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CONGRUENCES ON COMPLETELY
REGULAR SEMIGROUPS

MARIO PETRICH

1. Introduction and summary. There are two subjects in the literature on
semigroups which have recently attracted great attention: the class of completely
regular semigroups (that is semigroups which are unions of their subgroups) and
congruences on regular semigroups. In completely regular semigroups, the most
popular subject is that of varieties, even though other aspects of them, such as
structure, congruences, amalgamation, received their due attention. On the other
hand, the treatment of congruences on regular semigroups became especially
interesting with the emergence of the kernel-trace approach. This method proved
quite successful in the case of inverse semigroups, see [6], whereas the analysis
for the general regular semigroups encounters considerable difficulties, see [4].

The kernel-trace approach consists of studying a congruence p on a regular
semigroup S by means of its kernel (elements of S p-related to idempotents)
and its trace (the restriction of p to the set £(S) of idempotents of S). We offer
here an alternative method for studying congruences on a completely regular
semigroup S not based on its set of idempotents but on the greatest semilattice
decomposition of S, which, fortunately, turns out to be the usual Green relation
D . For a basic fact about § is that it is a semilattice Y of completely simple
semigroups S,. If we now observe that every congruence p on S induces in a
natural way a congruence £ on Y and on completely simple components S, by
restriction, we thus immediately arrive at an aggregate of the form (§; n,) where
Na = p|s, for every a €Y.

Our main thrust is to describe, what we call, a congruence aggregate of
the form (&;n,) with £ € C(Y) and 9o € C(Ss), Where C( ) stands for the
congruence lattice, with conditions governing these parameters in order that they
produce a congruence on S in a natural way. A part of these conditions provides

that
n=J na

aeY

be a congruence on S. Clearly n C D and, on the other hand, ¢ induces a
congruence 7 on S with the property that D C 7. We thus arrive at a pair of
congruences (7, 1) with the property that pV D = 7and p A D = 7. Therefore,
the problem of finding the appropriate definition of a congruence aggregate
reduces to the determination of necessary and sufficient conditions on a pair
(1,m) of congruences on S in order that there exists a congruence p on S for
which pVD =71and pAD =1.
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Section 2 contains the necessary preliminaries. One of the principal results
of the paper, the solution of the problem evoked above, is proved in Section 3.
Properties of the mappings p — pVD and p — pAD are discussed in Section 4.
Section 5 contains the main construction of congruences on a completely regular
semigroup in terms of congruence aggregates. Some of the conditions arising in
this study are transcribed in Section 6 into the language of a construction of an
arbitrary completely regular semigroup.

2. Preliminaries. We generally follow the notation and terminology of [1]
and [S]. In particular, we recall the following concepts.

A completely regular semigroup S is a union of its (maximal) subgroups. It
is also a semilattice of its completely simple components; we will indicate this
by writing § = (Y;S,). In the entire paper, S stands for an arbitrary completely
regular semigroup with § = (Y; S,) unless specified otherwise.

A semigroup in which ac = bc and ca = c¢b imply that a = b is said to be
weakly cancellative. We will often make use of the fact that a completely simple
semigroup is weakly cancellative. On any regular semigroup there is defined the
natural partial order by: a = b & a = eb = bf for some idempotents e and
f. The set of idempotents of S will be denoted by E(S). In S, we have the
operation x — x~! of inversion; we will write x® = xx~! = x"lx.

The lattice of congruences on § will be denoted by C (S). Let p € C(S). The
kernel of p is defined as

kerp={a €S| ape for some e € E(S)}.
Since S is completely regular, we actually have
kerp={a €S| apa’}.
The trace of p is defined as
trp = plecs).-
It is easy to see that for any a,b € S, we have
0 0 ~1
apb & atrpb’, ab” €kerp,
a fact which will be used often and without special reference. For more infor-
mation on this subject, consult [4].
Symbols € and w denote the equality and the universal relations on any set
X; if necessary we will write ey and wy, respectively.
We first collect several statements concerning congruences in the following

lemma. Part (i) of it can be found in ([3], Lemma 2.2) whereas part (v) represents
a strengthening of ([2], Theorem 3.3(iii) and [3], Theorem 2.1).
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Lemma 2.1. Let p € C(S).

(i) Let o 2 B, let a,c € Sq,b € Sgand a pb. Then ¢ pd for some d € Sg.

(ii) If ¢ 2 B and a € Sy, then a 2 b for some b € Sg.

(iii) Let o 2 32 Y, leta € Sy, let c €Sy andapc. If x € Sy, thenx p'y
for some y € Sg. If w € S3, then w p z for some z € §y.

(iv) Let a,x € Seq,b,y €Sg,apbandx Zy. Then x py.

(v) Let a € Sq,b € Sg and a p NDb. Then there exist x,y € Sqz such that
aZx,bZy,apx,bpy. Consequently pND = pDp.

