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Abstract

This article analyzes the optimal allocation of losses via a Central Clearing Counterparty
(CCP) in the presence of counterparty risk. A CCP can hedge this risk by mutualizing losses
among its members. This protection, however, weakens members’ incentives to manage
counterparty risk. Delegating members’ risk monitoring to the CCP alleviates this tension in
large markets. To discipline the CCP at minimum cost, members offer the CCP a junior
tranche and demand capital contribution. Our results endogenize key layers of the default
waterfall and deliver novel predictions on its composition, collateral requirements, and CCP
ownership structure.

I. Introduction

To decrease counterparty risks in over-the-counter (OTC) markets, regulators
mandated the clearing of many OTC contracts via Central Counterparties (CCPs)
following the 2008 global financial crisis.1 For instance, the fraction of centrally
cleared interest rate derivatives rose to 60% in 2018 from 15% in 2009 (FSB
(2018)).2 CCPs manage counterparty risks by setting collateral requirements,
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1In the U.S., Section 723 of the Dodd–Frank Act mandates central clearing of interest rate swaps and
credit default swaps. In the EU, the European Market Infrastructure Regulation (EMIR) regulation
introduced similar requirements. See Spatt (2017) for an in-depth discussion of the regulatory changes in
swaps and derivative markets in the U.S.

2Another example is the Euro interbank, repurchase agreements (repos) market where central
clearing has become the norm. Mancini, Ranaldo, and Wrampelmeyer (2015) show that from 2009 to
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monitoring clearing member’s financial soundness, and mutualizing losses by
maintaining a default fund. This mutualization process allocates losses imposed
by a defaulting member to the CCP itself and to other members according to a
prespecified “default waterfall.” Regulators view the waterfall design as critical to
financial stability (Yellen (2013), FSB (2020)). However, CCPs and their members
often disagree about the size and priority of their contributions to the default fund
(ABN-AMRO,3 Allianz, Barclays, and BlackRock (2020), CCP124 (2021)).

We propose a model to analyze these design aspects of CCPs. Risk-averse
investors match in pairs to trade, subject to idiosyncratic counterparty default risk.
Due to default risk, investors’ transfers are credible only if they are sufficiently
backed by cash collateral and if investors are creditworthy. Investors’ creditwor-
thiness improves when their counterparty exerts due diligence to ascertain their
financial soundness, which requires a monitoring effort.

Central clearing via a CCP can add value in two ways. First, the CCP can
mutualize losses between investors (or members) due to idiosyncratic counterparty
risk. The CCP then channels its own contributions and those of solvent members to
members with defaulted counterparties, similar to a default fund in practice. Sec-
ond, members can delegate counterparty monitoring to the CCP.5 Our key innova-
tion is to model central clearing as a multilateral contracting problem in which
investors collectively act as the principal and the CCP as an agent. Our analysis of
the optimal contract sheds light on the lossmutualizationmechanism and the design
of CCPs’ incentives.

With these basic ingredients, we achieve three main results. First, we compare
central clearingwith bilateral tradingwhere transfers can occur only between paired
investors. We find that central clearing dominates only when the cost of collateral
is intermediate and market size is large. Second, under similar conditions, it is
efficient to delegate all monitoring tasks to a CCP. Third, such a CCP holds a junior
equity tranche in the default waterfall to align its incentives, and contributes capital
at members’ request. The equilibrium level of CCP capital is an outcome of
bargaining between the CCP and its members, not necessarily a measure of a CCP’s
incentive. Overall, our results have implications for the design of the default
waterfall, the determinants of CCP capital, and the CCP ownership structure.

Our results arise due to two fundamental frictions. The first is a moral hazard
problem that limits the pledgeability of investors’ future cash flows. As in Biais,
Heider, andHoerova (2016), investorswould shirk for private benefits and default if
they expect to make a large payment to other investors and the CCP. The shirking
metaphor is meant to capture investors’ under-investment in risk management
or risk-shifting behavior that would expose their counterparties to “wrong-way

2013, the share of CCP-based repos increased from 42% to 71%, whereas bilateral repos declined from
50% to 19%.

