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ABSTRACT

The tail behavior of sums of dependent risks was considered by Wüthrich
(2003) and by Alink et al. (2004, 2005) in the case where the variables are
exchangeable and connected through an Archimedean copula model. It is
shown here how their result can be extended to a broader class of dependence
structures using multivariate extreme-value theory. An explicit form is given for
the asymptotic probability of extremal events, and the behavior of the latter
is studied as a function of the indices of regular variation of both the copula
and the common distribution of the risks.
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1. INTRODUCTION

Consider a homogeneous portfolio of d ≥ 2 insurance contracts, whose claim
amounts over a given period are treated as continuous positive random variables
X1,…, Xd with common cumulative distribution function F and associated sur-
vivor function F. Let S = X1 + ··· + Xd denote the aggregate claim. Following
Wüthrich (2003) and Alink et al. (2004, 2005), this paper considers the behavior
of P(S > t) for large values of t when the claims exhibit extreme-value behavior
and are dependent. As shown by these authors, the problem is of relevance to
risk managers and actuaries who wish to estimate, e.g., the Value-at-Risk (VaR)
associated with S.

By way of introduction, suppose that each Xi is regularly varying with index
– b < 0, i.e.,

Xi ! RV(–b ) +
i

i

>
>

,lim
X t

X xt
xP

P 1
t

=
" 3 b^

^

h

h
x > 0. (1)

This condition, also denoted F ! RV(–b ), is equivalent to saying that the Xi

belong to the domain of attraction of the Fréchet family of extreme-value
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distributions. It is verified, e.g., when the Xi are Pareto random variables with
F(t) = P(Xi > t) = (q/t) b for all t ≥ q > 0.

When the Xi are mutually independent, it is well known (see, e.g., Feller
1971, p. 279) that

i >
>

lim
X t
S xt

xP
P D

t
=

" 3 b^

]

h

g (2)

with D = d. At the other extreme, suppose that the Xi are comonotonic, i.e.,
X1 = ··· = Xd almost surely. In that case, P(S > xt) = P(Xi > xt/d ) and hence
relation (2) holds with D = d b.

More generally, it is of interest to determine the constant D > 0 for a vector
X = (X1,…, Xd) with arbitrary dependence structure. The latter can be repre-
sented alternatively in the form 

P(X1 ≤ t1, …, Xd ≤ td) = C{F (t1), …, F (td)}, (3)

or

P(X1 > t1, …, Xd > td) = D{F(t1), …, F(td)} (4)

for all t1, …, td ! � in terms of unique copulas C and D related to one another
via the Möbius decomposition formula, viz.

C (u1, …, ud) = ,D u1 1
, ...,

I

I d
I

1

- -
1

!] ^g h

! +

(5)

in which uI is a d-variate vector whose ith component equals ui or 0 according
as i ! I or not.

In their papers, Wüthrich (2003) and Alink et al. (2004, 2005) consider this
question in the special case where D is Archimedean, which means (see, e.g.,
Genest and MacKay 1986 or Nelsen 1999, Chapter 4) that there exists a func-
tion ƒ : [0,1] " [0, 3] with ƒ(1) = 0 such that for all u1, …, ud ! (0,1],

D (u1, …, ud) = ƒ–1{ƒ (u1) + ··· + ƒ(ud)}. (6)

In order that D be a distribution function, it is necessary and sufficient that
(–1)id iƒ–1(t) /dti > 0 for all i ! {1, …, d}; see, e.g., Joe (1997, p. 109). Refer to
Frees and Valdez (1998) or Cherubini et al. (2004) for applications of Archi-
medean copula models in actuarial science and finance.

