can

establish a “pointwise” version of naturality13 for Btv :

∀A∀B∀fA→B∀tBush A∀gB→nat .Btv (bush f t) g = Btv t (g ◦ f).

For this to work and also for the following conclusion, we first have to establish

extensionality of Btv in its function parameter, i.e.,

∀A∀tBush A∀fA→nat∀gA→nat . (∀aA. f a = g a) → Btv t f = Btv t g,

which can be proven directly by the induction principle μFInd . From all this, we

immediately get that also sized is not changed by bush f:

∀A∀B∀fA→B∀tBush A. sized (bush f t) = sized t.

It is also possible to prove that sizei and sized yield the same values for all arguments;

see the details in the Coq scripts (Matthes 2008).

Coming back to the general theory, we show that under reasonable assumptions,

MIt s is uniquely characterized by the equation above:

Theorem 2 (Uniqueness of MIt s)

Assume G : κ1, s : ∀Xκ1 . X ⊆ G → FX ⊆ G and h : μF ⊆ G (the candidate for being

MIt s). Assume further the following extensionality property of s (s only depends on

the extension of its function argument):

∀Xκ1∀f, g : X ⊆ G. (∀A∀xXA. f x = g x) → ∀A∀yFXA. s f y = s g y.

Assume finally that h satisfies the equation for MIt s:

∀Xκ1∀ef EX∀jX⊆μF∀nj∈N(m ef ,mapμF )∀A∀tFXA. hA(In ef j n t) = s (λA. hA ◦ jA) t.

Then, ∀A∀rμF A. hA r = MIt s r.

Proof

Induction is used with the evident P := λAλrμF A. hA r = MIt s r. Then assume the

appropriate X, ef , j, n. The inductive hypothesis is ∀A∀xXA. hA (jA x) = MIt s (jA x).

Assume further A, t, and show

hA(In ef j n t) = MIt s (In ef j n t).

Applying the hypothesis on h and the computation rule for MIt yields the following

equivalent equation:

s (λA. hA ◦ jA) t = s (λA. (MIt s)A ◦ jA) t.

The extensionality assumption on s finishes the proof if we can show

∀A∀xXA. (hA ◦ jA) x = ((MIt s)A ◦ jA) x,

but this is the induction hypothesis. �

13 This is with respect to the map term for G; see the Coq proofs for the details.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 455

Note that the analog of this uniqueness theorem would have been available also

in the theory in Section 2 that did not integrate naturality into the approximations

to μF and for which Theorem 1 seemed out of reach. So, it appears to be extremely

unlikely that Theorem 1 could be proven from the uniqueness theorem in the system

LNMIt without the induction principle μFInd .

A natural example in which the uniqueness theorem is useful will be given near

the end of the next section (idempotency of Btc).

4 Back to canonical elements

In the last section, we did not make any use of extensionality and the functor laws

for extensional functors: only the m components of the extensional functors ef have

been used.14 Now, the other components come into play, since they allow to prove

extensionality and the functor laws for mapμF (which were the reason why these

properties were introduced for the type transformation variable X in the preliminary

system in Section 2), and this in turn only allows in our present setting to define the

canonical elements of the nested datatype μF .

4.1 Behavior on canonical elements

Theorem 3 (Canonical elements in LNMIt)

There are terms ef μF : EμF and InCan : F(μF) ⊆ μF (the canonical datatype con-

structor that constructs canonical elements) such that the following convertibilities

hold:

m ef μF 
 mapμF

mapμF f (InCan t) 
 InCan(m (FpE ef μF ) f t)

MIt s (InCan t) 
 s (MIt s) t

Thus, for canonical elements, we get back the ordinary behavior.

Proof

We want to take μF as its own approximation, with mapμF as the map term.

Therefore, we need to establish ext, fct1, and fct2 for mapμF . Then, trivially, the

polymorphic identity on μF serves as argument j to In , and (lambda-abstracted)

reflexivity of equality yields the corresponding proof of naturality. Then, the claimed

equations follow from those of LNMIt; in particular the last equation of LNMIt ’s

definition allows to remove the composition of MIt s with the identity.

Let us establish extensionality; the functoriality properties are proved analogously.

The statement extmapμF is logically equivalent with universal validity of the

predicate

P := λAλrμF A∀B∀f, g : A → B. (∀aA. fa = ga) → mapμF f r = mapμF g r.

14 Without them, the notion of naturality would not even make sense.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


456 R. Matthes

This is proven by inversion on μF , i.e., by using μFInd without the induction

hypothesis. Then, it remains to show ∀A∀tFXA. PA(In ef j n t) in the usual context

with X, ef , j, n. So, assume A, t, B, f, g with ∀aA. fa = ga. Show

mapμF f (In ef j n t) = mapμF g (In ef j n t).

By convertibility, this amounts to

In ef j n (m (FpE ef ) f t) = In ef j n (m (FpE ef ) g t),

which follows from e (FpE ef ) : ext(m (FpE ef )). �

As an instance of our earlier discussion in Section 3 (and presupposing Theorem 4

in the next section), we can now say that the CIC produces normal forms that are

also normal with respect to the extension of the CIC’s rewrite system by the two

rules

mapμF f (InCan t) −→ InCan(m (FpE ef μF ) f t),

MIt s (InCan t) −→ s (MIt s) t.