3ABN-AMRO is a private bank.
4CCP12 is a global association of 37 members who operate more than 60 individual CCPs.
5A CCP can also use its capital to provide insurance. Our analysis shows, however, that collateral

dominates capital as an insurance tool, unless capital is cheaper than collateral. This restrictive condition
implies that CCPs’ role as insurance providers is limited. Our finding resonates with the view expressed
by regulators andCCPs that CCPs should primarily pool risk, not insure it (Coeuré (2015), LCH (2015)).
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risk.”6 Investors can increase their payment capacity by liquidating their asset for
cash collateral, which is fully pledgeable but has lower returns. Asset pledgeability
can also be improved by counterparty monitoring, but monitoring requires a costly
and unobservable effort. This is the second friction, which implies that monitoring
needs to be incentivized.

To clearly analyze the effects of each friction in ourmodel, we proceed in three
steps. We first study the frictionless benchmark in which investors’ asset is fully
pledgeable. Then, we add the limited pledgeability friction and, finally, the friction
of unobservable monitoring.

In the frictionless benchmark, investors use either collateral or loss mutuali-
zation via the CCP to mitigate counterparty risk. If collateral is cheap, investors
pledge enough collateral to fully eliminate counterparty risk. Otherwise, investors
do not pledge collateral and mutualize losses via the CCP. When few members are
solvent, investors remain exposed to some counterparty risk when they mutualize
losses.

When the limited pledgeability friction is introduced, the CCP instead needs
collateral to implement loss mutualization. Limited pledgeability constrains inves-
tors’ payment capacity. Under loss mutualization, investors expect to pay to the
default fund when others default. Hence, they have to pledge collateral ex ante to
expand their payment capacity.

Our first main result is that loss mutualization is useful, or central clearing
strictly dominates bilateral trading, only when the cost of collateral is intermediate.
If collateral is expensive, using collateral to support loss mutualization is too costly
and investors voluntarily remain exposed to bilateral counterparty risk. If instead
collateral is cheap, full hedging with collateral, which can be done bilaterally, is
efficient. In addition, when there aremore investors tomutualize losses, the benefits
of central clearing increase.

When the second friction of unobservable monitoring is added, loss mutual-
ization undermines investors’ incentives to monitor the counterparty they matched
with because it reduces their exposure to this counterparty. Delegating all moni-
toring tasks to a CCP resolves this tension but is costly for two reasons. First,
investors’ compensation to the CCP for its monitoring service must be backed by
collateral due to limited pledgeability. Second, as monitoring is unobservable,
investors must pay an agency rent over and above the CCP’s effort costs.

When central clearing is optimal, investors delegate monitoring (tasks) to the
CCP if collateral is cheap enough and the market is large. Cheaper collateral lowers
the cost of hiring a CCP, and a large market favors centralizing monitoring due to
economies of scale: The agency rent decreases in the number of investors moni-
tored, as in Diamond (1984). CCPs’ role as centralized monitors, our second main
result, rationalizes member monitoring as a key CCP defense against counterparty
risks in practice, along with collateral requirements.

Figure 1 summarizes our results thus far by showing the possible roles of a
CCP in the optimal contract against the cost of collateral. Central clearing can help

6In Basel III, wrong-way risk is defined as follows: A bank is exposed to “wrong-way risk” if future
exposure to a counterparty is highly correlated with the counterparty’s probability of default (Basel
Committee on Banking Supervision (BCBS) (2019))).
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investors mutualize losses, and the CCP agent can also play an active role by
monitoring investors.

The analysis of centralized monitoring delivers our third main result, which
characterizes the compensation and capital contribution of the CCP. Investors pay
the CCP only when no member defaults because such high-powered compensation
minimizes the agency rent. TheCCP thus holds a junior equity tranche in the default
waterfall, absorbing losses after defaulters’ collateral. Furthermore, members
recoup the rent by requiring the CCP to contribute capital. The capital is akin to
“skin in the game” (SITG) because the CCP loses it if any member defaults. Our
results thus rationalize several key common features of CCPs’ default waterfall as
observed in practice (see Section VI.B).

