
Can. J. Math., Vol. XLI, No. 3, 1989, pp. 439-461 

CONGRUENCES ON COMPLETELY 
REGULAR SEMIGROUPS 

MARIO PETRICH 

1. Introduction and summary. There are two subjects in the literature on 
semigroups which have recently attracted great attention: the class of completely 
regular semigroups (that is semigroups which are unions of their subgroups) and 
congruences on regular semigroups. In completely regular semigroups, the most 
popular subject is that of varieties, even though other aspects of them, such as 
structure, congruences, amalgamation, received their due attention. On the other 
hand, the treatment of congruences on regular semigroups became especially 
interesting with the emergence of the kernel-trace approach. This method proved 
quite successful in the case of inverse semigroups, see [6], whereas the analysis 
for the general regular semigroups encounters considerable difficulties, see [4]. 

The kernel-trace approach consists of studying a congruence p on a regular 
semigroup S by means of its kernel (elements of S p-related to idempotents) 
and its trace (the restriction of p to the set E(S) of idempotents of S). We offer 
here an alternative method for studying congruences on a completely regular 
semigroup S not based on its set of idempotents but on the greatest semilattice 
decomposition of S, which, fortunately, turns out to be the usual Green relation 
<D. For a basic fact about S is that it is a semilattice Y of completely simple 
semigroups Sa. If we now observe that every congruence p on S induces in a 
natural way a congruence £ on Y and on completely simple components Sa by 
restriction, we thus immediately arrive at an aggregate of the form (£; r]a) where 
Va = p\sa for every a G Y. 

Our main thrust is to describe, what we call, a congruence aggregate of 
the form (t;;r]a) with £ G C(Y) and rja £ C(Sa), where C( ) stands for the 
congruence lattice, with conditions governing these parameters in order that they 
produce a congruence on S in a natural way. A part of these conditions provides 
that 

1 = (J la 

be a congruence on S. Clearly rj Ç (D and, on the other hand, £ induces a 
congruence r on S with the property that *D Ç r. We thus arrive at a pair of 
congruences (r, r/) with the property that p V <D —r and p A <D — r\. Therefore, 
the problem of finding the appropriate definition of a congruence aggregate 
reduces to the determination of necessary and sufficient conditions on a pair 
(T, rj) of congruences on S in order that there exists a congruence p on S for 
which p V (D —T and p A (D — rf. 
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Section 2 contains the necessary preliminaries. One of the principal results 
of the paper, the solution of the problem evoked above, is proved in Section 3. 
Properties of the mappings p—^pMT) and p —> pA£> are discussed in Section 4. 
Section 5 contains the main construction of congruences on a completely regular 
semigroup in terms of congruence aggregates. Some of the conditions arising in 
this study are transcribed in Section 6 into the language of a construction of an 
arbitrary completely regular semigroup. 

2. Preliminaries. We generally follow the notation and terminology of [1] 
and [5]. In particular, we recall the following concepts. 

A completely regular semigroup S is a union of its (maximal) subgroups. It 
is also a semilattice of its completely simple components; we will indicate this 
by writing S — (Y;Sa). In the entire paper, S stands for an arbitrary completely 
regular semigroup with S = (Y;Sa) unless specified otherwise. 

A semigroup in which ac — be and ca — cb imply that a — b is said to be 
weakly cancellative. We will often make use of the fact that a completely simple 
semigroup is weakly cancellative. On any regular semigroup there is defined the 
natural partial order by: a = b & a = eb = bf for some idempotents e and 
/ . The set of idempotents of S will be denoted by E(S). In 5, we have the 
operation x —> x~[ of inversion; we will write x° — xx~l = x~[x. 

The lattice of congruences on S will be denoted by C(S). Let p G C(S). The 
kernel of p is defined as 

kerp = {a G S\ a p e for some e G E(S)}. 

Since S is completely regular, we actually have 

kerp = {a G S\ a p a0}. 

The trace of p is defined as 

trp = P\E(S)-

It is easy to see that for any a, b G S, we have 

apb & a°trpb°, ab~l G kerp, 

a fact which will be used often and without special reference. For more infor­
mation on this subject, consult [4]. 

Symbols e and UJ denote the equality and the universal relations on any set 
X; if necessary we will write ex and ux, respectively. 

We first collect several statements concerning congruences in the following 
lemma. Part (i) of it can be found in ([3], Lemma 2.2) whereas part (v) represents 
a strengthening of ([2], Theorem 3.3(iii) and [3], Theorem 2.1). 
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LEMMA 2.1. Let p £ C(S). 

(i) Let a ^ (3, let a, c E Sa, b E Sp and a p b. Then c p d for some d E Sp. 
(ii) If a^ (3 and a E Sa, then a^ b for some b E S p. 
(iii) Let at (it 1, let a E Sa, let c E S7 and ape. If x E 5 a , then x p y 

for some y E S p. If w E Sp, /^z? w p z for some z E 57. 
(iv) L r̂ a,x E Sa, /?, _y £ Sp,a p b and x ^ y. Then x p y. 
(v) Let a £ Sa-,b £ Sp and a p \/T>b. Then there exist x,y E Sap such that 

a ^ x,b ^ y,a px,b p y. Consequently p VD = pŒ)p. 
(vi) Let a,b,u E Sai c, d, v G ^ , a ^ /3, ac p be, da p db, u p v. Then a p b. 