It should be noted that the term m (FpE ef μF ) in the behavior of mapμF can

usually be simplified to Fpmon mapμF , namely, when there is a map-transforming

function Fpmon of type ∀Xκ1 . monX → mon (F X) such that for all X and ef : EX,

m (FpE ef ) 
 Fpmon (m ef ), i.e., when the map term for F X does not depend on

the properties of the map term for X. This is usually the case and leads to the

standard behavior of mapμF that is given in functional programming languages

that do not guarantee termination, unlike the present approach: finally, mapμF has

become recursive, to be seen from

mapμF f (InCan t) 
 InCan(Fpmon mapμF f t).

The move from nonrecursive to recursive comes from the inclusion of mapμF into

the definition of InCan .

In the example of bushes, observe that for all X : κ1 and ef : EX, we have

m(BushFpE ef) 
 λAλBλfA→BλxBushF X A.match xwith

inl y �→ inl y | inr y �→ inr (let (x1, x2) := y in (f x1, m ef (m ef f) x2)),

from which one can read off a term Fpmon for F := BushF , since the right-hand side

only depends on the m-component of ef . (Recall that BushFpE has been implicitly

defined on page 452.) Just as in Section 2 from datatype constructor in , we may

define bnil and bcons from InCan:

bnil := λA. InCan A (inl tt),

bcons := λAλaAλbBush(Bush A). InCan A (inr(a, b)).

This yields the following behavior of bush (recall that bush stands for mapμBushF ):

bush fA→B (bnil A) 
 bnil B,

bush fA→B (bcons a b) 
 bcons (f a) (bush(bush f) b).

The behavior of BtL in Section 2 is as described on page 444 but with 
 in place

of −→+.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 457

We compare with the earlier work (Abel et al. 2005) that proposed systems within

the framework of Fω and hence had no internal means of describing an induction

principle. As mentioned in Section 2, the above rule for Mendler iteration could

be simulated within Fω; so we even know that the left-hand side is rewritten into

the right-hand side in that encoding. Indirectly, also mapμF has been implemented

through MIt , and in order to justify the rule

mapμF f (InCan t) −→ InCan(Fpmon mapμF f t),

we had to insist on the following more general type of Fpmon:

∀Xκ1∀Y κ1 .
(
∀A,B. (A → B) → XA → Y B

)
→ ∀A,B. (A → B) → FXA → FY B.

By instantiating X and Y both with X and quantification over X, we arrive exactly

at the type we gave above for Fpmon in LNMIt and thus a less general type.

Although in all practical examples, the terms Fpmon also have the more general

type, the simplification of the typing requirement obtained in the present paper lines

up better with programming examples like Bird & Paterson (1999a) in the literature.

4.2 Canonization for the example of bushes

This last part of section 4 is a study of how to transform arbitrary bushes into

canonical ones. Recall from Section 2 that canonical bushes are those that are

denoted by a term of the form bnil A or bcons Aa b.15 Such a transformation could

be defined on the generic level of an arbitrary type constructor F : κ2, but there are

not yet the necessary generic lemmas for its analysis.

We start with the observation that BushF is monotone in a sense that should be

called relativized basic monotonicity of rank 2: there is a closed term

BushFmon2br : ∀Xκ1∀Y κ1 . monY → X ⊆ Y → BushF X ⊆ BushF Y , namely,

λXκ1λY κ1λmmonY λfX⊆Y λAλxBushF X A.match xwith

inl u �→ inl u | inr(a, b) �→ inr (a, m (X A) (Y A) (f A) (f (X A) b)).

If we had not used the assumed map term m in the pattern-matching construct, BushF

would have been monotone in the sense of basic monotonicity, studied in detail in

Abel et al. (2005), where it has been proven that self-composition λXκ1λAκ0 .X(X A) is

not monotone in that sense. In previous work (Matthes 2001), the author required the

present relativized basic monotonicity in order to express an iteration rule for nested

datatypes that follows the categorical picture of initial algebras and not Mendler’s

style. But there were two more requirements: the existence of a function Fpmon ,

discussed previously in this section, and a dual to relativized basic monotonicity,

where monX is assumed instead of monY . The latter requirement was made in order

to be able to give a definition of mapμF through the iterator (using syntactic Kan

extensions, as mentioned on page 449), but this is not needed in the present paper,

15 The system in Section 2 has a different definition of bnil and bcons . We now mean the definitions
within LNMIt in this section.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


458 R. Matthes

since mapμF is a basic constituent of LNMIt . Anyway, all three requirements are

fulfilled for a very large class of datatype functors F : κ2 (Matthes 2001).

The fact that BushFmon2br is not restricted to monotone first arguments allows

to define the function Btc : Bush ⊆ Bush that “canonizes” bushes (Btc is shorthand

for “bush to canonical bush”) as follows:

Btc := MIt Bush
(
λXκ1λitX⊆BushλAλtBushF X A. InCan(BushFmon2br bush it t)

)
.

