Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T20:45:22.471Z Has data issue: false hasContentIssue false

KCr3(SO4)2(OH)6: Synthesis, characterization, powder diffraction data, and structure refinement by the Rietveld technique and a compilation of alunite-type compounds

Published online by Cambridge University Press:  10 January 2013

C. L. Lengauer*
Affiliation:
Inst.f. Mineralogie und Kristallographie, Universität Wien, Dr. Karl Lueger-Ring 1, A-1010 Wien, Austria
G. Giester
Affiliation:
Inst.f. Mineralogie und Kristallographie, Universität Wien, Dr. Karl Lueger-Ring 1, A-1010 Wien, Austria
E. Irran
Affiliation:
Inst.f. Mineralogie und Kristallographie, Universität Wien, Dr. Karl Lueger-Ring 1, A-1010 Wien, Austria
*
a)Author to whom correspondence should be addressed.

Abstract

The new compound, KCr3(SO4)2(OH)6, was prepared by low-hydrothermal synthesis. The structure was refined by the Rietveld technique in space group (Z = 3), a =7.2416(3) Å, c = 17.0788(9) Å, V = 775.63 Å3, Rp = 7.7, Rwp =10.1, RB = 6.8. The compound is isotypic with alunite, KAl3(SO4)2(OH)6. The temperature of decomposition under nitrogen atmosphere to a hitherto unknown form is about 550 K. The water content of alunite-type compounds is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altaner, S. P., Fitzpatrick, J. J., Krohn, M. D., Bethke, P. M., Hayba, D. O., Goss, J. A., and Brown, Z. A. (1988). “Ammonium in alunites,” Am. Mineral, 73, 145152.Google Scholar
Appleman, D. E., and Evans, H. T. (1973). “Indexing and least-squares refinement of powder diffraction data,” U.S. Geol. Surv. Comp. Contrib. 20, PB2-16188.Google Scholar
Balic Zunic, T., Moëlo, Y., Loncar, Z., and Micheelsen, H. (1994). “Dorallcharite, Tl0.8K0.2Fe3(SO4)2(OH)6, a new member of the jarosite-alunite family,” Eur. J. Mineral. 6, 255264.Google Scholar
Bayliss, P. (1986). “X-ray powder data for nissonite and waylandite,” Powder Diffr. 1, 331333.CrossRefGoogle Scholar
Bérar, J.-F., and Lelann, P. (1991). “E.S.D.'s and estimated probable errors obtained in Rietveld refinements with local correlations,” J. Appl. Cryst. 24, 15.CrossRefGoogle Scholar
Birch, W. D., Pring, A., and Gatehouse, B. M. (1992). “Segnitite, PbFe3H(AsO4)2(OH)6, a new mineral in the lusungite group from Broken Hill, New South Wales, Australia,” Am. Mineral. 77, 656659.Google Scholar
Blanchard, F. N. (1989). “New x-ray powder data for gorceixite, BaAl3(PO4)2(OH)5·H2O, an evaluation of d-spacing and intensities, pseudosymmetry and its influence on the figure of merit,” Powder Diffr. 4, 227.CrossRefGoogle Scholar
Blount, A. (1974). “The crystal structure of crandallite,” Am. Mineral. 59, 4147.Google Scholar
Bowden, M. E., and Ryan, M. J. (1991). “Comparison of intensities from fixed to variable divergence X-ray diffraction experiments,” Powder Diffr. 6, 7884.CrossRefGoogle Scholar
Breidenstein, B., Schlüter, J., and Gebhard, G. (1992). “On beaverite: New occurrence, chemical data and crystal structure,” N. Jb. Mineral. Mh. 1992, 213220.Google Scholar
Brophy, G. P., and Sheridan, M. F. (1965). “Sulfate studies IV: The jarosite-natrojarosite-hydronium jarosite solid solution series,” Am. Mineral. 50, 15951607.Google Scholar