Proof (i) Let 

I = {x £ Sa\ x p y for some y E 5^}. 

Then a E / so / 7̂  0. Since /? ^ a, it follows easily that / is an ideal of Sa. But 
Sa is simple and thus I = Sa. 

(ii) Let c E Sp and/ = (aca)°. Then 

/a = tf°/a = a(a~lfa) 

where a - 1 / / E £(S) so that a^ b with b ~fa G Sp. 
(iii) Let ^ == (2°. As in the proof of part (ii), there exists/ E E(Sp) such that 

e ^ / . Letting g = c°, we obtain e p g and/ = ef p gf, f =fe p fg so that 

f Pgfg Pigfgf = g-

Therefore <? p / and part (i) implies that for x E Sa, there exists y £ Sp such 
that JC p y. In particular, a p d for some d G Sp and hence d p c If now w E S ,̂ 
we get w p z for z E 5/3 again by part (i). 

(iv) Let x E Sai y E Sp and x ^ y. By part (i), we have x p c for some 
c £ S<y. Further, y = ex — xf for some e,f E £(S). Hence 

y pec pcf 

so that 

and thus y° p c°. Also 

j e - 1 = exc~l p ec p ey p y° 

and yc~x E ker p. But then y p c. Consequently x p y, as required. 
(v) Let a *Dp(D b. Then a <Dx p y(D b for some x,y E 5 and thus a (De p 

fD b where e — x° and / = _y°. It follows that e p ef p f where Def ^ D^ 
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and Def û Dj. By part (i), there exist w, v G Def such that a p uDv p b. This 
proves that D pD Ç pi) p. As a consequence, we then have that p V D = pD p. 

Let a p MD b so that a p uDv p b for some w, v G S; say, w, v G 57. Hence 
a2 p aw and av p a/? where a2 G 5 a , au,av G 5 ^ and a/? G 5ttjg. Similarly 
(av)2 p (ab)(av), where (av)2 G 5a^ and (tf/?)(av) G Sa/37. Applying part (i) to 
the components Saj S^ and to 5 ^ , 5a^7, we deduce that a p 5 for some s G Sa^7. 
But then part (iii) yields the existence of t G Sap for which a p t. By part (ii), 
a è JC for some JC G Sa0 so by part (iv) we obtain a p x. Symmetrically, there 
exists y G Sap for which y û b and y p b. 

(vi) By part (i), there exist a', b' G Sp such that a p d and b p b' and thus 

d(cd) p b\cd) and (afy/ p (cd)b'. 

Letting 6 = p\Sf}, we get in Sp — Sp/6 that 

a'cd — b'cd, cda! — cdb' 

which by weak cancellation gives d — b'. Hence 

a p d pb' pb, 

as required. 

We will also need the following simple statement. 

LEMMA 2.2. If elements a and b of S commute, so do a, b^a~x, b{\ a0, b°. 

Proof Indeed, 

abx = (ab)b'2 = bab~2 = b°(ba)b~2 = b0ab~l = b~x{ba)b~x 

= b-{ab° = b-2(ba)b° = b~2ab = b'xa. 

For a~xb~x = b~xa~x apply the above to a~\b. Further, using this, we get 

ab° = (ab'x)b = b~xab = b°a. 

Now apply this to a,b° to get a°b° — b°a°. Finally, a°b~x = b~~xa° follows 
from the statements already proved. 

3. The characterization. For the entire discussion in this section, the follow­
ing lemma is of fundamental importance. 

LEMMA 3.1. For any p G C(S) and a,b G S, we have 

apb <=> apMDb, abpADba, ab~x G ker(p AD). 

Proof The direct part is trivial. 
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Converse. By Lemma 2.1(v), we get a p x T> y p b for some x,y G S. Hence 
ab p xy and ba p yx so that xy p yx. In the quotient S = S /p, we then have 
x (D y and xy = yx so that aOfb. Now ab~l G kerp implies âb~x G E(S/p) 
which together with â.7/ b implies that à — b. Consequently a p b, as required. 

The following uniqueness result, to be used later, is the content of ([3], Corol­
lary 4.4). 

COROLLARY 3.2. / /A,p G C(S), then 

A V £> = p V £>, A A £ > = p A £ > = ^ A = p. 

As additional information, we prove the following simple statement. 

LEMMA 3.3. For p G C(S) and a,b G S, we have 

a0 pb° & a0 p Tib0, (ab)° p A£>(ba)°. 

Proof. The direct part is trivial. We prove the converse. Then a0 p e (D f p b° 
where we may take ej G E(Sap) if a G Sa, b G S# by Lemma 2.1(v). Hence 

a p ea p ae and b pfb p bf 

whence eabf p ab and fbae p ba, so that 

(eabf)0 p (ab)° p (ba)° p (fbae)0. 

But (eabf)0 = (ef)° and (fbae)0 = (fe)° which implies (eff p (fe)°. Since 
e *Df, this yields e p Of f p so ep —f p. But then a° p e =f p b°, as required. 

COROLLARY 3.4. For p G C(S) awd a, /? G S we /z#v£ 

flpfc <* tf°tr(p V£>)/?°, (ab)° tr(pA<D)(ba)°, ab~l G ker (p A <D). 

LEMMA 3.5. For any A,pG C(S), we have 

tr A = trp <=• A V £> = pV£>, tr (A A £>) = tr (p A £>). 

