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THE LOCAL PROJECTION RESIDUAL
BOOTSTRAP FOR AR(1) MODELS

AMILCAR VELEZ

Cornell University

This article proposes a local projection (LP) residual bootstrap method to construct
confidence intervals for impulse response coefficients of AR(1) models. Our boot-
strap method is based on the LP approach and involves a residual bootstrap procedure
applied to AR(1) models. We present theoretical results for our bootstrap method
and proposed confidence intervals. First, we prove the uniform consistency of the
LP-residual bootstrap over a large class of AR(1) models that allow for a unit root,
conditional heteroskedasticity of unknown form, and martingale difference shocks.
Then, we prove the asymptotic validity of our confidence intervals over the same
class of AR(1) models. Finally, we show that the LP-residual bootstrap provides
asymptotic refinements for confidence intervals on a restricted class of AR(1) models
relative to those required for the uniform consistency of our bootstrap.

1. INTRODUCTION

This article contributes to a growing literature on confidence interval construction
for impulse response coefficients based on the local projection (LP) approach
(Jorda, 2005). In this literature, the LP approach estimates an impulse response
coefficient as one of the slope coefficients in a linear regression of a future
outcome on current or lag-augmented covariates (Ramey, 2016; Nakamura and
Steinsson, 2018; Montiel Olea and Plagborg-Møller, 2021). Recent theoretical
results exist for the asymptotic validity of the confidence intervals constructed
around the LP estimator, which hold over a large class of vector autoregressive
(VAR) models (Xu, 2023). Since these confidence intervals have small-sample
coverage distortions (e.g., coverage probability is lower than expected), their
bootstrap versions are recommended for practical use. However, theoretical results
for these bootstrap versions are unknown, even for the AR(1) model. This article
proposes a different bootstrap method to construct LP confidence intervals with
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theoretical guarantees for a class of AR(1) models that allow for a unit root,
conditional heteroskedasticity of unknown form, and martingale difference shocks.

We propose an LP-residual bootstrap method to construct confidence intervals
for impulse response coefficients of AR(1) models. Our bootstrap method is
based on the LP approach and involves a residual bootstrap procedure applied
specifically to AR(1) models.1 Our bootstrap confidence intervals are centered at
the LP estimator and use heteroskedasticity-consistent (HC) standard errors and a
bootstrap critical value. Section 3 presents the details.

We rely on the asymptotic distribution theory initially developed in Montiel Olea
and Plagborg-Møller (2021) and generalized in Xu (2023). In their framework, a
root Rn(h) based on the LP approach can be defined for a given horizon h and
a sample size n. Here, by a root, we refer to a real-valued function depending
on the data and an impulse response coefficient. Their results guarantee the root
Rn(h) is asymptotically distributed as a standard normal distribution for a class of
VAR models that allow for multiple unit roots and conditional heteroskedasticity of
unknown form, and even at intermediate horizons, i.e., horizons h that are allowed
to grow with n, e.g., h = hn ∝ nζ , ζ ∈ [0,1). As a result, the root Rn(h) can
be used to construct a confidence interval Cn(h,1 − α) for an impulse response
coefficient using a normal critical value (quantile of the asymptotic distribution).
Furthermore, Cn(h,1 − α) has asymptotic coverage equal to the nominal level
1 − α uniformly over the parameter space (VAR model coefficients) and a wide
range of intermediate horizons (e.g., uniform over h ≤ hn, where hn is any fixed
sequence such that hn = o(n)). Nevertheless, Monte Carlo simulations report that
Cn(h,1−α) has a lower coverage probability than expected.

We propose the LP-residual bootstrap method to approximate the distribu-
tion of the root Rn(h) as an alternative to the asymptotic distribution. We use
our approximation to calculate bootstrap-based critical values (see Section 3.1
for the step-by-step procedure). Specifically, we construct a confidence interval
C∗

n(h,1−α) for an impulse response coefficient using the root Rn(h) and a
bootstrap critical value (see Section 3 for details).

Our first result proves the uniform consistency of the LP-residual bootstrap.
More concretely, we demonstrate in Section 4 that the distribution of the root
Rn(h) can be approximated by its bootstrap version uniformly over the parameter
space (e.g., ρ ∈ [−1,1]) and a wide range of intermediate horizons (e.g., uniform
over h ≤ hn, where hn is any fixed sequence such that hn = o(n)). Our result
applies to a large class of AR(1) models that allow for a unit root, conditional
heteroskedasticity of unknown form as in Gonçalves and Kilian (2004), which
includes ARCH and GARCH shocks, and a sequence of shocks that satisfy the
martingale difference assumption. To obtain this result, we prove the root Rn(h)

is asymptotically distributed as a standard normal distribution for sequences of

1Section 7 presents the LP-residual bootstrap for VAR(p) models, but its theoretical properties are unknown and left
for future research (see Remarks 4.4 and 5.5 for further discussion). Appendix E.1 of the Supplementary Material
reports a Monte Carlo simulation for the LP-residual bootstrap for VAR models.
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AR(1) models with i.i.d. shocks (Theorem B.1). In particular, we prove that a
high-level assumption (Assumption 3 in Montiel Olea and Plagborg-Møller (2022)
and Assumption 4 in Xu (2023)) necessary for the theoretical properties of
Cn(h,1 − α) can be verified for sequences of AR(1) models with i.i.d. shocks
(Proposition B.1).

Our first result implies that the LP-residual bootstrap method provides asymp-
totically valid confidence intervals over a large class of AR(1) models that allow
for a unit root, conditional heteroskedasticity of unknown form (e.g., GARCH
shocks), and martingale difference shocks. Moreover, our confidence interval
C∗

n(h,1−α) has an asymptotic coverage equal to the nominal level 1−α uniformly
over ρ ∈ [−1,1] and a wide range of intermediate horizons.

Our second set of results shows that the LP-residual bootstrap provides asymp-
totic refinements to the confidence intervals on a more restricted class of AR(1)
models (e.g., |ρ| ≤ 1 − a, where a ∈ (0,1), and i.i.d. shocks with positive con-
tinuous density), that is, the size of the error in coverage probability (ECP) of
C∗

n(h,1 − α) is o(n−1), whereas the size of the ECP of Cn(h,1 − α) is O(n−1).
More concretely, Theorem 5.2 shows the ECP of C∗

n(h,1 − α) is o(n−(1+ε)) for
some ε ∈ (0,1/2). To obtain these results, we derive Edgeworth expansions for the
distribution of the root Rn(h) and its bootstrap version for a fixed h and |ρ| ≤ 1−a,
where a ∈ (0,1); that is, the Edgeworth expansions are obtained for stationary
AR(1) models and fixed horizons. An informal discussion to calculate the size
of the ECP using Edgeworth expansions appears in Section 5.1, while the formal
results are established in Section 5.2.

Other bootstrap methods to construct confidence intervals for the impulse
response coefficients have been considered and recommended based on simulation
studies in the growing literature on LP inference. Montiel Olea and Plagborg-
Møller (2021) use a wild bootstrap procedure to generate new samples and
compute critical values, but the theoretical results for their bootstrap method are
unknown. Kilian and Kim (2011) present a simulation study including a block-
bootstrap method to construct confidence intervals based on the LP approach, but
the theory of their block-bootstrap method is unknown (see Remarks 5.1 and 5.2
for alternative block-bootstrap procedures with theoretical guarantees). Recently,
Lusompa (2023) proposes a block wild bootstrap method for confidence interval
construction that is point-wise valid for a class of stationary data-generating pro-
cesses; however, his bootstrap method is not applicable for an AR(1) model with a
unit root. In contrast, we present a bootstrap method based on the LP approach
with theoretical guarantees for a class of AR(1) models that allow for a unit
root, conditional heteroskedasticity of unknown form, and martingale difference
shocks.

More broadly, we contribute to the literature on confidence interval construction
for impulse response coefficients. For short horizons (fixed h), the problem of
confidence interval construction has been studied by Andrews (1993), Hansen
(1999), Inoue and Kilian (2002), Jorda (2005), and Mikusheva (2007, 2015),
among others. For long horizons (h = hn ∝ (1 − b)n, b ∈ (0,1)), the problem of
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confidence interval construction was discussed and revised by Phillips (1998),
Gospodinov (2004), Pesavento and Rossi (2006), and Mikusheva (2012) since
the standard methods for short horizons may produce invalid confidence intervals
when the data-generating process allows for unit roots. Recently, the problem
of confidence interval construction for intermediate horizons (hn = o(n)) was
addressed in Montiel Olea and Plagborg-Møller (2021) and Xu (2023), which was
a case not covered in the literature. In this article, we propose bootstrap confidence
intervals that are asymptotically valid at short and intermediate horizons.

We also contribute to the literature on uniform inference in autoregressive
models, where the confidence intervals for impulse response coefficients are
uniformly valid, that is, they have an asymptotic coverage equal to the nominal
level uniformly over the parameter space (e.g., uniformly over ρ ∈ [−1,1] for the
AR(1) model). Mikusheva (2007, 2012) shows that the grid bootstrap proposed by
Hansen (1999) provides confidence sets that are uniformly valid for the impulse
responses when the sequence of shocks is a martingale difference sequence with
constant conditional variance. However, it is unknown if the grid bootstrap is
uniformly valid for AR(1) models with GARCH shocks; we report simulations
for the grid bootstrap in Section 6 and Appendix E of the Supplementary Material.
Inoue and Kilian (2020) show that confidence intervals based on a lag-augmented
autoregressive method are uniformly valid for impulse response coefficients when
the sequence of shocks is i.i.d. It is unknown if their results hold for martingale
difference shocks. Montiel Olea and Plagborg-Møller (2021) and Xu (2023) show
that confidence intervals based on (lag-augmented) LPs are uniformly valid for
impulse response coefficients; nevertheless, Monte Carlo simulations report lower
coverage probability than expected. In contrast, our bootstrap method produces
confidence intervals that are uniformly valid for a larger class of martingale
difference shocks with conditional heteroskedasticity of unknown form (allowing
for GARCH shocks).

The remainder of the article is organized as follows. In Section 2, we describe
the setup and previous results. In Section 3, we introduce our bootstrap confidence
interval and the LP-residual bootstrap. In Sections 4 and 5, we study the theoretical
properties of the LP-residual bootstrap: uniform consistency and asymptotic
refinements. In Section 6, we investigate the numerical performance of the LP-
residual bootstrap using a small simulation study. In Section 7, we describe how
to implement the LP-residual bootstrap for VAR models. Finally, in Section 8, we
present concluding remarks. All the proofs are presented in Appendixes A and B,
and Appendixes C and D of the Supplementary Material. Additional simulation
results appear in Appendix E of the Supplementary Material.

2. SETUP AND PREVIOUS RESULTS ON LOCAL PROJECTION

Consider an AR(1) model,

yt = ρyt−1 +ut, y0 = 0, ρ ∈ [−1,1]. (1)
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Denote the impulse response coefficient at horizon h ∈ N by

β(ρ,h) ≡ ρh. (2)

An estimator for β(ρ,h) based on the LP approach is obtained as the slope
coefficient of yt in the linear regression of yt+h on yt and yt−1,

yt+h = β̂n(h)yt + γ̂n(h)yt−1 + ξ̂t(h), t = 1, . . . ,n−h, (3)

where (β̂n(h), γ̂n(h)) and {ξ̂t(h) : 1 ≤ t ≤ n − h} are the coefficient vector
and residuals of the linear regression (3), respectively. This lag-augmented LP
approach was developed in Montiel Olea and Plagborg-Møller (2021), where they
give conditions under which the coefficient β̂n(h) consistently estimates β(ρ,h).
Equation (3) is a lag-augmented LP regression since the coefficient on yt−1 is
known to be zero under (1) (see Remark 2.2 for additional details on this LP
approach).

Let ŝn(h) be the HC standard error of β̂n(h) in the lag-augmented LP regres-
sion (3), which can be computed as follows:

ŝn(h) ≡
(

n−h∑
t=1

ût(h)2

)−1/2 (
n−h∑
t=1

ξ̂t(h)2ût(h)2

)1/2 (
n−h∑
t=1

ût(h)2

)−1/2

, (4)

where ût(h) ≡ yt − ρ̂n(h)yt−1 and

ρ̂n(h) ≡
(

n−h∑
t=1

y2
t−1

)−1 (
n−h∑
t=1

ytyt−1

)
. (5)

For a given h ∈ N, we consider the following real-valued root for the parameter
β(ρ,h):

Rn(h) ≡ β̂n(h)−β(ρ,h)

ŝn(h)
, (6)

where β(ρ,h) is as in (2), β̂n(h) is computed as in (3), and ŝn(h) is as in (4). We
denote the distribution of the root Rn(h) by

Jn(x,h,P,ρ) ≡ Pρ (Rn(h) ≤ x), (7)

where x ∈ R, h ∈ N, P is the distribution of the shocks {ut : t ≥ 1}, ρ ∈ R, and Pρ

denote the probability distribution of the sequence {yt : t ≥ 1}, which is defined
jointly by the distribution P and the parameter ρ in (1).

Let cn(h,1−α) be the 1−α quantile of |Rn(h)| under the distribution Pρ ,

cn(h,1−α) ≡ inf
{
u ∈ R : Pρ (|Rn(h)| ≤ u) ≥ 1−α

}
. (8)
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6 AMILCAR VELEZ

Ideally, we would use the root Rn(h) and the critical value cn(h,1−α) to construct
confidence sets for β(ρ,h) with a coverage probability of 1-α. That is collecting
all the parameters β(ρ,h) such that |Rn(h)| ≤ cn(h,1 −α), which is equivalent to
defining the next confidence interval

C̃n(h,1−α) ≡
[
β̂n(h)− cn(h,1−α) ŝn(h), β̂n(h)+ cn(h,1−α) ŝn(h)

]
.

However, the critical value cn(h,1−α) is unknown since the distribution of the root
is unknown in general. As a result, the confidence interval C̃n(h,1−α) is infeasible.
For this reason, it is common to approximate the distribution of the root Rn(h)

relying on asymptotic distribution theory or bootstrap methods to approximate the
infeasible cn(h,1−α).