Caglioti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Inst. 3, 223228.CrossRefGoogle Scholar
Clark, A. M., Couper, A. G., Embrey, P. G., and Fejer, E. E. (1968). “Waylandite: new data, from an occurrence in Cornwall, with a note on agnesite,” Mineral. Mag. 50, 731733.CrossRefGoogle Scholar
Cudennec, Y., Riou, A., Bonnin, A., and Caillet, P. (1980). “Etudes cristallographiques et infrarouges d'hydroxychromates de fer et d'aluminium de structure de alunite,” Rev. Chimie Minérale 17, 158167.Google Scholar
Davey, Lukaszewski, and Scott, , (1963). Austral. J. Appl. Sci. 14, 137.Google Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: application of the March model,” J. Appl. Cryst. 19, 267272.CrossRefGoogle Scholar
Dowty, E. (1993). “ATOMS V.2.3—a computer program for displaying atomic structures,” Kingsport, TN 37663.Google Scholar
Dutrizac, J. E., and Kaiman, S. (1976). “Synthesis and properties of jarositetype compounds,” Can. Mineral. 14, 151158.Google Scholar
Fischer, R. X. (1993). “Divergence slit corrections for Bragg Brentano diffractometers,” Third European Powder Diffraction Conference, Abstracts 25.Google Scholar
Fischer, R. X., Lengauer, C. L., Tillmanns, E., Ensink, R. J., Reiss, C. A., and Fantner, E. J. (1993). “PC-Rietveld plus, a comprehensive Rietveld analysis package for PC,” Mater. Sci. Forum 133–136, 287292.CrossRefGoogle Scholar
Fitzpatrick, J. (1986). “Powder x-ray diffraction data of florencite-(Nd),” Powder Diffr. 1, 330.CrossRefGoogle Scholar
Giester, G. (1994a). “Crystal structure of KMn3+[SeO4]2—a triclinic distorted member of the yavapaiite family,” Mineral. Petrol., in press.Google Scholar
Giester, G. (1994b). “Crystal structure of anhydrous alum RbFe3+(SeO4)2,” Mh. Chem., in press.Google Scholar
Giuseppetti, G., and Tadini, C. (1980). “The crystal structure of osarizawaite,” N. Jb. Mineral. Mh. 1980, 401407.Google Scholar
Giuseppetti, G., and Tadini, C. (1987). “Corkite, PbFe3(SO4)(PO4)(OH)6, its crystal structure and ordered arrangement of the tetrahedral cations,” N. Jb. Mineral. Mh. 1987, 7181.Google Scholar
Hak, J., Johan, Z., Kvacek, M., and Liebscher, W. (1969). “Kemmlitzite, a new mineral of the woodhouseite group,” N. Jb. Mineral. Mh. 1969, 201212.Google Scholar
Hendricks, S. B. (1937). “The crystal structure of alunite and the jarosites,” Am. Mineral. 22, 773784.Google Scholar
Hill, R. J., and Fischer, R. X. (1990). “Profile agreement indices in Rietveld and pattern-fitting analysis,” J. Appl. Cryst., 23, 462468.CrossRefGoogle Scholar
Hill, R. J., and Flack, H. D. (1987). “The use of the Durbin-Watson d statistic in Rietveld analysis,” J. Appl. Cryst. 20, 356361.CrossRefGoogle Scholar
Hyen, G. C., Soo, J. K., and Hunsoo, C. (1994). “Thermal investigation of alunite from the Sungsan mine, Korea,” N. Jb. Mineral. Mh. 1994, 6775.Google Scholar
Hovestreydt, E. (1983). “On the atomic scattering factor for O2−Acta Cryst. A 39, 268269.CrossRefGoogle Scholar