Proof. Direct part. Using ([4], Theorem 4.20), we get 

tr (A V 2>) = tr A V tr 2) trp V tr 2) = tr(p V <D\ 

and analogously tr(A A (D) = tr(p A T>). In addition, 

ker (A V£>) = S =ker(pV£>) 

and thus A V <D = p V £>. 
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Converse. Let ej G E{S) be such that e Xf. Then 

ef X A<Dfe 

and hence 

{eff A A D {fef. 

The hypothesis implies that 

{eff pA<D {fef. 

Further, e X f implies that e À V T) f which by hypothesis yields e p V' <D f'. 
Now Lemma 2.1(v) implies the existence of x,y G S such that 

e px<Dy pf. 

It follows that {xyf p A <D (yx)°. But then 

x° = {xyfx0 p {yxfx0 = {yxf p {yxf{xyf = y° 

which implies that e p x° p y° pf. Therefore trÀ Ç trp and equality follows by 
symmetry. 

The above lemma points to the fact that the trace of p is uniquely determined 
by p V <D (or only by tr {p V T> )) and the trace of p A Œ). This, in effect, splits 
the trace of p into an "upper trace", equal to tr {p V <D ), and a "lower trace", 
equal to tr {p V *D ) . The kernel of p is of course equal to the kernel of p A *D. 

The following theorem represents one of our principal results; the main con­
struction theorem to be established in Section 5 is essentially its corollary. 

THEOREM 3.6. Let r^r\ G C{S). Then there exists a congruence p on S such 
that pV (D — T and p A*D — n if and only if 

(i) r; Ç <D Ç r, 
(ii) Da—D\y^ Dc, a r c, ac r] be, ca rj ch => an /?, 

(iii) a r /?, ab n ba, ab~x € ker/7, c G S => acb rj bca. 

In such a case, p defined by: 

a p b & arb, ab 77 ba, ab~x G kerry {a,b G S) 

is the unique congruence on S for which pV T> = r and p A (D =77. 

Proof. Direct part. Let p G C {S) and r = pV <D ,77 = p A £>. Item (i) holds 
trivially. If the hypotheses of item (ii) are satisfied, then by Lemma 2.1(vi), we 
get a p b and thus a n b as well. Assume next that the hypotheses of item (iii) 
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are satisfied. Then a p\l T) b, ab pba and ab x G kerp which by Lemma 3.1 
gives that a p b. But then acb p bca and hence also acb 77 bca. 

Converse. Assume conditions (i)-(iii) and define p as above. Trivially p is 
reflexive. For a G Sajb G Sp such that a p b, applying Lemma 2.2 to S/r] and 
by the hypothesis that ab~x € kerr?, we get 

(ba'l)(ab-1) = (ba'xfba-xab~x = (ba~x)°ba%-x 

7] (ba-l)°ba°b-lab~l 77 (ba~xf(ab~x) 

and analogoulsy 

(ab~l)(ab-1) rj (ab~l)(ba~{)°. 

Letting 

by weak cancellation in Sap/6, we conclude that 

ba~x 77 (for1)0. 

Therefore ba~x G kerry which proves symmetry of p. 
Next let a G Sa, b G Sp, c G S1 be such that a p b and b p c. By condition 

(iii), we have acb 77 bca and bac 77 cab. Also, by hypothesis, we have ab 77 ba 
and &c 77 c£> which yield 

(1) acb 77 bca 77 c/ra 77 cab. 

We analogously obtain 

(2) bac 77 cab 77 cfoz 77 bca. 

Multiplying (1) on the right by acb and (2) on the left by bac, we get 

(3) (ac)(bacb) 77 {ca){bacb)1 (bacb)(ac) 77 (bacb)(ca), 

where bacb G S^-y. Since <2 r b and r 3 ^ , we have <zc r fozcfr which now by 
condition (ii) yields ac 77 ca. 

We therefore have that a, ft and c commute modulo 77. Applying Lemma 2.2 
to 5/77 gives 

(ac~l)b° 77 ab°c-{ = (^~1)(ftc~1) 77 ( a f c - 1 ) ^ - 1 ) ^ " ' ) ^ ^ 1 ) 

77 {ab-x){bc~x){ab~x){bc~x) 77 (ac -1)!^^-1)!!)0 77 (ac~x)2b° 
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and by commutativity modulo 77, we deduce that 

b°(ac~l)r]b0(ac~{)2. 

By condition (ii) we conclude that 

ac'x j](ac'xf. 

Consequently ac~x G ker 77 which completes the proof that ape and establishes 
transitivity of p. 

In order to prove compatibility of p with the multiplication we again let 
a G Sa, b G Sp, c G S7 with a p b. Then a r b which gives ac r be. Further, 
condition (iii) yields acb 77 bca whence 

(ac)(bc) 77 (bc)(ac). 