2.1. Previous Results

The asymptotic distribution theory developed in Montiel Olea and Plagborg-
Møller (2021) and Xu (2023) implies that the distribution Jn(x,h,P,ρ) converges
to the standard normal distribution 	(x) whenever certain assumptions on the
distribution of the shocks P hold. Moreover, this convergence is uniform over the
values of ρ ∈ [−1,1] and a wide range of intermediate horizons, that is,

sup
|ρ|≤1

sup
h≤hn

sup
x∈R

|Jn(x,h,P,ρ)−	(x)| → 0 as n → ∞, (9)

where hn is any fixed sequence such that hn ≤ n and hn = o(n). Assumptions 4.1
and 4.2 in Section 4 are sufficient conditions on the distribution P to obtain (9) due
to Theorem 2 in Xu (2023).

The confidence interval for β(ρ,h) based on asymptotic distribution theory is
defined as

Cn(h,1−α) ≡
[
β̂n(h)− z1−α/2 ŝn(h), β̂n(h)+ z1−α/2 ŝn(h)

]
, (10)

where z1−α/2 ≡ 	−1(1 − α/2) is the 1 − α/2 quantile of the standard normal
distribution. The result in (9) implies that the confidence interval Cn(h,1 −α) is
uniformly asymptotically valid in the sense that its asymptotic coverage probability
is equal to the nominal level 1 − α uniformly over ρ and a wide range of
intermediate horizons h,

sup
|ρ|≤1

sup
h≤hn

∣∣Pρ (β(ρ,h) ∈ Cn(h,1−α))− (1−α)
∣∣ → 0 as n → ∞,

where hn is any fixed sequence such that hn ≤ n and hn = o(n). Three features
of Cn(h,1 −α) deserve further discussion. First, it is simpler to compute than the
available alternatives in the sense that it does not require any tuning parameters. It
is common to use heteroskedasticity- and autocorrelation-robust (HAR) standard
errors for inference whenever we have dependent data. The major complication of
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HAR standard errors is the choice of the (truncation) tuning parameter (see Lazarus
et al., 2018). In contrast, the HC standard errors ŝn(h) defined in (4) are simple to
compute and sufficient for inference under certain conditions on the distribution
P (see Remark 2.1 for further explanation). Second, the uniform asymptotic
validity of the confidence interval Cn(h,1−α) avoids pre-testing procedures about
the nature of the data-generating process (|ρ| < 1 vs. ρ = 1) that can distort
inference (see Mikusheva, 2007). In particular, inference using Cn(h,1−α) holds
regardless of the value of ρ ∈ [−1,1]. Third, the confidence interval Cn(h,1 −α)

has theoretical guarantees at intermediate horizons (e.g., h = hn ∝ nζ , ζ ∈ (0,1)).
This is an important feature for inference on impulse response coefficients at
intermediate horizons. Other methods to construct confidence intervals that work
at short horizons (h fixed) may have problems at long and intermediate horizons
(see Phillips (1998), Gospodinov (2004), Pesavento and Rossi (2006), Mikusheva
(2012), and Montiel Olea and Plagborg-Møller (2021) for additional discussion).

Remark 2.1. The HC standard errors ŝn(h) defined in (4) are sufficient for
the construction of valid confidence intervals under certain conditions on the
distribution P. In particular, as it was pointed out by Xu (2023), it is sufficient
and necessary that the scores {ξt(ρ,h)ut : 1 ≤ t ≤ n − h} be serially uncorrelated,
where ξt(ρ,h) ≡ ∑h


=1 ρh−
ut+
. To explain the sufficiency of this condition, we
use the derivations presented on page 1811 in Montiel Olea and Plagborg-Møller
(2021) that imply that the root Rn(h) defined in (6) can be written as follows:(
(n−h)−1/2 ∑n−h

t=1 ξt(ρ,h)ut

)
E

[
ξt(ρ,h)2u2

t

]1/2 ×
[
(n−h)−1 ∑n−h

t=1 ξ̂t(h)2ût(h)2
]−1/2

E
[
ξt(ρ,h)2u2

t

]−1/2 + εn(ρ,h),

where εn(ρ,h) is a remainder error term. We derive three implications under
Assumptions 4.1 and 4.2, presented in Section 4. First, the term in parentheses
converges to a normal distribution with variance correctly scaled by the denom-
inator when the scores are serially uncorrelated. This condition is guaranteed
by part (ii) of Assumption 4.1. Second, the term between brackets converges
in probability to its denominator due to serially uncorrelated scores. Third, the
remainder error term εn(ρ,h) converges in probability to zero. Importantly, Xu
(2023) proposed alternative standard errors for the construction of confidence
intervals under serially correlated scores.

Remark 2.2. The lag-augmented LP regression has the purpose of making the
effective regressor of interest stationary. To see this, let us use the AR(1) model
in (1) to obtain yt+h = β(ρ,h)yt +ξt(ρ,h), where ξt(ρ,h) = ∑h


=1 ρh−
ut+h, which
can be rewritten as

yt+h = β(ρ,h)ut +ρβ(ρ,h)yt−1 + ξt(ρ,h).

Based on the previous equality, an estimator for β(ρ,h) is defined as the slope
coefficient of ut in the linear regression of yt+h on ut and yt−1. This estimator
is ideal since the effective regressor is stationary (by assumption). However, this
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regression is unfeasible since ut is not observed. Nevertheless, the estimator can
also be obtained in the lag-augmented LP regression of yt+h on yt and yt−1 since yt

is a linear combination of ut and yt−1 due to (1).

3. THE LP-RESIDUAL BOOTSTRAP

This article proposes an LP-residual bootstrap for confidence interval construction.
Our confidence interval for the impulse response coefficient β(ρ,h) is defined as

C∗
n(h,1−α) ≡

[
β̂n(h)− c∗

n(h,1−α) ŝn(h), β̂n(h)+ c∗
n(h,1−α) ŝn(h)

]
, (11)

where β̂n(h) is an estimator for β(ρ,h) defined in (3), ŝn(h) is its HC standard error
defined in (4), and c∗

n(h,1−α) is a bootstrap critical value defined in (15).

3.1. Bootstrap Critical Value

Let Y(n) ≡ {yt : 1 ≤ t ≤ n} be data generated by (1). Let c∗
n(h,1−α) be the bootstrap

critical value involving the following steps:

Step 1: Estimate ρ in the AR(1) model defined in (1) with the data Y(n) using linear
regression, denoted by

ρ̂n ≡
(

n∑
t=1

y2
t−1

)−1 (
n∑

t=1

yt−1yt

)
, (12)

and compute the centered residuals

{ũt ≡ ût −n−1
n∑

t=1

ût : 1 ≤ t ≤ n}, (13)

where ût ≡ yt − ρ̂nyt−1.
Step 2: Generate a new sample of size n using (1), (12), and (13). Define the

sample as

y∗
b,t = ρ̂ny∗

b,t−1 +u∗
b,t, y∗

b,0 = 0, t = 1, . . . ,n,

where {u∗
b,t : 1 ≤ t ≤ n} is a random sample from the empirical distribution

of the centered residuals defined in (13). The new sample {y∗
b,t : 1 ≤ t ≤ n}

is called the bootstrap sample.
Step 3: Compute β̂∗

b,n(h) and ŝ∗
b,n(h) as in (3) and (4) using the lag-augmented LP

regression and the bootstrap sample {y∗
b,t : 1 ≤ t ≤ n}. Define the bootstrap

version of the root

R∗
b,n(h) = β̂∗

b,n(h)−β(ρ̂n,h)

ŝ∗
b,n(h)

, (14)

where β(ρ,h) and ρ̂n are as in (2) and (12), respectively.
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Step 4: Define the bootstrap critical value as the 1 − α quantile of |R∗
b,n(h)|

conditional on the data Y(n), denoted by

c∗
n(h,1−α) ≡ inf

{
u ∈ R : Pρ

(|R∗
b,n(h)| ≤ u | Y(n)

) ≥ 1−α
}
. (15)

We named this procedure the LP-residual bootstrap due to steps 2 and 3. Step 2
generates bootstrap samples based on the estimated model and a residual bootstrap
procedure. Step 3 computes the bootstrap version of the root based on the lag-
augmented LP regression. To our knowledge, this bootstrap procedure is new (see
Remark 3.2 and 5.1 for other bootstrap procedures involving roots based on LP
estimators).

We use the bootstrap critical value c∗
n(h,1 − α) in the construction of the

confidence interval defined in (11). The explicit formula in (15) has two impli-
cations. First, the bootstrap critical value c∗

n(h,1 − α) depends on the data, the
sample size n, and the horizon h. Second, we can compute c∗

n(h,1 − α) with
perfect accuracy whenever we use the exact empirical distribution of the centered
residuals defined in (13). However, the computation of an exact distribution can
be computationally demanding; therefore, it is common to approximate it using
Monte Carlo procedures as we describe in Remark 3.1, which has a theoretical
justification due to the Glivenko–Cantelli theorem.

Remark 3.1. It is a common practice to approximate the bootstrap critical value
c∗

n(h,1−α) using a Monte Carlo procedure (Horowitz, 2001, 2019). We generate
B bootstrap samples of size n, where each b-th bootstrap sample {y∗

b,t : 1 ≤ t ≤ n}
is generated as in step 2. We then obtain {|R∗

b,n(h)| : 1 ≤ b ≤ B}, where each
R∗

b,n(h) is computed as in step 3. Finally, we approximate the bootstrap critical
value c∗

n(h,1−α) by the 1−α quantile of {|R∗
b,n(h)| : 1 ≤ b ≤ B}, denoted by

c∗
b,n(h,1−α) ≡ inf

{
u ∈ R :

1

B

B∑
b=1

I
{|R∗

b,n(h)| ≤ u
} ≥ 1−α

}
.

The accuracy of the approximation improves as the number of bootstrap samples
B increases. We use B = 1,000 in our simulation study presented in Section 6.

Remark 3.2. Another bootstrap procedure to approximate the infeasible critical
value cn(h,1 −α) is presented in Section 5 of Montiel Olea and Plagborg-Møller
(2021). They use the wild bootstrap procedure described in Gonçalves and Kilian
(2004). For this reason, we name their procedure the LP-wild bootstrap. The only
difference with respect to the LP-residual bootstrap is in Step 2. The LP-wild
bootstrap defines the shocks as follows: u∗

b,t = ũtzb,t for all t = 1, . . . ,n, where
{ũt : 1 ≤ t ≤ n} are the centered residuals defined in (13) and {zb,t : 1 ≤ t ≤ n} is an
i.i.d. sequence of standard normal random variables independent of the data Y(n).
To our knowledge, the theoretical properties of the LP-wild bootstrap are unknown.
We include the LP-wild bootstrap in our simulation study presented in Section 6.

Remark 3.3. An alternative to the symmetric percentile-t confidence interval
defined in (11) is the equal-tailed percentile-t confidence interval. The latter is
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proposed and recommended in Section 5 of Montiel Olea and Plagborg-Møller
(2021), while the former has been found to perform better in simulations reported
by Gonçalves and Kilian (2004). Furthermore, symmetric confidence intervals
are known to perform better asymptotically in terms of coverage error in the
case of i.i.d. data (see Hall, 1992, Sect. 3.6). For these reasons, we focus on and
study the properties of the symmetric percentile-t confidence interval in the next
sections. Remark 4.1 presents additional discussion of the equal-tailed percentile-t
confidence interval based on the LP-residual bootstrap. We include equal-tailed
percentile-t confidence intervals based on both LP-residual and LP-wild bootstrap
in our simulation study in Section 6.

Remark 3.4. We propose the LP-residual bootstrap method for constructing
confidence intervals, aiming to provide a more accurate asymptotic approximation
than the first-order asymptotic distribution for conducting inference. In Sections 4
and 5, we study the validity of this bootstrap method and its theoretical properties
under assumptions on the distribution of the shocks and under the assumption of
correct specification, i.e., the data are generated from the AR(1) model in (1).
To our knowledge, the theoretical properties of the root Rn(h) for general forms
of misspecification are unknown. Recent work by Montiel Olea et al. (2024)
implies that Rn(h) is still asymptotically pivotal under a specific form of local
misspecification. The analysis of the theoretical properties of the LP-residual
bootstrap under misspecification is outside the scope of this article.

4. UNIFORM CONSISTENCY

We show the uniform consistency of the LP-residual bootstrap (Theorem 4.1) and
that our proposed bootstrap confidence interval C∗

n(h,1 − α) defined in (11) is
uniformly asymptotically valid (Theorem 4.2). In what follows, we first present
and discuss the assumptions, and we then establish the results.

The following assumption imposes restrictions on the distributions of the
shocks P. These assumptions are based on the general framework developed by
Xu (2023) that generalized the work of Montiel Olea and Plagborg-Møller (2021).

Assumption 4.1.

i) {ut : 1 ≤ t ≤ n} is covariance-stationary and satisfies E[ut | {us}s<t] = 0 almost
surely.

ii) E[u2
t ut−sut−r] = 0 for all s 
= r, for all t,r,s ≥ 1.

iii) {ut : 1 ≤ t ≤ n} is strong mixing with mixing numbers {α(j) : j ≥ 1}. There
exists ζ > 2, ε > 1, and Cα < ∞, such that α(j) ≤ Cαj−2ζ ε/(ζ−2), for all j.

iv) For ζ defined in (iii), E[u8ζ
t ] ≤ C8 < ∞, and E[u2

t | {us}s<t] ≥ Cσ almost surely.