Our main implications regard CCP SITG, a topic of intense debate for prac-
titioners and regulators. Large institutional investors who are clearing members
often request more “meaningful” capital contribution fromCCPs to align incentives
for risk management (ABN-AMRO et al. (2020)). CCPs, meanwhile, resist these
calls and argue that members should absorb the bulk of the losses caused by a
defaulting member (London Clearing House (LCH) (2015))), CCP12 (2021)). We
argue that small SITG observed in practice does not necessarily imply that CCPs
lack incentives to manage risks, as incentives also come from their equity-like
compensation.7

Our analysis delivers novel predictions about the size of SITG and hence the
composition of the default waterfall. Empirically, the ratio of CCP capital to total
prefunded resources (CCP capital plus members’ collateral) varies substantially
across CCPs (Paddrik and Zhang (2020)).We show that SITG relative to either total
prefunded resources or CCP profit decreases when the number of members
increases, due to the decline in the CCP’s agency rent. This effect is compounded
if larger CCPs have more bargaining power, and can thus resist members’ demand
for capital contribution. This observation can explain the tension between members
and CCPs about the desirable size of capital.

Finally, our analysis points to a new force shaping the optimal CCP
ownership structure. Under centralized monitoring, the CCP is a third-party agent
compensated by the members. Under bilateral monitoring, however, the CCP
merely channels transfers between members (an arrangement we interpret as a
member-owned CCP). Hence, a large (small) market favors third-party (member-
owned) CCPs.

FIGURE 1

CCP Roles

Figure 1 shows the roles assumed by a CCP as a function of the collateral cost.

0 collateral cost k

No role
Loss mutualization

and
Central. monitoring

Loss mutualization No role

7Our novel implication resonates with McPartland (2021), who argues that no capital is needed for a
CCP’s incentive purpose because executives of CCPs, who receive stocks and options in their compen-
sation, will suffer tremendous personal losses when a member is in distress.
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Literature Review

The premise of our analysis is the ability of CCPs tomanage counterparty risks
in OTC markets, as in Koeppl and Monnet (2010) and Biais et al. (2016).8

We analyze the tension between the mutualization of losses and the incentives to
identify creditworthy counterparties, a version of the classic insurance versus
incentive trade-off (Stiglitz (1974), Holmström (1979)).9 In the context of central
clearing, this trade-off is studied in related models by Biais, Heider, and Hoerova
(2012) and Antinolfi, Carapella, and Carli (2022). Our analysis of member-owned
CCPs thus broadly shares some of their conclusions. Our key innovation is the
consideration of the CCP as an agent rather than amechanism designer. This feature
allows us to endogenize the CCP’s default waterfall (including SITG), the CCP
compensation, and the optimal ownership structure of the CCP. To the best of our
knowledge, endogenizing these various aspects of CCP designs from first princi-
ples is new.

Some recent works analyze different elements of a CCP’s default waterfall.
Wang, Capponi, and Zhang (2022) also stress the need to align members’ risk-
management incentives and show that prefunded contributions to the default fund
are superior to initial margins if covering losses ex post is costly. As we do not make
this assumption, such a pecking order between types of collateral is absent in our
analysis.

Instead, we endogenize another key element of the waterfall, CCP SITG
capital, as part of a solution to the counterparty monitoring problem. Huang
(2019) argues that for a given loss allocation, for-profit CCPs under-supply loss-
absorbing capital to shift liabilities to surviving members.10 We highlight that the
CCP’s capital contribution decision is an outcome of bargaining with its members,
while its incentives can be properly aligned with the junior tranche in the default
waterfall. In Huang andZhu (2021), lossmutualization is analyzed as an auction for
the defaulting members’ positions run by the CCP. With our optimal contracting
approach, all transfers via and to the CCP are specified ex ante.

The ownership structure is considered critical in the CCP design discussion
(Board (2010), McPartland and Lewis (2017)). It has been argued that for-profit
CCPs may allow too much risk-taking (Huang (2019)), while member-owned
utilities in general may deter entry (Hart andMoore (1996)). We instead emphasize
the costs and benefits of delegating monitoring to a CCP and predict that third-party
CCPs dominate member-owned CCPs in large or opaque markets, due to endog-
enous economies of scale, as in Diamond (1984).