Directly from the definition of BushFmon2br and the rule for MIt , we get

Btc A (In ef j n (inl tt)) 
 bnil A,

Btc A (In ef j n (inr (a, b)) 
 bcons Aa b′

for some b′ that we do not need to know here. Hence, we may say that Btc only

yields canonical bushes.

Does Btc provide a “canonization”? The minimum requirement seems to be that

canonical elements are left unchanged. For bnil A, this is true, but Theorem 3 yields

the other equation

Btc(bcons A a b) 
 bcons Aa (bush (Btc A) (Btc (Bush A) b)).

Since we only have iteration available in LNMIt , the function acts recursively on

the argument b, and we cannot program functions that do not touch the recursive

arguments.

We will first directly show that Btc is idempotent and then introduce “hereditarily

canonical” bushes. Finally, it is shown that Btc yields always those bushes and that it

does not change them, in the sense that the result is propositionally equal to the ar-

gument. Evidently, from these two properties, idempotency of Btc follows once more.

As a preparation for the idempotency proof, we need naturality of Btc, i.e.,

Btc ∈ N(bush , bush). This is an easy application of Theorem 1, where the second

functor law and extensionality of bush are needed.

Idempotency means ∀A∀tBush A.Btc(Btc t) = Btc t. This is of the form of the conclu-

sion of Theorem 2, with the composition of Btc with itself as the candidate function

h. The extensionality assumption of that theorem is covered by extensionality of

bush , and the correct recursive behavior is guaranteed by naturality of Btc and the

second functor law for bush .

From BtL, we immediately get a notion of elements of bushes: For a : A and

t : Bush A, define a ∈ t by “a is an element of the list BtL t,” where elementhood in

lists is a simple recursive definition on lists. By using that elements of flat map f l

are elements of the lists f a for a an element of l, one can establish the following

two closure rules:

• ∀A∀aA∀bBush(Bush A). a ∈ bcons a b,

• ∀A∀aA∀bBush(Bush A)∀eA∀tBush A. e ∈ t → t ∈ b → e ∈ bcons a b.

Thanks to ∈, we can define the notion canH : ∀A.Bush A → Prop of hereditarily

canonical bushes inductively by the following two clauses:

• ∀A. canH (bnil A),

• ∀A∀aA∀bBush(Bush A). (∀tBush A. t ∈ b → canH t) → canH b → canH (bcons a b).

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 459

This definition is strictly positive and, formally, infinitely branching. However, there

are always only finitely many t that satisfy t ∈ b. Notice that nothing is required

for the term a in bcons a b. Notice also that this is a simultaneous definition of

canH A : Bush A → Prop for all A, where canH b is in fact canH (Bush A) b and

canH (bcons a b) is canH A (bcons Aa b).

A refinement of extensionality for bush can be given for hereditarily canonical

bushes: We have

∀A∀B∀f, gA→B∀tBush A. canH t → (∀aA. a ∈ t → f a = g a) → bush f t = bush g t.

The proof is by induction on the inductive definition of canH and uses the two

closure rules of ∈.

From this refined extensionality and the first functor law16 for bush , we can

prove – again by induction on canH – the invariance of hereditarily canonical bushes

under Btc:

∀A∀tBush A. canH t → Btc t = t.

Finally, we want to show that Btc always produces hereditarily canonical bushes:

∀A∀tBush A. canH (Btc t).

As an auxiliary statement, we need that every element of bush f t is equal to f a for

some a ∈ t. It is derived from the corresponding property of map, using naturality of

BtL. The last but one step is that bush f preserves the property of being hereditarily

canonical:

∀A∀B∀fA→B∀tBush A. canH t → canH (bush f t).

It is proven by induction on canH , using the previous auxiliary statement.

The desired canH (Btc t) now comes from induction on bushes, that is, by a direct

application of μFInd , where the last two statements are used in the case for bcons .

All of this is just an illustration by way of the example of the truly nested

datatype of bushes. It would certainly be pleasing not to be obliged to distinguish

between all bushes, the canonical bushes and the hereditarily canonical bushes, but

an appropriate terminating type-based recursion scheme together with a justified

induction principle has not yet been conceived.

5 Justification

Theorem 4 (Main theorem)

The system LNMIt can be defined within the CIC with impredicative Set , extended

by the principle of proof irrelevance, i.e., by ∀P : Prop ∀p1, p2 : P . p1 = p2.

The proof will occupy the whole section. Capretta’s idea (Capretta 2004) is to

first introduce something bigger than the desired μF , i.e., a type transformation μ+F

such that, later, there is a function of type μF ⊆ μ+F . In fact, μF will be defined

as the restriction of μ+F by some predicate, and the mentioned function will just

be the first projection out of that strong sum type. While μ+F will not be a “real”

recursive type – there is no recursive call to μ+F , and hence it is just a record – the

16 This is the only direct use of the first functor law for mapμF in this paper.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


460 R. Matthes

predicate is defined inductively with induction hypotheses that are in no way a priori

smaller than the conclusion. Abbreviate

MItPretype S := ∀Gκ1 . (∀Xκ1 . X ⊆ G → FX ⊆ G) → S ⊆ G.

The inductive family μ+F is defined by the datatype constructor

In+ : ∀Gκ1∀ef EG∀G′ : κ1∀m′ : monG′

∀it : MItPretype G′ ∀jG⊆G′
. j ∈ N(m ef , m′) → FG ⊆ μ+F .