Part (i) of Assumption 4.1 assumes that the shocks are a martingale difference
sequence. This assumption allows for uncorrelated dependent shocks and implies
that the shock ut is uncorrelated with yt−1. Part (ii) in Assumption 4.1 includes
a large class of conditional heteroskedastic autoregressive models (e.g., ARCH
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and GARCH shocks), and it has been common in the literature; for instance,
Gonçalves and Kilian (2004) use a similar assumption (Assumption A’) to prove
the asymptotic consistency of the wild bootstrap for autoregressive processes.
Moreover, this assumption implies that the process {ξt(ρ,h)ut : 1 ≤ t ≤ n − h} is
serially uncorrelated, where ξt(ρ,h) ≡ ∑h


=1 ρh−
ut+
, which is important for the
use of HC standard errors as we discussed in Remark 2.1. Parts (iii) and (iv) of
Assumption 4.1 are mild regularity conditions on the distribution of the shocks
P to establish uniform bounds of approximation errors, which can be relaxed if
stronger assumptions are imposed over the serial dependence of the shocks (see
Assumption B.1 in Appendix B).

The next assumption is a high-level assumption and imposes additional restric-
tions on the distributions of the shocks P.

Assumption 4.2.

lim
M→∞ lim

n→∞ inf
|ρ|≤1

Pρ

(
g(ρ,n)−2 n−1

n∑
t=1

y2
t−1 ≥ 1/M

)
= 1,

where g(ρ,k) =
(∑k−1


=0 ρ2

)1/2

.

This assumption implies that the estimator ρ̂n(h) defined in (5) is well-behaved
in the sense that its denominator after scaled by the factor g(ρ,n−h) converges to a
strictly positive limit. As a result, we can replace the residual ût(h) ≡ yt − ρ̂n(h)yt−1

by the shock ut, which implies the second and third implications discussed in
Remark 2.1. We show in Proposition B.1 that Assumption 4.2 can be verified
if the shocks are i.i.d. and satisfied mild regularity conditions (Assumption B.1).
In Appendix C of Montiel Olea and Plagborg-Møller (2021), this assumption is
verified for AR(1) models whenever a contiguity condition holds.

Assumptions 4.1 and 4.2 guarantee that the distribution Jn(·,h,P,ρ) defined
in (7) can be approximated by the standard normal distribution 	(·) uniformly
on ρ ∈ [−1,1] and a wide range of horizons h as in (9). Let P̂n be the empirical
distribution of the centered residuals defined in (13) and let ρ̂n be the estimator of ρ

defined in (12). Using this notation Jn(·,h,P̂n,ρ̂n) is the distribution of the bootstrap
root R∗

b,n(h) defined in (14) conditional on the data Y(n). The next theorem shows
that the distribution Jn(·,h,P,ρ) can be approximated by the bootstrap distribution
Jn(·,h,P̂n,ρ̂n) uniformly on ρ ∈ [−1,1] and a wide range of intermediate horizons
(e.g., uniform over h ≤ hn, where hn is any fixed sequence such that hn = o(n)),
i.e., the LP-residual bootstrap is uniformly consistent.

Theorem 4.1. Suppose Assumptions 4.1 and 4.2 hold. Then, for any ε > 0 and
for any sequence hn such that hn ≤ n and hn = o(n), we have

sup
|ρ|≤1

Pρ

(
sup
h≤hn

sup
x∈R

|Jn(x,h,P,ρ)− Jn(x,h,P̂n,ρ̂n)| > ε

)
→ 0 as n → ∞,

(16)
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where Jn(x,h, · ,·) is as in (7), P̂n is the empirical distribution of the centered
residuals defined in (13), and ρ̂n is as in (12).

Theorem 4.1 shows that the LP-residual bootstrap is uniformly consistent, i.e.,
the bootstrap distribution Jn(·,h,P̂n,ρ̂n) approximates the distribution Jn(·,h,P,ρ)

uniformly over the parameter space (ρ ∈ [−1,1]) and a wide range of intermediate
horizons (h ≤ hn). Two features of this uniform approximation result deserve fur-
ther discussion. First, uniform consistency of bootstrap methods over the parameter
spaces of autoregressive models is not just a technical detail but a crucial property
to guarantee reliable inference methods (see Mikusheva, 2007). Otherwise, it is
possible to obtain for any sample size n a parameter ρn such that the distance
between the distributions Jn(·,h,P̂n,ρ̂n) and Jn(·,h,P,ρ) is far from zero. Second,
the uniform approximation over the horizons is necessary for inference purposes
at intermediate horizons. Other valid methods for a fixed h do not necessarily work
for h growing with the sample size.

The proof of Theorem 4.1 is presented in Appendix A.1. It has two main
ideas. First, we show that the approximation result presented in (9) also holds for
sequences of AR(1) models with i.i.d. shocks (Theorem B.1),

sup
P∈Pn,0

sup
h≤hn

sup
|ρ|≤1

sup
x∈R

|Jn(x,h,P,ρ)−	(x)| → 0 as n → ∞,

where Pn,0 denotes the set of all distributions that satisfy Assumption B.1 in
Appendix B.2, hn is as in Theorem 4.1, Jn(·,h,P,ρ) is as in (7), and 	(·) is the
standard normal distribution. Assumption B.1 imposes stronger restrictions on
the dependence of the shocks (i.i.d.) and some mild regularity conditions. The
formal result is presented in Appendix B.2 as Theorem B.1. Second, we show
that Assumptions 4.1 and 4.2 imply the existence of a sequence of events En

with probability approaching 1 such that the empirical distributions P̂n conditional
on the event En verify Assumption B.1. In other words, we show that P̂n ∈ Pn,0

holds with a probability approaching 1. The construction of the events En relies
on Lemma B.1 in Appendix B.1. We use the previous two ideas to approximate
the distribution Jn(·,h,P̂n,ρ̂n) by the standard normal distribution 	(·) conditional
on the event En. Finally, we conclude that the distributions Jn(·,h,P̂n,ρ̂n) and
Jn(·,h,P,ρ) are asymptotically close since both have the same asymptotic limit.

The next result shows that the confidence interval C∗
n(h,1−α) defined in (11) is

uniformly asymptotically valid in the sense that its asymptotic coverage probability
is equal to 1−α uniformly over ρ and a wide range of horizons h.

Theorem 4.2. Suppose Assumptions 4.1 and 4.2 hold. Then, for any sequence
hn such that hn ≤ n and hn = o(n), we have

sup
|ρ|≤1

sup
h≤hn

∣∣Pρ

(
β(ρ,h) ∈ C∗

n(h,1−α)
)− (1−α)

∣∣ → 0 as n → ∞, (17)

where β(ρ,h) and C∗
n(h,1−α) are as in (2) and (11), respectively.
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Theorem 4.2 provides the theoretical justification to conduct inference on
the impulse response coefficient β(ρ,h) using our bootstrap confidence interval
C∗

n(h,1−α). Note that the only difference with respect to the confidence interval
Cn(h,1 −α) defined in (10) is the critical value, which was equal to z1−α/2. The
critical value z1−α/2 was the same for different sample sizes n and horizons h.
Instead, we now use a critical value c∗

n(h,1 − α) that depends on the data, the
sample size, and the horizon. We evaluate the difference in coverage probability
between the confidence intervals Cn(h,1 −α) and C∗

n(h,1 −α) using simulations
in Section 6. The simulation results provide evidence that the coverage probability
of our proposed confidence interval C∗

n(h,1 − α) is closer to 1 − α than that of
Cn(h,1−α).

The proof of Theorem 4.2 is presented in Appendix A.2. It only relies on
the uniform consistency of the bootstrap procedure. We next sketch the main
arguments of the proof. We first note that (17) is equivalent to

sup
|ρ|≤1

sup
h≤hn

∣∣Pρ

(|Rn(h)| ≤ c∗
n(h,1−α)

)− (1−α)
∣∣ → 0 as n → ∞.

We then use that the bootstrap critical value c∗
n(h,1 − α) is included in

[z1−α/2−ε, z1−α/2+ε] with a probability approaching 1 for arbitrary ε > 0 (see
Lemma B.3 in Appendix B.1). This result is possible because the root Rn(h)

is asymptotically normal and the LP-residual bootstrap is uniformly consistent.
Third, we can conclude using algebra manipulation and the asymptotic normality
of the root Rn(h) that

limsup
n→∞

sup
|ρ|≤1

sup
h≤hn

∣∣Pρ

(|Rn(h)| ≤ c∗
n(h,1−α)

)− (1−α)
∣∣ ≤ 2ε,

which implies (17) since ε > 0 was arbitrary.

Remark 4.1. We can use the LP-residual bootstrap to construct equal-tailed
percentile-t confidence intervals denoted by C∗

per−t,n(h,1−α). That is,

C∗
per−t,n(h,1−α) ≡

[
β̂n(h)−q∗

n(h,1−α/2) ŝn(h), β̂n(h)−q∗
n(h,α/2) ŝn(h)

]
,

(18)

where β̂n(h) is as in (3), ŝn(h) is as in (4), and q∗
n(h,α0) is the α0-quantile of the

bootstrap root R∗
b,n(h) defined in (14). Three features of C∗

per−t,n(h,1−α) deserve
further discussion. First, the bootstrap quantiles q∗

n(h,α0) can be approximated
using Monte Carlo procedures in a similar way as we discussed in Remark 3.1.
Second, the confidence interval C∗

per−t,n(h,1−α) can be asymmetric around β̂n(h)

by construction, which is not the case of C∗
n(h,1 − α) that is a symmetric one.

Third, C∗
per−t,n(h,1−α) is uniformly asymptotically valid,

sup
|ρ|≤1

sup
h≤hn

∣∣Pρ

(
β(ρ,h) ∈ C∗

per−t,n(h,1−α)
)− (1−α)

∣∣ → 0 as n → ∞,
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where hn is any fixed sequence such that hn ≤ n and hn = o(n). The proof of
this claim follows directly from Theorem 4.1, Lemma B.3, and the proof of
Theorem 4.2. We include C∗

per−t,n(h,1−α) in our simulation study in Section 6.

Remark 4.2. For short horizons (fixed h), the available grid bootstrap (Hansen,
1999; Mikusheva, 2012) is a valid alternative to our bootstrap confidence interval
C∗

n(h,1 − α) when the conditional variance of the shocks is constant. The grid
bootstrap is a method to construct confidence intervals for the parameter β(ρ,h)

defined in (2) based on test inversion. Mikusheva (2007, 2012) shows that the grid
bootstrap provides confidence intervals that are uniformly asymptotically valid
in the sense that its asymptotic coverage probability is equal to 1 −α uniformly
on ρ ∈ [−1,1]. Nevertheless, when the conditional variance of the shocks is not
constant (e.g., GARCH shocks), it is unknown if the confidence intervals based on
the grid bootstrap are valid. In contrast, C∗

n(h,1−α) remains valid for a larger class
of AR(1) models. We include the grid bootstrap presented in Mikusheva (2012,
Sect. 3.3) in our simulation study presented in Section 6.

Remark 4.3. If we restrict our analysis to data-generating processes with
weak dependence (e.g., |ρ| ≤ 1 − a for some a ∈ (0,1)) and consider stronger
assumptions in the distribution of the shocks {ut : 1 ≤ t ≤ n}, then both claims in
(16) and (17) can hold for long horizons (e.g., hn ≤ (1−b)n for some b ∈ (0,1)).
In other words, the confidence interval C∗

n(h,1 − α) has theoretical guarantees
for long horizons under certain conditions. Assumptions 1 and 2 in Montiel Olea
and Plagborg-Møller (2021) are sufficient to guarantee this claim; a formal proof
can be derived following the same strategy presented in Appendix A to prove
Theorems 4.1 and 4.2. In particular, the proof of Theorem B.1 can be adapted
for long horizons since |ρ| ≤ 1−a implies that g(ρ,hn)

2/(n−hn) → 0 as n → ∞
for any hn ≤ (1−b)n, where g(ρ,h) = {∑h


=1 ρ2(
−1)}1/2. This technical condition
was satisfied when |ρ| ≤ 1 and hn = o(n).

Remark 4.4. For strictly stationary data, the results in Theorems 4.1 and 4.2
can be extended to VAR models considered in Montiel Olea and Plagborg-Møller
(2021) that satisfy their Assumptions 1 and 2. A proof of these extensions may be
done using the finite sample inequalities presented in their online appendix and
following the approach we presented in Appendixes A and B. We leave the details
of a formal proof to future research. For non-stationary data, it is an open question
whether the LP-residual bootstrap is consistent for VAR models. Our approach
relies on verifying Assumption 4.2 for an appropriate sequence of AR(1) models;
therefore, an analogous approach may require a similar step for VAR models,
which is outside the scope of this article.

Remark 4.5. We can use Theorem 4.2 to show the uniform validity of alter-
native methods to construct confidence intervals for β(ρ,h); however, some
alternative confidence intervals can be impractical at the intermediate horizon.
For instance, a confidence interval C∗

la−ar(h,1−α) for β(ρ,h) can be obtained by
first constructing a confidence interval for ρ using Theorem 4.2 (taking h = 1)
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and then by using β(ρ,h) = ρh (monotone transformation). Unfortunately, the
confidence interval C∗

la−ar(h,1 − α) can be very wide asymptotically for certain
data-generation processes and intermediate horizons. More concretely, for any
L > 1, it can be shown Pρ

(
[1/L,L] ⊆ C∗

la−ar(h,1−α)
) → 1 as n → ∞ when

ρ = 1−c1/n (local-to-unit models) and h ∼ √
n. We formally establish this result

in Proposition B.2 in Appendix B. This result is similar to the ones presented
in Appendix B.2.2 in Montiel Olea and Plagborg-Møller (2021) for the lag-
augmented AR bootstrap confidence interval of Inoue and Kilian (2020), which
is a bootstrap confidence interval related but different to C∗

la−ar(h,1−α).

5. ASYMPTOTIC REFINEMENTS

This section will impose conditions on the data-generating process that further
restrict the class of AR(1) models relative to that considered in Section 4, ruling out
local-to-unity and unit-root models. These conditions are explicit in Theorems 5.1
and 5.2, where we calculate the sizes of the ECP for the confidence intervals
Cn(h,1 − α) and C∗

n(h,1 − α) defined in (10) and (11), respectively. The results
of these theorems show that the LP-residual bootstrap can provide asymptotic
refinements for confidence intervals, that is, the ECP of C∗

n(h,1 − α) is o(n−1),
whereas the ECP of Cn(h,1−α) is O(n−1).