Furthermore 

(ac)(bcTl(ac)(bc)~l 

= (acb)b~\bc)~l(acb)b-\bc)~l 

77 {bc)ab-x{bc)~\bc)ab~x{bcTx 

= (bc)ab-x(bcfab'x(bcyx 

= (bc)a[b'x(bc)°a]bb-2(bcyx 

77 bcb°(bc)°a2b~2(bcrx 

= (bca)ab'2(bcyx 

77 (ac)bab~2(bcyx 

r](ac)b°ab-x(bcyx 

= (acb)b'xab'x(bcyx 

r)(bc)ab~xab~x(bcyx 

r](bca)b-x(bcyx 

rj (ac)b\bc)~ 

= (ac)(bcyx 

by (iii) 

by (iii) 

by (iii) 

by Lemma 2.2 

by (iii) 

since ab~x G ker77 

by (iii) 

which proves that (ac)(bc) x G ker 77. Therefore ac p be. 
Similarly, we have ca r cb and acb 77 bca whence (ca)(cb) 77 (cb)(ca) and 
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finally 

(ca)(cbr\ca)(cb)-{ 

= c[a(cbylb]b~lc[a(cb)~lb]b~l 

77 (cb)(cbyl ab~l (cb)(cb)~l ab~l 

= (cb)°ab~l(cb)°ab-1 

= (cb)°a[b-\cb)°a]bb-2 

77 (cb)°b°(cb)°a2b-2 

= (cb)°a2b~2 

77 {cbfab~lab~x 

77 (cb)°ab~l 

= c[b(cb)~la]b~l 

77 (ca)(cb)~lb° 

= (ca)(cb)-] 

which proves that ca p cb. Therefore p is a congruence. 
We show next that p V D — r. Let a p V (D b. Then by Lemma 2.1(v), we 

have a p x*D y p b for some x, y G S. Hence ar x and y r b which together with 
x Œ) y and D Ç T gives a r b. Therefore p V T> Ç r. Conversely, let a r b. Then 

a°T(aba)° and a0 (aba)0 = (aba)0 a0 

which easily implies that a0 p (aba)0. Analogously b° p (bab)° whence 

a<Va° p (aba)0 <D (babf pb0(Db 

and thus a p V *D b. Consequently r Ç p V (D and equality prevails. 
Next we prove that p A <D — 77. Let a p A(Db. If a G S a , then letting 6'— rj\sa, 

we get ab 9 ba and ab~l G ker#. Hence in Sa/0, we have ^^ = ba so that 
â i ? / ë since Sa/9 is completely simple. But then a0 — b° whence a° 6 b° 
which together with ab~l G ker^ implies a 9 b. It follows that a rj b and thus 
p f\T> Ç r/. Conversely, let <2 77 fr. By condition (i), we have a(Db, whence, 
again by (i), a r b. Since trivially ab 77 ba and ab~l G ker77, we conclude that 
a p b. Therefore 77 Ç p A T> and equality prevails. 

Uniqueness of p follows directly from Corollary 3.2. 

We can reformulate some of the above results by using the following concept. 

Definition 3.7. A pair of congruences r and 77 on S is related by (D if it sat­
isfies conditions (i), (ii) and (iii) of Theorem 3.6; the corresponding congruence 
p in Theorem 3.6 is then denoted by p^)-

by (iii) 

by (iii) 

by Lemma 2.2 

since ab~l G ker77 

by (iii) 
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THEOREM 3.8. Ifr and ij are congruences on S related by *D, then p(Ti7/) is the 
unique congruence p on S for which p V CD — r and p A £> = rj. Conversely, 
if p is a congruence on S, then p V *D and p A *D are related by *D and 
P — P(pVD,pA£>)-

Proof. This follows directly from Theorem 3.6, Lemma 3.1 and Corollary 
3.2. 

4. Pairs of congruences with extremal values. For a congruence r containing 
<D, we construct here the least congruence f with the property that f V D = r. 
Dually, for a congruence r\ contained in D , we construct the greatest congruence 
f] for which rj A *D — r\. We then summarize our findings in a result concerning 
the mappings p —• p V <D and p - ^ p A D . 

LEMMA 4.1. Let r be a congruence on S containing 1). Let f be the congru­
ence on S generated by the set 

7 = {(a, ft) eS xS\ a^b.arb}. 

Then f is the least element of the set {p G C (S)\ p V D = r}. 

Proof Since 7 Ç r, we have f Ç r and hence f V î> Ç r. Let a r b. Then 
JC = a(aba)° has the properties: A T I and 

x — a{abdf — [a{abafa~~x]a 

where a(abafa~x is evidently an idempotent. Thus a ^ x so that a 7 i . Simi­
larly, letting y — b(bab)0, we get b 7 .y. Now 

<2 f x 2) _y f /? 

which gives « f V (Db. Therefore r Ç f V Z ) and equality prevails. 
Let p G C (S) satisfy p\/ *D =T and let a 7 b. Then a ^ /? and a T b so that 

a p\l <D b. Letting a G Sa, b G 5^, by Lemma 2.1(v), there exists x G ^ such 
that a p x. But then Lemma 2.1(iv) yields that a p b. Therefore 7 Ç p and thus 
also f Ç p. 

We recall the following construction. If 9 is an equivalence relation on a 
semigroup S, then the relation 6° defined on S by 

a 6° b & xay 0 xby for all x,y G Sl (a,beS) 

is the greatest congruence on S contained in 6. 

LEMMA 4.2. Let r\ be a congruence on S contained in (D. Define // by 

a rjf b & ab r\ ba, ab~x G kerr/ (a, b G S). 
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Then 7/ is a reflexive and symmetric relation. Further define 77 by 

a fj b & {a 7/ b and for any x G S,x rj a «=>• x 7/ b) (a,b G S). 