(vi) Let a,b,u € Sq,c,d,v €Sz, « 2 3, ac pbc,dapdb,upv. Thenapb.

Proof. (i) Let
I ={x €S8, xpyforsomey € Ss}.
Thena €1 so I # . Since B < a, it follows easily that / is an ideal of S,. But
S« is simple and thus 1 = S,.
(ii) Let ¢ € S5 and f = (aca)’. Then
fa = a"fa = a(a”'fa)

where a~'fa € E(S) so that a 2 b with b = fa € S;.
(iii) Let e = a°. As in the proof of part (ii), there exists f € E(Sg) such that
e = f. Letting g = ¢, we obtain e pg and f = ef p gf,f = fe p fg so that

fogfengfs) =g

Therefore e p f and part (i) implies that for x € S,, there exists y € Sz such
that x p y. In particular, a p d for some d € Sz and hence d p ¢. If now w € Sg,
we get w p z for z € Sg again by part (i).

(iv) Let x € Sg,y € Sg and x Z y. By part (i), we have x p ¢ for some
¢ € S,. Further, y = ex = xf for some ¢,f € E(S). Hence

ypecpcf
so that
= (e’ p ) py°
and thus y° p ¢¥. Also
I

yc o = exc™! p ec® p eyo p yo

and yc~! € ker p. But then y p ¢. Consequently x p y, as required.
(v) Let aDpD b. Then aDx p yD b for some x,y € S and thus a De p
fD b where e = x and f = y°. It follows that e p ef p f where D, < D,
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and D, = Dy. By part (i), there exist u,v € D, such that a p uDv p b. This
proves that D pD C pD p. As a consequence, we then have that pV D = pDp.

Leta p VD b so that a p uDv p b for some u,v € S; say, u,v € Sy. Hence
@ p au and av p ab where a*> € Sy, au,av € Sgy and ab € Sap. Similarly
(av)? p (ab)(av), where (av)? € Sqs and (ab)(av) € Susy. Applying part (i) to
the components Sq, Soy and to S4y, Sapy, we deduce that a p s for some s € Sqpy.
But then part (iii) yields the existence of t € Sag for which a p t. By part (ii),
a 2 x for some x € So3 so by part (iv) we obtain a p x. Symmetrically, there
exists y € Sqg for which y = b and y p b.

(vi) By part (i), there exist d’,b’ € Sg such that a pa’ and b p b’ and thus

d(cd) pb'(cd) and (cd)d p (cd)b'.
Letting 6 = p|s,, we get in Sg = S3/6 that
dcd =bcd, cdd = cdb
which by weak cancellation gives @ = b’. Hence
apdpb pb,

as required.
We will also need the following simple statement.
LEmMA 2.2. If elements a and b of S commute, so do a,b,a', b, a°, b°.

Proof. Indeed,

ab™' = (ab)b™? = bab™? = b%ba)p? = b~ = b~ (ba)p™!
=b"'ab? = b 2(ba)p’ = b~%ab = b 'a.

For a'b~! = b~ 'a ! apply the above to a™', b. Further, using this, we get
ab’ = (ab™" b = b~ 'ab = bla.

Now apply this to a,b® to get a®h® = b°°. Finally, a®p~' = b~'a" follows
from the statements already proved.

3. The characterization. For the entire discussion in this section, the follow-
ing lemma is of fundamental importance.

Lemma 3.1. Forany p € C(S) and a,b € S, we have
apb & ap\VDb, abpADba, ab~' € ker(p AD).

Proof. The direct part is trivial.
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Converse. By Lemma 2.1(v), we get a p x D y p b for some x,y € S. Hence
ab p xy and ba p yx so that xy p yx. In the quotient § = S/p, we then have
XDy and Xy = yx so that aH b. Now ab™' € kerp implies ab~' € E(S/p)
which together with @ H b implies that @ = b. Consequently a p b, as required.

The following uniqueness result, to be used later, is the content of ([3], Corol-
lary 4.4).

CoroLLARY 3.2. If A\, p € C(S), then
AVD =pVD, AND=pAD=A=p.

As additional information, we prove the following simple statement.

Lemma 3.3. For p € C(S) and a,b € S, we have

A pb® & L pDb°, (@)’ p AD(ba).

Proof. The direct part is trivial. We prove the converse. Then @’ p e D f p b°
where we may take e,f € E(Sqp) if a € Sy, b € Sg by Lemma 2.1(v). Hence

apeapae and b pfbpbf
whence eabf p ab and fbae p ba, so that
(eabf)” p (ab)” p (ba)’ p (fbae)’.

But (eabf)’ = (ef)? and (fbae)o = (fe)® which implies (ef)? p (fe)°. Since
e Df, this yields e p H fp so ep = fp. But then a° p e = f p b°, as required.

