Integral Functions with Gap Power Series

By P. Erdös and A. J. Macintyre

(Received 27th March 1951. Read 4th May 1951.)

1. Let

$$
\begin{equation*}
f(z)=\sum_{0}^{\infty} a_{n} z^{\lambda_{n}} \tag{1}
\end{equation*}
$$

be an integral function, λ_{n} being a strictly increasing sequence of nonnegative integers. We shall use the notations

$$
\begin{gathered}
M(r)=\max _{|2|=r}|f(z)|, m(r)=\min _{|z|=r}|f(z)|, \\
\mu(r)=\max _{n=0,1,2, \ldots}\left|a_{n}\right| r^{n}
\end{gathered}
$$

describing $M(r)$ as the maximum modulus, $m(r)$ as the minimum modulus and $\mu(r)$ as the maximum term of $f(z)$.

The present paper is a development of a remark by Pólya (Math. Zeit., 29 (1929), 549-640, last sentence of the paper) that if

$$
\begin{equation*}
\underline{\lim } \frac{\log \left(\lambda_{n+1}-\lambda_{n}\right)}{\log \lambda_{n}}>\frac{1}{2} \tag{2}
\end{equation*}
$$

then $\quad \lim _{r \rightarrow \infty} \frac{m(r)}{M(r)}=\varlimsup_{r \leftarrow \infty} \frac{\mu(r)}{M(r)}=1$.
Our first result is

Theorem 1.

If

$$
\begin{equation*}
\sum_{n=0}^{\infty} \quad \bar{\lambda}_{n+1}^{1}-\dot{\lambda}_{n}<\infty, \tag{4}
\end{equation*}
$$

then (3) holds.
Theorem 1 is clearly a sharpened form of Polya's result, for from (2) it evidently follows that for sufficiently large n

$$
\lambda_{n+1}-\lambda_{n}>\lambda_{n}^{\ddagger+e}>n^{1+\delta} \text { for some positive } \epsilon \text { and } \delta .
$$

Theorem 1 is best possible, as is shown by our next result.
Theorem 2.
If

$$
\begin{equation*}
\sum_{n=0}^{n} \frac{1}{\lambda_{n+1}-\lambda_{n}}=\infty, \tag{4}
\end{equation*}
$$

then there exists an integral function of the form (1) such that

$$
\begin{equation*}
\overline{\lim }_{r \rightarrow \infty} \frac{\mu(r)}{M(r)} \leqq \frac{1}{2}, \quad \varlimsup_{r \rightarrow \infty} \quad \frac{m(r)}{M(r)} \leqq \frac{1}{2} \tag{6}
\end{equation*}
$$

We generalise these theorems in two ways. First, relaxing the gap hypothesis we have
Theorem 3.
If for a positive integer h

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{\lambda_{n+h}-\lambda_{n}}<\infty \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\mu(r)}{M(r)} \geqq \frac{1}{2 h-1} \tag{8}
\end{equation*}
$$

but if

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{\lambda_{n+h}-\lambda_{n}}=\infty \tag{9}
\end{equation*}
$$

for every h, then there exists an integral function of the form (1) such that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\mu(r)}{\bar{M}(r)}=\lim _{r \rightarrow \infty} \frac{m(r)}{\bar{M}(r)}=0 \tag{10}
\end{equation*}
$$

The conjecture that under condition (7) we could derive

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{m(r)}{M(r)}>0 \tag{11}
\end{equation*}
$$

is disproved trivially by the example

$$
\sum_{0}^{\infty} z^{n^{3}} /\left(n^{3}\right)!+\sum_{0}^{\infty} z^{n 3+1} /\left(n^{3}+1\right)!
$$

Our second generalisation relaxes the gap condition of Theorem I in a different way, but imposes in addition a condition on the order of the function. We have