Our article focuses on CCPs’ role in mitigating counterparty risks, which is
most relevant to the default waterfall design. We thus abstract from other important

8Vuillemey (2020) provides an empirical analysis of counterparty risk hedging in a 19th-century
CCP. Kuong (2021) argues that in the presence of collateral fire-sale externalities, a CCP can mitigate
counterparty risk in repo markets by coordinating members’ ex ante choices of margins and repo rates.
See Vuillemey (2019) for related arguments and empirical analyses.

9Keoppl (2013) studies collusive moral hazard in central clearing and Palazzo (2016) argues that
central clearing may foster peer monitoring for previously nonconnected investors.

10In a similar vein, Capponi and Cheng (2018) consider a CCP’s trade-off between clearing volume
and stability but focus on collateral requirements rather than on CCP capital.
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benefits of central clearing that have been discussed in the literature (see, e.g., the
comprehensive surveys by Pirrong (2011) and Menkveld and Vuillemey (2021)).
Duffie and Zhu (2011) analyze netting efficiency for central and bilateral clearing.
Leitner (2011), Zawadowski (2013), and Acharya and Bisin (2014) argue that
central clearing can reduce counterparty risk externalities. Koeppl, Monnet, and
Temzelides (2012) show that a CCP can lower trading costs by deferring settlement
and providing credit to clearing members.

The rest of the article is organized as follows: Section II presents the model.
Section III maps our general contracting approach to centrally cleared contracts in
practice. In Section IV, we analyze the costs and benefits of central clearing by
deriving the optimal contract when monitoring is observable. Section V analyzes
the full problem when monitoring needs to be incentivized and compares bilateral
monitoring with centralized monitoring. We gather practical implications of our
model for CCP design in Section VI. Section VII concludes. All proofs are in
Appendix A.

II. A Model of Central Clearing

A. The Framework

There are two dates t∈ 0,1f g. At date 1, there are two equiprobable aggregate
states of theworld,A andB.We denote S a generic element of A,Bf g and S0 the other
element. The economy is populated by investors and a CCP agent. All agents
consume one good (cash).

1. Investors

Investors belong to two groups indexed by S∈ A,Bf g, and each group has
N homogeneous investors. Each S-investor is endowed with one unit of a nontrad-
able asset, which pays 2R per unit with an exogenous probability q∈ 0,1ð Þ in state S0
and fails to pay anything otherwise, as shown in Figure 2. The success or failure of
the asset is independent across S-investors, conditional on the realization of state S0.
Both state S and investors’ asset success or failure are observable.11

Investors from a different group can gain from transferring consumption
across states because an S-investor prefers to consume in aggregate state S in which
only S0-investors have positive asset payoffs. Specifically, an S-investor’s utility
function is

US =
1

2
E c S0ð Þ½ �þ1

2
E c Sð Þþ ν�1ð Þmin c Sð Þ, ĉf g½ �,(1)

11Having N pairs of investors, rather than a continuum, allows us to vary the size of the CCP. As we
shall show, the size of the CCP is a key determinant of various economic forces in our model, namely,
the benefits of loss mutualization, the investors’ incentives to monitor each other bilaterally, and the
economies of scale in centralizedmonitoring by the CCP. Furthermore, comparative statics analyseswith
respect to N deliver novel empirical predictions regarding CCP capital contribution and ownership
structure. Empirically, the number of members varies greatly across CCPs (Domanski, Gambacorta, and
Picillo (2015)).
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where c Sð Þ is consumption in state S, ν> 1, and ĉ> 0. Variable c Sð Þ is random due
to the randomness in S0-investors’ asset cash flows. In words, S-investors derive
extra marginal utility ν�1ð Þ from consumption in state S until their consumption
reaches ĉ. Investors’ preferences exhibit risk aversion because their marginal utility
differs across aggregate states.12 Meanwhile, ν�1ð Þ captures the gains from hedg-
ing and ĉ the hedging demand.