CoroLLARY 3.4. For p € C(S) and a,b € S we have
apb & (VD)L (@)’ tr (p AD)(ba)’, ab~' €ker (pA D).
Lemma 3.5. For any A\, p € C(S), we have
trA=trp & AVD =pVD, t(AAD)=tr(pAD).
Proof. Direct part. Using ([4], Theorem 4.20), we get
trAOVD)=trAVurDtrpViuD =tr(pV D),
and analogously tr(A A D) = tr(p A D). In addition,
ker(AVD)=S =ker(pV D)

and thus AVD =pV D.
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Converse. Let e,f € E(S) be such that e A f. Then
ef AND fe
and hence
@)’ XA D (fe)’.
The hypothesis implies that
(e’ p A D (fe).

Further, e A f implies that e A V D f which by hypothesis yields e p VD f.
Now Lemma 2.1(v) implies the existence of x,y € S such that

epxDypf.

It follows that (xy)° p A D (yx)°. But then

0 = )% p (32)°x" = () p () (ey) = »°

which implies that e p x° p y° p f. Therefore tr A C trp and equality follows by
symmetry.

The above lemma points to the fact that the trace of p is uniquely determined
by pV D (or only by tr(p V D)) and the trace of p A D. This, in effect, splits
the trace of p into an “upper trace”, equal to tr(p V D), and a “lower trace”,
equal to tr(p V D). The kernel of p is of course equal to the kernel of p AD.

The following theorem represents one of our principal results; the main con-
struction theorem to be established in Section 5 is essentially its corollary.

THEOREM 3.6. Let T, € C(S). Then there exists a congruence p on S such
that pV D =7and p N\ D =n if and only if

HnCDCr,
(i) D, =D, 2 D., aTc, acnbe, canch = anb,
(ili)y ath, abmnba, ab~' €kern, c€S = achn bca.

In such a case, p defined by:
apb & ath, abnba, ab ' ckern (a,b€S)

is the unique congruence on S for which pN D =1and p\ND =n.

Proof. Direct part. Let p € C(S)and 7= pV D,n = pA D. Item (i) holds
trivially. If the hypotheses of item (ii) are satisfied, then by Lemma 2.1(vi), we
get a p b and thus a n b as well. Assume next that the hypotheses of item (iii)
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are satisfied. Then a p V D b, ab p ba and ab™' € ker p which by Lemma 3.1
gives that a p b. But then acbh p bca and hence also ach n bca.

Converse. Assume conditions (i)—(iii) and define p as above. Trivially p is
reflexive. For a € Sq,b € Sg such that a p b, applying Lemma 2.2 to S /n and
by the hypothesis that ab~! € kern, we get

(ba "Yab™") = (ba ") ba " ab™" = (ba™" )b
n (ba="ba’b'ab 1 (ba ") (ab™")
and analogoulsy
(ab™")ab™") 1 (ab”(ba")".
Letting
0= ﬂ'Sam
by weak cancellation in So3/6, we conclude that
ba~! n (ba'l)o.
Therefore ba~! € kern which proves symmetry of p.

Next let a € Sq, b € Sg, ¢ € Sy be such that a p b and b p c. By condition
(iii), we have acb 1 bca and bac 1 cab. Also, by hypothesis, we have ab 1 ba
and bc i cb which yield
(1) acb n bca n cha n cab.

We analogously obtain

2) bac n cab 1 cba n bca.

Multiplying (1) on the right by acb and (2) on the left by bac, we get

3) (ac)(bacb) i (ca)(bach), (bacb)(ac) n (bacb)(ca),

where bach € Susy. Since a 7 b and T 2 D, we have ac T bach which now by
condition (ii) yields ac 7 ca.

We therefore have that a,b and ¢ commute modulo 7. Applying Lemma 2.2

to S/n gives

(ac™ " ab®c™" = (ab™" )by n (ab” " Yab ) be Y (beh
0 (ab~")be)ab™ )b 1 (ac™Hpac™ b0 n (ac™)°
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and by commutativity modulo 7, we deduce that
p’(ac™"y n b%ac™"?.

By condition (ii) we conclude that
ac™! n (af')z.

Consequently ac™' € kern which completes the proof that a p ¢ and establishes
transitivity of p.

In order to prove compatibility of p with the multiplication we again let
a € Sq, b €8s, c €8y withapb. Then a b which gives ac T bc. Further,
condition (ii1) yields ach n bca whence

(ac)(be) n (be)(ac).
Furthermore

(ac)(be) ™ (ac)(be)™!

= (ach)b™ " (be) Hach)b™ (be)™!

n (bco)ab™ ' (be) Y (bc)ab™ (be)™' by (i)
= (bc)ab™ ' (be)’ab (be) ™!