Expressions for D are derived by Wüthrich (2003) and Alink et al. (2004,
2005) under conditions which amount to the assumption that ƒ(1/t) ! RV(a)
and the common margin F belongs to the Fréchet domain of attraction. As
they show, the constant D depends on F and ƒ only through a and b. They
reach similar conclusions when the Xi belong to the domain of attraction of
the Gumbel and Weibull extreme-value families.
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It will be shown here that the analysis of Wüthrich (2003) and Alink et al.
(2004, 2005) extends well beyond Archimedean dependence structures, and
that the simple formula they derive for D characterizes a well defined quantity
that arises naturally in multivariate extreme-value theory. Specifically, it will
follow from results of de Haan and Resnick (1977) that so long as the joint dis-
tribution of the Xi exhibits multivariate regular variation of index –b, one can
write

w w H dwD / /

�
d

b b b

1
1 1

d 1

g= + +
-

# ` ]j g (7)

in terms of a so-called spectral measure H defined on the set

�d – 1 = {w = (w1,…,wd ) : w1 + ··· + wd = 1} 1 [0,1]d.

The developments leading to this result are summarized in Section 2, along with
means of computing H from C. Various examples are given in Section 3. The
connection between the present results and those of Wüthrich (2003) and Alink
et al. (2004, 2005) is briefly examined in Section 4, and a few concluding
remarks are made in Section 5.

2. DERIVATION AND PROPERTIES OF D

As it turns out, formula (7) can be deduced from classical developments in
multivariate extreme-value theory. The result is possibly not new, but yields
interesting insights. Minimum background information required to understand
it is given below. Additional details about the general theory may be found, e.g.,
in Resnick (1987, 2004) or Mikosch (2004). In the sequel, operations on vectors
are understood to be made componentwise.

Consider a vector X = (X1,…, Xd ) of positive random variables with com-
mon cumulative marginal distribution, F. Following Wüthrich (2003) and Alink
et al. (2004, 2005), continuity of F is assumed to insure the uniqueness of the
copula associated with X. Contrary to these authors, however, the nature of
the association among the Xi is not specified at the outset.

For brevity, only the case where F belongs to the domain of attraction of
the Fréchet extreme-value family is treated in detail. It is thus assumed hence-
forth that the joint extremal behavior of the risks is such that X is multivariate
regularly varying of index – b < 0. This condition, denoted X ! MRVd (– b ),
implies that each of its components verifies (1).

2.1. Definition of D and connection to (2)

As illustrated, e.g., by Theorem 1 of Resnick (2004), the condition X ! MRVd (– b )
can be defined in many ways. In particular, it may be taken to mean that there
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exists a probability measure m, a function b : (0,3) " (0,3) that is unbounded
as t " 3, and a scalar D = D (b) > 0 such that

> , ,lim t X xb t X
X A

x
AP mD

t
! =

" 3 b]c ]g m g (8)

for any Borel set A 1 {x ! �+
d : |x| = 1}.

In this definition, |X| could be any fixed norm on �d, but the natural choice
here is |X| = X1 + ··· + Xd = S, so that m is concentrated on �d – 1. Remark 1 of
Resnick (2004) further implies that no generality is lost by taking b to be the
generalized inverse of g = 1/ F, viz.

: ,

, .

inf �
b t

x g x t t

t

if

if

1

0 0 1

! $ $

!
=]

]
g

g

6 @

"
*

,

With this particular choice of b, one gets P{Xi > b(t)} = 1/t, and the correspond-
ing constant D plays the same role as in (2), since

i i>
>

>
>

> ,lim lim lim
X t
S xt

X b t
S xb t

t S xb t
xP

P
P
P

P D
t t t

= = =
" " "3 3 3 b^

]

]

]
]

h

g

g

g
g

"

"
"

,

,
, (9)

where the last equality is obtained upon taking A = �d – 1 in (8).

2.2. A second expression for D

Introduce Y = g(X ) = (g(X1), …, g(Xd)) and observe that X and Y share the
same copula, since the latter is invariant by monotone increasing transforma-
tions of the marginals. Given that the vectors X and b(Y ) also have the same
distribution, the three events in the following chain of equivalence must have
the same probability:

i> > ,..., , : > .S t b t g t
Y t z z b g t z tW 0

i

d

d
d

i
i

d

1
1

1

+ + 3! !=
= =

Y! !^
]

] ^ ]h
g

g h g g6 ") , 3

Further note that by Proposition 0.8 on p. 22 of Resnick (1987),

F ! RV(–b ) + g = 1/F ! RV(b ) + b = g–1 ! RV(1/b ),

whence b{g(t)z}/t " z1/b as t " 3 . Therefore,

lim
t " 3

W(t) = W = {(z1, …, zd) ! [0,3)d : z1
1/b + ··· + zd

1/b > 1}.

