The VIIth Catalogue of Galactic Wolf-Rayet stars

Karel A. van der Hucht

Space Research Oganization Netherlands, Sorbonnelaan 2, NL-3584 CA Utrecht, the Netherlands

Abstract

The VIIth catalogue of Galactic Population I Wolf-Rayet stars provides improved coordinates, spectral types and b, v, K photometry of known WR stars, and it adds 62 new WR stars to the previous WR catalogue. The present census of Galactic WR stars stands at 218, including 117 WN stars, 87 WC stars, $11 \mathrm{WN} / \mathrm{WC}$ stars and 3 WO stars.

1. Introduction

The first five catalogues of Galactic Population I Wolf-Rayet stars have been presented by Campbell (1884), Fleming (1912), Payne (1930), Roberts (1962), and Smith (1968), respectively. Those catalogues, listed in Table 1, were discussed by van der Hucht et al. (1981). With the appearance of the VIth Catalogue of Galactic Wolf-Rayet Stars (van der Hucht, Conti, Lundström \& Stenholm 1981, 159 stars) almost two decades ago, time and opportunity have come for a VIIth Catalogue, giving credit to new discoveries since 1981 of 62 new galactic WR stars, and bringing the number of known WR stars to 218.

Table 1. The catalogues for Galactic Population I Wolf-Rayet stars.
\(\left.$$
\begin{array}{l|l|r|l}\hline & \text { author(s) } & N_{\mathrm{WR}} & \text { reference } \\
\hline \text { I } & \text { Campbell, W.W. } & 55 & \begin{array}{l}\text { 1884, Astronomy \& Astrophysics 13, 448 } \\
\text { (Northfield, Minnesota: Goodsell Observatory) }\end{array}
$$

II \& Fleming, W.P. \& 108 \& 1912, Harvard College Obs. Ann. 56, 165\end{array}\right]\)| III |
| :--- |
| Payne, C.H. |
| IV |
| Roberts, M.S. |

Comprehensive general reviews on the WR phenomenon have been presented by, e.g., Abbott \& Conti (1987), van der Hucht (1992), Maeder \& Conti
(1994) and in the proceedings of IAU Symposium No. 143 (van der Hucht \& Hidayat 1991), in IAU Symposium No. 163 (van der Hucht \& Williams 1995), and in the $33^{r d}$ Liège International Astrophysics Colloquium (Vreux et al. 1996).

It is useful to discover and monitor WR stars since each one of them is a unique physics laboratory, a tracer of star-formation in spiral arms, and a representative of an evolved phase in the evolution of massive stars to be followed up, most likely, by a Type Ib/Ic supernova event (Woosley et al. 1993; Maeder \& Conti 1994; Langer \& Woosley 1996; García-Segura et al. 1996). And since statistically the next Galactic supernova is already overdue, it is of paramount importance to gather detailed knowledge about its potential progenitor.

2. Spectral classification

Spectral classification of WR stars, as well as of O-type stars, was reviewed extensively by van der Hucht (1996). As an extension of the late WN subtypes, L.J.Smith et al. $(1994,1995)$ and Crowther et al. (1995a) introduced the WN10-11 subtypes, following earlier, tentative, suggestions by Walborn (1977). Crowther et al. (1998) introduced a revised quantitative classification scheme for the carbon and oxygen sequences of the WR stars, based on excitation only. In that way they ignore possible abundance effects, of importance in appreciating the evolutionary status of WR stars.

3. Galactic Wolf-Rayet star inventory

The VIth Galactic Wolf-Rayet star inventory by van der Hucht et al. (1981) has been succeeded by:

- the deletion of three stars from the VIth Catalogue (Table 2);
- the renumbering of WR 29a to WR 30a;
- the deletion of three supposedly new WR stars (Table 3); and
- the discovery of 62 new WR stars (Tabel 4), which we include in the WR numbering system of van der Hucht et al. (1981), to compile the VIIth Catalogue of Galactic Wolf-Rayet Stars.

Table 2. Stars deleted from the VIth Galactic Wolf-Rayet Catalogue.