Then 7) is an equivalence relation. Let 77 = 770. Then 77 is the greatest element 
of the set {p G C (S)\p A CD = 77}. 

Proof Clearly 7/ is reflexive. The argument for symmetry is the same as in 
the proof of Theorem 3.6. Trivially 77 is reflexive and is symmetric since 7/ is. 
Let a fj b and b f\ c. Then for any x G S, we have 

(1) afj'b and x r)'a <& x r\b, 

(2) Z? 7/ c and x r( b & x v\ c. 

By the first part of (1), we have a rj/ b and hence by the second part of (2), 
we get a 7/ c. For any x G S, by the second parts of (1) and (2), we obtain 
x 7/ a & x 7/ c. Therefore a f) c and 7) is also transitive. 

Consequently 77 = 770 is defined and is the greatest congruence on S contained 
in 77. Let a rj b. Then ab 77 ba and ab~l G ker 77 so a rf b. Let x G S and assume 
that x ri' a. Hence xa 77 ax and JOZ-1 G ker77, and thus xa~l 77 (xa~l)°. But then 
a 77 b implies that xb 77 bx and xZ?-1 77 (xZ?-1)0 whence x rf b. By symmetry, we 
conclude that a fj b. Consequently 77 Ç 77 and since 77 is a congruence, it follows 
that 77 Ç 770 = 77. Therefore 77 Ç 77 A *D. 

Next let a 77' A (Db. Then ab rj ba, ab~x G ker77 and a1)b. Let 0 = rj\oa, 
T>a = Da/6 and x = xO for any x G Z)a. Then_âZ? =_bâ so âïfb since D a 

is completely simple. Hence a0 = b° and thus a0 — b°, that is, a0 6 b°. This 
together with ab~l G ker# implies that a 6 b. Therefore a 77 b which proves that 
7]' /\(D Ç 77. Since 77 Ç 77 Ç 77', it follows that 77 A (D Ç 77. We have proved that 
77 = 77 A £>. 

Now let p G £ ( £ ) be such that p A £> = 77 and let a p b. Then a/? p ba and 
#Z?-1 G kerp, where ab (Dba. It follows that ab 77 Z?a and ab~x G kerp = ker 77. 
Hence a 77' b. Let x G S be such that x 77' a. Thus x<2 77 ax and xtf-1 G ker 77. 
But then xa p ax and xa~l G kerp. Further, a p b implies that xb p bx and 
xb~x G kerp whence xb r\ bx and xb~l G ker77, that is x rjf b. By symmetry, we 
conclude that a rj b. This shows that p Ç 77 and thus p Ç 770 = 77 since p is a 
congruence. Therefore 77 is the greatest congruence with the given property. 

That the map p—*p\l3 is a homomorphism in an intraregular semigroup is 
stated in [3] by Jones as proved in another of his preprints. A special case of 
this will be proved in the next theorem. The above constructions will be used, 
with the notation introduced therein, in the following result. 

THEOREM 4.3. (i) The mapping 

r i p ^ p V D (PeC(S)) 
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is a complete homomorphism of C(S) onto the interval [D, a;]. For every r G 
[D, a;], we have TT~1 — [f, r]. 

(ii) The mapping 

A:p->pAD (peC(S)) 

is a complete A-homomorphism of C(S) onto the interval [e, D]. For every 
T] G [e,D], we have r]A~l — [77, fj\. 

Proof, (i) In order to establish the first statement, we must show that for every 
family {pi}iei of congruences on 5, we have 

(1) / \ ] WD = / \ f o V 0 ) 
\iei J iei 

Let 

aeSa, beSp, a/\(PiVD)b. 
iei 

Then for each i £ I, a pi V D b so by Lemma 2.1(v), we have a pi jty, _y, p, b 
for some JC,-, _y, G 5ttig for each / G /. Let e = a0. Lemma 2.1(h), there exists 
/ G E(Sap) such that e^f. Hence 

f = efp,x?f, f=fePifxf 

and thus 

/ p, xfficf p, (xffxff = xf. 

Since e pi xf, it follows that e ptf for any / G /. Thus 

e r\pi f 
iei 

so Lemma 2.1(i) implies that 

a f\pi c for some c G ùa(3-
iei 

Analogously 

d f\pi b for some d G Sap. 
iei 
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Therefore 

a f\Pic<Dd [\Pib 
iei iei 

and thus 

«(Att) y q ) b-

This proves the nontrivial inclusion in (1). 
This establishes the first statement; the second follows easily from Lemma 

4.1. 
(ii) The first statement is trivial and the second follows easily from Lemma 

4.2. 

The mapping p —> p A *D is not a V-homomorphism. Indeed, let S be a 
semilattice of nontrivial groups G\ and Go determined by an injective homo-
morphism <p:G\ —> Go. Let À be the Rees congruence on S relative to the ideal 
Go and p be the congruence on S induced by the retraction ip = (p U LG0 , where 

(<»,£>) 

Cn, *n) 

(T, f) 

(%D) 

(D,y) 

(D,e) 

Diagram J : The network resulting from the pair (T, T|). 
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iGQ is the identity map on Go. Then A V p = UJ so that (À V p) A *D = (D, and 

( A A £ > ) V ( p A 2 > ) = AVe = A ^ <D 

since Gi is nontrivial. Therefore 

(A A <D) V (p A ID) ^ (A V p) A £>. 