Now it is a simple matter to check that X ! MRVd (–b ) + Y ! MRVd (–1), so
that in the light of Theorem 1 in Resnick (2004), there exists a (non-identically
zero) Radon measure n on the punctured space � = [0,3]d 5{0} such that
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lim
t " 3

tP(Y/t ! B) = n (B )

for any relatively compact set B 1 � whose boundary is n-negligible. The term
‘‘Radon measure’’ here simply means that n (B) < 3 whenever B is compact.
Letting x = 1 in (9), one may thus conclude that

i >
>

/ .lim lim lim
X t
S t

g t g t
Y t t Y t

P
P

P P nD W W W
t t t

! != = = =
" " "3 3 3^

]
]

]
] ] ]

h

g
g

g
g g g' 1 (10)

2.3. Derivation of (7) and computation of H

Formula (7) is a simple consequence of (10), given the spectral decomposition
of n. For, it follows, e.g., from Theorem 1 in Resnick (2004) that there exists a
positive measure H on �d – 1 such that

n � T –1 (dr,dw) = r–2drH (dw),

where T : �+
d 5 {0} " (0,3) ≈ �d – 1 denotes the continuous, bijective polar-coor-

dinate transformation

x = (x1,…, xd) 7 T (x) = ,x x
x

c m .

Note that

wi# H(dw) = 1, i ! {1,…, d} (11)

and that when |X| = X1 + ··· + Xd , one has also H (�d – 1) = d ; see, e.g., Beirlant
et al. (2004, p. 260). The key observation is that

T(W) = W* = {(r,w) ! [0,3) ≈ �d – 1 : r > (w1
1/b + ··· + wd

1/b )–b }

and hence from (10) that

D = n � T –1 (W*) = .r drH dw w w H dw/ /

�
d

b b b

W

2
1
1 1

*
d 1

g= + +
-

-

## ] ` ]g j g (12)

Now this conclusion, already given in (7), would be of little practical use,
except for the fact that n and H are connected via the representation theorem
of Pickands (1981), viz.

dc, , , ..., .maxS�x x x
w

x
w

H dwn n0 0
�

i
i

d

d1 1

1

d 1

= =
= -

#%_ e d ]i o n g6 6@ @ (13)

In particular, suppose that the probability measure H/d is absolutely continuous
on the interior of �d – 1, and let h/d denote the associated density with respect
to Lebesgue measure. It follows from Theorem 1 of Coles and Tawn (1991) that
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h(w) =
dw w

d

12 g 2
2

- n ( [0,w]c), w ! int(�d – 1). (14)

An alternative proof of this result is given by Beirlant et al. (2004, p. 263). The
same authors (ibid., p. 257) point out that the left-hand side can be derived from
the copula associated with X or Y through

n ([0,x]c) = ,lim C xt1 1
1

t
- -

" 3
b l' 1 x ! [0,3)d 5 {0}. (15)

The latter result is due to Huang (1992) who calls x 7 n ( [0,1/x]c) the ‘‘stable
tail dependence function.’’ Its computation is particularly easy when the domain
of attraction of C is known. For, if C * is the copula of the extreme-value dis-
tribution associated with X, then

n ( [0,x ]c) = – log{C *(e –1/x)}. (16)

The above developments may be summarized formally as follows.

Proposition 2.1. Assume that X !MRVd (–b) belongs to the domain of attraction
of an extreme value distribution with copula C *. Then (2) holds with D expressed
by (7) in terms of the spectral measure H. The latter can be determined explicitly
either from (13) and (16), or from (14) and (16).

2.4. Basic properties of D

Expression (7) shows how D depends explicitly on b and H, which characterize
the marginal and joint tail behavior of the Xi , respectively. Simple consequences
of this fact are stated next.

Proposition 2.2. For given H, D = D(b) is an increasing function such that D(1) = d,

d

d
...