WR	other design.	$\begin{aligned} & \text { old } \\ & \text { type } \end{aligned}$	ref.	v	$b-v$	RA (1950)	Dec (1950)	new type	ref.
72	Sand 3	WC4pec	a	(14.24)	(0.21)	160312.6	$\begin{array}{llll}-35 & 37 & 10\end{array}$	PN [WOI]	d,e
99	DA 2	WN	b	(16.0)	...	173608.8	-28 1330	symbiotic	f
122	NaSt 1	WN10	c	15.4	1.5	184944.8	+005603	hidden WRE	g,h

References: (a) van der Hucht et al. 1981; (b) Allen 1979; (c) Massey \& Conti 1983; (d) Barlow \& Hummer 1982; (e) Crowther et al. 1998; (f) Mikolajewska et al. 1997; (g) van der Hucht et al. 1997; (h) Crowther \& Smith 1999 and these Proceedings.

Table 3. Stars found after 1981 but later rejected.

| star | suggested
 type | ref. | v | $b-v$ | RA (1950) | Dec (1950) | type | ref. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M1-13, PK 232-1 ${ }^{\circ} 1$ | WC | a | 10. | \ldots | 071901.2 | -180251 | PN | d,e |
| Pe1-7, PK 337+1 ${ }^{\circ} 1$ | [WC9]/WC9 | b | 16.43 | 1.12 | 162648.1 | -455622 | PN [WC9] | d,f |
| LSS 4005, WRA 1656 | WN11 | c | 14.05 | 1.12 | 171236.8 | -381222 | O[e]/B[e] | g |

References: (a) Gyul'budagyan et al. 1984; (b) Lundstrom \& Stenholm 1984; (c) Lundströ̈ \& Stenholm 1983; (d) van der Hucht \& Williams 1987; (e) Acker et al. 1992; (f) Tylenda et al. 1993; (g) van der Hucht et al. 1997.

The discovery of the 62 new WR stars comprises many efforts:

- Danks et al. (1983) discovered a faint new WC8 star with variable IR emission (WR 48a);
- Acker \& Stenholm (1990) reclassified the alleged planetary nebula Th3-28 (Thé 1964) as a new WN2.5-3 star (WR 93a);
- Panov \& Seggewiss (1990) found that the quadruple system WR 153 (GP Cep) harbours two WN+O systems, while L.J.Smith et al. (1990) classify the object WN6o/WCE+O6I;
- Cohen et al. (1991) classified IRAS 17380-3031 as a new WC8-9 star (WR 98a);
- Shara et al. (1991) discovered in a dedicated survey 13 new WR stars (11 WN and 2 WC);
- Crawford \& Barlow (1991) classified the emission-line star We 21 (Weaver 1974) as a new WN8 star (WR 47a);
- van Kerkwijk et al. $(1992,1993,1996)$ discovered that Cygnus X-3 has in the IR K-band a variable WN4-7 spectrum (WR 145a);
- Mereghetti et al. (1994) identified the X-ray source 1E 1024.0-5732 with the emission-line star Th35-42 (Thé 1966) and classified it as WN6+O (WR 21a);
- Hofmann et al. (1995) resolved with speckle observations four individual WN stars in WR 43, the central object of cluster and H iI region NGC 3603, three of which were confirmed by Drissen et al. (1995);
- Smith et al. (1994) reclassified two LBV or WN/Of-type objects into WN11 subtypes;
- Krabbe et al. (1995) discovered six, Blum et al. (1995) discovered one, and Figer et al. $(1995,1996,1999$ a) discovered eight new WR stars near the Galactic Center;
- Najarro et al. (1997) reclassified GCIRS 7W, one of the WN9/Ofpe stars of Krabbe et al. (1995), as WN9-10 (WR 101c);
- Shara et al. (1999) continued their dedicated optical survey to discover 18 new WR stars (12 WN (including the known We 21, Crawford \& Barlow 1991), 5 WC, 1 WN/WC);
- Pereira et al. (1998 and these Proceedings) discovered one new WN/WC star (WR 7a);
- Blum et al. (1999) discovered one new WN star (WR 121a) in the main stellar cluster of the giant HiI region W 43 (W 43 \#1);
- Bohannan \& Crowther (1999) reclassified the extreme Of stars HD 152408 (O8:Iafpe) and HD 152386 (O6:Iafpe) as WN9ha (WR 79a, WR 79b);
- Figer et al. (1999b) found very close to FMM96-3 another so-called < WC8 star (WR 102e).