Theorem 4.
If as n tends to infinity

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{1}{\lambda_{k+1}-\lambda_{k}}=o\left(\log \lambda_{n}\right) \tag{12}
\end{equation*}
$$

and the function $f(z)$ is of finite order, or if

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{1}{\lambda_{k+1}-\lambda_{k}}=O\left(\log \lambda_{n}\right) \tag{13}
\end{equation*}
$$

and $f(z)$ is of zero order, then (2) holds.
This theorem cannot be materially strengthened since the example
constructed for Theorem 2 will be of finite order if

$$
\lim _{n \rightarrow \infty} \frac{1}{\log \lambda_{n}} \sum_{k=0}^{n} \frac{1}{\lambda_{k+1}-\lambda_{k}}>0
$$

and of zero order if

$$
\lim _{n \rightarrow \infty} \frac{1}{\log \lambda_{n}} \sum_{k=0}^{n} \frac{1}{\lambda_{k+1}-\lambda_{k}}=\infty .
$$

2. Proof of Theorem 1. To prove the theorem we need an elementary inequality. If $\epsilon_{0}+\epsilon_{1}+\epsilon_{2}+\ldots$ is a convergent series of nonnegative numbers and if a sequence δ_{n} is defined by

$$
\begin{equation*}
\delta_{n}=\max _{i<n<j} \frac{1}{(j-i+1)^{\frac{1}{2}}} \sum_{v=i}^{j} \epsilon_{v}, \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{0}^{\infty} \delta_{n} \leqq\left(1+2 \sum_{n=2}^{\infty} n^{-3}\right) \sum_{0}^{\infty} \epsilon_{v} . \tag{15}
\end{equation*}
$$

We have

$$
\sum_{0}^{\infty} \delta_{n}=\sum_{0}^{\infty} \sum_{0}^{\infty} A_{v, n} \epsilon_{v},
$$

where $A_{v, n}=\left(j_{n}-i_{n}+1\right)^{-3 / 2}$ or zero, as v falls in $i_{n} \leqq v \leqq j_{n}$ or not, i_{n}, j_{n} being the values of i, j for which the maximum in (14) is attained. Since $i_{n} \leqq n \leqq j_{n}$ also it follows that $j_{n}-i_{n} \geqq|v-n|$. Consequently

$$
\begin{aligned}
\sum_{0}^{\infty} \delta_{n} & \leqq \sum_{0}^{\infty} \sum_{0}^{\infty} \frac{\epsilon_{v}}{(|v-n|+\overline{1})^{3 / 2}} \\
& \leqq\left(1+2 \sum_{0}^{\infty} n^{-3 \cdot 2}\right) \sum_{0}^{\infty} \epsilon^{n} .
\end{aligned}
$$

We now assume (4) and set

$$
\begin{equation*}
\epsilon_{n}=1 /\left(\lambda_{n+1}-\lambda_{n}\right) . \tag{16}
\end{equation*}
$$

Defining δ_{n} as in (14), we have $\sum_{0}^{\infty} \delta_{n}<\infty$ by (15). Let c_{n} be a sequence of positive numbers tending to infinity so slowly that

$$
\begin{equation*}
\sum_{0}^{\infty} c_{n} \delta_{n}<\infty . \tag{17}
\end{equation*}
$$

Now let $A_{n} \leqq|z| \leqq A_{n+1}, n=0,1,2, \ldots$, be the sequence of intervals in which a single term $a_{k} z^{\lambda} k$ remains the maximum term. k will depend on n and increases with n, but we need not express this dependence in our notation. From (17) we have $\prod_{0}^{\infty}\left(1+2 c_{k} \delta_{k}\right)^{2}<\infty$, and hence there exist arbitrarily large values of n such that

$$
\begin{equation*}
A_{n+1} / A_{n}>\left(1+2 c_{k} \delta_{k}\right)^{2} \tag{18}
\end{equation*}
$$

We understand by n such a value and by k the associated integer. Since $a_{k} z^{\lambda_{k}}$ is the maximum term for $A_{n} \leqq|z| \leqq A_{n+1}$, we have

$$
\begin{array}{ll}
\left|a_{v}\right| \leqq\left|a_{k}\right| A_{n}^{\lambda_{k}-\lambda_{v}} & (v<k) \\
\left|a_{v}\right| \leqq\left|a_{k}\right| A_{n+1}-\left(\lambda_{v}-\lambda_{k}\right) & (v>k) \tag{19}
\end{array}
$$