Certainly, the idea is that G′ should be μF; m′ should be mapμF ; and it should

be MIt . Unfortunately, the method requires that the iteration principle has to

be encoded into the construction from the very beginning onward. This treat-

ment of simultaneous inductive–recursive definitions is closed in the sense that

it does not allow any other function that is defined by recursion on the family

afterward.

By impredicativity of Set that we require for the whole construction, the type

μ+F A belongs to Set and hence μ+F : κ1. The minimality scheme for sort Set

generated from In+ by Coq is just case analysis on this record-like μ+F . With its

help, we can immediately define mapμ+F : mon(μ+F ) with

mapμ+F f (In+ ef m′ it j n t) 
 In+ ef m′ it j n (m(FpE ef ) f t).

Similarly, one defines MIt+ : MItPretype(μ+F ) such that

MIt+ s (In+ ef m′ it j n t) 
 s (λA. (it s)A ◦ jA) t.

Obviously, this has nothing to do with iteration, since there is no recursive call

whatsoever.

With mapμ+F and MIt+ in place, we can now define what is a “good” element of

μ+F . Following the ideas by Capretta (2004), this is done by way of an inductive

predicate chkμ+F : ∀A. μ+F A → Prop for which there is a single inductive clause

Inchk of type

∀Gκ1∀ef EG∀jG⊆μ+F ∀nj∈N(m ef ,mapμ+F ).
(
∀A∀tGA. chkμ+F (jA t)

)
→

∀A∀tFGA. chkμ+F

(
In+ ef mapμ+F MIt+

(
λAλt : GA. jA t

)
n t

)
.

Let us first remark that the η-expansion λAλt : GA. jA t of j is needed for subtle

technical reasons. Except from that, the parameters of In+ are instantiated as

G′ := μ+F , m′ := mapμ+F and it := MIt+.

This is a strictly positive inductive definition and hence available in the CIC, and

Coq generates an induction principle as follows: Given a predicate P : ∀A. μ+F A →
Prop, P holds “universally,” which means here that ∀A∀rμ+F A. chkμ+F r → PA r holds

(so, universality is relativized to the good elements), if the following induction step

is provided:

∀Gκ1∀ef EG∀jG⊆μ+F ∀nj∈N(m ef ,mapμ+F ).
(
∀A∀tGA. chkμ+F (jA t)

)
→

(
∀A∀tGA. PA(jA t)

)
→

∀A∀tFGA. PA

(
In+ ef mapμ+F MIt+

(
λAλt : GA. jA t

)
n t

)
.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 461

The premise ∀A∀tGA. chkμ+F (jA t) yields the inversion principle for chkμ+F (i.e., that

the “ingredients” of a good element are good); the premise ∀A∀tGA. PA(jA t) is the

induction hypothesis.

Slightly sloppily, we can say that an element of μ+F A is good if it is of the form

In+ . . . , where the argument m′ is replaced by mapμ+F ; it is replaced by MIt+; and

all the j-images are already good. The construction of the nested datatype itself is

finished by

μF A := {r : μ+F A | chkμ+F r}.
This notation stands for the inductively defined sig of Coq, which is a strong sum

in the sense that the first projection yields the element r and the second projection

the proof that chkμ+F r. Since μ+F A belongs to Set , this is also true of μF A and

hence μF : κ1.

The map function mapμF for μF can now be defined as follows: Assume A,

r : μF A, B and f : A → B. We have to define mapμF f r of type μF B. An r consists

of a term r′ : μ+F A and a proof p : chkμ+F r′. The first component of our result will

be mapμ+F f r′; the second component has to be a proof that chkμ+F (mapμ+F f r′).

Now we do inversion on p, i.e., induction on chkμ+F , where the induction hypothesis

will not be used in the induction step. This is immediate with the computation

rule for mapμ+F and the introduction rule for chkμ+F , invoking the other hypothesis

∀A∀tGA. chkμ+F (jA t) that yields the inversion principle.

In order to define In of the required type, assume X : κ1, ef : EX, j : X ⊆ μF ,

n : j ∈ N(m ef , mapμF ), A, and t : FXA. We have to define In ef j n t : μF A. Its first

component of type μ+F A is given by In+ ef mapμ+F MIt+ j ′ n′ t with j ′ : X ⊆ μ+F

defined by typewise composing the first projection out of μF with j, and n′ its

canonical naturality proof that depends on n and the fact that the first projection

of mapμF f r is defined to be mapμ+F , applied to f and the first projection of r. The

second component, i.e., the proof part, again follows directly from the introduction

rule for chkμ+F , since, by the very definition of μF , we have ∀A∀tXA. chkμ+F (j ′
A t).

17

Even with respect to convertibility, this construction fulfills the required equation

for mapμF .

The definition for MIt is easier than for mapμF . Just define, given the step term

s : ∀Xκ1 . X ⊆ G → FX ⊆ G and r : μF A, the term MIt s r : GA as MIt+,

applied to s and the first projection of r. The desired equality for MIt holds even

as convertibility, since composition is associative also in this sense. (The η-rule

for MIt in the specification of LNMIt is trivially fulfilled by defining MIt as a

lambda-abstraction.)