Near the Galactic Center many more new WR stars may be found, e.g., among 14 Galactic Center stars resolved in NHSSK-17 (Nagata et al. 1993, 1995); among 13 Galactic Center stars (Of or WNL) in the cluster G $012+0.02$ near the Arched Filaments (Cotera et al. 1996, 1999); among the other 10 WN9/Ofpe stars found by Krabbe et al. (1995, see also Najarro et al. 1997); among the five extremely dusty enigmatic Quintuplet-proper stars noted by Figer et al. $(1996,1999$ a). In addition, many more new WR stars may be found in star-formation regions like W49A, where De Pree et al. (1997) note that $\mathrm{W} 49 \mathrm{~A} / \mathrm{M}$ is the more obvious one of thirteen 3.6 cm -continuum sources with strong He 92α emission. Narrow-band near-IR surveys for detecting more WR

Table 4. New Galactic Wolf-Rayet stars since 1981, discoveries and/or re-classifications.

new WR number(s)	other designations(s)	type(s)	reference(s)
7 a	MP 1, SPH 2	WN/C	Pereira et al. 1998, these Proceeding
$\begin{aligned} & 19 \mathrm{a}, 20 \mathrm{ab}, 31 \mathrm{c}, 35 \mathrm{ab}, \\ & 38 \mathrm{ab}, 42 \mathrm{abcd}, 44 \mathrm{a} \end{aligned}$	SMSP series	$11 \mathrm{WN}, 2 \mathrm{WC}$	Shara et al. 1991
21 a	Th35-42 $=1 \mathrm{E}$ 1024.0-5732	WN6	Mereghetti et al. 1994
31 ab	AG Car, He3-519	2 WN11	L.J.Smith et al. 1994
43 abc	WR 43 in NGC 3603	3 WN	Drissen et al. 1995
$45 \mathrm{abc}, 46 \mathrm{a}, 47 \mathrm{bc}, 48 \mathrm{bc}$ 56a,62ab,68a,70a, $75 \mathrm{ab}, 102 \mathrm{j}, 107 \mathrm{a}$	SMSPN series	$11 \mathrm{WN}, 5 \mathrm{WC}$, 1 WN/WC	Shara et al. 1998
47a	We $21=$ SMSPN 5	WN8	Crawford \& Barlow 1991
48a	Danks 1	WC8	Danks et al. 1983
79 ab	HD 152408, HD 152386	WN9ha	Bohannan \& Crowther 1999
93a	Th3-28 $=$ PK 359+03 1	WN2.5-3	Acker \& Stenholm 1990
98 a	IRAS 17380-3031	WC8-9	Cohen et al. 1991
101a	BSD 1	WC9	Blum et al. 1995
101 bcdefgh	Kr series	5 WC9, 2 WN9-10	Krabbe et al. 1995; Najarro et al. 1997
102bf	FMM95 series	WN9, WC9	Figer et al. 1995
102acdghi	FMM96 series	$3 \mathrm{WN}, 3 \mathrm{WC}$	Figer et al. 1996, 1999a
102e	FMM99-1	WC	Figer et al. 1999b
121a	W 43\#1	WN7	Blum et al. 1998
145a	Cyg X-3	WN4-7	van Kerkwijk et al. 1992
153ab	WR 153	$2 \times \mathrm{WN}+\mathrm{O}$	Panov \& Seggewiss 1990

stars are being carried out (e.g., Blum \& Damineli, these Proceedings) or are being planned (Shara 1998, priv. comm.).

The new discoveries are summarized in Table 4. This brings the number of known Galactic WR stars to 218, comprising 117 WN types, 11 WN/WC types, 87 WC types, and 3 WO types. The WR subtype distribution is listed in Table 5.

The format of the VIIth Galactic WR Catalogue is:
column 1: running number from the VIth Catalogue of Galactic Wolf-Rayet Stars and intermediate numbers;
column 2: star name;
columns $3,4,5$: cross-correlation of various catalogue numbers;
column 6: J2000.0 equatorial coordinates;
column 7: galactic coordinates;
column 8: correlation with open clusters and OB associations;
column 9: correlation with $\mathrm{H}_{\text {II }}$ regions, ring nebulae, and H I bubbles;
column 10: source for finding charts;
column 11: spectral classification;
column 12: visual $v b$ photometry ;
column 13: K-band infrared photometry; and
column 14: period or periodicity.
The VIIth Catalogue of Galactic Wolf-Rayet Stars will be submitted to New Astronomy Reviews.

Acknowledgments. It is a pleasure to acknowledge encouragement and support by Bob Blum, Peter Conti, Angela Cotera, Paul Crowther, Molly S. Denninghoff Stelling, Andreas Eckart, Don Figer, Alfred Krabbe, Tony Moffat, Virpi Niemela, Mike Shara, Debra Wallace, and Peredur Williams.