Using these inequalities with $r=|z|=\left(A_{n} A_{n+1}\right)^{\text {t }}$, we have

$$
\begin{array}{rlrl}
\left|a_{v}\right| r^{\lambda_{v}} & \leqq\left|a_{k}\right| r^{\lambda_{k}}\left(A_{n} \mid A_{n+1}\right)^{\frac{1}{2}\left(\lambda_{k}-\lambda_{v}\right)} \\
& \leqq\left|a_{k}\right| r^{\lambda_{k}}\left(1+2 c_{k} \delta_{k}\right)-\left(\lambda_{k}-\lambda_{v}\right) & (v<k) \tag{20}\\
\left|a_{v}\right| r^{\lambda_{v}} & \leqq\left|a_{k}\right| r^{\lambda_{k}}\left(1+2 c_{k} \delta_{k}\right)^{-\left(\lambda_{v}-\lambda_{k}\right)} & (v>k)
\end{array}
$$

But by the definition of δ_{n} and the inequality of the harmonic and arithmetic means,

$$
\begin{gather*}
\delta_{k} \geqq\left(\frac{1}{\lambda_{v+1}-\lambda_{v}}+\frac{1}{\lambda_{v+2}-\lambda_{v+1}}+\ldots+\frac{1}{\lambda_{k}-\lambda_{k-1}}\right)(k-v)^{-1} \tag{21}\\
\geqq \frac{1}{(k-v)^{\frac{2}{2}}}\left(\frac{k-v}{\lambda_{k}-\lambda_{v}^{-}}\right)=\frac{(k-v)^{\frac{t}{2}}}{\lambda_{k}-\lambda_{v}} \quad(v<k) .
\end{gather*}
$$

Consequently

From this and a similar inequality when $v>k$, it follows from (20) that as $n \rightarrow \infty$ (and so $k \rightarrow \infty, r \rightarrow \infty, c_{n} \rightarrow \infty$)

$$
\begin{equation*}
\sum_{0}^{k-1}\left|a_{v}\right| r^{\lambda} v+\sum_{k+1}^{\infty}\left|a_{v}\right| r^{\lambda_{v}}=o\left(\left|a_{k}\right| r^{2} k\right) \tag{23}
\end{equation*}
$$

From this follow first the second and then evidently the first statement of (3).
3. Proof of Theorem 2. Now suppose that $\sum_{0}^{\infty} 1 /\left(\lambda_{n+1}-\lambda_{n}\right)$ diverges. We choose the coefficients a_{n} by the following rules.

$$
\begin{equation*}
a_{0}=1, \quad a_{n}=a_{n+1} A_{n}-\left(\lambda_{n}-\lambda_{n}-1\right), \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}=\prod_{v=0}^{n-1}\left(1+\frac{\epsilon_{v}}{\lambda_{v}-\lambda_{v-1}}\right), \quad A_{0}=1, \quad A_{1}=\left(1+\frac{1}{\lambda_{0}+1}\right) \tag{25}
\end{equation*}
$$

and ϵ_{n} is a a sequence of positive numbers tending to zero and such that $\Sigma_{\epsilon_{n}} /\left(\lambda_{n+1}-\lambda_{n}\right)$ diverges.

Evidently $A_{n} \rightarrow \infty$ and $f(z)=\sum_{0}^{\infty} a_{n} z^{\prime} n$ is an integral function.
Since

$$
\begin{equation*}
\frac{a_{n+1} r^{\lambda_{n+1}}}{a_{n} r^{\lambda_{n}}}=\frac{r^{\lambda_{n+1}-\lambda_{n}}}{A_{n+1}^{\lambda_{n+1}-\lambda_{n}}}, \tag{26}
\end{equation*}
$$

the maximum term $\mu(r)$ is $a_{n} r^{2} n$ for

$$
\begin{equation*}
A_{n} \leqq r \leqq A_{n+1} \tag{27}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
M(r)=\sum_{0}^{\infty} a_{n} r^{\lambda} n>a_{n} r^{\lambda} n+a_{n+1} r^{2} n+1 \tag{28}
\end{equation*}
$$