Section 5.1 first provides an informal discussion of the elements and challenges
involved in obtaining asymptotic refinements for confidence intervals with the
LP-residual bootstrap. Section 5.2 then formalizes the discussion by giving con-
ditions on the data-generating process (Assumption 5.1 and ρ ∈ [−1 + a,1 − a]
for a given a ∈ (0,1)) that are sufficient to establish these asymptotic refinements
(Theorems 5.1 and 5.2).

5.1. Informal Discussion on Asymptotic Refinements

This section gives an informal exposition on how a bootstrap method can provide
asymptotic refinements for confidence intervals when the root is asymptotically
pivotal, i.e., the asymptotic distribution of the root does not depend on any
unknown parameters. The explanation below is not new (see Hall and Horowitz,
1996; Horowitz, 2001, 2019; Lahiri, 2003). It has the purpose of introducing
the main elements and challenges that arise to obtain asymptotic refinements in
the context of dependent data generated from an AR(1) model. It also describes
the approach considered in this article (see Remark 5.6 for alternative methods).

Main Elements: For the sake of exposition, suppose the root Rn(h) has an
Edgeworth expansion up to an error of size o(n−1), that is, the distribution of the
root Rn(h) has an asymptotic expansion,

Jn(x,h,P,ρ) = 	(x)+
2∑

j=1

n−j/2qj(x,h,P,ρ)φ(x)+o
(
n−1

)
, (19)

https://doi.org/10.1017/S0266466625100248 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100248


16 AMILCAR VELEZ

where qj(x,h,P,ρ) are polynomials in x ∈ R such that (i) their coefficients
are continuous function of moments of P and ρ and (ii) qj(x,h,P,ρ) =
(−1)j+1qj(−x,h,P,ρ) for j = 1,2. Similarly, suppose the bootstrap root R∗

n(h)

has an Edgeworth expansion,

Jn(x,h,P̂n,ρ̂n) = 	(x)+
2∑

j=1

n−j/2qj(x,h,P̂n,ρ̂n)φ(x)+op
(
n−1

)
, (20)

where Jn(x,h, · ,·) is as in (7), P̂n is the empirical distribution of the centered
residuals defined in (13), and ρ̂n is the estimator of ρ defined in (12).

The approximations in (19) and (20) are commonly used to show that the
bootstrap methods provide more accurate approximations than the asymptotic
distribution theory (see Hall (1992) for a textbook reference for the case of i.i.d.
data). We next sketch an informal calculation of the sizes of the ECP of the
confidence intervals Cn(h,1−α) and C∗

n(h,1−α).
The coverage probability of Cn(h,1−α) is equal to Pρ

(|Rn(h)| ≤ z1−α/2
)

by the
definitions of Cn(h,1 −α) and Rn(h) in (10) and (6), respectively. Note that (19)
and the properties of qj(·,h,P,ρ) imply that for any x > 0, we have

Pρ (|Rn(h)| ≤ x) = 2	(x)−1+n−12q2(x,h,P,ρ)φ(x)+o
(
n−1

)
. (21)

Taking x = z1−α/2, we conclude the size of the ECP of Cn(h,1−α) is O(n−1).
Similarly, the coverage probability of C∗

n(h,1 − α) is equal to Pρ (|Rn(h)| ≤
c∗

n(h,1−α)
)

by the definitions in (11) and (6). Now, we will argue that

Pρ

(|Rn(h)| ≤ c∗
n(h,1−α)

) = Pρ (|Rn(h)| ≤ cn(h,1−α))+o
(
n−1

)
, (22)

where cn(h,1−α) is as in (8). This is sufficient to conclude that the size of the ECP
of C∗

n(h,1 −α) is o(n−1) since Pρ (|Rn(h)| ≤ cn(h,1−α)) = 1 −α by definition.
Using the properties of qj(·,h,P̂n,ρ̂n) and (20), we obtain

Pρ

(|R∗
b,n(h)| ≤ x | Y(n)

) = 2	(x)−1+n−12q2(x,h,P̂n,ρ̂n)φ(x)+op
(
n−1

)
= 2	(x)−1+n−12q2(x,h,P,ρ)φ(x)+op

(
n−1

)
, (23)

where the last equality uses q2(x,h,P̂n,ρ̂n) = q2(x,h,P,ρ)+ op (1). Note that (20)
and (21) look similar. Taking x = cn(h,1−α) in (21) and x = c∗

n(h,1−α) in (23), it
can be concluded that c∗

n(h,1−α) = cn(h,1−α)+op
(
n−1

)
, which will imply (22).

The informal explanation presented above suggests that the LP-residual
bootstrap can provide asymptotic refinements when there exist valid Edgeworth
expansions as in (19) and (20). We present in Section 5.2 conditions (Assump-
tion 5.1 and ρ ∈ [−1 + a,1 − a], where a ∈ (0,1)) under which the previous
informal discussion can be formalized.

The Challenges: Edgeworth expansions as in (19) and (20) are not always
available or valid in the context of AR(1) models. For instance, in the case
of the local-to-unity and unit-root models, the Edgeworth expansion for the
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least-squares estimate of the AR(1) model defined in (12) is no longer valid (see
Phillips, 2023). In this case, alternative asymptotic approximations were developed
to prove asymptotic refinements of the bootstrap, e.g., Park (2003, 2006) and
Mikusheva (2015). To our knowledge, there are no available theoretical results
about valid Edgeworth expansions for the root Rn(h) defined in (6) that can be
applied directly.

Nevertheless, for stationary AR(1) models (when ρ ∈ [−1+a,1−a], a ∈ (0,1)),
asymptotically valid Edgeworth expansions were obtained (see Phillips, 1977a,
1977b; Bose, 1988, among others). Therefore, we will restrict our analysis to
stationary AR(1) models to obtain valid Edgeworth expansions for the root Rn(h)

and its bootstrap version R∗
n(h) when ρ ∈ [−1+a,1−a], a ∈ (0,1), and h is fixed.

5.2. Formal Conditions and Results

This section presents conditions under which the LP-residual bootstrap provides
asymptotic refinements to the confidence interval. Under these conditions, we
calculate the sizes of the ECP for Cn(h,1 −α) and C∗

n(h,1 −α) in Theorems 5.1
and 5.2, respectively.

The following assumption imposes stronger conditions on the distribution of the
shocks P than the ones presented in Assumption 4.1. We use this assumption and
ρ ∈ [−1+a,1−a] for some a ∈ (0,1) to formalize the informal explanation about
asymptotic refinements presented in Section 5.1.

Assumption 5.1.

i) {ut : 1 ≤ t ≤ n} is a sequence of i.i.d. random variables with E[ut] = 0.
ii) ut has a positive continuous density.

iii) E[exut ] ≤ ex2c2
u for all |x| ≤ 1/cu and E[u2

t ] ≥ Cσ for some constants cu,Cσ > 0.

Part (i) of Assumption 5.1 imposes stronger conditions over the serial depen-
dence of the shocks. This assumption is common for the theoretical analysis
of the asymptotic refinement of the bootstrap method in autoregressive models.
An incomplete list of previous research that uses this assumption includes Bose
(1988), Park (2003, 2006), and Mikusheva (2015). Parts (ii) and (iii) of Assump-
tion 5.1 are sufficient technical conditions on the distribution of the shocks P to
establish the existence of the Edgeworth expansions presented in (19) and (20).
Part (ii) implies that the distribution Jn(·,h,P,ρ) defined in (7) is continuous and
guarantees that a data-dependent version of the Cramér condition holds, which
is a common condition to guarantee the existence of Edgeworth expansions (see
Remark 5.4 for further discussion). Part (iii) implies that any sufficiently large
number of moments exist and are uniformly bounded by a function of the constant
cu, which is important to guarantee the Edgeworth expansion for the bootstrap
distribution Jn(·,h,P̂n,ρ̂n). Although this condition is strong, it is not atypical in
the literature of the asymptotic refinement of the bootstrap method with dependent
data; for instance, Hall and Horowitz (1996) and Inoue and Shintani (2006) assume
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the existence of 33rd and 36th moments, respectively, while Andrews (2002)
assumes that all the moments exist.

We rely on Assumption 5.1, the approach and results presented in Bhattacharya
and Ghosh (1978) and Bhattacharya (1987), and the general framework developed
by Götze and Hipp (1983) to prove the existence of Edgeworth expansions
with dependent data. The framework of Götze and Hipp (1983) requires weakly
dependent data and verifying stronger regularity conditions than the ones needed
in the case of i.i.d. data (see Hall (1992) and Lahiri (2003) for textbook references).
Therefore, we restrict our analysis to data-generating processes with weak depen-
dence (e.g., |ρ| ≤ 1 − a for some a ∈ (0,1)) in a similar way to previous research
on asymptotic refinements involving dependent data that includes Bose (1988),
Hall and Horowitz (1996), Lahiri (1996), Andrews (2002, 2004), and Inoue and
Shintani (2006). It is an open question whether there exist Edgeworth expansions as
in (19) and (20) for the case of local-to-unity or unit-root models. See Remark 5.6
for further discussion on alternative methods and available results.

Theorem 5.1. Suppose Assumption 5.1 holds. Fix a given h ∈ N and a ∈ (0,1).
Then, for any ρ ∈ [−1+a,1−a], we have

|Pρ (β(ρ,h) ∈ Cn(h,1−α))− (1−α)| = O(n−1), (24)

where β(ρ,h) is as in (2) and Cn(h,1−α) is as in (10).

The ECP of Cn(h,1 −α) has a similar size as the one derived in our informal
explanation in Section 5.1. Similar sizes of the ECP were obtained for symmetrical
confidence intervals in the i.i.d. data case (see Hall, 1992; Horowitz, 2001, 2019).

The proof of Theorem 5.1 is presented in Appendix A.3. It uses two main
ideas developed previously in the literature. First, we approximate the distribution
Jn(·,h,P,ρ) by another distribution J̃n(·,h,P,ρ) up to an error of size O

(
n−1−ε

)
for a fixed ε ∈ (0,1/2); similar approach has been used in Hall and Horowitz
(1996) and Andrews (2002, 2004). Second, we use that the distribution J̃n(·,h,P,ρ)

admits an Edgeworth expansion up to an error of size O
(
n−3/2

)
based on the

results of Bhattacharya and Ghosh (1978) and Götze and Hipp (1983, 1994)
(see Theorem B.2 in Appendix B.3). These two ideas guarantee the existence of the
Edgeworth expansion presented in (19). We then conclude the proof by standard
derivations similar to the one derived in our informal explanation presented in
Section 5.1.

The next theorem shows that the LP-residual bootstrap provides asymptotic
refinements to the confidence intervals. In other words, the size of the ECP of
our bootstrap confidence interval defined in (11) for β(ρ,h) is o(n−1).

Theorem 5.2. Suppose Assumption 5.1 holds. Fix a given h ∈ N and a ∈ (0,1).
Then, for any ρ ∈ [−1+a,1−a] and ε ∈ (0,1/2), we have

|Pρ

(
β(ρ,h) ∈ C∗

n(h,1−α)
)− (1−α)| = o

(
n−(1+ε)

)
, (25)

where β(ρ,h) is as in (2) and C∗
n(h,1−α) is as in (11).
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Theorem 5.2 presents the size of the ECP of the confidence interval C∗
n(h,1−α)

in (25). This is similar to the one derived in our informal explanation in Section 5.1,
but it is typically larger than those obtained for the ECP of symmetrical confidence
intervals using bootstrap methods in the i.i.d. data case (see Hall, 1992; Horowitz,
2001, 2019).

The proof of Theorem 5.2 is presented in Appendix A.4. It relies on two claims:
the existence of the Edgeworth expansion for the distribution Jn(·,h,P,ρ) and the
existence of constants C1 and C2 such that Pρ(|�n| > C1n−(1+ε)) ≤ C2n−(1+ε),
where �n = c∗

n(h,1−α)−cn(h,1−α), and cn(h,1−α) and c∗
n(h,1−α) are defined

in (8) and (15), respectively. We next sketch the proof based on those two claims.
We can derive

Pρ

(
β(ρ,h) ∈ C∗

n(h,1−α)
) = Pρ

(|Rn(h)| ≤ c∗
n(h,1−α)

)
= Pρ

(|Rn(h)| ≤ cn(h,1−α)+�n, |�n| ≤ C1n−(1+ε)
)

+O
(
n−(1+ε)

)
= 1−α +O

(
n−(1+ε)

)
,

where the last equality follows from the existence of the Edgeworth expansion for
the distribution Jn(·,h,P,ρ) (our first claim), which implies

Pρ

(|Rn(h)| ≤ cn(h,1−α)+O
(
n−(1+ε)

)) = 1−α +O
(
n−(1+ε)

)
.

Note that the first claim follows from Theorem 5.1. To prove our second claim, we
first show that there is an event En such that (i) Jn(·,h,P̂n,ρ̂n) has an Edgeworth
expansion as in (20) conditional on En and (ii) the probability of the complement of
En is equal to O

(
n−(1+ε)

)
for any ε ∈ (0,1/2) (see Lemma B.5 in Appendix B.1).

We then follow standard arguments in the literature to prove this claim. Finally,
note that O(n−(1+ε)) for any ε ∈ (0,1/2) is equivalent to o(n−(1+ε)) for any
ε ∈ (0,1/2), which is the error stated in Theorem 5.2.