Table 5. Subtype distribution of the known Galactic Wolf-Rayet stars, progress in one decade.

subtype	number of WR stars in HH88					number of WR stars in this study					
	single		double		total	single		double			total
		+a	SB1	SB2			+a	SB1	SB2	B	
WN2	1				1	1					1
WN3	4	1		1	6	2		2	1		5
WN4	7		1	3	11	13		3	2		18
WN4.5	5			1	6						
WN5	3		1	2	6	19		1	5	2	27
WN6	13		5	3	21	12	6	3	2		23
WN7	12	4	3		19	11	3		2		16
WN8	8		2		10	7	1	7			15
WN9	1				1	9	1				10
WN11						2					2
subtotal WN	54	5	12	10	81	76	11	16	12	2	117
WN/WC	3		1		4	6		3	2		11
WC4	4			1	5	4			1		5
WC5	10			1	11	8		1	1		10
WC6	10	2		2	14	8	1	1	3		13
WC7	6	1		5	12	7	2		6		15
WC8	7			2	9	10	1		3		14
WC9	16		1	,	18	26		1	3		30
WC10	1				1						
subtotal WC	54	3	1	12	70	63	4	3	17		87
WO1	1				1	1					1
WO2	1				1	1.					1
WO5									1		1
subtotal WO	3				3	2			1		3
grand total	113	8	14	22	157	147	15	22	32	2	218

Note: HH88 : van der Hucht et al. 1988

References

Abbott, D.C., Conti, P.S. 1987, ARAA 25, 113
Acker, A., Stenholm B. 1990, A\&AS 86, 219
Acker, A., Ochsenbein, F., Stenholm, B., Tylenda, R., Marcout, J., Schohn, C. 1992, Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Garching: ESO)
Allen, D.A. 1979, Observatory 99, 83