Now for $A_{n} \leqq r \leqq A_{n_{+1}}$ we have

$$
\begin{align*}
\frac{a_{n+1} r^{\lambda_{n+1}}}{a_{n} r^{\lambda} n}=\left(\frac{r}{A_{n+1}}\right)^{\lambda_{n+1}-\lambda_{n}} & \geqq\left(\frac{A_{n}}{A_{n+1}}\right)^{\lambda_{n+1}-\lambda_{n}} \tag{29}\\
& =\left(1+\frac{\epsilon_{n}}{\lambda_{n+1}-\lambda_{n}}\right)^{-\left(\lambda_{n+1}-\lambda_{n}\right)}>e^{-\epsilon_{n}}
\end{align*}
$$

and it follows that $M(r)>(2-\epsilon) \mu(r)$ for all sufficiently large r.
This proves the first inequality of (6). To establish the second we argue as follows. With $A_{n} \leqq r \leqq A_{n+1}$ and $z=r e^{\pi i\left(\lambda_{n+1}-\lambda_{n}\right)}$ we have, for n sufficiently large,

$$
\begin{aligned}
|f(z)| & \leqq M(r)-a_{n} r^{\lambda_{n}}-a_{n+1} r^{\lambda_{n+1}}+\left(a_{n} r^{\lambda} n-a_{n+1} r^{\lambda_{n+1}}\right) \\
& =M(r)-2 a_{n+1} r^{\lambda_{n+1}} \leqq M(r)-(2-\epsilon) \mu(r)
\end{aligned}
$$

If $\mu(r) \geqq \frac{1}{4} M(r)$, it follows that $m(r) \leqq\left(\frac{1}{2}+\epsilon\right) M(r)$.
If $\mu(r)<\frac{1}{4} M(r)$ we argue differently. We use the relations

$$
\begin{equation*}
\{m(r)\}^{2} \leqq\left\{M_{2}(r)\right\}^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta=\sum_{0}^{\infty} a_{n}^{2} r^{2 \lambda_{n}} \tag{31}
\end{equation*}
$$

which lead to

$$
\begin{align*}
\{M(r)\}^{2} & \geqq \sum_{0}^{\infty} a_{v}^{2} r^{2 \lambda} \nu+\sum_{0}^{\infty} a_{v} r_{\nu}^{\lambda}\left\{f(r)-a_{v} r_{\nu \nu}\right\} \tag{32}\\
& \geqq\left\{N_{2}^{-}(r)\right\}^{2}+\sum_{0}^{\infty} a_{v} r_{\nu}^{\lambda}\left\{f(r)-\frac{1}{4} f(r)\right\}
\end{align*}
$$

and

$$
\begin{equation*}
\{m(r)\}^{2} \leqq\left\{M_{2}(r)\right\}^{2} \leqq \frac{1}{4}\{M(r)\}^{2} . \tag{33}
\end{equation*}
$$

4. Proof of Theorem 3.

Suppose now that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{\lambda_{n+h}-\lambda_{n}}<\infty, \tag{34}
\end{equation*}
$$

where h is a positive integer greater than unity.
Defining δ_{n} as in (14) with $\epsilon_{n}=\left(\lambda_{n+h}-\lambda_{n}\right)^{-1}$ and choosing $c_{n}>0$ so that $c_{n} \rightarrow+\infty$ and $\Sigma c_{n} \delta_{n}<\infty$, and again taking $A_{n} \leqq|z|<A_{n+1}$
to be the sequence of intervals in which a single term, say $a_{k} z^{2} k$, is the maximum term, we must have arbitrarily large values of n such that $A_{n+1} / A_{n}>\left(1+2 c_{k} \delta_{k}\right)^{2}$, that is condition (18). With such values of n and associated k we still have (19) and (20), but we can no longer expect such a good result as (21) or its consequences (22) and (23). For $r=\left(A_{n} A_{n+1}\right)^{\frac{1}{2}}$ and v " near" to k we can only say

$$
\begin{equation*}
\left|a_{v}\right| r^{2} v \leqq\left|a_{k}\right| r^{\lambda_{k}} \quad(k-h<v<k+h) \tag{35}
\end{equation*}
$$