= (bc)alb™ ' (be)albb~2(be) ™!

n beb (be)’a®b 2 (be) ™! by (iii)

= (bca)ab_z(bc)*l

n (ac)bab(bc)™! by (iii)

n (ac)boab_'(bc-)_l by Lemma 2.2

= (acb)lf‘aif](bc)'l

n (bc)ab™'ab™ " (be)™! by (iii)

1 (bca)b_‘(bc)‘l since ab™~! € kern
1 (ac)b®(bc)™! by (iii)

= (ac)(be)™!

which proves that (ac)(bc)~' € kern. Therefore ac p bc.
Similarly, we have ca 7 ¢b and acb n bca whence (ca)(ch) 1 (cb)(ca) and
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finally

(ca)(cb) ' (ca)(ch)™

= cla(eh) b1 cla(ch) ' b)b ™!

n (ch)(cb) 'ab™ (eb)(ch)lab™! by (iii)
= (ch)’ab™ " (ch)’ab™!

= (cb)’alb~ " (ch)’a)bb™?

7 (cb)’bO(ch)’a’b™? by (iii)

= (ch)’a’b?

n (cb)oab_lab" by Lemma 2.2

1 (ch)’ab™! since ab™' € kern
= c[b(cb) 'alb™! by (iii)

n (ca)(ch)'b°

= (ca)(ch)™!

which proves that ca p cb. Therefore p is a congruence.

We show next that pV D = 1. Leta p V D b. Then by Lemma 2.1(v), we
have a pxDy p b for some x,y € S. Hence a 7 x and y 7 b which together with
x Dy and D C 7 gives a 7 b. Therefore pV D C 7. Conversely, let a 7 b. Then

a7 (aba)’ and a’aba)’ = (aba)’d’
which easily implies that a° p (aba)’. Analogously b° p (hab)’ whence
aDd p(aba)’ D (bab)’ pb° D b

and thus @ p V D b. Consequently 7 C p VD and equality prevails.

Next we prove that pA‘D = 1. Leta p ADb. If a € S,, then letting 6 = 7s,,
we get ab 0 ba and ab™' € kerf. Hence in S, /6, we have ab = ba so that
aH b since S,/0 is completely simple. But then @ = b° whence a° 6 »°
which together with ab~! € ker@ implies a @ b. It follows that @ n b and thus
p AND C 5. Conversely, let a 5 b. By condition (i), we have a D b, whence,
again by (i), @ 7 b. Since trivially ab 1 ba and ab™' € kern, we conclude that
a p b. Therefore n C p A D and equality prevails.

Uniqueness of p follows directly from Corollary 3.2.

We can reformulate some of the above results by using the following concept.

Definition 3.7. A pair of congruences 7 and 1 on S is related by D if it sat-
isfies conditions (i), (ii) and (iii) of Theorem 3.6; the corresponding congruence
p in Theorem 3.6 is then denoted by p.).
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Tueorem 3.8. If T and n are congruences on S related by D, then p is the
unique congruence p on S for which p vV D =7and p N D = n. Conversely,
if pis a congruence on S, then p N D and p N D are related by D and
P = P(pvD pAD)-

Proof. This follows directly from Theorem 3.6, Lemma 3.1 and Corollary
3.2.

4. Pairs of congruences with extremal values. For a congruence 7 containing
D, we construct here the least congruence 7 with the property that 7V D = 1.
Dually, for a congruence 7 contained in D, we construct the greatest congruence
i for which 7 A D = 5. We then summarize our findings in a result concerning
the mappings p — pV D and p—p A D.

LEmMA 4.1. Let T be a congruence on S containing ‘D . Let T be the congru-
ence on S generated by the set

Y={(@h)eS xSl azb,arb}.

Then % is the least element of the set {p € C(S)] pV D =7}
Proof. Since Y C 7, we have ¥ C 7 and hence 7V D C 7. Let a 7 b. Then
x = a(aba) has the properties: a T x and

X = a(aba)o = [a(aba)oa"]a

where a(aba)’a™' is evidently an idempotent. Thus @ = x so that a ¥ x. Simi-
larly, letting y = b(hab)°, we get b Y y. Now

atxDy7h

which gives a 7V D b. Therefore 1 C 7V D and equality prevails.

Let p € C(S) satisfy pVD =7and let ay b. Then a 2 b and a 7 b so that
apV Db. Letting a € Sq, b € Sg, by Lemma 2.1(v), there exists x € Sg such
that a p x. But then Lemma 2.1(iv) yields that a p b. Therefore ¥ C p and thus
also 7 C p.

We recall the following construction. If 8 is an equivalence relation on a
semigroup S, then the relation §° defined on S by

a’b & xay@xby forallx,yeS' (a,beS)

is the greatest congruence on S contained in 6.

LeEMMA 4.2. Let 1 be a congruence on S contained in D . Define n' by

an'b & abnba, ab”' € kern (a,b €5).
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Then 1) is a reflexive and symmetric relation. Further define 7 by
afbe (an bandforanyx €S,xn aexn b) (a,beS).

Then ij is an equivalence relation. Let fj = #i°. Then 7 is the greatest element
of the set {p € C(S)|pAND =n}.