Ivarson, K. C., Ross, G. J., and Miles, N. M. (1981). “Formation of rubidium jarosite during the microbiological oxidation of ferrous iron at room temperature,” Can. Mineral. 19, 429434.Google Scholar
Johansson, G. (1962). “On the crystal structure of a basic gallium sulfate related to alunite,” Arkiv För Kemi 20, 343352.Google Scholar
Kato, T. (1971). “The crystal structures of goyazite and woodhouseite,” N. Jb. Mineral. Mh. 1971, 241247.Google Scholar
Kato, T. (1977). “Further refinement of the woodhouseite structure,” N. Jb. Mineral. Mh. 1977, 5458.Google Scholar
Kato, T. (1990). “The crystal structure of florencite,” N. Jb. Mineral. Mh. 1990, 227231.Google Scholar
Kato, T., and Miura, Y. (1977). “The crystal structure of jarosite and svanbergite,” Mineral. J. Japan 8, 419430.CrossRefGoogle Scholar
Kulp, J. L., and Adler, H. H. (1950). “Thermal study of jarosites,” Am. J. Science 248, 475487.CrossRefGoogle Scholar
Ladell, J., Zagofsky, A., and Pearlman, S. (1975). “Cu Kα 2 elimination algorithm,” J. Appl. Cryst. 8, 499506.CrossRefGoogle Scholar
Lecerf, A., Bonnin, A., and Hardy, A. (1966). “Le sulfate basique de chrome Cr3(SO4)2O6H7,” C. R. Acad. Sc. Paris 262, série C, 352355.Google Scholar
Lefebvre, J., and Gasparrini, C. (1980). “Florencite, an occurrence in the Zairian copperbelt,” Can. Mineral. 18, 301311.Google Scholar
Li, G., Peacor, D. R., Essene, E. J., Brosnahan, D. R., and Beane, R. E. (1992). “Walthierite, Ba0.50.5Al3(SO4)(OH)6, and Huangite Ca0.50.5Al3(SO4)(OH)6, two new minerals of the alunite group from the Coquimbo region, Chile,” Am. Mineral. 77, 12751284.Google Scholar
May, A., Sjoberg, J. J., and Baglin, E. G. (1973). “Synthetic argentojarosite: physical properties and thermal behavior,” Am. Mineral. 58, 936941.Google Scholar
Menchetti, S., and Sabelli, C. (1976). “Crystal chemistry of the alunite series: crystal structure refinement of alunite and synthetic jarosite,” N. Jb. Mineral. Mh. 1976, 406417.Google Scholar
Nickel, E. H., and Temperly, J. E. (1987). “Arsenoflorencite-(Ce): A new arsenate mineral from Australia,” Min. Mag. 51, 605609.CrossRefGoogle Scholar
Nicolas, J., and Rosen, A. de (1963). “Phosphates hydrothermaux de basse température et kaolinisation: la gorceixite du massif des Colettes (Allier) et les mineraux associés (hinsdalite),” Bull. Soc. Fr. Minéral. Cristallogr. 98, 351353.Google Scholar
Okada, K., Hirabayashi, J., and Ossaka, J. (1982). “Crystal structure of natroalunite and crystal chemistry of the alunite group,” N. Jb. Mineral. Mh. 1982, 534540.Google Scholar
Okada, K., Soga, H., Ossaka, J., and Otsuka, N. (1987). “Syntheses of minamiite-type compounds, M0.5Al3(SO4)2(OH)6 with M=Sr2+,Pb2+ and Ba2+,” N. Jb. Mineral. Mh. 1987, 6470.Google Scholar
Ossaka, J., Hirabayashi, J., Okada, K., and Kobayashi, R. (1982). “Crystal structure of minamiite, a new mineral of the alunite group,” Am. Mineral. 67, 114119.Google Scholar
Ossaka, J., Otsuka, N., Hirabayashi, J., Okada, K., and Soga, H. (1987). “Synthesis of minamiite, Ca0.5Al3(SO4)2(OH)6,” N. Jb. Mineral. Mh. 1987, 4963.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst. 2, 6571.CrossRefGoogle Scholar