For the induction principle μFInd , we currently need proof irrelevance, for two

purposes:

• A simple consequence is the principle of irrelevance of the proof in elements

of type μF A: If the first projections of r1 and r2 of type μF A are equal,

then r1 = r2. (Hence, the first projection is injective.) This could possibly be

17 The forced η-expansions can just be achieved by converting the goal to the expanded form.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


462 R. Matthes

remedied by changes to the CIC that affect the convertibility relation for

strong sums (Werner 2006).

• We need that any two proofs of naturality for the same parameters are

equal. The author does not see yet how this could be reduced to the specific

instance of proof irrelevance where only all proofs of the same equation are

identified (up to propositional equality). The problem here is that naturality is

a universally quantified equation, and equational reasoning usually does not

reach under binders in intensional type theory, as discussed in Section 2.

Proof irrelevance is only about propositional equality of proofs of propositions

and so does not degenerate the computational world (that is based on definitional

equality) inside sort Set .

The following proof has no counterpart in Capretta’s work. It seems that it profits

from our very special situation, while Capretta intended to give a general method

for simultaneous inductive–recursive definitions.

In order to prove μFInd , assume the predicate P , the inductive step s of type

∀Xκ1∀ef EX∀jX⊆μF∀nj∈N(m ef ,mapμF ).
(
∀A∀xXA. PA(jA x)

)
→ ∀A∀tFXA. PA(In ef j n t),

and A : Set , r : μF A. We have to show PA r. The term r decomposes into a term

r′ : μ+F A and a proof p : chkμ+F r′. We do induction on p. We write cons for the

opposite operation of this decomposition and hence

cons : ∀A∀r′ : μ+F A. chkμ+F r′ → μF A.

Thus, we want to show PA (cons r′ p) by induction on p. As such, this is not covered

by the given induction principle for chkμ+F . But there is also a more dependent

version that can be generated by Coq (“induction scheme for sort Prop” that also

takes into account the proofs of chkμ+F r′): Given a predicate

P ′ : ∀A∀r′ : μ+F A. chkμ+F r′ → Prop,

it holds universally in the usual sense, i.e., ∀A∀r′ : μ+F A ∀p : chkμ+F r′. P ′
A r

′ p, if

∀Gκ1∀ef EG∀jG⊆μ+F ∀nj∈N(m ef ,mapμ+F )∀k :
(
∀A∀tGA. chkμ+F (jA t)

)
.(

∀A∀tGA. P ′
A(jA t)(kA t)

)
→ ∀A∀tFGA.

P ′
A

(
In+ ef mapμ+F MIt+

(
λAλtGA. jA t

)
n t

)
(Inchk ef j n k t).

For our proof, take P ′
A r

′ p := PA (cons r′ p). Assume G, ef , j, n, k according to this

induction principle. Define j ′ := λAλtGA. cons(jA t)(kA t) of type G ⊆ μF . Under the

assumptions H : ∀A∀tGA. PA(j ′
A t), A : Set , and t : FGA, we have to prove

PA

(
cons

(
In+ ef mapμ+F MIt+

(
λAλtGA. jA t

)
n t

)
(Inchk ef j n k t)

)
.

First show j ′ ∈ N(m ef , mapμF ). For this, one has to remove the outer quantifiers

and then use proof irrelevance in showing the equation only for the first projections.

But this follows by a short calculation from our naturality proof n. Let n1 be

this proof of j ′ ∈ N(m ef , mapμF ). We deduce PA(In ef j ′ n1 t) from the general

assumption s (the induction step of μFInd ) and our assumption H .

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 463

It also holds that

In+ ef mapμ+F MIt+
(
λAλt : GA. jA t

)
n t

is equal to the first projection of In ef j ′ n1 t. This is a simple calculation for the

“j argument,” and we identify all naturality proofs in our system. Since we identify

elements of μF A with the same first component, the two arguments of PA in this

proof development are equal; hence we may pass from the validity of the second

such statement to that of the first one. Again, all the details can be found in the

Coq development (Matthes 2008). �

6 Example: explicit flattening

In the following, we will illustrate the use of LNMIt with the example of a

representation by nested datatypes of untyped lambda-terms. The original form

(for credits, see Abel et al. 2005) can be treated directly in Coq since version 8.1.

Only the extension by an explicit flattening rule (again, see Abel et al. 2005 for more

information) goes beyond direct representability in Coq.

In Coq with predicative Set , one can now declare Lam : κ1 as an inductive family

just by giving the types of its constructors (in a context A : Set):

var : A → Lam A,

app : Lam A → Lam A → Lam A,

abs : Lam(option A) → Lam A.