We can illustrate the intervals occurring in the above theorem by the fol­
lowing Diagram 1 of the resulting "network" of pairs. At the lower end (£>, e) 
corresponds to the equality relation e and at the upper (a;, (D ) to the universal 
relation u. 

5. The main theorem. Using the characterization of a congruence p in terms 
of the corresponding pairs r and 77 of congruences, we can now deduce easily 
the desired construction. First note that there is a natural correspondence of 
congruences on S containing (D and congruences on S/*D given by p—^p/Œ). 
Since S/*D and Y are isomorphic by Da —> a if a G Sa, congruences on S/(D 
are in a natural one-to-one correpsondence with congruences on Y. We may 
thus essentially identify congruences on S containing (D with congruences on 
Y. For congruences on 5 contained in <D, we have the following simple result. 

LEMMA 5.1. Let S — (Y;Sa). For each a G F , let rja G C(S a ) tfftd assume: 

a,b e Sa, c G ^ , a ^ /? or 

j3 ^ oc1 a r\ab => ac r\a$ be, ca r\a$ cb. 

Then r\ = \Ja(EY la is a congruence on S contained in T>. Conversely, every 
congruence on S contained in (D can be so constructed. 

Proof. Direct part. Let a rj b so that a,b G Sa for some a G Y and let c G S p. 
Then cb G S»/? and thus 

a(cb) Tjap b(cb). 

Now ac/?, beb, cb G Sa^ whence 

(ac)(bcb) rja/3 (bc)(bcb). 

Also (bcb)a rjap (bcb)b so that 

(bcb)(ac) riap (bcb)(bc), 

again by hypothesis. Now weak cancellation in Sap/r]ap yields ac r]ap be. Anal­
ogously ca r]ap cb so that p G C ( 5 ) . Trivially p Ç £>. 

Converse. This is trivial. 
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The above statement can be summarized thus: vertical compatibility conditions 
(i.e., a ^ (3 or (3 ^ a) imply the general compatibility (in view of weak 
cancellation in the homomorphic images of the components). 

Definition 5.2. For p G C(S), the congruence £ induced on Y by the congru­
ence (p V £>)/£> is the reflection of p, in notation £ = rep. 

Explicitly, for a, /? G F, 

a £ /? «=>> there exists a € Sa,b e Sp, c, d G S7 such that 

a p c,d p b and 7 ^ a/3. 

In view of Lemma 2.1(v), we may assume that 7 = oc/3, a ^ c and b ^ d. 
We now arrive at the concept basic for our considerations. 

Definition 5.3. Let S = (F;Sa). Let £ G C(F) and ^ G C(Sa) for every 
a G F . We call (£; r/a) a congruence aggregate for S if the following conditions 
are satisfied. 

(i) a, b G 5a, c G Sp, a ^ /? or 

f3 ^ a, a T]a b => ac r/a^ be, ca 77^ c/?. 

(ii) a,b e Sa,c e Sp, a ^ , « £ /?, ac rŷ  be, ca r\p cb => a r]a b. 

(iii) a e Sai be Sp, c G S7, a £ /3, a/? 77^ /?a, 

ab~lekerr]ap => ad? r/a/37 £ca. 

In such a case, define a relation P(£;r/a) on 5 by: for a £ Sa, b £ Sp, 

a Pi&va) b & a £ b, ab rjap ba, ab~x G kerr?^. 

Denote by Cft (S) the set of all congruence aggregates for S with componentwise 
ordering. 

We can now easily derive our main result from the statements already estab­
lished. 

THEOREM 5.4. If (£;r/a) is a congruence aggregate for S, then p(^Va) is the 
unique congruence p on S such that re p = £ and 

p\sa = ria for all aeY. 

Conversely, if p is a congruence on S, then (re p\ p\sa) is a congruence aggregate 
for S and 

P ~ P(rep;p|Sa)-
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Proof. Let (£; r]a) G C&{S). Condition (i) in Definition 5.3 gives, in view of 
Lemma 5.1, that 

is a conguence on S, evidently contained in *D. Letting r be the congruence on 
S induced by £, we obtain the pair (r, r\) satisfying conditions (i), (ii) and (iii) 
of Theorem 3.6 in view of conditions (ii) and (iii) here. It is now clear that the 
congruence p in Theorem 3.6 and P(̂ ;T?a) coincide. Therefore 

its uniqueness follows easily from the uniqueness assertion in Theorem 3.6. 
Conversely, let p G C(S). By Lemma 3.1, we have for any a,b G 5, 

apb & ap V <Db, ab p A<D ha, ab~l G ker (p A <D ). 

If a G Sa and 6 G % then it follows that a p V <D b is equivalent to a £ /3 
where £ = rep. Letting rya = p|sa for all a G F, by the converse of Theorem 
3.6, we have that (£; r/a) G Cft(S) and therefore by the above, p — P(f;7?a). 

Of course, we could have proved the above theorem directly. However, it 
seems conceptually more transparent why this construction produces all congru­
ences on S if we pass through the congruences r and r] and then describe these 
as explained above. 