Remark 5.1. The bootstrap methods proposed in Hall and Horowitz (1996) and
Andrews (2002) can be adapted for the construction of confidence intervals for
the impulse response β(h,ρ) defined in (2). Four points based on their framework
and results deserve further discussion. First, their bootstrap method consists of the
nonoverlapping block bootstrap scheme (Carlstein (1986)) and overlapping block
bootstrap (Kunsch (1989)). Second, they show that their bootstrap methods provide
asymptotic refinements to the critical values of t-tests based on generalized method
of moments (GMM) estimators θ̂T and weakly dependent data {Zt : 1 ≤ t ≤ n}.
One of their main conditions is that the series of moment functions {g(Zt,θ) :
t ≥ 1} are uncorrelated beyond some finite lags, i.e., for some κ > 0, we have
E[g(Zt,θ)g(Zs,θ)′] = 0 for any t,s ≥ 1 such that |t − s| > κ . Third, the LP
estimator β̂n(h) defined in (3) can be presented as a GMM estimator using the
following dependent data {Zt = (yt−1,yt,yt+h) : 1 ≤ t ≤ n} and moment function:
g(yt+h,xt,θ) = (yt+h − θxt)xt, where xt = (yt,yt−1)

′. Then, we can invoke their
results and use their bootstrap methods but only for the case of |ρ| < 1 and under
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additional assumptions. Note that their main condition can be verified with κ = h.
Fourth, we can construct confidence intervals for β(ρ,h) based on their asymptotic
distribution theory.

Remark 5.2. As we mentioned in Remark 5.1, we can use the bootstrap methods
presented in Hall and Horowitz (1996) and Andrews (2002, 2004) to construct
confidence intervals for β(ρ,h) since the LP estimator β̂n(h) defined in (3) can
be presented as a GMM estimator. Their results provide sizes of the ECP of these
confidence intervals that are qualitatively similar to the one found in Theorem 5.2.

Remark 5.3. The size of the ECP of C∗
per−t,n(h,1−α) is O(n−1). We presented

and discussed the equal-tailed percentile-t confidence interval C∗
per−t,n(h,1 − α)

in Remark 4.1. To compute the size of its ECP, we can use the existence of the
Edgeworth expansions presented in (19) and (20) and Theorem 5.2 in Hall (1992).
The size of the ECP of C∗

per−t,n(h,1 − α) is similar to the one obtained in (24)
for the ECP of Cn(h,1−α); therefore, the LP-residual bootstrap does not provide
asymptotic refinement for equal-tailed percentile-t confidence intervals. Similar
conclusions were obtained for the case of i.i.d. data (see Hall, 1992; Horowitz,
2001, 2019).

Remark 5.4. We use part (ii) of Assumption 5.1 to verify that a dependent-
data version of the Cramer condition required in Götze and Hipp (1983) holds,
which is an important condition for the existence of the Edgeworth expansion
in the dependent-data case. However, verifying that condition is quite difficult
in general, as pointed out by Hall and Horowitz (1996) and Götze and Hipp
(1994), among others. Therefore, we proceed in two steps based on the results by
Götze and Hipp (1994) that propose simple and verifiable conditions to guarantee
the conditions required by Götze and Hipp (1983), including the dependent-data
version of the Cramer condition. We first approximate the distribution Jn(·,h,P,ρ)

by a distribution J̃n(·,h,P,ρ). We then use part (ii) of Assumption 5.1 to verify the
conditions required in Theorem 1.2 of Götze and Hipp (1994), which guarantee
the existence of Edgeworth expansion for the distribution J̃n(·,h,P,ρ).

Remark 5.5. For strictly stationary data-generating processes, the results in
Theorems 5.1 and 5.2 can be extended to the family of VAR models that satisfy
similar assumptions to the ones presented in Assumption 5.1, which are stronger
than Assumptions 1 and 2 in Montiel Olea and Plagborg-Møller (2021). These
extensions can be shown by verifying the conditions required in Götze and Hipp
(1994). We leave the details of a formal proof for the VAR models for future
research.

Remark 5.6. An alternative method for asymptotically approximating a finite
sample distribution is the stochastic embedding and strong approximation prin-
ciple used in Park (2003, 2006) and Mikusheva (2015). Using this method in
the local-to-unit asymptotic framework for the AR(1) model, Mikusheva (2015)
showed that the grid bootstrap version of the t-statistic approximates its finite
sample distribution up to an error of size o(n−1/2). It is an open question whether
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these techniques can be adapted to show that the LP-residual bootstrap provides
asymptotic refinements to the confidence intervals when ρ = 1.

6. SIMULATION STUDY

We examine the finite sample performance of C∗
n(h,1 −α) defined in (11) using

different data-generating processes. We consider a sample size n = 95, which is
the median sample size based on 71 papers that have utilized the LP approach (see
Herbst and Johannsen, 2024). Additionally, we examine other confidence intervals
presented in the article.

6.1. Monte Carlo Design

We use four designs for the distribution of the shocks {ut : 1 ≤ t ≤ n} and two
values for the parameter ρ ∈ {0.95,1} in our Monte Carlo simulation. The shocks
are defined according to the GARCH(1,1) model:

ut = τtvt, τ 2
t = ω0 +ω1u2

t−1 +ω2τ
2
t−1, vt are i.i.d.,

where the distribution of vt and the parameter vector (ω0,ω1,ω2) are specified as
follows:

Design 1: vt ∼ N(0,1), ω0 = 1, and ω1 = ω2 = 0.
Design 2: vt ∼ N(0,1), ω0 = 0.05, ω1 = 0.3, and ω2 = 0.65.
Design 3: vt ∼ t4/

√
2, ω0 = 1, and ω1 = ω2 = 0.

Design 4: vt|Bt = j ∼ N(mj,σ
2
j ), where Bt ∈ {0,1}, Bt = 1 with probability

p = 0.25, m0 = 2/σ2, m1 = −6/σ2, σ0 = 0.5/σ2, σ1 = 2/σ2, and
σ 2

2 = p(m2
1 +σ1)+(1−p)(m2

0 +σ0), ω0 = 0.05, ω1 = 0.3, and ω2 = 0.65.

We consider nine different confidence intervals for each design and each value
of ρ. All our confidence intervals use the HC standard errors ŝn(h) defined in (4).
Additionally, we consider alternative HC standard errors ŝj,n(h) defined as

ŝj,n(h) ≡
(

n−h∑
t=1

ût(h)2

)−1/2 (
n−h∑
t=1

ξ̂j,t(h)2ût(h)2

)1/2 (
n−h∑
t=1

ût(h)2

)−1/2

,

for j = 2,3, where ξ̂2,t(h)2 = ξ̂t(h)2/(1 −Ph,tt) and ξ̂3,t(h)2 = ξ̂t(h)2/(1 −Ph,tt)
2.

We use the projection matrix Ph = Xh(X
′
hXh)

−1
X

′
h, where Xh is a matrix with row

elements equal to (ût(h), yt−1) for t = 1, . . . ,n − h. The confidence intervals that
we use are listed below.

1. RB: confidence interval as in (11) based on the LP-residual bootstrap.
2. RBper−t: equal-tailed percentile-t confidence interval as in (18). It is based on

the LP-residual bootstrap and discussed in Remark 4.1.
3. RBhc3: confidence interval as in (11) but using ŝ3,n(h) and c∗

3,n(h,1−α) instead
of ŝn(h) and c∗

n(h,1−α), where c∗
3,n(h,1−α) is computed as in Section 3.1 but

using ŝ∗
3,n(h) instead of ŝ∗

n(h).
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4. WB: confidence interval as in (11) but using cwb,∗
n (h,1 − α) instead of

c∗
n(h,1−α), where cwb,∗

n (h,1 − α) is based on the LP-wild bootstrap (see
Remark 3.2).

5. WBper−t: equal-tailed percentile-t confidence interval as in (18) but using
qwb,∗

n (h,α0) instead of q∗
n(h,α0), where qwb,∗

n (h,α0) is based on the LP-wild
bootstrap discussed in Remark 3.2.

6. GBLR: confidence interval based on the grid bootstrap presented in Section 3.3
in Mikusheva (2012). It uses the LR statistic.

7. AA: standard confidence interval as in (10).
8. AAhc2: standard confidence interval as in (10) but using ŝ2,n(h) instead of ŝn(h).
9. AAhc3: standard confidence interval as in (10) but using ŝ3,n(h) instead of ŝn(h).

6.2. Discussion and Results

In all the designs, the shocks have zero mean and variance one. Designs 1
and 2 verify Assumption 4.1 presented in Section 4. Design 1 also verifies
Assumption 4.2 due to Proposition B.1 in Appendix B.2. Assumption 4.2 can
be tedious to verify in general since it involves computing a probability for all
the parameters ρ in the parameter space and taking their infimum. In contrast,
designs 3 and 4 do not verify all the parts of Assumption 4.1. Design 3 considers
shocks without a fourth moment, i.e., it does not verify part (iv) of Assumption 4.1,
which was a regularity condition. Design 4 considers a distribution of the shocks
(GARCH errors with asymmetric v and nonzero skewness) that lie outside the class
of conditional heteroskedastic processes that we consider in this article, i.e., it does
not verify part (ii) of Assumption 4.1. As we discussed in Remark 2.1, part (ii) of
Assumption 4.1 was a sufficient condition for the validity of the HC standard errors
ŝn(h) in the construction of confidence intervals.

Tables 1 and 2 report the coverage probabilities (in %) of our simulations.
Columns are labeled as the confidence intervals we specified in Section 6.1. For
all the designs on the distribution of the shock and values of ρ, we use 5,000
simulations to generate data with a sample size n = 95 based on the AR(1)
model (1). In each simulation, we compute the nine confidence intervals described
above for horizons h ∈ {1,6,12,18}. The confidence intervals have a nominal level
equal to 1−α = 90%. The bootstrap critical values are computed using B = 1,000
as described in Remark 3.1. We summarize our findings from the simulations
below.

Five features of Table 1 deserve discussion. First, it shows that our recommended
confidence interval RB has a coverage probability closer to 90% than the confi-
dence intervals AA, AAhc2, and AAhc3 for all designs 1 and 2, values of ρ, and
horizons h, with some few exceptions. The lowest coverage probabilities of RB,
AA, AAhc2, and AAhc3 are 85%, 77%, 78%, and 79%, respectively, and occur
when ρ = 1 and horizon h = 18. Second, RB and RBhc3 have better performance
than RBper−t, especially when ρ = 1 and the horizon is a significant fraction
of the sample size (h ∈ {12,18}). Third, WB and WBper−t have larger coverage
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Table 1. Coverage probability (in %) of confidence intervals for β(ρ,h) with a
nominal level of 90% and n = 95

ρ h RB RBper−t RBhc3 WB WBper−t GBLR AA AAhc2 AAhc3

Design 1: Gaussian i.i.d. shocks

0.95 1 90.04 89.60 90.08 90.38 90.32 90.38 88.26 89.12 89.60

6 89.36 88.98 89.38 90.46 90.22 90.38 85.00 85.58 86.44

12 88.12 86.96 88.08 89.60 88.28 90.38 83.78 84.44 85.34

18 87.96 86.08 87.88 89.46 88.08 90.38 84.44 85.16 85.86

1.00 1 90.20 89.80 90.30 90.48 90.34 89.46 88.30 88.90 89.66

6 89.80 89.44 89.80 90.68 90.22 89.46 83.54 84.42 85.28

12 87.92 87.60 87.90 88.78 89.02 89.46 80.32 81.30 81.94

18 86.22 84.76 86.22 87.02 86.36 89.46 78.34 79.16 79.98

Design 2: Gaussian GARCH shocks

0.95 1 88.86 89.00 89.40 90.18 90.02 85.94 86.84 88.10 89.16

6 87.94 88.00 88.26 90.12 90.74 85.94 83.64 84.52 85.60

12 87.08 85.72 87.28 88.72 88.18 85.94 82.96 83.90 84.88

18 86.36 84.36 86.40 87.98 86.94 85.94 82.76 83.44 84.38

1.00 1 88.64 88.82 89.14 89.96 89.94 88.38 86.72 87.84 88.90

6 88.96 88.52 89.08 90.76 90.96 88.38 82.34 83.76 84.52

12 86.64 86.08 86.60 88.56 88.68 88.38 79.14 80.46 81.32

18 84.90 83.74 84.78 86.56 86.52 88.38 76.64 77.74 78.70

Note: In total, 5,000 simulations and 1,000 bootstrap iterations.

probability than RB for all designs 1 and 2, values of ρ, and horizons h, with
some few exceptions. The larger coverage of WB and WBper−t is associated with
a larger median length of their confidence intervals, as we reported in Table E.1 in
the Supplementary Material. Fourth, AAhc3 presents a coverage probability closer
to 90% and larger than AA and AAhc2 for all designs 1 and 2, values of ρ, and
horizons h. This finding suggests that using ŝ3,n(h) instead of ŝn(h) can improve
the coverage probability of the confidence interval; however, confidence intervals
based on bootstrap methods (e.g., RB and WBper−t) report coverage probability
closer to 90%. Fifth, GBLR has a coverage probability close to 90% on design 1
(i.i.d. shocks), while it has some distortions on design 2 that are larger on ρ = 0.95.
As we mentioned in Remark 4.2, it is unknown if the grid bootstrap is valid for
design 2. The coverage probability of GBLR is constant across horizons because the
LR statistic is invariant to monotonic transformations (see Section 4.3 and footnote
6 in Mikusheva (2012) for more details).