Proof. Clearly 7' is reflexive. The argument for symmetry is the same as in
the proof of Theorem 3.6. Trivially 7 is reflexive and is symmetric since 7’ is.
Let a i) b and b 7 c. Then for any x € S, we have

(H aii’b and xn'a& xnb,

(2) bn'c and xn' b xnc.

By the first part of (1), we have @ ' b and hence by the second part of (2),
we get a i/ ¢. For any x € S, by the second parts of (1) and (2), we obtain
x1n' a4 xn c. Therefore a 7 ¢ and 7 is also transitive.

Consequently 7 = 7} is defined and is the greatest congruence on S contained
in 7). Let @  b. Then ab n ba and ab™' € kern so an’ b. Let x € S and assume
that x ' a. Hence xa 1 ax and xa—' € ker, and thus xa~' 1 (xa~!)°. But then
a 1 b implies that xb 1 bx and xb~' 5 (xb~")? whence x 7/ b. By symmetry, we
conclude that a 7 b. Consequently  C 7 and since 7 is a congruence, it follows
that n C 7° = 1’7 Therefore n C R AD.

Next let ay’ ADb. Then ab n ba, a

D, = D,/0 and X = x8 for any x € D,. Then ab = ba s0 aH b since D,
is completely 31mple Hence @° = b° and thus a0 = O, that is, a° 6 b°. This
together with ab~! € ker § implies that a 8 b. Therefore a b which proves that
n’' AD C . Since 7 C 7 C 7/, it follows that 7 A D C 5. We have proved that
n=nND.

Now let p € C(S) be such that p A D = n and let a p b. Then ab p ba and
ab~' € ker p, where ab D ba. It follows that ab n ba and ab~' € ker p = ker.
Hence a 1’ b. Let x € S be such that x 17’ a. Thus xa 1 ax and xa~' € ker1.
But then xa p ax and xa~' € kerp. Further, a p b implies that xb p bx and
xb~! € ker p whence xb 1 bx and xb~! € kern, that is x 1/ b. By symmetry, we
conclude that @ 7j b. This shows that p C # and thus p C 7 = 7 since p is a
congruence. Therefore 7) is the greatest congruence with the given property.

That the map p — pV J is a homomorphism in an intraregular semigroup is
stated in [3] by Jones as proved in another of his preprints. A special case of
this will be proved in the next theorem. The above constructions will be used,
with the notation introduced therein, in the following result.

THEOREM 4.3. (i) The mapping

Cip—pVD (peC(S)
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is a complete homomorphism of C(S) onto the interval [D,w). For every T €
[D,w], we have T 1 = (%, 71.

Aip—=pAD (peC(®))

is a complete N\-homomorphism of C(S) onto the interval [e,D]. For every
n € le, D], we have nA~" = [n, 7).

Proof. (i) In order to establish the first statement, we must show that for every
family {p;}ic; of congruences on S, we have

(1) (/\) Vo =A@ VD)
i€l i€l
Let

a€Sq beSg, a/\(in@)b.

i€l

Then for each i €1, a p; VD b so by Lemma 2.1(v), we have a p; x;, y; pi b
for some x;, y; € Sqp for each i € 1. Let e = a’. Lemma 2.1(ii), there exists
f € E(Sqp) such that e = f. Hence

f=e pixlfy [=feprs
and thus
£ i Xl o () i) = x).

Since e p; x, it follows that e p; f for any i € I. Thus

i

€/\Pif

il
so Lemma 2.1(i) implies that

a /\p,~ ¢ for some ¢ € Sug3.
il

Analogously

d /\pi b for some d € Sq3.
iel
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Therefore

a/\picQ)d/\p,-b

iel iel

and thus

a (/\p,-) vV Db.
iel

This proves the nontrivial inclusion in (1).

This establishes the first statement; the second follows easily from Lemma
4.1.

(ii) The first statement is trivial and the second follows easily from Lemma
4.2.

The mapping p — p A D is not a V-homomorphism. Indeed, let S be a
semilattice of nontrivial groups G; and G, determined by an injective homo-
morphism ¢: G} — Gy. Let A be the Rees congruence on S relative to the ideal
Gy and p be the congruence on S induced by the retraction v = ¢ Ug,, where

(w,D)

n, D
@, ™) @, D)
(r, %) D, )
)

Diagram 1: The network resulting from the pair (1, 7).
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LG, is the identity map on Gy. Then AV p = w so that AV p) AD = D, and
AANDYV(PAD)=AVe=A#D

since G is nontrivial. Therefore
AANDYN(PADYLAVPAD.

We can illustrate the intervals occurring in the above theorem by the fol-
lowing Diagram 1 of the resulting “network” of pairs. At the lower end (D, ¢)
corresponds to the equality relation e and at the upper (w, D) to the universal
relation w.