COROLLARY 5.5. (i) The mapping 

r-P(toa)^ç mria)eai(S)) 

is a complete homomorphism of C(S) onto C(Y). For each ( G C ( F ) , w have 

where £a = f\sa for each a G Y and T O £>, rer = £ (see Lemma 4. 1 for f). 
(ii) The mapping 

S'-P&Pa)-+(ria) mVa)eOl(S)) 

is a complete A-homomorphism of C(S) onto the A-semilattice 

(la) G TT C(Sa)\{r]a} satisfy condition (i) of Definition 5.3 
aeY 

of the direct product YlaeY C(Sa). For each element (rja) of this set, we have 

(Va)è~l = [P(e;r,ah P(Terj;r,a)] 
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(for r] se Lemma 4. 2). 

Proof. This follows easily from Theorems 4.3 and 5.4. 

6. Congruences on the standard representation. By the standard represen­
tation of a completely regular semigroup S we mean the following construction 
taken from [7]. 

THEOREM 6.1. Let Y be a semilattice. For every a EY, let 

Sa = M(Ia,Ga,Aa;Pa) 

be a Rees matrix semigroup such that Pa is normalized at an element also 
denoted by a and suppose that SaC\Sp = 0 // a ^ f3. Let 

( , }:Sa xlp^lp, 

Sa —> Gp in notation a—tap, 

[ , V.ApXSa-^Ap 

be functions defined whenever a ^ j3 and satisfying the following conditions. 
Let a G Sa and b G Sp. 

(i) Ifa^faie Ip, A G Ap, then 

P\{a,i)apPW,a]i = P\(a,0)apP[X,a])> 

(ii) If i G Ia and A G Aa, f/zew 

a = ((a,/),aa,[A,a]). 

On S = \JaeY $ a define a multiplication by 

aob = ((a, (b, a(3)), aapp[apia]{biap)bap, [[a/3, a], b]). 

(iii) Ifl ^ a/3, / G /7, A G A7, f/ien 

((a, (6, / » , tf7/?[7)fl](M)&7, HA> «], ft]) 

= ((a o ft, /), (a o ft)7, [A, Û o ft]). 

77*ew 5 /s a completely regular semigroup such that S/(D = Y and whose 
multiplication restricted to each Sa coincides with the given multiplication. Con­
versely, every completely regular semigroup is isomorphic to one so constructed. 

We can use the representation of congruences in Theorem 5.4 on this particular 
completely regular semigroup. We may further represent congruences on the 
completely simple components Sa in terms of admissible triples since Sa is 
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already given as a Rees matrix semigroup with normalized sandwich matrix. 
For this purpose, recall the following construction. 

Definition 6.2. Let S = ïM (/,G,A;F) be a Rees matrix semigroup with 
normalized sandwich matrix P. Let r be an equivalence on /,iV be a normal 
subgroup of G and TT be an equivalence on A. If the condition 

(1) irj or A IT p => PXiP^P^jPx) G N 

is satisfied, then (r,/V,7r) is an admissible triple for S. In such a case, define a 
relation P(/,/V,TT) on S by 

(i,g,\) P{rj4,K)(j,h,iL) & irj, gh~~l GiV, A TT /X. 

For the proof of the following theorem, see ([1], III. 4). 

THEOREM 6.3. Let S = fW(/,G,A;/>) with normalized P. If (r,N,Tr) is an 
admissible triple for S, then P(,,/v,7r) is a congruence on S. Conversely, every 
congruence on S can be so represented for a unique admissible triple. 

Combining the two theorems above with the description of congruences in 
Theorem 5.4, our task consists in transcribing conditions (i), (ii) and (iii) in 
Definition 5.3 in terms of parameters F , / a , GaiAa for all a G Y, as well as the 
defining expression for p^;rya). For each a G Y, we let 

Va ~ P(ra,Na,na) 

and, as before, £ G C(Y). 
The next result translates condition (i) in Definition 5.3 into the new notation. 

A similar analysis, albeit with more complex formulae, is possible for conditions 
(ii) and (iii), which we will, however, omit. The same goes for the expression 
for P(£;r/a); indeed, an explicit form for this congruence in terms of the above 
parameters does not seem, unfortunately, to shed any further light on its nature. 

LEMMA 6.4. Condition (i) in Definition 5.3 is equivalent to the following set 
of conditions: for a = (/, g, A), b — (y, //, p) G Sa, c G Sp, 

(a) a T]a b,k G /#, a ^ (3 => (a,k) ra (b,k), 

<J3) a riab, a ^/3 => ap(b0)-
{ G % 

(7) a r)a b, v G A^, a ^ f3 => [i/, a] na [i/, b], 

(è) i raj,(3^ a => (c, /) ra (c, 7), 

(e) A 7ra /x, (3 ^ a => [A, c] ira f/x, c]. 
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Proof. First assume condition (i) in Definition 5.3. Let a rja /?, c = (k, e,f3), 
where e is the identity of G^, and a ^ /?. Then ac r\$ be and thus 

((tf,£)? W A ^ , / 3 ) ^ ((b,k),bi3pWMke,l3) 

which in terms of admissible triples gives 

(2) (a, k) rp (/?, k), (af3P[(3,a]k)(bpPWMk)~l € N(3-

It follows that (a) holds and 

(3) apPiMkP^kW1 e % 

Analogously, ca p cb and thus 

which yields 

(4) L3,û]7ra [/?,&]. 