,...,

.

lim max

lim

w w H dw and

d
w w H dw

b

b

D

D
�

�

b

b b

0
1

1

d

d

1

1

=

=

"

" 3

-

-

/d1

#

#

^ ^ ]

^
^ ]

h h g

h
h g

In the light of (13) and (16), one has also t{1 – C(1 – 1/t)} " – log{C *(1/e)} = D(0)
as t " 3.

Proof. That D(1) = d stems from (11). It is also a simple matter to check that
for fixed w ! �d – 1, l(b ) = (w1

1/b + ··· + wd
1/b )b is an increasing function of b,

whence the same holds for D upon integration. Indeed,

i i i i ilog logw w w w wl b� 0/ / / / /

i

d

i

d

i

d

i

d
b

b
b b b b1

1

1
1

1

1

1

1 1

1

$= -
=

-

= = =

! ! ! !^ e e e `h o o o j) 3
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if and only if the expression in curly brackets is positive, i.e., whenever x1

log(x1) + ··· + xd log(xd) ≤ x log(x) for arbitrary x1, …, xd ! (0,1) with x = x1 +
··· + xd. The latter inequality trivially holds. As for the limiting cases, they arise
from the fact that l (b ) /d b

" max(w1, …, wd) or (w1 ··· wd)1/d according as b " 0
or b "3, respectively. ¡

3. EXAMPLES

The computation of D from Proposition 2.1 is illustrated here in four simple
cases.

3.1. Asymptotic independence between the Xi

When X ! MRVd (–b ) belongs to the domain of attraction of independence,
one gets n ([0,x]c) = 1/x1 + ··· + 1/xd. In the light of Corollary 5.25 on p. 292 of
Resnick (1987), H then puts unit point mass on each of the vertices of �d – 1,
and hence D = d as it should be. This occurs, e.g., when the copula C in (3) is
differentiable at (1,…,1). The latter happens in particular for the multi-para-
meter extension of the Farlie-Gumbel-Morgenstern copula defined by

C (u1, …, ud) = j j ,u 1 1, ...,
< <

i j

k

j j dk

d

i

d

1121
k

k

1

1

+ -
,g# # ===

uq %!!% _ i* 4

with

j j ,1 0, ...,
< <

j

k

j j dk

d

111
k

k

1

1

$+
,g# # ==

q e%!!

for any choice of e1, …, ed in {–1,1}.

3.2. Asymptotic comonotonicity

When X ! MRVd (–b ) belongs to the domain of attraction of the Fréchet
upper bound distribution whose copula is C (u1, …, ud) = min(u1, …, ud ), one
gets n ([0,x]c) = max(1/x). In this case, Proposition 5.26 on p. 294 of Resnick
(1987) states that H puts a single mass of size d at the midpoint (1/d, …, 1/d)
! �d – 1. Consequently, D = d b, as mentioned in the Introduction.

3.3. Extreme-value copulas in the case d = 2

When d = 2, Pickands (1981) pointed out that the extreme-value attractor C *

can be written in the form
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C *(u1,u2) = exp log log
log

u u A u u
u

1 2
1 2

1
^

^

^
h

h

h
= G( 2

in terms of a dependence function A : [0,1] " [1/2,1] that is both convex and
such that max(t,1 – t) ≤ A(t) ≤ 1 for all t ! [0,1]. If X ! MRV2 (–b ), it is then
immediate from (16) that

n ([0,x]c) = .x x
x x

A x x
x

1 2

1 2

1 2

2+
+c m

Since the simplex �1 = {(w,1 – w) : w ! [0,1]} can be identified with the unit
interval, here H may be assimilated to a positive measure on [0,1]. Let A�
denote the right derivative at every w ! [0,1) and write A�(1) = limw " 1A�(w).
Following Beirlant et al. (2004, pp. 268-269), one then has

,
, ,

.
H w

A w w

w

if

if

�
0

1 0 1

2 1

!
=

+

=
^

]
h

g g
6

6

@ *

This implies that H has point masses at 0 and 1, viz.

H({0}) = 1 + A�(0), H({1}) = 1 – A�(1).

If A happens to be twice differentiable on (0,1), as in the mixed model of Tawn
(1988), one finds

D = 2 + A�(0) – A�(1) + w w1/ /b b b1 1

0

1
+ -# ] g$ . A�(w)dw.