5. The main theorem. Using the characterization of a congruence p in terms
of the corresponding pairs 7 and 1 of congruences, we can now deduce easily
the desired construction. First note that there is a natural correspondence of
congruences on S containing 2 and congruences on S /D given by p — p/D.
Since S/D and Y are isomorphic by D, — « if a € S4, congruences on S /D
are in a natural one-to-one correpsondence with congruences on Y. We may
thus essentially identify congruences on S containing 2 with congruences on
Y. For congruences on S contained in D, we have the following simple result.

LeEmMA 5.1. Let S = (Y;Sq). For each a €Y, let ng € C(Sy) and assume:
a,b€Sy, cESz azZp or

BZa, angb = acnes be, cangs ch.

Then 11 = yey N is @ congruence on S contained in D . Conversely, every
congruence on S contained in D can be so constructed.

Proof. Direct part. Letan b so thata,b € S, for some a € Y and let ¢ € Sg.
Then ¢b € Sag and thus

a(ch) Nap b(ch).
Now ach, bcb, cb € Sq3 whence
(ac)(bcb) Nag (bc)(beb).
Also (bch)a nqg (beb)b so that
(beb)(ac) nag (beb)(bo),
again by hypothesis. Now weak cancellation in Sos/n45 yields ac nqs bc. Anal-

ogously ca nqg cb so that p € C(S). Trivially p C D.
Converse. This is trivial.
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The above statement can be summarized thus: vertical compatibility conditions
(ie., @ 2 Bor B 2 «a) imply the general compatibility (in view of weak
cancellation in the homomorphic images of the components).

Definition 5.2. For p € C(S), the congruence ¢ induced on Y by the congru-
ence (pV D)/ D is the reflection of p, in notation £ = re p.

Explicitly, for o, € Y,
a § B & there exists a € Sq4,b € Sg,¢,d € Sy such that

apc,dpbandy = af.

In view of Lemma 2.1(v), we may assume that Y = a8, a Z ¢ and b 2 d.
We now arrive at the concept basic for our considerations.

Definition 5.3. Let S = (Y;S,). Let £ € C(Y) and 5, € C(S4) for every
a €Y. We call (§;n4) a congruence aggregate for S if the following conditions
are satisfied.

(i) a,b €8Sy, c€Sp, =B or
B2 a,angb = acnag be, cangg cb.
(ii) a,b €8qy,c €85, a2 B, &P, acng be, cang cb = angb.

(iii) a€Sq, bESg, c€Sy, al B, abnqs ba,
ab™'eker Nag = ach nqgy bea.

In such a case, define a relation p.,,) on S by: for a € S4, b € Sg,
apenyb & ab, abnegba, ab' € kerngg.

Denote by CA (S) the set of all congruence aggregates for S with componentwise
ordering.

We can now easily derive our main result from the statements already estab-
lished.

THEOREM 5.4. If (§;nq) is a congruence aggregate for S, then pe.,, is the
unique congruence p on S such that re p = £ and

pls, =Na foralla€Y.

Conversely, if p is a congruence on S, then (e p; p|s,) is a congruence aggregate
for S and

P = Pep;plsy)
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Proof. Let (&;nq) € CA(S). Condition (i) in Definition 5.3 gives, in view of
Lemma 5.1, that

WZU%

aeY

is a conguence on S, evidently contained in . Letting T be the congruence on
S induced by &, we obtain the pair (7,7n) satisfying conditions (i), (ii) and (iii)
of Theorem 3.6 in view of conditions (ii) and (iii) here. It is now clear that the
congruence p in Theorem 3.6 and p.y,) coincide. Therefore

Pigna € C(S);

its uniqueness follows easily from the uniqueness assertion in Theorem 3.6.
Conversely, let p € C(S). By Lemma 3.1, we have for any a,b € S,

apb & ap VDb, abp ANDba, ab™' €ker(pAD).

If a € S and b € S, then it follows that a p V D b is equivalent to a £ 3
where £ = re p. Letting 7, = p|s, for all @ € Y, by the converse of Theorem
3.6, we have that (§;74) € CA(S) and therefore by the above, p = p¢.y,)-

Of course, we could have proved the above theorem directly. However, it
seems conceptually more transparent why this construction produces all congru-
ences on S if we pass through the congruences 7 and 1 and then describe these
as explained above.

COROLLARY 5.5. (1) The mapping
Y:pemy — € (€:ma) € CA(S))
is a complete homomorphism of C(S) onto C(Y). For each £ € C(Y), we have

& = (e P(Erwsy ]

where £q = s, for each « €Y and 72 D, ret = & (see Lemma 4.1 for 7).
(ii) The mapping

8: pepey — (Ma)  ((€3ma) € CA(S))

is a complete A\-homomorphism of C (S) onto the N-semilattice

{(na) € H C (S)|{na} satisfy condition (i) of Definition 5.3}

acYy

of the direct product Haey C (Sa). For each element (1) of this set, we have

(na)‘s_l = [p(e;na)v p(reﬁ;na)]
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(for i se Lemma 4.2).
Proof. This follows easily from Theorems 4.3 and 5.4.