Table 2 presents results for designs 3 and 4. Our findings for design 3 are
qualitatively similar to Table 1, which was discussed above. This suggests that
failing part (iv) of Assumption 4.1 (a regularity condition) does not have a major
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Table 2. Coverage probability (in %) of confidence intervals for β(ρ,h) with a
nominal level of 90% and n = 95

ρ h RB RBper−t RBhc3 WB WBper−t GBLR AA AAhc2 AAhc3

Design 3: t-student i.i.d. shocks

0.95 1 90.00 90.08 90.36 90.52 90.32 90.06 88.04 89.24 90.26

6 89.08 88.48 89.28 89.76 89.64 90.06 84.04 85.40 86.66

12 87.74 86.18 87.90 88.46 87.42 90.06 82.78 84.24 85.46

18 88.08 85.38 88.26 89.12 87.52 90.06 83.36 84.80 86.20

1.00 1 89.96 89.88 90.16 90.36 89.98 90.44 87.74 88.82 90.16

6 89.78 88.60 89.84 90.52 89.84 90.44 82.88 84.54 85.78

12 87.56 86.82 87.64 88.40 88.22 90.44 79.04 80.30 81.56

18 85.64 84.40 86.00 86.80 86.24 90.44 77.50 78.84 80.22

Design 4: Mixture-of-Gaussian GARCH shocks

0.95 1 89.00 89.86 89.32 88.80 89.60 87.82 86.38 87.20 87.88

6 87.90 90.62 88.14 89.12 92.04 87.82 84.30 85.30 86.18

12 84.14 86.64 84.00 85.58 87.98 87.82 80.70 81.52 82.32

18 83.48 84.70 83.66 85.32 86.88 87.82 80.46 81.40 82.56

1.00 1 88.84 90.24 89.04 88.98 89.70 88.02 86.60 87.24 88.00

6 88.24 91.26 88.50 89.62 92.66 88.02 82.78 83.82 84.64

12 84.96 88.54 85.08 86.74 89.86 88.02 77.40 78.32 79.50

18 82.30 84.62 82.34 83.90 86.30 88.02 74.18 75.28 76.14

Note: In total, 5,000 simulations and 1,000 bootstrap iterations.

effect on the coverage probability of the confidence intervals that we considered. In
contrast, design 4 shows that some of our qualitative findings can change if we fail
to verify part (ii) of Assumption 4.1. This result is consistent with existing theory
since this assumption was a sufficient condition for the validity of confidence
intervals that use HC standard errors ŝn(h) (see Remark 2.1). In particular, RBper−t

has a coverage probability closer to 90% and larger than RB and RBhc3. The small
sample size (n = 95) does not explain the findings for design 4. We obtain similar
results for a sample size n = 240 in Table E.3 in the Supplementary Material.

Finally, Table E.2 in the Supplementary Material reports the statistical power of
the confidence intervals specified in Section 6.1. Here, we refer by statistical power
to the coverage probabilities (in %) of (size-adjusted) confidence intervals for
parameters different than the true one. In this sense, a low coverage probability of a
confidence interval is desirable. We find all the confidence intervals have coverage
probability around 80% on horizon h = 1 and designs 1–3, which suggests they
have statistical power at h = 1. We also notice that RBper−t, WBper−t, and GBLR

have a coverage probability strictly lower than 90% for horizon h = 6 and designs
1–3. Moreover, they have a lower coverage probability than all the other confidence
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intervals. Finally, all the confidence intervals have coverage probability above 90%
on design 4, with the exception of GBLR for horizon h = 1.

7. LP-RESIDUAL BOOTSTRAP FOR VAR MODELS

This section describes the LP-residual bootstrap method to construct confidence
intervals for a scalar function of impulse responses of VAR(p) models, where p
denotes the number of lags. More concretely, we propose the confidence interval
in (26) for ν ′βh,i, where βh,i ∈ Rk is the vector containing all the impulse response
coefficients of the reduced-form shocks in the variable i at h periods in the future.
Here, ν ∈ Rk \{0} is a user-specified vector, e.g., ν = ej (the j-th unit vector) implies
that ν ′βh,i is the impact of the j-th reduced-form shock in the variable i at h periods
in the future.

The confidence interval for ν ′βh,i is defined as

C∗
n(h,1−α) ≡

[
ν′β̂i,n(h)− c∗

n(h,1−α) ŝi,n(h,ν), ν′β̂i,n(h)+ c∗
n(h,1−α) ŝi,n(h,ν)

]
,

(26)

where β̂i,n(h), ŝi,n(h,ν), and c∗
n(h,1 − α) are defined in (27), (28), and (31),

respectively.
Let {yt ∈ Rk : 1 ≤ t ≤ n} be the available time-series data. Suppose the data have

been demeaned. Denote Xt = (y′
t−1, . . . ,y

′
t−p)

′ for all t = p+1, . . . ,n. Let β̂i,n(h) be
obtained from an OLS regression between yi,t+h and (y′

t,X
′
t),

yi,t+h = β̂i,n(h)′yt + γ̂i,n(h)Xt + ξ̂i,t(h). (27)

Let ŝi,n(h,ν) be the standard error for ν ′β̂i,n(h) defined by

ŝi,n(h,ν) = 1

n−h−p

⎧⎨
⎩ν ′�̂(h)−1

⎛
⎝ n−h∑

t=p+1

ξ̂i,t(h)2ût(h)ût(h)′
⎞
⎠�̂(h)−1ν

⎫⎬
⎭

1/2

,

(28)

where

ût(h) = yt − Â(h)Xt, Â(h) =
⎛
⎝ n−h∑

t=p+1

ytX
′
t

⎞
⎠

⎛
⎝ n−h∑

t=p+1

XtX
′
t

⎞
⎠

−1

and

�̂(h) = 1

n−h−p

n−h∑
t=p+1

ût(h)ût(h)′.
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Finally, let c∗
n(h,1−α) be the bootstrap critical value involving the following steps:

Step 1: Estimate a VAR(p) model with the data Y(n) using linear regression,

yt = ÂnXt + ût, t = p+1, . . . ,n,

where

Ân =
⎛
⎝ n∑

t=p+1

ytX
′
t

⎞
⎠

⎛
⎝ n∑

t=p+1

XtX
′
t

⎞
⎠

−1

, (29)

and compute the centered residuals⎧⎨
⎩ũt ≡ ût − 1

n−p

n∑
t=p+1

ût : p+1 ≤ t ≤ n

⎫⎬
⎭. (30)

Step 2: Generate B new samples of size n using (29) and (30). Define the sample as

y∗
b,t =

p∑

=1

Ân,
 y∗
b,t−
 +u∗

b,t, t = p+1, . . . ,n,

where the initial p observations (y∗
b,1, . . . ,y

∗
b,p) are drawn at random from

the n − p + 1 blocks of p consecutive observations in the original data.
Here, Ân = (Ân,1, . . . ,Ân,p) are matrices estimated in (29) and {u∗

b,t : 1 ≤
t ≤ n} is a random sample from the empirical distribution of the centered
residuals defined in (30). The new sample {y∗

b,t : 1 ≤ t ≤ n} is called the
bootstrap sample.

Step 3: Compute β̂∗
b,i,n(h) and ŝ∗

b,i,n(h) as in (27) and (28) using the lag-augmented
LP regression and the bootstrap sample {y∗

b,t : 1 ≤ t ≤ n} for each
b = 1, . . . ,B. Define

R∗
b,n(h,ν) = ν ′β̂∗

b,i,n(h)−ν ′βi(Ân,h)

ŝ∗
b,i,n(h,ν)

, b = 1, . . . ,B,

where βi(A,h) ∈ Rk is the impulse response of all reduced-form shocks in
the variable i at horizon h implied by the VAR(p) model with coefficients
A = (A1, . . . ,Ap). Here, Ân is as in (29).

Step 4: Compute the 1−α quantile of the B draws of R∗
b,n(h,ν). Denote this by

c∗
n(h,1−α) ≡ inf

{
u ∈ R :

1

B

B∑
b=1

I{|R∗
b,n(h,ν)| ≤ u} ≥ 1−α

}
. (31)

The theoretical properties of the bootstrap confidence interval defined in (26) are
unknown for general VAR models. However, Monte Carlo simulations presented
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in Appendix E.1 of the Supplementary Material suggest that confidence intervals
based on the LP-residual bootstrap perform better in terms of coverage probability
than those based on first-order asymptotic theory. Remarks 4.4 and 5.5 provide
further discussion on how to extend some of the results presented in this article to
general VAR models.

Remark 7.1. Montiel Olea and Plagborg-Møller (2021) proposed a different
bootstrap confidence interval for the impulse response coefficients of VAR(p)
models. As we discussed in Remark 3.2, they use a wild bootstrap procedure—
which we refer to as the LP wild bootstrap—to define the bootstrap shocks used
to generate the bootstrap sample with an estimated VAR model (similar to Step
2 above). They use the LP wild bootstrap to construct equal-tailed percentile-t
confidence intervals that differ from the symmetric percentile-t confidence inter-
vals defined in (26), which we recommend for the same reasons presented in
Remark 3.3 and based on our theoretical results for the AR(1) model. To our
knowledge, the theoretical properties of the LP wild bootstrap procedure and
the confidence intervals proposed by Montiel Olea and Plagborg-Møller (2021)
remain unknown. We include their recommended confidence intervals in the
simulations presented in Appendix E.1 of the Supplementary Material.

8. CONCLUDING REMARKS

This article contributes to a growing literature on confidence interval construction
for impulse response coefficients based on the LP approach. Specifically, we
propose the LP-residual bootstrap method to construct confidence intervals for
the impulse response coefficients of AR(1) models at intermediate horizons.
We prove two theoretical properties of this method: uniform consistency and
asymptotic refinements. For a large class of AR(1) models that allow for a unit root,
conditional heteroskedasticity of unknown form, and martingale difference shocks,
we show that the proposed confidence interval C∗

n(h,1−α) defined in (11) has an
asymptotic coverage probability equal to its nominal level 1−α uniformly over the
parameter space (e.g., ρ ∈ [−1,1]) and a wide range of intermediate horizons. For a
restricted class of AR(1) models (e.g., |ρ| ≤ 1−a, where a ∈ (0,1) and i.i.d. shocks
with positive continuous density), we demonstrate that the ECP of C∗

n(h,1−α) has
size o(n−1), that is, the LP-residual bootstrap provides asymptotic refinements to
the confidence intervals.

This article considered the AR(1) model as the first step in understanding the
theoretical properties of the LP-residual bootstrap. Three possible directions exist
for future research. First, the uniform consistency of the LP-residual bootstrap
method is an open question for the general VAR model. This bootstrap method
is described in Section 7. Second, the asymptotic refinement property of this
method is unknown for the unit-root model (ρ = 1) or general VAR models. Third,
future work is needed to prove the uniform consistency of the LP-wild bootstrap
discussed in Remark 3.2.
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A. PROOFS OF RESULT IN MAIN TEXT

A.1. Proof of Theorem 4.1

We prove a stronger result:

sup
|ρ|≤1

Pρ

(
sup

h≤hn

sup
|ρ̃|≤1

sup
x∈R

|Jn(x,h,P,ρ̃)− Jn(x,h,P̂n,ρ̂n)| > ε

)
→ 0 as n → ∞,

which is sufficient to conclude (16). The proof has three steps.

Step 1: Let En,1 = {g(ρ,n) n1/2 |ρ̂n −ρ| > M}, En,2 = {|n−1 ∑n
t=1 ũ2

t −σ 2| > σ 2/2}, and
En,3 = {n−1 ∑n

t=1 ũ4
t > K̃4} be events, where M and K̃4 are constants defined next. Fix

η > 0. We use Lemma B.1 to guarantee the existence of M, K̃4, and N0 = N0(η) such that
Pρ(En,j) < η/3 for j = 1,2,3, n ≥ N0 and ρ ∈ [−1,1]. Define En = Ec

n,1 ∩Ec
n,2 ∩Ec

n,3. By
construction Pρ(En) > 1−η for n ≥ N0 and for any ρ ∈ [−1,1].

Step 2: Conditional on the event En, we have |ρ̂n −ρ| ≤ Mn−1/2/g(ρ,n) for n ≥ N0 and
for any ρ ∈ [−1,1]. Therefore, conditional on the event En, we can use Lemma B.2 to
conclude the existence of M̃ and N1 ≥ N0 such that |ρ̂n| ≤ 1 + M̃/n for all n ≥ N1. Note
also that conditional on the event En, we have that distribution P̂n of the centered residuals
defined in (13) verifies Assumption B.1 taking K4 = M, σ = σ 2/2, and σ = 3σ 2/2, i.e.,
P̂n ∈ Pn,0, where Pn,0 is defined in Appendix B.2.

Step 3: We use Theorem B.1 taking M = M̃. This implies that for any ε > 0, there exists
N2 = N2(ε,η) ≥ N1 such that supx∈R |Jn(x,h,Pn,ρ)−	(x)| < ε/2, for any n ≥ N2, |ρ| ≤
1+ M̃/n, h ≤ hn ≤ n and hn = o(n), and Pn ∈ Pn,0. Conditional on En, we have P̂n ∈ Pn,0
due to Step 2, then

sup
h≤hn

sup
x∈R

∣∣∣Jn(x,h,P̂n,ρ̂n)−	(x)
∣∣∣ < ε/2, (A.1)

for any n ≥ N2, hn ≤ n, and hn = o(n). By (9), there exists N3 ≥ N2 such that

sup
h≤hn

sup
ρ̃∈[−1,1]

sup
x∈R

|Jn(x,h,P,ρ̃)−	(x)| < ε/2,

for any n ≥ N3, hn ≤ n, and hn = o(n). Therefore, conditional on the event En and using
the triangle inequality, we conclude that

sup
h≤hn

sup
ρ̃∈[−1,1]

sup
x∈R

∣∣∣Jn(x,h,P,ρ̃)− Jn(x,h,P̂n,ρ̂n)

∣∣∣ < ε,

for any n ≥ N3, hn ≤ n, and hn = o(n). Since Pρ(En) ≥ 1 − η for any ρ ∈ [−1,1], the
previous conclusion is equivalent to

sup
ρ∈[−1,1]

P

(
sup

h≤hn

sup
ρ̃∈[−1,1]

sup
x∈R

∣∣∣Jn(x,h,P,ρ̃)− Jn(x,h,P̂n,ρ̂n)

∣∣∣ < ε

)
≥ 1−η,

for any n ≥ N3, hn ≤ n, and hn = o(n), which concludes the proof of the theorem.
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A.2. Proof of Theorem 4.2

By Lemma B.3, for any ε > 0, there exists N0 = N0(ε) such that

Pρ

(
z1−α/2−ε/2 ≤ c∗

n(h,1−α) ≤ z1−α/2+ε/2
) ≥ 1− ε, (A.2)

for any n ≥ N0, ρ ∈ [−1,1] and any h ≤ hn ≤ n and hn = o(n). Assumptions 4.1 and 4.2
guarantee (9); therefore, there exist N1 ≥ N0 such that

Pρ

(|Rn(h)| ≤ z1−α/2+ε/2
) ≤ 1−α +2ε and Pρ

(|Rn(h)| ≤ z1−α/2−ε/2
) ≥ 1−α −2ε,

(A.3)

for any n ≥ N1, ρ ∈ [−1,1] and any h ≤ hn ≤ n and hn = o(n). Consider the derivation

Pρ

(
β(ρ,h) ∈ C∗

n(h,1−α)
) = Pρ

(|Rn(h)| ≤ c∗
n(h,1−α)

)
= Pρ

(|Rn(h)| ≤ c∗
n(h,1−α),c∗

n(h,1−α) > z1−α/2+ε/2
)

+Pρ

(|Rn(h)| ≤ c∗
n(h,1−α),c∗

n(h,1−α) ≤ z1−α/2+ε/2
)

≤ Pρ

(
c∗

n(h,1−α) > z1−α/2+ε/2
)+Pρ

(|Rn(h)| ≤ z1−α/2+ε/2
)

≤ ε +1−α +2ε,

where the last inequality follows by (A.2) and (A.3). Similarly, we obtain the inequality

Pρ

(|Rn(h)| ≤ z1−α/2−ε/2
) ≤ Pρ

(
β(ρ,h) ∈ C∗

n(h,1−α)
)+Pρ

(
c∗

n(h,1−α) < z1−α/2−ε/2
)
,

which implies that Pρ

(
β(ρ,h) ∈ C∗

n(h,1−α)
) ≥ 1−α −2ε − ε. We conclude that for any

n ≥ N1, ρ ∈ [−1,1] and any h ≤ hn ≤ n and hn = o(n), we have

|Pρ

(
β(ρ,h) ∈ C∗

n(h,1−α)
)− (1−α)| ≤ 3ε,

which completes the proof of Theorem 4.2.