As an illustration of Proposition 2.2, note that D(0) = 2A(1/2) when d = 2 and
X has an extreme-value copula. A similar result holds also for the class of
bivariate Archimax copulas introduced by Capéraà et al. (2000).

3.4. Archimedean copulas

Let X ! MRVd (–b) and suppose that its joint distribution is specified by (3)
and (6), where ƒ (1 – 1/t) ! RV(–a) for some a > 1. As implied by the work of
Genest and Rivest (1989), the copula C * = C *

a associated with the attractor is
then the Gumbel-Hougaard distribution with parameter a, viz.

C *
a (u1, …, ud) = exp a .logu

/a

i
i

d

1

1

-
=

!e o* 4 (17)

The value of a can easily be computed, e.g., for the copula families numbered
(4.2.x) for x = 1, …, 22 in Table 1 of Nelsen (1999). One gets a =3 for families
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x = 18, 19, and in examples x ! {2,4,6,12,14,15,21}, a coincides with the depen-
dence parameter noted r by Nelsen (1999). In the remaining examples, a = 1.

When C is Archimedean with generator ƒ(1 – 1/t) ! RV(–a), it follows from
(17) that

na([0,x]c) = ix
/

a
a

i

d

1

1
-

=

!e o .

In the light of (12), one can then conclude that

D = D1 (a,b ) = i i .w dw w h w dw/ /

� �
a a

i

d

i

d
b

b
b

b
1

1

1

1d d1 1

=
= =- -

H# #! !e ] e ]o g o g (18)

The last identity is justified whenever the probability measure Ha /d is absolutely
continuous; the corresponding density ha /d is then related to n through (14).
The latter is given by Coles and Tawn (1991, p. 381) as

ha(w1, …, wd) = i .ai w w1
/a

a
a

i

d

i
i

d

i

d d

1

1

1

1

1

1

-
=

-

=

- -
-

=

-

% % !] e eg o o) 3

4. CONNECTION WITH EARLIER WORK

As mentioned in the Introduction, the work of Wüthrich (2003) and Alink et
al. (2004, 2005) concerns the case where D is Archimedean. Since they model
their risks as random variables Y1, …,Yd taking negative values in case of a large
aggregate loss S� = Y1 + ··· + Yd, they are led to define

.lim
t

S t
P
P

D
t i #

#
=

-

-

" 3

�
Y^
]

h

g

The latter immediately reduces to (2) with x = 1 upon setting Xi = –Yi for all
i ! {1, …, d}. The survival function of X is then of the form (4) with D given
by (6). Using (5), one can thus see that the copula associated with X is

C(u1, …, ud) = ,z z u1 1
, ...,

I

I d
i

i I

1

1

- -
1 !

-! !] ^g h

!

)

+

3 (19)

with the convention that an empty sum vanishes.

4.1. Derivation of D

In order to compute D, one must first determine na([0,x]c) for arbitrary x ! (0,3)d.
Combining relations (15) and (19), one has
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c,

.

lim

lim

z z

z z

x t tx

x t tx

0 1 1 1

1 1 1

, ...,
a

t

I

I d ii I

ii

d
I

I t ii I

1

1

1 2

1

= - -

= - + -

"

"

3

3

1 !

$ !

-

=

-

n ! !

! ! !

_ ] b

] b

i g l

g l

R

T

S
SS

6

V

X

W
WW

@

!

)

)

+

3

3

Following Wüthrich (2003) and Alink et al. (2004, 2005), now suppose that
ƒ(1/t) ! RV(a) for some a > 0, whence ƒ–1(t) ! RV(–1/a). A standard regular-
variation argument then yields

i .lim z zt tx x1
/

a
a

t ii I i I

1
1

=
" 3 ! !

-
-

! !b el o) 3

Therefore,

na([0,x]c) = i .x1
, ...,

/
a

a

I

I d i I1

1

- -
1 !