Then, Lam A represents the untyped lambda-terms, where the variable names are

taken from the type A. Lambda-abstraction is represented by abs; thus the name

of the bound variable is just taken to be the additional element in option A. We

insist on the freedom in the type A that can even be Lam A′ for some A′. A full

formalization of pure type systems in Coq based on a restriction of the admissible

types A to initial segments of the natural numbers has been obtained by Adams

(2006).18 We may mostly follow his development for the definition of substitution

subst : ∀A,B. (A → Lam B) → Lam A → Lam B,

where for a substitution rule f : A → Lam B, the term subst f t : Lam B is the result

of substituting every variable a : A in the term representation t : Lam A by the term

f a : Lam B. The mapping function lam : monLam does just variable renaming. It is

easy to establish extensionality and functoriality of lam and extensionality of subst

in its argument f. One may even prove that subst f t only depends on the values

f a for the a’s that freely occur in t (a notion to be defined inductively). The most

interesting properties of subst are the following:

∀A,B, C ∀fA→B∀gB→Lam C∀tLam A. subst g (lam f t) = subst (g ◦ f) t,

∀A,B, C ∀fA→Lam B∀gB→C∀tLam A. lam g (subst f t) = subst (lam g ◦ f) t.

18 Other formalizations were earlier (Altenkirch & Reus 1999; McBride 1999), and the point of this
example is the essential use of nested Lam that is not considered elsewhere.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


464 R. Matthes

An instance of the first property that goes well beyond Adams’ work is as follows:

∀A,B ∀fA→Lam B∀tLam A. subst (λxLam B. x) (lam f t) = subst f t.

Here, we used extensionality of subst in order to get from (λx.x)◦f to f as argument

to subst . Note that the term lam f t has type Lam (Lam B). The function subst(λx.x) :

Lam(Lam B) → Lam B “flattens” this term in that it integrates the lambda-terms

that constitute its free variable occurrences into the term itself. Note that this

equation is just standard category-theoretic knowledge about the equivalence of

monad representations with monad multiplication (here the flattening operation)

and binding (here the substitution operation) and that this viewpoint has already

been taken for the representation of untyped lambda-calculus by Bellegarde & Hook

(1994).

With the above properties, one can easily establish the three monad laws for subst .

We can also show naturality of subst in the following extended sense:

∀Xκ1∀mmonX∀jX⊆Lam . j ∈ N(m, lam) → (λA. subst jA) ∈ N(lam � m, lam),

where lam �m is the canonical map term for Lam ◦X that is implicit in the last case

of Lemma 1. This naturality lemma will be needed below.

While all of the described development goes smoothly in the current Coq version –

for the details, see the Coq scripts (Matthes 2008) – we now have to make use of

LNMIt . We extend the untyped lambda-calculus by an explicit notion of flattening,

i.e., a term former to indicate flattening that is not carried out, just like explicit

substitution. The corresponding datatype functor is thus

F := λXλA.A + XA × XA + X(option A) + X (X A),

while the one for Lam would be the same F , with the last summand removed.

We assume that + associates to the left. From Lemma 2, one easily produces the

corresponding FpE.

There are two options for the use of LNMIt: the axiomatic one that only takes

the specification in Section 3 (in Coq, this is done by putting the whole development

into a “functor” that depends on an argument module of a module type that

contains the description of LNMIt) and the implementation according to Section 5.

In the first case, predicative Set suffices, but the equations for the behavior of

mapμF and MIt can only be used as propositional equality. In the second case, one

needs impredicative Set , and Coq applies the equations implicitly when evaluating

expressions. However, the implementation details are not encapsulated and might

be exploited in the development. The Coq scripts that are available for this paper

illustrate both approaches.

We will call LamE the fixed point μF for the F above and lamE the map term

mapμF . The interesting new canonical datatype constructor (InCan codes together

four datatype constructors)

flat : ∀A.LamE (LamE A) → LamE A

is obtained by composing InCan with the right injection inr .

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 465

We define a function eval : LamE ⊆ Lam that evaluates all the explicit flattenings

and thus yields the representation of a usual lambda-term by

eval := MIt
(
λXκ1λitX⊆LamλAλtFXA.match twith . . . | inr e �→ subst itA (itXA e)

)
.

Note that e : X(XA); itXA e : Lam(XA); itA : XA → Lam A; and consequently

subst itA (itXA e) : Lam A. Theorem 3 immediately gives

evalA(flatA e) 
 subst evalA (evalLamE A e).

This is a new algorithm and substantially different from earlier work (Abel et al.

2005). Intuitively, it takes the argument e of type LamE (LamE A) and first ignores the

complex structure of the variables when evaluating the explicit flattenings, arriving

at a term of type Lam(LamE A). Then, each of the freely occurring variables, which

are in fact lambda-terms with explicit flattenings, has to be substituted by the

corresponding evaluated lambda-term.

Theorem 1 allows to prove that eval is a natural transformation from lamE to lam .

The case that pertains to the flat constructor is a simple consequence of naturality

of subst , defined above (together with extensionality of lam and m ef ). As a corollary

of naturality, using the “instance of the first property” of subst above, we get

evalA(flatA e) = subst(λxLam A. x)
(
evalLam A(lamE evalA e)

)
.

The algorithmic idea of the right-hand side is as follows: Take the argument e of

type LamE (LamE A), and first concentrate on the terms-as-variables in LamE A.

Rename them via lamE , according to the function evalA : LamE A → Lam A. This

yields a term of type LamE (Lam A). In a second time, evaluate the “outer structure,”

ignoring the complex structure of the variables. Now, flatten out this term of type

Lam(Lam A); see our discussion above.