For values of v which are not " too near" k we can give an analogue of (21) valid for $k-p h<v \leqq k-(p-1) h, \quad p=2,3, \ldots$, in

$$
\begin{aligned}
& \delta_{k} \geqq\left(\frac{1}{\lambda_{k-(p-2) h}-\lambda_{k-(p-1) h}}+\ldots+\frac{1}{\lambda_{k-h}-\lambda_{k-2 h}}+\frac{1}{\lambda_{k}-\lambda_{k-h}}\right) \frac{1}{(p h)^{\frac{3}{3}}} \\
& \geqq \frac{(p-1)^{2}}{} \frac{1}{\lambda_{k}-\lambda_{k}-(p-1) h}(p h)^{\frac{2}{2}} \\
& \geqq \frac{p^{\frac{1}{2}}}{4 h^{\frac{2}{2}}\left(\lambda_{k}-\lambda_{v}\right)} \\
& \geqq \frac{(k-v)^{\frac{3}{2}}}{4 h^{2}\left(\lambda_{k}-\lambda_{v}\right)^{\circ}} .
\end{aligned}
$$

Consequently

$$
\left(1+2 c_{k} \delta_{k}\right)-\left(\lambda_{k}-\lambda_{v}\right) \leqq e^{-c_{k}(k-v)^{4} / 4 h^{2}}
$$

From this and the similar inequalities with $v>k+h$ we have, as $n \rightarrow \infty$, the result

$$
\begin{equation*}
\sum_{0}^{k-h}\left|a_{\nu}\right| r^{\lambda_{v}}+\sum_{k+h}^{\infty}\left|a_{v}\right| r^{\lambda_{v}}=o\left(\left|a_{k}\right| r^{\lambda_{k}}\right) \tag{36}
\end{equation*}
$$

and consequently with (35) we deduce

$$
\lim M(r) / \mu(r) \leqq(2 h-1)
$$

or

$$
\varlimsup \overline{\lim } \mu(r) / M(r) \geqq 1 /(2 h-1)
$$

which constitutes the first part of Theorem 3.
Now suppose that for some integer $h>1$

$$
\sum_{n=0}^{\infty} \frac{1}{\overline{\lambda_{n}+h}-\lambda_{n}}=\infty .
$$

Then evidently one of the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{\lambda_{n h+h+k}-\lambda_{n h+k}} \quad(k=0,1, \ldots, h-1) \tag{37}
\end{equation*}
$$

must diverge. There will be no loss of generality in supposing that the series with $k=0$ diverges. We now, as in the proof of Theorem 2, define the series

$$
\begin{equation*}
f^{*}(z)=\sum_{0}^{\infty} a_{n} z^{\lambda^{*} n}, \quad \quad \lambda_{n}^{*}=\lambda_{n h} \tag{38}
\end{equation*}
$$

with the properties that
(i) $\mu^{*}(r)=a_{n}^{*} r^{2^{*} n}$
(ii) $a_{n+1}^{*} r^{\lambda^{*}}{ }_{n+1} \geqq(1-\epsilon) a_{n}^{*} r^{\lambda^{*} n}$

$$
\begin{equation*}
\text { for } A_{n}^{*} \leqq r \leqq A_{n+1}^{*}, \quad n>n(\epsilon) \tag{39}
\end{equation*}
$$

where $\mu^{*}(r)$ is the maximum term of $f^{*}(z)$ and A_{n}^{*} is defined from the sequence λ_{n}^{*} as A_{n} is defined from λ_{n} in (25). Let us now define $f(z)=\sum_{0}^{\infty} a_{n} z^{\lambda_{n}}$ by the conditions
$a_{n h}=a_{n}^{*}, a_{n h+k}=a_{n}^{*} A_{n+h}^{-\left(\lambda_{n h}+h-\lambda_{n h}\right)} \quad(k=1,2, \ldots, h-1)$.
Then evidently for $A_{n}^{*} \leqq r \leqq A_{n+1}^{*}$ we shall have

$$
\begin{equation*}
a_{n h} r^{\lambda} n h \geqq a_{n h+1} r^{\lambda} n h+1 \geqq \ldots \geqq a_{n h+h} r^{\lambda_{n h+h}} \tag{41}
\end{equation*}
$$

and $\mu(r)$ for the function $f(z)$ will be $a_{n h} r^{\lambda_{n}}$, so that

$$
\begin{equation*}
M(r)=f(r)>(h+1-\epsilon) \mu(r) \quad[r>r(\epsilon)] \tag{42}
\end{equation*}
$$