-

! !] eg o

! +

Calling on (14), one thus gets

ha(w1, …, wd) = i .ai w w1
/a

a
a

i

d

i
i

d

i

d d

1

1

1

1

1

1

+
=

-

=

-

=

- -

% % !] e eg o o) 3

As a consequence, an expression ensues for

D = D2 (a,b ) = w w/ /

�
d

b b b1 1

d 1

g+ +
-

1# ` j ha (w1, ..., wd)dw1
... dwd (20)

which is equivalent to formula (2.3) of Alink et al. (2004). Note in passing that
the extreme-value copula
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associated with na through (16) is a multivariate version of the so-called Galam-
bos copula.

4.2. Basic properties of Di (a, b ) for i = 1,2

Theorem 2.5 of Alink et al. (2004) states basic properties of D2 (a, b ) in the
special case d = 2. Some of these facts, illustrated in Figure 1, extend to general
d ≥ 2 as well as to the constants D1 (a, b ) introduced in Section 3.4.
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Proposition 4.1. Let D1(a,b) and D2(a,b) be defined by equations (18) and (20),
respectively. For i = 1,2, one has Di(a,b) " Di(a,1) = d as b" 1 and Di(a,b)" db

as a "3.

Proof. That Di (a, b ) " Di (a,1) = d as b " 1 is a trivial consequence of the fact
that Ha(�d – 1) = d. To establish the second limit, observe that since na([0,x]c) "
max(1/x) when a"3, it is immediate from (18) that the limiting spectral mea-
sure H3 must concentrate all its mass, d, on the point (1/d, …, 1/d ). ¡

Remark 4.2. Alink et al. (2004) further show that if d = 2, then D2(a,b) is either
decreasing or increasing in a, according as b ≤ 1 or b ≥ 1. Arguments similar
to theirs can be used to check that the same is true of D1 (a,b ) also. In fact, it
would appear that these monotonicity properties hold for arbitrary d ≥ 2, but
a proof remains elusive.

5. DISCUSSION

This note has shown how results from multivariate extreme-value theory can
be used to extend the work of Wüthrich (2003) and Alink et al. (2004, 2005)
on the tail behavior of a sum S = X1 + ··· + Xd of dependent insurance claims.
While these authors concentrated their analysis on exchangeable risks connected
through an Archimedean copula, it was seen that their results readily extend
to arbitrary dependence structures.
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FIGURE 1: Graph of D1(a,b ) as a function of a for different choices of b when d = 2;
from top to bottom, b = 2, 1.5, 1, 0.5, 0.1.
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For the sake of brevity, the presentation was limited here to the case where X
exhibits multivariate regular variation, which implies that its components belong
to the domain of attraction of the Fréchet family of extreme-value distributions.
However, simple adaptations are possible for Gumbel and Weibull extreme-value
attractors.

The study of the parameter D initiated by Wüthrich (2003) and Alink et al.
(2004, 2005) has an obvious interest from an actuarial or financial perspective,
in that it allows for an approximation of very large quantiles of the distribution
of the aggregate S through those of the individual claims Xi via P(S > t) .
DP(Xi > t). In terms of Value-at-Risk, for example, the implication is that for
very small values of p ! (0,1),

VaRp (S ) = inf{t ! � : P(S > t ) ≥ p} . VaRp/D (Xi) .

This approximation would be handy, e.g., in situations where an estimate is
required for VaRp(S) but the analyst does not have enough data to circumscribe
the dependence structure of the components of X. Under the assumption that the
Xi are identically distributed, an estimate of VaRp(X1) = ··· = VaRp(Xd) would
presumably be easier to obtain and, coupled with different choices of D, this
would yield at least a range of values for VaRp (S ). A simple expression for D,
such as (7), coupled with an understanding of the basic properties of this con-
stant, would be advantageous in this context. See Alink et al. (2004) for a par-
tial study of diversification effects using the VaR, and Alink et al. (2005) for
parallel work on an alternative risk measure called expected shortfall.

Mathematically speaking, much remains to be done to understand the
properties of the constant D under various structures of dependence. However,
possibly the single most puzzling observation uncovered by the present inves-
tigation is the fact that for claims connected through an Archimedean family
of copulas, the value of D is identically equal to d, irrespective of the strength
of dependence, so long as Xi ! RV(–1) for every i ! {1, …, d}. Further work will
be required to delineate the exact circumstances under which this phenomenon
occurs, not to speak of its meaning and impact in applications.
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