A.3. Proof of Theorem 5.1

We first show that Jn(x,h,P,ρ) admits a valid Edgeworth expansion, that is,

sup
x∈R

∣∣∣∣∣∣Jn(x,h,P,ρ)−
⎛
⎝	(x)+

2∑
j=1

n−j/2qj(x,h,P,ρ)φ(x)

⎞
⎠

∣∣∣∣∣∣ = O
(

n−1−ε
)

(A.4)

for some ε ∈ (0,1/2), where qj(x,h,P,ρ) are polynomials on x with coefficients that are
continuous functions of the moments of P (up to order 12) and ρ. Furthermore, we have
q1(x,h,P,ρ) = q1(−x,h,P,ρ) and q2(x,h,P,ρ) = −q2(−x,h,P,ρ).

To show (A.4), we first use Lemma B.4 to approximate Jn(x,h,P,ρ) by J̃n(x,h,P,ρ),

sup
x∈R

|Jn(x,h,P,ρ)− J̃n(x,h,P,ρ)| = Dn +O
(

n−1−ε
)
,

for some ε ∈ (0,1/2), where

Dn = sup
x∈R

∣∣∣J̃n(x+n−1−ε,h,P,ρ)− J̃n(x−n−1−ε,h,P,ρ)

∣∣∣.
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Due to Theorem B.2, we can conclude Dn = O
(

n−1−ε
)

. We then use Theorem B.2 to

approximate J̃n(x,h,P,ρ) by a valid Edgeworth expansion,

sup
x∈R

∣∣∣∣∣∣J̃n(x,h,P,ρ)−
⎛
⎝	(x)+

2∑
j=1

n−j/2qj(x,h,P,ρ)φ(x)

⎞
⎠

∣∣∣∣∣∣ = O
(

n−3/2
)

.

Note that we can use Theorem B.2 since Assumption 5.1 implies Assumption B.2 and the
distribution J̃n(x,h,P,ρ) that we obtain from Lemma B.4 satisfies the required conditions.
We conclude (A.4) by triangular inequality. The polynomials qj that appear in (A.4) are the

polynomials in the Edgeworth expansion of J̃n(x,h,P,ρ).
Now, we show that Pρ (|Rn(h)| ≤ x) also admits an asymptotic approximation, that is,

sup
x∈R

∣∣∣Pρ (|Rn(h)| ≤ x)−
(

2	(x)−1+2n−1q2(x,h,P,ρ)φ(x)
)∣∣∣ = O

(
n−1−ε

)
, (A.5)

where q2(x,h,P,ρ) and ε ∈ (0,1/2) are defined in (A.4). Note that (24) follows from (A.5)
since we can write (24) as follows:∣∣Pρ

(|Rn(h)| ≤ z1−α/2
)− (1−α)

∣∣ = O
(

n−1
)
,

and the previous expression is what we obtain taking x = z1−α/2 in (A.5), where we used
that 1−α = 2	(z1−α/2)−1 holds by definition of z1−α/2.

To show (A.5), we first write

Pρ (|Rn(h)| ≤ x) = Jn(x,h,P,ρ)− Jn(−x,h,P,ρ)+ rn(x),

where rn(x) = Pρ (Rn(h) = −x). We then use (A.4) to approximate Jn(·,h,P,ρ) and the
properties of the polynomials qj(·,h,P,ρ) to obtain the following approximation:

sup
x∈R

∣∣∣Pρ (|Rn(h)| ≤ x)−
(

2	(x)−1+2n−1q2(x,h,P,ρ)φ(x)+ rn(x)
)∣∣∣ = O

(
n−1−ε

)
.

Finally, supx∈R rn(x) = O
(

n−1−ε
)

since rn(x) ≤ Pρ

(
Rn(h) ∈ (−x−n−1−ε, − x]

)
and

(A.4) holds. We use this in the previous expression to complete the proof of (A.5).

A.4. Proof of Theorem 5.2

The proof has two parts. In the first part, we assume that P(|�n| > C1n−1−ε) ≤ C2n−1−ε

for some constants C1 and C2, where �n = c∗
n(h,1 − α) − cn(h,1 − α). We use this

assumption to prove the theorem with an error of size O(n−(1+ε)) for any ε ∈ (0,1/2),
which is sufficient to conclude. In the second part, we prove the assumption of the first part.

Part 1: By (11), we have Pρ(β(ρ,h) ∈ C∗
n(h,1 − α)) = Pρ(|Rn(h)| ≤ c∗

n(h,1 − α)). We
can write this term as the sum of Pρ(|Rn(h)| ≤ cn(h,1 − α) + �n, |�n| ≤ C1n−1−ε)

and Pρ(|Rn(h)| ≤ cn(h,1 − α) + �n, |�n| > C1n−1−ε). We conclude Pρ(β(ρ,h) ∈
C∗

n(h,1−α)) is equal to

Pρ

(
|Rn(h)| ≤ cn(h,1−α)+�n, |�n| ≤ C1n−1−ε

)
+O

(
n−1−ε

)
.
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By (A.5) in the proof of Theorem 5.1, we have

Pρ

(
|Rn(h)| ≤ x+ zn−1−ε

)
= Pρ (|Rn(h)| ≤ x)+O

(
n−1−ε

)

for z = −C1,C1 and any x ∈ R. Since

Pρ

(
|Rn(h)| ≤ x+�n, |�n| ≤ C1n−1−ε

)
≤ Pρ

(
|Rn(h)| ≤ x+C1n−1−ε

)

and

Pρ

(
|Rn(h)| ≤ x+�n, |�n| ≤ C1n−1−ε

)
≥ Pρ

(
|Rn(h)| ≤ x−C1n−1−ε

)
+O

(
n−1−ε

)
,

we conclude Pρ(|Rn(h)| ≤ x+�n, |�n| ≤ n−1−ε) = Pρ (|Rn(h)| ≤ x)+O(n−1−ε). Taking
x = cn(h,1 − α) and using that Pρ (|Rn(h)| ≤ cn(h,1−α)) = 1 − α (due to part 2 in
Assumption 5.1), we conclude Pρ

(
β(ρ,h) ∈ C∗

n(h,1−α)
) = 1−α +O(n−1−ε).

Part 2: Fix ε ∈ (0,1/2). Define En,1 = {|ρ̂n| ≤ 1 − a/2}, En,2 = {n−1 ∑n
t=1 ũ2

t ≥ C̃σ },
En,3 = {n−1 ∑n

t=1 ũ4k
t ≤ M}, and En,4 = {max1≤r≤12 |n−1 ∑n

t=1 ũr
t − E[ur

t ]| ≤ n−ε},
where C̃σ and M are as in Lemma B.5. Define En = En,1 ∩ En,2 ∩ En,3 ∩ En,4. By
Lemma B.5 and Assumption 5.1, it follows that P(Ec

n) ≤ C2n−1−ε for some constant
C2 = C2(a,h,k,Cσ,ε,cu). Note that conditional on the event En, we can use Lemma B.4
for the distribution of the bootstrap root R∗

n(h). That is,

sup
x∈R

|Jn(x,h,P̂n,ρ̂n)− J̃n(x,h,P̂n,ρ̂n)| ≤ Dn +n−1−εC

⎛
⎝n−1

n∑
t=1

|ũt|k + ũ2k
t + ũ4k

t

⎞
⎠,

for some constant C, where

Dn = sup
x∈R

∣∣∣J̃n(x+n−1−ε,h,P̂n,ρ̂n)− J̃n(x−n−1−ε,h,P̂n,ρ̂n)

∣∣∣.
By Theorem B.3, there is an Edgeworth expansion for J̃n(x,h,P̂n,ρ̂n) conditional on En.
This implies Dn ≤ Cn−1−ε conditional on En, for some constant C. Similarly, conditional

on En, n−1 ∑n
t=1

(
|ũi|k + ũ2k

t + ũ4k
t

)
≤ C, for some constant C that depends on M. We

conclude that, conditional on En, Jn(x,h,P̂n,ρ̂n) has the following Edgeworth expansion:

sup
x∈R

∣∣∣∣∣∣Jn(x,h,P̂n,ρ̂n)−
⎛
⎝	(x)+

2∑
j=1

n−j/2qj(x,h,P̂n,ρ̂n)φ(x)

⎞
⎠

∣∣∣∣∣∣ ≤ Cn−1−ε.

The properties of qj(x,h,P̂n,ρ̂n) from Theorem B.3 and arguments from the proof of
Theorem 5.1 imply

sup
x∈R

∣∣∣Pρ

(
|R∗

n(h)| ≤ x | Y(n)
)

−
(

2	(x)−1+2n−1q2(x,h,P̂n,ρ̂n)φ(x)
)∣∣∣ ≤ Cn−1−ε .
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Recall that the coefficients of q2(x,h,P̂n,ρ̂n) are polynomial of the moments of P̂n (up to
order 12) and ρ̂n. Conditional on En, we know the moments of P̂n are close to the moments
of P: |n−1 ∑n

t=1 ũr
t −E[ur

t ]| ≤ n−ε for r = 1, . . . ,12. Therefore, conditional on En, we have

sup
x∈R

∣∣∣Pρ

(
|R∗

n(h)| ≤ x | Y(n)
)

−
(

2	(x)−1+2n−1q2(x,h,P,ρ)φ(x)
)∣∣∣ ≤ Cn−1−ε,

for some constant C. By (A.5) in the proof of Theorem 5.1, the previous inequality, and the
definition of c∗

n(h,1−α) and cn(h,1−α) as quantiles, we conclude that

|c∗
n(h,1−α)− cn(h,1−α)| ≤ C1n−1−ε

for some constant C1. This completes the proof of our assumption in part 1.

B. AUXILIARY RESULTS

B.1. Lemmas

Lemma B.1. Suppose Assumptions 4.1 and 4.2 hold. Then, for any fixed η > 0, there exist
constants M > 0, K̃4 > 0, and N0 = N0(η) such that:

1. Pρ

(
g(ρ,n) n1/2 |ρ̂n −ρ| > M

)
< η,

2. Pρ

(∣∣n−1 ∑n
t=1 ũ2

t −σ 2
∣∣ > σ 2/2

)
< η,

3. Pρ

(
n−1 ∑n

t=1 ũ4
t > K̃4

)
< η,

for n ≥ N0 and ρ ∈ [−1,1], where g(ρ,k) =
(∑k−1


=0 ρ2

)1/2

, ρ̂n is as in (12), and {ũt : 1 ≤
t ≤ n} are centered residuals as in (13).

Proof. See Section C.1 of the Supplementary Material. �

Lemma B.2. For any fixed M > 0. Suppose that for any ρ ∈ [−1,1], we have

|ρ̂n −ρ| ≤ M

n1/2g(ρ,n)
,

where g(ρ,k) =
(∑k−1


=0 ρ2

)1/2

. Then, there exist constants M̃ = M̃(M) > 0 and

N0 = N0(M) > 0 such that |ρ̂n| ≤ 1+ M̃/n for all n ≥ N0.

Proof. See Section C.2 of the Supplementary Material. �

Lemma B.3. Suppose Assumptions 4.1 and 4.2 hold. Fix ε > 0. Then, for any α ∈ (0,1)

and for any sequence hn ≤ n such that hn = o(n), we have

1. limn→∞ suph≤hn
supρ∈[−1,1] Pρ

(
z1−α/2−3ε/2 ≤ c∗

n(h,1−α) ≤ z1−α/2+3ε/2
) = 1,

2. limn→∞ suph≤hn
supρ∈[−1,1] Pρ

(
zα0−ε/2 ≤ q∗

n(h,α0) ≤ zα0+ε/2
) = 1,

where zα0 is the α0-quantiles of the standard normal distribution, c∗
n(h,1−α) is as in (15),

and q∗
n(h,α0) is the α0-quantile of R∗

b,n(h) defined in (14).