We might wonder whether eval could have been defined so that the previous

propositional equality were even forced to be convertibility. One would first try to

replace the term subst itA (itXA e) in the definition of eval by

subst(λxLam A. x)
(
itLam A(lamE itA e)

)
,

but this would only type check if lamE were replaced by a map term m : monX

for X, but no such m is available in our version of the Mendler iterator. Currently,

one would need to resort to sized nested datatypes (Abel 2006) for such a program,

but there do not yet exist induction principles for reasoning on programs with sized

nested datatypes.

As a less immediate application of naturality of eval , we can analyse half-explicit

substitution

esubst : ∀A,B. (A → LamE B) → LamE A → LamE B

defined by esubst f t := flat(lamE f t), where only the renaming is done, and the

flattening is left explicit. Trivially, one can embed Lam into LamE by a function

emb. The question is then whether subst f t with f : A → Lam B and t : Lam A can

be calculated by evaluating

evalB
(
esubst (embB ◦ f) (embA t)

)
,

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


466 R. Matthes

and this can be answered in the affirmative (for propositional equality) by using

naturality of eval . One also needs extensionality and the first property of subst and

that eval is a left inverse of emb, but those are all proven by induction on Lam , thus

not taking profit from LNMIt in this Coq development (Matthes 2008).

7 Conclusions

It is now possible to combine the following benefits:

• termination of all functions following the recursion schemes;

• recursion schemes being type-based and not syntax-driven;

• genericity (no specific shape of the datatype functors required);

• no continuity properties required;

• inclusion of truly nested datatypes;

• categorical laws for program verification;

• program execution within the convertibility relation of Coq.

In practice, one often uses refined forms of iteration that are also known under

the names of efficient folds (Hinze 2000; Martin et al. 2004). More general forms in

the spirit of Mendler’s style can be studied, e. g., the system MItω= (Abel et al. 2005).

Its iterator can be expressed by MIt of this paper, but only at the expense of some

right Kan extension as target type constructor G. Although our Theorem 1 would

apply, its application condition would speak about equality of functions, and that

is usually not provable. With some more refined notions of extensionality and more

careful use of quantification, it is nevertheless possible to prove a theorem for MIt

that will yield a naturality property for MIt= that precisely captures the map fusion

law. This can even be extended to treat GMIt , a more liberal form of MIt=, also

introduced in that paper.

Certainly, more and more difficult examples have to be verified. It does not seem

possible to extend the construction with the inductive–recursive definition from

iteration to primitive recursion or just to add an inversion operation. A further goal

would be reasoning principles for conventional style without noncanonical elements

that can treat truly nested datatypes.

Finally, it should be mentioned that the present work does not restrict the system

to one single nested datatype or only the introduction of one such datatype after

the other. All the constructions are fully parametric so that arbitrary interleaving of

such families is admissible, although the author is not aware of natural examples in

which a nested datatype sits inside the definition of another “real” nested datatype

in the sense of different family indices in the recursive equation.

Acknowledgments

I am grateful to Chantal Berline who took the time to discuss possible analogies

of the presence of noncanonical elements in LNMIt and nonstandard models. I

am also very grateful to the anonymous referees who forced me to deepen my

understanding of what LNMIt can do with canonical elements and for all their

detailed and valuable comments.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


An induction principle for nested datatypes in intensional type theory 467

References

Abel, A. (2006) A Polymorphic Lambda-Calculus with Sized Higher-Order Types, Doktorarbeit

(PhD thesis). Ludwig-Maximilians-Universität München.

Abel, A., Matthes, R. & Uustalu, T. (2005) Iteration and coiteration schemes for higher-order

and nested datatypes, Theor. Comput. Sci., 333 (1–2): 3–66.

Adams, R. (2006) Formalized metatheory with terms represented by an indexed family of

types. In Revised Selected Papers from 1st International Workshop on Types for Proofs and

Programs, TYPES 2004 (Jouy-en-Josas, December 2004), Filliâtre, J.-C., Paulin-Mohring,

C. & Werner, B. (eds), Lecture Notes in Computer Science, vol. 3839. Springer, pp. 1–16.

Altenkirch, T. (1999) Extensional equality in intensional type theory. In Proceedings of the

14th Annual IEEE Symposium on Logic in Computer Science, LICS ’99 (Trento, July 1999).

IEEE CS Press, pp. 412–420.

Altenkirch, T. & Reus, B. (1999) Monadic presentations of lambda terms using generalized

inductive types. In Proceedings of the 13th International Workshop on Computer Science

Logic, CSL ’99 (Madrid, September 1999), Flum, J. & Rodrı́guez-Artalejo, M. (eds), Lecture

Notes in Computer Science, vol. 1683. Springer, pp. 453–468.

Bellegarde, F. & Hook, J. (1994) Substitution: A formal methods case study using monads

and transformations, Sci. Comput. Program., 23 (2–3): 287–311.

Bertot, Y. & Castéran, P. (2004) Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions, Texts in Theoretical Computer Science:

An EATCS Series. Springer.

Bird, R. & de Moor, O. (1997) Algebra of Programming, International Series in Computer

Science, vol. 100. Prentice Hall.