Ripmeester, J. A., Ratcliffe, C. I., Dutrizac, J. E., and Jambor, J. L. (1986). “Hydronium ion in the alunite-jarosite group,” Can. Mineral. 24, 435447.Google Scholar
Schmetzer, K., Ottermann, J., and Bank, H. (1980). “Schlossmacherit, (H3O,Ca)Al3[(OH)6(S,As)O4)2], ein neues Mineral der Alunit-Jarosit-Reihe,” N. Jb. Mineral. 1980, 215222.Google Scholar
Schmetzer, K., Tremmel, G., and Medenbach, O. (1982). “Philipsbornit, PbAl3H[(OH)6(AsO4)2], aus Tsumeb, Namibia-ein zweites Vorkommen,” N. Jb. Mineral. Mh. 1982, 248254.Google Scholar
Slansky, E. (1977). “Plumbogummite from Ivanhoe Mine, Northern Territory, Australia,” N. Jb. Mineral. Mh. 1977, 4553.Google Scholar
Smith, R. L., Simons, F. S., and Vlisidis, A. C. (1953). “Hidalgoite, a new mineral,” Am. Mineral. 38, 12181224.Google Scholar
Smith, W. L., and Lampert, J. E. (1973). “Crystal data for ammoniumjarosite. NH4Fe3(OH)6(SO4)2,” J. Appl. Cryst. 6, 490491.CrossRefGoogle Scholar
Stoffregen, R. E., and Alpers, C. N. (1992). “Observations on the unit-cell dimensions, H2O contents and δD values of natural and synthetic alunite,” Am. Mineral. 77, 10921098.Google Scholar
Szymanski, J. (1985). “The crystal structure of plumbojarosite Pb[Fe3(SO4)2(OH)6]2,” Can. Mineral. 23, 659668.Google Scholar
Szymanski, J. (1988). “The crystal structure of beudantite, Pb(Fe,Al)3[(As,S)O4]2(OH)6,” Can. Mineral. 26, 923932.Google Scholar
Taguchi, Y., Kizawa, Y., and Okada, N. (1972). “On beaverite from the Osarizawa mine,” J. Mineral. Soc. Japan 10, 313325.Google Scholar
Tananaev, et al. (1967). Russ. J. Inorg. Chem. 12, 28.Google Scholar
Tudo, J., Laplace, G., Tachez, M., and Théobald, F. (1973). “Chimie minérale.-Sur l'hydroxysulfate VOHSO4,” C. R. Acad. Sc. Paris C 277, 767770.Google Scholar
Tudo, J., and Laplace, G. (1977). “Les sulfates doubles de vanadium et d'ammonium. I.—Sur la schoenite de vanadium II et ammonium,” Bull. Soc. Chim. Fr. 1977, 653655.Google Scholar
Walenta, K. (1966). “Beiträge zur Kenntnis seltener Arsenatmineralien unter besonderer Berücksichtigung von Vorkommen des Schwarzwaldes,” Tschermaks Mineral. Petrogr. Mitt. 11, 121164.CrossRefGoogle Scholar
Walenta, K. (1981). “Mineralien der Beudantit-Crandallitgruppe aus dem Schwarzwald: Arseno-crandallit und sulfatfreier Weilerit,” Schweiz. Mineral. Petrogr. Mitt. 61, 2335.Google Scholar
Walenta, K., and Dunn, P. (1984). “Arsenogoyazit, ein neues Mineral der Crandallitgruppe aus dem Schwarzwald,” Schweiz. Mineral. Petrogr. Mitt. 64, 1119.Google Scholar
Wambeke, L. van (1958). “Une nouvelle escpèce minérale: la lusungite en provenance de la pegmatite de Kobokobo (Kivu-Congo belge),” Bull. Soc. Bel. Géol. 67, 162169.Google Scholar
Wambeke, L. van (1972). “Eylettersite, un noveau phosphate de thorium appartenant à la série de la crandallite,” Bull. Soc. Fr. Minéral. Cristallogr. 95, 98105.Google Scholar
Wambeke, L. van (1975). “La zairite, un nouveau minérale appartenant à la série de la crandallite,” Bull. Soc. Fr. Minéral. Cristallogr. 98, 351353.Google Scholar
Young, R. A., and Wiles, D. B. (1982). “Profile shape functions in Rietveld refinement,” J. Appl. Cryst. 15, 430438.CrossRefGoogle Scholar