Proof. See Section C.3 of the Supplementary Material. �
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Lemma B.4. Suppose Assumption 5.1 holds. For any fixed h ∈ N and a ∈ (0,1). Then, for
any ρ ∈ [−1 + a,1 − a] and ε ∈ (0,1/2), there exist constant C = C(a,h,k,Cσ ) > 0 and a
real-valued function

T (·;σ 2,ψ4
4,ρ) : R8 → R,

such that:

1. T (0;σ 2,ψ4
4,ρ) = 0,

2. T (x;σ 2,ψ4
4,ρ) is a polynomial of degree 3 in x ∈ R8 with coefficients that are

continuously differentiable functions of σ 2, ψ4
4 , and ρ,

3. supx∈R |JT (x,h,P,ρ)− J̃n(x,h,P,ρ)| ≤ Dn +n−1−εC
(
E[|ut|k]+E[u2k

t ]+E[u4k
t ]

)
,

where σ 2 = EP[u2
1], ψ4

4 = EP[u4
1], k ≥ 8(1+ ε)/(1−2ε),

J̃n(x,h,P,ρ) ≡ Pρ

⎛
⎝(n−h)1/2T

⎛
⎝ 1

n−h

n−h∑
t=1

Xt;σ 2,ψ4
4,ρ

⎞
⎠ ≤ x

⎞
⎠,

and

Dn = sup
x∈R

∣∣∣J̃n(x+n−1−ε,h,P,ρ)− J̃n(x−n−1−ε,h,P,ρ)

∣∣∣.
The sequence {Xt : 1 ≤ t ≤ n−h} is defined in (B.4). Furthermore, the asymptotic variance
of (n−h)1/2T ((n−h)−1 ∑n−h

t=1 Xt;σ 2,ψ4
4,ρ) is equal to one.

Proof. See Section D.1 of the Supplementary Material. �

Lemma B.5. Suppose Assumption 5.1 holds. For any fixed h ∈ N and a ∈ (0,1). Then, for
any |ρ| ≤ 1−a and ε ∈ (0,1/2), there exist C = C(a,k,h,Cσ,ε,cu), C̃σ , and M such that:

1. P
(∣∣ρ̂n

∣∣ > 1−a/2
) ≤ Cn−1−ε,

2. P
(∣∣n−1 ∑n

t=1 ũr
t −E[ur

t ]
∣∣ > n−ε

) ≤ Cn−1−ε ,

3. P
(

n−1 ∑n
t=1 ũ2

t < C̃σ

)
≤ Cn−1−ε ,

4. P
(
n−1 ∑n

t=1 ũ4k
t > M

) ≤ Cn−1−ε ,

for fixed r ≥ 1, k ≥ 8(1+ ε)/(1−2ε), where ρ̂n and the centered residuals {ũt : 1 ≤ t ≤ n}
are defined in (12) and (13), respectively.

Proof. See Section D.2 of the Supplementary Material. �

B.2. Uniform Consistency

For any fixed M > 0, consider the sequence of models:

yn,t = ρnyn,t−1 +un,t, yn,0 = 0, and ρn ∈ [−1−M/n,1+M/n],

where {un,t : 1 ≤ t ≤ n} is a sequence of shocks with probability distribution denoted
by Pn. We use Pn and En to compute, respectively, probabilities and expected values of the
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sequence {(yn,t,un,t) : 1 ≤ t ≤ n}. This appendix presents results for a sequence of AR(1)
models.

We extend the notation introduced in Section 2 for the sequence of models. For fixed any
h < n, the coefficients in the linear regression of yn,t+h on (yn,t,yn,t−1) are defined by

(
β̂n(h)

γ̂n(h)

)
=

⎛
⎝n−h∑

t=1

xn,tx
′
n,t

⎞
⎠

−1 ⎛
⎝n−h∑

t=1

xn,tyn,t+h

⎞
⎠, (B.1)

where xn,t ≡ (yn,t,yn,t−1)′. And the HC standard error ŝn(h) is defined by

ŝn(h) ≡
⎛
⎝n−h∑

t=1

ûn,t(h)2

⎞
⎠

−1/2 ⎛
⎝n−h∑

t=1

ξ̂n,t(h)2ûn,t(h)2

⎞
⎠

1/2 ⎛
⎝n−h∑

t=1

ûn,t(h)2

⎞
⎠

−1/2

,

where ξ̂n,t(h) = yn,t+h − β̂n(h)yn,t − γ̂n(h)yn,t−1, ûn,t(h) = yn,t − ρ̂n(h)yn,t−1, and ρ̂n(h)

is defined as

ρ̂n(h) ≡
⎛
⎝n−h∑

t=1

y2
n,t−1

⎞
⎠

−1 ⎛
⎝n−h∑

t=1

yn,tyn,t−1

⎞
⎠. (B.2)

For any fixed positive constants K4 > 0 and σ ≥ σ > 0, we consider the next assumption
that imposes restrictions on the distribution of the shocks Pn.

Assumption B.1.

i) {un,t : 1 ≤ t ≤ n} are i.i.d. random variables with mean zero and variance σ 2
n .

ii) En[u4
n,t] < K4 and σ 2

n ∈ [σ, σ ].

We denote by Pn,0 the set of all distributions Pn that verify Assumption B.1. Theorem
B.1 below shows that the results presented in Xu (2023) and Montiel Olea and Plagborg-
Møller (2021) also hold for sequences of AR(1) models with i.i.d. shocks. We adapt their
proof and simplify some steps based on our stronger assumptions over the serial dependence
of the shocks. For instance, we assume only bounded 4th moments, while they assume
bounded at least 8th bounded moments. One remarkable difference is that we do not need
to assume a high-level assumption such as Assumption 4.2 since this can be verified using
Assumption B.1; we present the claim of this result in the next proposition.

Proposition B.1. Suppose Assumption B.1 holds. Then, we have

lim
K→∞ lim

n→∞ inf
Pn∈Pn,0

inf|ρn|≤1+M/n
Pn

⎛
⎝ g(ρ,n)−2 n−1

n∑
t=1

y2
n,t−1 ≥ 1/K

⎞
⎠ = 1,

where g(ρ,k) =
(∑k−1


=0 ρ2

)1/2

.

Proof. See Section C.4 of the Supplementary Material. �
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Theorem B.1. Suppose Assumption B.1 holds. Then, for any sequence hn ≤ n such that
hn = o(n), we have

sup
h≤hn

sup
Pn∈Pn,0

sup
|ρ|≤1+M/n

sup
x∈R

|Jn(x,h,Pn,ρ)−	(x)| → 0, as n → ∞,

where Jn(·,h,Pn,ρ) is as in (7) and 	(x) is the cdf of the standard normal distribution.

Proof. See Section C.5 of the Supplementary Material. �

Proposition B.2. Suppose Assumption B.1 holds. In addition, assume ρn = 1 − c1/n
and hn is such that hn ≤ n and hn/

√
n → c2 as n → ∞, where c1,c2 > 0. Then,

liminf
n→∞ Pn

(
[1/L,L] ⊆ C∗

la−ar(hn,1−α)
) ≥ 1−α

for any L > 1, where C∗
la−ar(h,1−α) is defined in Remark 4.5, and presented below:

C∗
la−ar(h,1−α) =

[
(β̂n(1)− ŝn(1)c∗

n(1,1−α))h, (β̂n(1)+ ŝn(1)c∗
n(1,1−α))h

]
.

Proof. See Section C.6 of the Supplementary Material. �

B.3. Asymptotic Refinements

Consider the sequence {zt : 1 ≤ t ≤ n} defined as

zt = ρzt−1 +ut, and z0 =
∞∑


=0

ρ
u−
,

where {u−
 : 
 ≥ 0} is an i.i.d. sequence with the same distribution as u1. This appendix
presents asymptotic expansion results for distributions of real-valued functions based on
sample averages of the sequence {Xt = F(zt−1,zt,zt+h) : 1 ≤ t ≤ n − h}, where F is a
function that we define below. Our approach in this section relies on the framework and
results presented in Götze and Hipp (1994) and Bhattacharya and Ghosh (1978).

Let F(· ;σ 2,V,ρ) : R3 → R8 be a function defined at (x,y,z) equal to(
(z−ρhy)(y−ρx), (y−ρx)2 −σ 2, ((z−ρhy)(y−ρx))2 −V, (z−ρhy)(y−ρx)3,

(y−ρx)x, (z−ρhy)x, (z−ρhy)2(y−ρx)x, (z−ρhy)(y−ρx)2x
)
, (B.3)

where σ 2 = σ 2(P) = EP[u2
1], V = V(ρ,h,P) = EP[ξ2

1 u2
1], ξ1 = ξ1(ρ,h) ≡ ∑h


=1 ρh−
u1+
,
and P is the distribution of the shocks that verified Assumption B.2 that we define below.
Using that ut = zt −ρzt−1, ξt = zt+h −ρhzt, and the definition of F in (B.3), we can write
the sequence of random vectors {Xt = F(zt−1,zt,zt+h;σ 2,V,ρ)) : 1 ≤ t ≤ n−h} as follows:

Xt = (ξtut,u
2
t −σ 2,(ξtut)

2 −V,ξtu
3
t ,utzt−1,ξtzt−1,ξ

2
t utzt−1,ξtu

2
t zt−1). (B.4)

We assume in this section that h ∈ N is fixed and |ρ| < 1. Moreover, for any fixed positive
constants C18 > 0 and Cσ > 0, we consider the next assumption that imposes restrictions
on the distribution of the shocks P.
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Assumption B.2.

i) {ut : 1 ≤ t ≤ n} is independent and identically distributed with E[ut] = 0.
ii) ut has a positive continuous density.

iii) E[u18
t ] ≤ C18 < ∞ and E[u2

t ] ≥ Cσ .

Assumption B.2 implies that the sequence {zt : 1 ≤ t ≤ n} is strictly stationary. By
construction, E[Xt] = 0 ∈ R8. Define

� = lim
n→∞Cov

⎛
⎝(n−h)−1/2

n−h∑
t=1

Xt

⎞
⎠. (B.5)

The asymptotic covariate matrix � is non-singular due to Lemma 2.1 in Götze and Hipp
(1994), Assumption B.2, and how we defined the sequence {Xt : 1 ≤ t ≤ n − h}. Let T :
R8 → R be a polynomial with coefficients depending on ρ, EP[u2

1], and EP[u4
1] such that

T (0) = 0. Define

J̃n(x,h,P,ρ) ≡ Pρ

⎛
⎝ (n−h)1/2

σ̃
T

⎛
⎝ 1

n−h

n−h∑
t=1

Xt

⎞
⎠ ≤ x

⎞
⎠, (B.6)

where σ̃ 2 is the asymptotic variance of (n−h)1/2T ((n−h)−1 ∑n−h
t=1 Xt). The next theorem

shows that the distribution J̃n(·,h,P,ρ) admits a valid Edgeworth expansion.

Theorem B.2. Suppose Assumption B.2 holds. Fix a given h ∈ N and a ∈ (0,1). Then,
for any ρ ∈ [−1+a,1−a], we have

sup
x∈R

∣∣∣∣∣∣J̃n(x,h,P,ρ)−
⎛
⎝	(x)+

2∑
j=1

n−j/2qj(x,h,P,ρ)φ(x)

⎞
⎠

∣∣∣∣∣∣ = O
(

n−3/2
)
,

where J̃n(x,h,P,ρ) is as in (B.6), 	(x) and φ(x) are the cdf and pdf of the standard normal
distribution, and q1(x,h,P,ρ) and q2(x,h,P,ρ) are polynomials on x with coefficients that
are continuous function of moments of P (up to order 12) and ρ. Furthermore, we have
q1(x,h,P,ρ) = q1(−x,h,P,ρ) and q2(x,h,P,ρ) = −q2(−x,h,P,ρ).

The proof of Theorem B.2 is presented in Section D.3 of the Supplementary Material. It
relies on Götze and Hipp (1983, 1994) to guarantee the existence of Edgeworth expansion
for sample averages and in the results of Bhattacharya and Ghosh (1978) to complete the
proof.

For the empirical distribution P̂n defined in (13) and the estimator ρ̂n defined in (12), we
consider the bootstrap sequence {z∗b,t : 1 ≤ t ≤ n} defined as

z∗b,t = ρ̂nz∗b,t−1 +u∗
b,t, and z∗b,0 =

∞∑

=0

ρ̂

nu∗

b,−
,

where {u∗
b,j : j ≤ n} is an i.i.d. sequence draw from the distribution P̂n. Define the sequence

of random vectors {X∗
b,t = F(z∗b,t−1,z

∗
b,t,z

∗
b,t+h;σ̂ 2

n ,V̂n,ρ̂n) : 1 ≤ t ≤ n − h}, where F(·) is

as in (B.3) and σ̂ 2
n ,V̂n,ρ̂n are defined using P̂n and ρ̂n.
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Theorem B.3. Suppose Assumption 5.1 holds. Fix a given h ∈ N and a ∈ (0,1). Then,
for any ρ ∈ [−1+a,1−a] and ε ∈ (0,1/2), there exist constants C1 and C2 such that

P

⎛
⎝sup

x∈R

∣∣∣∣∣∣J̃n(x,h,P̂n,ρ̂n)−
⎛
⎝	(x)+

2∑
j=1

n−j/2qj(x,h,P̂n,ρ̂n)φ(x)

⎞
⎠

∣∣∣∣∣∣ > C1n−3/2

⎞
⎠,

is lower than C2n−1−ε , where J̃n(x,h, · ,·) is as in (B.6) and X∗
b,t is replacing Xi, 	(x)

and φ(x) are the cdf and pdf of the standard normal distribution, and q1(x,h,P̂n,ρ̂n)

and q2(x,h,P̂n,ρ̂n) are polynomials on x with coefficients that are continuous function
of moments of P̂n (up to order 12) and ρ̂n. Furthermore, we have q1(x,h,P̂n,ρ̂n) =
q1(−x,h,P̂n,ρ̂n) and q2(x,h,P̂n,ρ̂n) = −q2(−x,h,P̂n,ρ̂n).

The proof of Theorem B.3 is presented in Section D.4 of the Supplementary Material. It
relies on Götze and Hipp (1983, 1994), Bhattacharya and Ghosh (1978), and Lemma B.5.
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