We approximate $m(r)$ by using

$$
\begin{equation*}
\{m(r)\}^{2} \leqq\left\{M_{2}(r)\right\}^{2}=\sum_{\ell}^{\infty} a_{\nu}^{2} r^{2 \lambda_{\nu}} \tag{43}
\end{equation*}
$$

Clearly

$$
\begin{align*}
\{M(r)\}^{2} & =\sum_{0}^{\infty} a_{\nu}^{2} r^{2 \lambda_{\nu}}+\sum_{0}^{\infty} a_{\nu} r_{\nu}^{\lambda}\left\{M(r)-a_{\nu} r^{\lambda \nu}\right\} \\
& \geqq\left\{M_{2}(r)\right\}^{2}+\{M(r)\}^{2}-(h+1-\epsilon)^{-1}\{M(r)\}^{2} \tag{44}
\end{align*}
$$

from which

$$
\begin{equation*}
m(r) \leqq M_{2}(r) \leqq(h+1-\epsilon)^{-\frac{1}{2}} M(r) \tag{45}
\end{equation*}
$$

follows.
This does not quite complete the proof of Theorem 3 since $(h+1-\epsilon)^{-1}$ and $(h+1-\epsilon)^{-1}$, although arbitrarily small, are not zero. However we should only have to choose λ_{n}^{*} to be a subsequence of λ_{n} such that the interval $\lambda_{n}^{*} \leqq \lambda \leqq \lambda_{n+1}^{*}$ contains a number of λ_{n} increasing with λ_{n}^{*} but that $\Sigma\left(\lambda_{n+1}^{*}-\lambda_{n}^{*}\right)^{-1}$ diverges. It does not seem necessary to enumerate the details.

5. Proof of Theorem 4.

Given an increasing sequence of integers λ_{n}, let us first try to construct an integral function $\sum_{0}^{\infty} c_{n} x^{\lambda_{n}}$ with positive coefficients such that each term is in turn the maximum term and greatly exceeds in
value the rest of the series. More precisely let $\delta>0$ be a small prescribed number and let us choose the c_{n} in such a way that for a certain increasing sequence A_{n} of positive numbers the following conditions hold for all N. For $x=A_{N}$ we require that

$$
\begin{align*}
& c_{N+1} x^{\lambda_{N+1}}=\delta c_{N} x^{\lambda_{N}} \\
& c_{N-1} x^{\lambda_{N-1}}=\delta c_{N} x^{\lambda_{N}} . \tag{46}
\end{align*}
$$

In this case we shall have, for $n>N$ and $x=A_{N}$,

$$
\begin{equation*}
c_{n+}: x^{\lambda}{ }_{n+1}=\delta c_{n} x^{\lambda} n \tag{47}
\end{equation*}
$$

and consequently, for $x=A_{N}<A_{n}$,

$$
\begin{equation*}
c_{n+1} x^{\lambda_{n+1}} \leqq \delta c_{n} x^{\lambda_{n}} \tag{48}
\end{equation*}
$$

So for $x=A_{N}, p>0$,

$$
\begin{gather*}
c_{N+p} x^{\lambda_{N}+p} \leqq \delta^{p} c_{N} x^{\lambda_{N}} \\
\sum_{N+1}^{\infty} c_{n} x^{\lambda_{n}} \leqq \frac{\delta}{1-\delta^{\prime}} c_{N} x^{\lambda_{N}} . \tag{49}
\end{gather*}
$$

Similarly, for $x=A_{N}$,

$$
\begin{equation*}
\sum_{0}^{N+1} c_{n} x^{2_{n}} \leqq \frac{\delta}{1-\delta} c_{N} x^{\lambda} N \tag{50}
\end{equation*}
$$

We must now consider whether our conditions are possible.
(46) requires that

$$
\begin{align*}
& c_{N+1}=\delta \boldsymbol{c}_{N} / A_{N}^{\lambda_{N+1}-\lambda_{N}} \\
& \boldsymbol{c}_{N}=\delta c_{N+1} A_{N+1}^{\lambda_{N+1}-\lambda_{N}} . \tag{51}
\end{align*}
$$