Now (4) together with (1) in the definition of an admissible triple gives 

P[MkPipih]k € N/3 

which in conjunction with (3) yields 

verifying (/?). Condition (7) follows by an analogous argument. 
Next let 

/ ra j , a = (/, e, a), b = (y, e, a) 

where e is the identity of Ga. Then a rja b and hence c# r]a cfr whence 

(<C,/), , )la((cj)i , ) 

and thus (c, /) ra (c, y). This verifies (5); condition (e) follows symmetrically. 
Conversely, assume the validity of conditions (ar)-(e). Let a, ^ G 5 a , a rja b 

and c G 57. 
Let a ^ /3 and c = (£, f, i/). Then 

ac = ((a, £), appw^kt, i/), 6c = ((/>, *), bppWMkt, v) 
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with 

(a, k) rp (fr, *), ap{b^Tx G % [/3, Û] TT̂  \J3, b] 

in view of (a), (/3), (7). By (1), we have 

PW,a]kP[fi,b]k ^ NP 

and thus 

apPWrfkKbpPipMkty ~ apPw,a]kP[~p,b]k(bp)~ € A^ 

and therefore ac r\p be. Symmetrically, one can show that ca r\$ cb. 
Next let (3 ^ a, a = (/,g,A) and fr = (7,/i, /i). Then / ra 7, g/z"1 G Na, 

A 7ra /i, which by (6) and (e) gives 

(c, /) ra (c, 7) and [A, c] na [/x, c]. 

Further 

ac = (/, gPx(c,a)C<x, tA , c]) , /?C = (7, hp^a)Ca, [/i, C']) 

where 

by (1), so that 

(gP\(c,a)Ca)(hp^Cia)Car
l G N a . 

It then follows that ac rja be and symmetrically also ca rja cb. This verifies 
condition (i) of Définition 5.3. 

In view of Lemma 5.1, condition (i) of Definition 5.3 is necessary and suf­
ficient for a construction of congruences contained in (D. We thus have the 
following consequence of the above results. 

COROLLARY 6.5. Let S be given the standard representation. For each a G Y, 
let (raiNa,7ra) be an admissible triple for Sa and let 

la = P(ra,Naina)> 

If conditions (a)-(e) in Lemma 6.4 are fulfilled, then 

ocEY 
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is a congruence on S contained in *D. Conversely, every congruence on S 
contained in <D can be so constructed. 

Proof. This follows directly from Lemmas 5.1 and 6.4. 

There is a special case when the conditions in a congruence aggregate simplify 
considerably and P(f;r/a) takes on a particularly simple form. That is the case of 
a normal band of groups. These are precisely strong semilattices of completely 
simple semigroups. For definitions and assertions relevant to this subject, see 
([5], IV.4). We denote such a semigroup by S = [Y;Sa, <p «,/?]. 

THEOREM 6.6. Let S = [Y\Sai(fa^p\ be completely regular. Condition (i) of 
Definition 5.3 is equivalent to: 

(a) a,b G Sa, arjab, a^ /? => a<pa,p rjp b<paip; 

condition (ii) is equivalent to: 

{(5) a,b eSa, a^ /?, atp^p rjp b(pa,p, a £ (5 => a rja b\ 

condition (iii) follows from (a). The expression for p ;̂T/) becomes: for a G Sa 

and b G Sp, 

a P(^ria) b & a C A <*<Pct,ap lap ^ / 3 , a / 3 -

Proof First assume condition (i) and let the hypotheses of (a) hold. Then 

(aipafi)(a°<pafi) = a(a°<paip) rjp b(<Pipa#) = (b(fa,p)(a0(pa,p) 

and symmetrically 

(<Pipafi)(aipafi) rjp (a°(fa^)(b(fa^), 

which by weak cancellation in Sp/rjp yields a(fa,p rjp b(fa,p, that is, (a) holds. 
The proof that (a) implies condition (i) is straightforward and is omitted. 

Next assume condition (ii) and let the hypotheses of (/3) hold. Similarly as 
above, we get 

a(a°(fa,p) rjp b(a°<paip), (a°(fa:p)a rjp (a°(pa,p)b 

which by the hypothesis implies that a rja b. That conversely (/?) implies con­
dition (ii) is straightforward to prove and is omitted. 

Now let a G Sa, b G Sp, ab rjap ba and ab~l G kerrjap. Then 

(ayai0Cp)(bLppi(Xp) rjp (b(ppiap)(a(paiap) 
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which in Sap = Sap/r]ap implies that 

It then follows that 

and hence 

(aifa,ap) Wap (bifp^p) . 

The condition ab~~x G kerr/ajg evidently implies that 

(a¥a,ap)(b(fp,apT] G k e r r ^ . 

But then 

a(fa,ap Vap biffap. 

Next let c G S7. Then by condition (a), we get 

atPa^pi Vapi bif^a^ 

and therefore 

acb = (aipa^pyXcip^apyXbipfcapy) 

riapi (bypiaprt)(cip%apy)(aiPa,apy) = bed 

as required. 
If a P(^r]a) b, then ab r]ap ba and ab~l G kerr/^; we have shown that 

a(Pa,aP Vap b(fp,ap> 

Conversely, if 

a £ (3 and aipa^ <qaf3 bipp^p, 

then it follows at once that 

ab T]ap ba and ab~x G k e r ^ 

so that 

a Pitwa) b-
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The above theorem shows that the definitions of the congruence aggregate 
(£; r]a) as well as the congruence p ^ j here and in [8] coincide for the case of 
a strong semilattice of completely simple semigroups. 
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