6. Congruences on the standard representation. By the standard represen-
tation of a completely regular semigroup S we mean the following construction
taken from [7].

THEOREM 6.1. Let Y be a semilattice. For every a € Y, let
Sa =M (la,Gay Ao Por)

be a Rees matrix semigroup such that P, is normalized at an element also
denoted by o and suppose that Sa N Sg = 0 if a # B. Let

< y >ZSaX1B—>15,

S« — Gg in notation a — ag,
[ y ]:Aﬁ XSa—iAg

be functions defined whenever a Z 3 and satisfying the following conditions.
Let a € S and b € Sp.
() If a 2 B,i € I3, ) € Ag, then

PA(a,iY4BP1B,ali = PA(e,8)38P1Nc))-
(i) Ifi € Iy and X € Ay, then

a = ({a,i),aq, A al).
On S = U,ey S« define a multiplication by

aob = ({a, (b, aB)), aasPiap ai(p.ap)bas, [[aB, al, b)).
(iii) If ¥ < oB,i € Iy, \ € Ay, then

(a, (b, 1)), aypiy ayp. )by, [, al, b))
= ((a o b, l>7 (aob)y, [ aob]).
Then S is a completely regular semigroup such that S/D =Y and whose

multiplication restricted to each Sy coincides with the given multiplication. Con-
versely, every completely regular semigroup is isomorphic to one so constructed.

We can use the representation of congruences in Theorem 5.4 on this particular
completely regular semigroup. We may further represent congruences on the
completely simple components S, in terms of admissible triples since S, is
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already given as a Rees matrix semigroup with normalized sandwich matrix.
For this purpose, recall the following construction.

Definition 6.2. Let § = M (I,G,A;P) be a Rees matrix semigroup with
normalized sandwich matrix P. Let r be an equivalence on /,N be a normal
subgroup of G and 7 be an equivalence on A. If the condition

Q)] irj or Amp = I’/\il’;i'p“-"p;fl €N

is satisfied, then (r, N, ) is an admissible triple for S. In such a case, define a
relation p y ) on S by

(ivga)‘)p(r,N.w) (jahwu) A ll"jv ghil EN, >\7TN-

For the proof of the following theorem, see ([1], IIL. 4).

THEOREM 6.3. Let S = M (I, G, A; P) with normalized P. If (r,N, ) is an
admissible triple for S, then p,n ) is a congruence on S. Conversely, every
congruence on S can be so represented for a unique admissible triple.

Combining the two theorems above with the description of congruences in
Theorem 5.4, our task consists in transcribing conditions (i), (ii) and (iii) in
Definition 5.3 in terms of parameters Y, /4, G, Ay for all @ € Y, as well as the
defining expression for p(., ). For each o € Y, we let

Na = PlraNa,ma)

and, as before, £ € C(Y).

The next result translates condition (i) in Definition 5.3 into the new notation.
A similar analysis, albeit with more complex formulae, is possible for conditions
(i1) and (iii), which we will, however, omit. The same goes for the expression
for p(.,); indeed, an explicit form for this congruence in terms of the above
parameters does not seem, unfortunately, to shed any further light on its nature.

LemMmA 6.4. Condition (i) in Definition 5.3 is equivalent to the following set
of conditions: for a = (i,g,\), b = (j,h,p) € Sq, ¢ € S,

() angb,ke€lgazp = (ak)rqe(bk),
B) anab,azp = agby) ' €Ny,

(’Y) a’rlabal/el\ﬂvagﬁ:> [I/,H]T(a[l/,b],
©) iraj,BZa = (ci)refc ),

(&) Ao p,fZa = [Aclmalp,cl

https://doi.org/10.4153/CJM-1989-020-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1989-020-6

COMPLETELY REGULAR SEMIGROUPS 457

Proof. First assume condition (i) in Definition 5.3. Let a 14 b, ¢ = (k,e,3),
where e is the identity of Gg, and a = 8. Then ac ng bc and thus

(a, k), agpisawe; B) ng (b, k), bgpissie, B)
which in terms of admissible triples gives
@) {a,k) rg (b, k), (@spigap)bspissw) ' € Np.
It follows that («) holds and
3) aﬁl’[ﬁ.alkpﬂsjh]k(bﬂ)_l € Ng.
Analogously, ca p cb and thus
(k, epga,pyas, 8, al) ns (k; epg ybs1,61)
which yields
“) [8,al 7o [B,b].
Now (4) together with (1) in the definition of an admissible triple gives
P[,@,a]kp[_ﬁ}h]k € Ng
which in conjunction with (3) yields
as(bs)”' € Ng

verifying (3). Condition (V) follows by an analogous argument.
Next let

i rej, a=(e,a), b:(j,e,oc)
where e is the identity of G,. Then a n, b and hence ca 1, cb whence
(<C7 l>7 7 ) "Cl (<C7 j>7 b )
and thus (c, i) rg {(c, j). This verifies (§); condition (e) follows symmetrically.
Conversely, assume the validity of conditions (a)—(e). Let a,b € Sq, a Ny b
and ¢ € S5.