Barlow, M.J., Hummer, D.G. 1982, in: C. de Loore \& A.J. Willis (eds.), Wolf-Rayet Stars: Observations, Physics, Evolution, Proc. IAU Symp. No. 99 (Dordrecht: Reidel), p. 387
Blum, R.D., Sellgren, K., DePoy, D.L. 1995, ApJ 440, L17
Blum, R.D., Damineli, A., Conti, P.S. 1999, AJ 117, 1392
Bohannan, B., Crowther, P.A. 1999, ApJ 511, 374
Campbell, W.W. 1884, Astronomy \mathcal{G} Astrophysics 13, 448 (Northfield, Minn: Goodsell Observatory)
Cohen, M., van der Hucht, K.A., Williams, P.M., Thé, P.S. 1991, ApJ 378, 302
Conti, P.S. 1988, in: P.S. Conti \& A.B. Underhill (eds.), O Stars and Wolf-Rayet Stars, NASA SP-497, p. 81
Conti, P.S., Massey, P. 1989, ApJ 337, 251
Conti, P.S., Massey, P., Garmany, C.D. 1989, ApJ 341, 113
Conti, P.S., Massey, P., Vreux, J.-M. 1990, ApJ 354, 359
Cotera, A.S., Erickson, E.F., Colgan, S.W.J., Simpson, J.P., Allen, D.A., Burton, M.G. 1996, ApJ 461, 750
Cotera, A.S., Simpson, J.P., Erikson, E.F., Colgan, S.W.J., Burton, M.G., Allan, D.A. 1999, AJ 510, 747
Crawford, I.A., Barlow, M.J. 1991, A\&A 251, L39
Crowther, P.A., Smith, L.J., Willis, A.J. 1995a, A\&A 293, 172
Crowther, P.A., Smith, L.J., Willis, A.J. 1995d, A\&A 304, 269
Crowther, P.A., De Marco, O., Barlow, M.J. 1998, MNRAS 296, 367
Crowther, P.A., Smith, L.J. 1999, MNRAS in press
Danks, A.C., Dennefeld, M., Wamsteker, W., Shaver, P.A. 1983, A\&A 118, 301
De Pree, C.G., Mehringer, D.M., Goss, W.M. 1997, ApJ 482, 307
Drissen, L., Moffat, A.F.J., Walborn, N.R., Shara, M.M. 1995, AJ 110, 2235
Fleming, W.P. 1912, Harvard College Obs. Ann. 56, 165
Figer, D.F., McLean, I.S., Morris, M. 1995, ApJ 447, L29
Figer, D.F., Morris, M., McLean, I.S. 1996, in: R. Gredel (ed.), The Galactic Center, ASP-CS102, 263
Figer, D.F., McLean, I.S., Morris, M. 1999a, ApJ 514, 202
Figer, D.F., McLean, I.S., Morris, M. 1999b, in preparation
García-Segura, G., Mac Low, M.-M., Langer, N. 1996, A\&A 316, 133
Gyul'budagyan, A.L., Gasparyan, K.G., Natsvlishvili, R.Sh. 1984, Astron. Tsirk. No. 1348, p. 7
Hofmann, K.-H., Seggewiss, W., Weigelt, G. 1995, A\&A 300, 403
van der Hucht, K.A., Conti, P.S., Lundström, I., Stenholm, B. 1981, SSR 28, 227
van der Hucht, K.A., Williams, P.M. 1987, Observatory 107, 270
van der Hucht, K.A., Hidayat, B., Admiranto, A.G., Supelli, K.R., Doom, C. 1988, A\&A 199, 217
van der Hucht, K.A., Hidayat, B. (eds.) 1991, Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies, Proc. IAU Symp. No. 143 (Dordrecht: Kluwer) van der Hucht, K.A. 1992, The A\&A Rev. 4, 123
van der Hucht, K.A., Williams, P.M. (eds.) 1995, Wolf-Rayet Stars: Binaries, Colliding Winds, Evolution, Proc. IAU Symp. No. 163 (Dordrecht: Kluwer)
van der Hucht, K.A. 1996, in: J.-M. Vreux, A. Detal, D. Fraipont-Caro, E. Gosset \& G. Rauw (eds.), Wolf-Rayet Stars in the Framework of Stellar Evolution, Proc. $33^{\text {rd }}$ Liège Int. Astroph. Coll. (Liège: Univ. of Liège), p. 1
van der Hucht, K.A., Williams, P.M., Morris, P.W., van Genderen, A.M. 1997, in: A. Nota \& H. Lamers (eds.), Luminous Blue Variables: Massive Stars in Transition, ASP-CS 120, 211
van Kerkwijk, M.H., Charles, P.A., Geballe, T.R., King, D.L., Miley, G.K., Molnar, L.A., van den Heuvel, E.P.J., van der Klis, M., van Paradijs, J. 1992, Nature 355, 703
van Kerkwijk, M.H. 1993, A\&A 276, L9
van Kerkwijk, M.H., Geballe, T.R., King, D.L., van der Klis, M., van Paradijs, J. 1996, A\&A 314, 521
Kingsburgh, R.L., Barlow, M.J., Storey, P.J. 1995, A\&A 295, 75
Krabbe, A., Genzel, R., Eckart, A., Najarro, F., Lutz, D., Cameron, M., Kroker, H., Tacconi-Garman, L.E., Thatte, N., Weitzel, L., Drapatz, S., Geballe, T., Sternberg, A., Kudritzki, R. 1995, ApJ 447, L95
Langer, N., Woosley, S.E. 1996, in: C. Leitherer, U. Fritze-von Alvensleben, J. Huchra (eds.), From Stars to Galaxies. The Impact of Stellar Physics on Galaxy Evolution, ASP-CS 98, 220
Lundström, I., Stenholm, B. 1983, in: Proc. Nordic Astron. Meeting (Oslo, 1983)
Lundström, I., Stenholm, B. 1984, ESO Messenger No. 37, p. 35
Maeder, A., Conti, P.S. 1994, ARAA 32, 227
Massey, P., Conti, P.S. 1983, PASP 95, 440
Massey, P., Grove, K. 1989, ApJ 344, 870
Mereghetti, S., Belloni, T., Shara, M., Drissen, L. 1994, ApJ 424, 943
Mikolajewska, J., Acker, A., Stenholm. B. 1997, A\&A 327, 191
Najarro, F., Krabbe, A., Genzel, R., Lutz, D., Kudritzki, R.P., Hillier, D.J. 1997, A\&A 325, 700
Nagata, T., Hyland, A.R., Straw, S.M., Sato, S., Kawara, K. 1993, ApJ 405, 501
Nagata, T., Woodward, C.E., Shure, M., Kobayashi, N. 1995, AJ 109, 1676
Niemela, V.S. 1991, in: K.A. van der Hucht \& B. Hidayat (eds.), Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies, Proc. IAU Symp. No. 143 (Dordrecht: Kluwer), p. 201
Panov, K.P., Seggewiss, W. 1990, A\&A 222, 117
Payne, C.H. 1930, The Stars of High Luminosity, Harvard Obs. Monographs No. 3, p. 19