Eliminating c_{N} and c_{N+1}, we see that

$$
\begin{equation*}
A_{N+1} / A_{N}=\delta^{-2 /\left(\lambda_{N+1}-\lambda_{N}\right)}=K^{1 /\left(\lambda_{N+1}-\lambda_{N}\right)} \quad(K>1) \tag{52}
\end{equation*}
$$

This defines the sequence A_{n} if we take $A_{0}=1$, and shows that it is increasing. With $c_{1}=1$ the sequence c_{n} is also defined, for the two conditions of (46) are now equivalent. The function $\sum_{1}^{\infty} c_{n} x_{n}{ }_{n}$ will be an integral function if A_{n} tends to infinity. Since

$$
\begin{equation*}
\log A_{n}=\log K\left\{\frac{1}{\lambda_{1}-\lambda_{0}}+\frac{1}{\lambda_{2}-\lambda_{1}}+\ldots+\frac{1}{\lambda_{n}-\lambda_{n-1}}\right\} \tag{53}
\end{equation*}
$$

this condition requires the divergence of $\sum^{\infty} 1 /\left(\lambda_{n+1}-\lambda_{n}\right)$.

The property of domination by single terms expressed by (49) and (50) will be carried over to the integral function $\sum_{0}^{\infty} a_{n} z^{\lambda} n$ if we can assert that

$$
\begin{equation*}
\sum_{0}^{\infty} a_{n} z^{2_{n}} / c_{n} \tag{54}
\end{equation*}
$$

is an integral function. If we make the hypothesis that $\sum_{0}^{\infty} a_{n} z^{\lambda} n$ is of finite order then $\left|a_{n}\right|<\lambda_{n}-a \lambda_{n}$ for sufficiently large n and some positive a. To ensure that (54) does define an integral function we shall require to prove that for arbitrary $\epsilon>0$ and sufficiently large n.

$$
\begin{equation*}
c_{n}>\lambda_{n}-\epsilon \lambda_{n} \tag{55}
\end{equation*}
$$

This is equivalent to $\quad \log c_{n}>-\epsilon \lambda_{n} \log \lambda_{n}$ and since

$$
\begin{equation*}
\log c_{n}=n \log \delta-\sum_{\nu=0}^{n-1}\left(\lambda_{\nu+1}-\lambda_{\nu}\right) \log A_{\nu} \tag{56}
\end{equation*}
$$

this will follow from

$$
\begin{equation*}
\log A_{n}=o\left(\log \lambda_{n}\right) \tag{57}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{1}^{n} \frac{1}{\lambda_{v}-\lambda_{v-1}}=o\left(\log \lambda_{n}\right) \tag{58}
\end{equation*}
$$

Now if we assume that $\sum_{0}^{\infty} a_{n} z^{\lambda} n / c_{n}$ is an integral function it will follow that for sufficiently large values of z, say $z=R$, the maximum term of this function will occur with $n=N$ arbitrarily large. We shall have

$$
\begin{aligned}
& \left|a_{n}\right| R^{\lambda_{n} / c_{n}} \leqq\left|a_{N}\right| R^{\lambda_{N} / c_{N}} \\
& \frac{\left|a_{n}\right| R^{\lambda_{n}}}{\left|a_{N}\right| R^{\lambda_{N}}} \leqq \frac{c_{n}}{c_{N}} \\
& \left\lvert\, \frac{a_{n} \mid\left(R A_{N}\right)^{\lambda_{n}}}{\left|a_{N}\right|\left(R A_{N}\right)^{\lambda_{N}}} \leqq \frac{c_{n}}{c_{N}}\left(A_{N}\right)^{\lambda_{n}} \bar{A}^{\lambda_{N}}\right.
\end{aligned}
$$

Thus the dominance expressed by (49) and (50) of a single term for $\Sigma c_{n} z^{\lambda} n$ holds also for the function $\Sigma a_{n} z^{\lambda} \quad$ with $|z|=R A_{N}$. Since δ may be chosen arbitrarily small Theorem 4 is proved for functions of finite order. If $\sum a_{n} x^{\lambda_{n}}$ is assumed to be of zero order we only require that $c_{n}>\lambda_{n}{ }^{h \lambda_{n}}$ for some positive h, and this clearly follows from (13).

Department of Mateematics, University of Aberdeen.