Let « 2 8 and ¢ = (k,t,v). Then

ac = (((1, k>, agp[gya]kl‘, l/)7 bc = (<b, k>, bﬂp[ﬂ,b]kt7 l/)
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with
(a,k) rg (b,k), ag(b)"' € Ng, [B,a] ms[B,b]
in view of (), (), (7). By (1), we have
PiBaPipsi € No
and thus
agpip.awt(bapiapnt) ™" = agpigawPipenbs) ' € Na
and therefore ac ng bc. Symmetrically, one can show that ca ng cb.

Next let 8 = «, a = (i,g,\) and b = (j, h,p). Then i ro j, gh™' € Ng,
A mq p, Which by (8) and (e) gives

(cyiyro (¢, j) and [A c] mq [, cl.
Further

ac = (i, 8Px(c,a)Cas A €)s  bC = (J, AP e,y Cas (15 CT)
where

PatcaPrutea € Na
by (1), so that

(8PA(c.) ) MPy(.c)Ca) ™" € Nar.

It then follows that ac n, bc and symmetrically also ca n, cb. This verifies
condition (i) of Definition 5.3.

In view of Lemma 5.1, condition (i) of Definition 5.3 is necessary and suf-
ficient for a construction of congruences contained in 2. We thus have the
following consequence of the above results.

COROLLARY 6.5. Let S be given the standard representation. For each ¢ € Y,
let (roy No, To) be an admissible triple for S and let

Na = Plra,Nosma)*

If conditions (a)—(€) in Lemma 6.4 are fulfilled, then

n:UWa

acY
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is a congruence on S contained in D. Conversely, every congruence on S
contained in D can be so constructed.

Proof. This follows directly from Lemmas 5.1 and 6.4.

There is a special case when the conditions in a congruence aggregate simplify
considerably and p;;,,) takes on a particularly simple form. That is the case of
a normal band of groups. These are precisely strong semilattices of completely
simple semigroups. For definitions and assertions relevant to this subject, see
([5], IV.4). We denote such a semigroup by S = [Y; Sq, @asl-

THEOREM 6.6. Let S = [Y;Sq, 0agl be completely regular. Condition (i) of
Definition 5.3 is equivalent to:

() a,b€Sp,anab, a2 = apag g bag:
condition (ii) is equivalent to:
B) a,b €Say @ Z B, apapng bpas, alpf = angb;

condition (iii) follows from (c). The expression for p(.; becomes: for a € Sy
and b € Sg,

apeny b & a& B, apuap Nap bPsas-

Proof. First assume condition (i) and let the hypotheses of («) hold. Then
(@)@ Pag) = a@pap) Ng (@ Pag) = (BPap) @ Pas)
and symmetrically
(@ pap)apap) ng (@ pas)bpag),
which by weak cancellation in S3/ns yields apap s bpag, that is, (@) holds.
The proof that (o) implies condition (i) is straightforward and is omitted.
Next assume condition (ii) and let the hypotheses of (3) hold. Similarly as

above, we get

a@ pap) N5 (@ ¢ag), (@ pag)ans @ pasb
which by the hypothesis implies that a 7, b. That conversely (3) implies con-
dition (ii) is straightforward to prove and is omitted.

Now let @ € Sy, b € S, ab 145 ba and ab™" € kernqg. Then

(@pa,a8)bpsas) Ng (bps.ep)a@Pa,ap)
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which in Su5 = Sas/nap implies that
TPacap H bppas.
It then follows that
TPaas = bppas’
and hence
(@Paas)’ Nag (bPsap)’-
The condition ab~! € ker Neap €vidently implies that
(@Pa,ep) b Psas)”" € Kernag.
But then
apa,ap Nap bop.ap-
Next let ¢ € S,. Then by condition (), we get
aPa,apy Nagy bPpapy
and therefore
ach = (apq,apy)(CPv,a3v) (DoY)

Napy (b‘PB,a[i’Y)(CSO‘Y,aBW)(a(pa,aﬁ')f) = bca

as required.
If a p¢.5,) b, then ab 14 ba and ab™! € kernqgp; we have shown that

AP a,ep MNag bPs.ap-
Conversely, if

af B and apaap Nag bPpap,
then it follows at once that

ab nasba and ab' € kerngg

so that

a peg b-
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The above theorem shows that the definitions of the congruence aggregate
(&;ma) as well as the congruence p(¢,,,) here and in [8] coincide for the case of
a strong semilattice of completely simple semigroups.
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