Pereira, C.B., Machado, M.A.D., Landaberry, S.J.C., da Conceição, F. 1999, A\&A 338, L91
Polcaro, V.F., Rossi, C., Viotti, R., Norci., L. 1997, A\&A 325, 178
Roberts, M.S. 1962, AJ 67, 79
Shara, M.M., Moffat, A.F.J., Smith, L.F., Potter, M. 1991, AJ 102, 716
Shara, M.M., Moffat, A.F.J., Smith, L.F., Potter, M., Niemela, V.S, Lamontagne, R. 1999, AJ in press
Smith, L.F. 1968, MNRAS 138, 109
Smith, L.F., Shara, M.M., Moffat, A.F.J. 1990, ApJ 358, 229
Smith, L.F., Shara, M.M., Moffat, A.F.J. 1996, MNRAS 281, 163
Smith, L.J., Crowther, P.A., Prinja, R.K. 1994, A\&A 281, 833
Smith, L.J., Crowther, P.A., Willis, A.J. 1995, A\&A 302, 830

Thé, P.S. 1964, Contr. Bosscha Obs. No. 26
Thé, P.S. 1966, Contr. Bosscha Obs. No. 35
Torres, A.V., Conti, P.S., Massey, P. 1986, ApJ 300, 379
Tylenda, R., Acker, A., Stenholm, B. 1993, A\&AS 102, 595
Vreux, J.-M., Detal, A., Fraipont-Caro, D., Gosset, E., Rauw, G. (eds.) 1996, WolfRayet Stars in the Framework of Stellar Evolution, Proc. $33^{r d}$ Liège Int. Astroph. Coll. (Liège: Univ. of Liège)
Walborn, N.R. 1977, ApJ 215, 53
Weaver, W.B. 1974, ApJ 189, 263
Woosley, S.E., Langer, N., Weaver, T.A. 1993, ApJ 411, 823

Discussion

Massey: Could you comment on the completeness issue?
van der Hucht: Shara et al. $(1991,1998)$ claim that 25% of the number of the WR stars in the solar neighborhood is still hiding.
Vanbeveren: The observed period distribution of WR+OB binaries shows a gap between 100 days and >1000 days. Do you think that this is due to observational bias, indicating that there is still a significant number of WR+OB binaries to be discovered?
van der Hucht: Yes, observational bias indeed.
Shara: A comment: Karel has been one of the strongest supporters of our decade-long survey for new Galactic WR stars. He accurately refers to this as 'the work of monks'. In fact, we performed photometry on 100000000 stars to find 1000 candidates, and eventually confirm 31 new WR stars. This will surely be supplanted by near-IR surveys in the next decade.
van der Hucht: Thanks again, Mike \& co-workers!
Peimbert: To obtain the number ratio of WR stars to O stars we need to know the completeness factors for WR stars and O stars. Can you comment on this problem?
Garmany, referred to by van der Hucht: Although we went through this exercise a long time ago, I think the work in Magellanic Cloud associations as well as recent work on Galactic associations (Massey et al.) has shown how incomplete the early catalogues were. In addition, the Hipparcos distances, to OB associations raise the possibility that the entire M_{V} scale for galactic OB stars needs re-examination.
Walborn: As we focus on WR stars as a class, and even statistically, it's good to keep in mind that the class contains qualitatively different kinds of objects which display the WR phenomena for different physical reasons. At IAU Symposium No. 49 in 1971 it was still possible to hold the view that all WR stars were likely due to mass transfer in binary systems. Jacques mentioned that about 10% of LMC WRs are known SB1/2 objects. How many of the current Galactic WR census are known short-period binaries such that mass transfer may have caused or enhanced their WR phenomena? Allan mentioned that HD 93131 has moving narrow-absorbtion components in its wind profiles, similar to what is seen in many 0 stars; it's important to note that this star is a high-luminosity WNL type in a giant $\mathrm{H}_{\text {II }}$ region, which subclass is most directly related to massive (single) O stars in terms of its origin. Finally, Allan also reported that 15% of all WRs observed for line de-polarisation show evidence of asymmetrical winds. What other properties, if any, does this effect correlate with, e.g., subclass, line-width, line-strength (which are independent variables in WR spectra)? Or binarity?
van der Hucht: The percentage of WR binaries in the Galaxy in the volume limited sample with $R<2.5 \mathrm{kpc}$ stands at about 50%.