Bird, R. & Meertens, L. (1998) Nested datatypes. In Proceedings of the 4th International

Conference on Mathematics of Program Construction, MPC ’98 (Marstrand, June 1998),

Jeuring, J. (ed), Lecture Notes in Computer Science, vol. 1422. Springer, pp. 52–67.

Bird, R. & Paterson, R. (1999a) De Bruijn notation as a nested datatype, J. Funct. Program.,

9 (1): 77–91.

Bird, R. & Paterson, R. (1999b) Generalised folds for nested datatypes, Formal Aspects

Comput., 11 (2): 200–222.

Capretta, V. (2004) A polymorphic representation of induction-recursion. Unpublished note.

Coq Development Team. (2006) The Coq proof assistant reference manual, version 8.1 [online],

Project LogiCal, INRIA. Available at: http://coq.inria.fr/. (Accessed 4 May 2009).

Coquand, T. & Paulin, C. (1990) Inductively defined types. In Proceedings of the International

Conference on Computer Logic, COLOG-88 (Tallinn, December 1988), Martin-Löf, P. &

Mints, G. (eds), Lecture Notes in Computer Science, vol. 417. Springer, pp. 50–66.

Dybjer, P. (2000) A general formulation of simultaneous inductive-recursive definitions in

type theory, J. Symb. Logic, 65 (2): 525–549.

Dybjer, P. & Setzer, A. (2003) Induction–recursion and initial algebras, Ann. Pure Appl. Logic,

124(1): 1–47.

Girard, J.-Y. (1972) Interprétation fonctionnelle et élimination des coupures de l’arithmétique

d’ordre supérieur, Thèse de Doctorat d’État. Université de Paris VII.

Hinze, R. (2000) Efficient generalized folds. In Proceedings of the 2nd Workshop on Generic

Programming, WGP 2000 (Ponte de Lima, July 2000), Jeuring, J. (ed). Department of

Computer Science, Universiteit Utrecht, pp. 17–32.

Hofmann, M. (1995) Extensional Concepts in Intensional Type Theory, PhD thesis. University

of Edinburgh.

Martin, C., Gibbons, J. & Bayley, I. (2004) Disciplined, efficient, generalised folds for nested

datatypes, Formal Aspects Comput., 16 (1): 19–35.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X


468 R. Matthes

Matthes, R. (1998) Extensions of System F by Iteration and Primitive Recursion on Monotone

Inductive Types, Doktorarbeit (PhD thesis). Ludwig-Maximilians-Universität München.

Available at: http://www.irit.fr/~Ralph.Matthes/. (Accessed 4 May 2009).

Matthes, R. (2001) Monotone inductive and coinductive constructors of rank 2. In Proceedings

of the 15th International Workshop on Computer Science Logic, CSL 2001 (Paris, September

2001), Fribourg, L. (ed), Lecture Notes in Computer Science, vol. 2142. Springer, pp. 600–

614.

Matthes, R. (2006) Verification of programs on truly nested datatypes in intensional

type theory. In Proceedings of the Workshop on Mathematically Structured Functional

Programming (Kuressaare, July 2006), McBride, C. & Uustalu, T. (eds), Electronic

Workshops in Computing. BCS, article 10.

Matthes, R. (2008) Coq Development for “An Induction Principle for Nested Datatypes

in Intensional Type Theory.” Available at: http://www.irit.fr/~Ralph.Matthes/Coq/

InductionNested/.

McBride, C. (1999) Dependently Typed Functional Programs and Their Proofs, PhD thesis.

University of Edinburgh.

Mendler, N. P. (1987) Recursive types and type constraints in second-order lambda calculus.

In Proceedings of the 2nd Annual IEEE Symposium on Logic in Computer Science, LICS ’87

(Ithaca, NY, June 1987). IEEE CS Press, pp. 30–36.

Oury, N. (2005) Extensionality in the calculus of constructions. In Proceedings of the

18th International Conference on Theorem Proving in Higher-Order Logics, TPHOLs 2005

(Oxford, August 2005), Hurd, J. & Melham, T. F. (eds), Lecture Notes in Computer Science,

vol. 3603. Springer, pp. 278–293.

Uustalu, T. (1998) Natural Deduction for Intuitionistic Least and Greatest Fixedpoint Logics,

with an Application to Program Construction, PhD thesis. Royal Institute of Technology,

Stockholm.

Uustalu, T. & Vene, V. (1997) A cube of proof systems for the intuitionistic predicate μ-,

ν-logic. In Selected Papers from 8th Nordic Workshop on Programming Theory, NWPT ’96

(Oslo, December 1996), Haveraaen, M. & Owe, O. (eds). Research report 248. Department

of Informatics, University of Oslo, pp. 237–246.

Uustalu, T. & Vene, V. (2002) Least and greatest fixed points in intuitionistic natural deduction,

Theor. Comput. Sci., 272 (1–2): 315–339.

Werner, B. (2006) On the strength of proof-irrelevant type theories. In Proceedings of the 3rd

International Joint Conference on Automated Reasoning, IJCAR 2006 (Seattle, WA, August

2006), Furbach, U. & Shankar, N. (eds), Lecture Notes in Artificial Intelligence, vol. 4130.

Springer, pp. 604–618.

https://doi.org/10.1017/S095679680900731X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680900731X