To show howgains from trades can be achieved, consider a numerical example
with q,R, ĉ,νf g = 0:8,2,1:8,1:2f g. In autarky, each investor’s utility is given by the
expected cash flow of its asset, qR= 1:6. Suppose each S-investor matches with an
S0-investor and promises to pay ĉ = 1:8 when its asset succeeds in state S0, while the
S0-investor promises 1:8 in state S. Expected gains from trade 0:18 are realized
because each investor now enjoys

U =
1

2
q R�1:8ð Þ½ �þ1

2
q 1:8þ ν�1ð Þ1:8½ �= qRþ1

2
�0:2�1:8 = 1:78:(2)

Trading is constrained by the fact that the asset’s cash flow is not fully pledge-
able. An investor can privately shirk at date 0 and enjoy a private benefit

~B = q R� ~β
2

� �
per unit of asset, which causes asset failure. Parameter ~β∈ 0,βf g

represents the asset pledgeability, that is, the maximum amount an investor can
credibly pay in expectation out of the asset’s cash flow. The limited pledgeability
friction captures investors’ concerns for counterparties taking excessive risks or
shirking proper risk management effort (see footnote 4).

The limited pledgeability problem can be mitigated with monitoring. If mon-
itored, an investor’s asset pledgeability is β> 0. If unmonitored, her asset pledge-
ability is βwith probability 1�α only, and 0 otherwise.Monitoring is performed by
another investor or the CCP. It costs ψ> 0 per investor, and the monitoring effort is
unobservable to third parties. Monitoring can be seen as a way to ensure that an
investor’s position does not exceed her financial capacity and is considered by
CCPs as an important defense against counterparty risks (see Section VI.A). It is

FIGURE 2

Asset Payoff

Figure 2 shows the payoff tree for an S investor’s asset with q the probability of success in state S 0 .

S

S

1
2

1
2 0

�

q

1 − q

2R

0

12Investors have state-dependent preferences, which can bemicrofounded with standard preferences
and liquidity shocks as in Holmström and Tirole (1998). It can also be viewed as a reduced form for state-
varying marginal utilities generated by a difference in endowments or beliefs. To identify robust
principles for clearing, we do not specify a particular hedging instrument. Our model can be easily
adapted to accommodate one-sided hedging needs as in the Credit Default Swaps (CDS) market.
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also relevant in OTC markets where a counterparty’s overall risk exposure may be
difficult to assess due to lack of transparency.

2. Collateral

At date 0, any fraction of an investor’s asset can be converted into cash at an
exogenous rate of 1. Asset payoff risk and limited pledgeability give a role for cash
to be used as collateral as cash is safe and fully pledgeable. First, an investor can use
cash to consume in her favorite state, thereby reducing her hedging needs. Second,
when tradingwith investors from the other group, cash collateral can protect against
counterparty default. Third, aswewill show, cash collateral expands investors’ risk-
sharing capacity, due to the limited pledgeability friction. Using collateral, how-
ever, is costly, as we assume the expected payoff of the asset qR is higher than 1. In
what follows, we call k� qR�1 the (net) cost of collateral. This cost captures the
foregone return on high-return assets compared to assets widely accepted as col-
lateral, such as cash and government bonds.13

3. Central Counterparty

The CCP agent is risk-neutral and competitive and has no hedging need. Its
utility function is given byUC = c0þ c1. TheCCP agent has a large endowmentE of
asset with per-unit payoff κþ1 at date 1, where κ> 0. Its asset is nonpledgeable, but
each unit can be liquidated for a unit of cash at date 0. The CCP can thus contribute
cash to help satisfy investors’ hedging needs. To distinguish from investors’ col-
lateral, we refer to this cash contribution as CCP capital, with κ representing the
(net) cost of capital. In addition to contributing capital, the CCP can monitor
investors; its monitoring effort, however, is as costly as the investors’ and it is also
unobservable.

B. Contracting

At date 0, each S-investor matches with an S0-investor, called her counterparty.
In practice, these investors would sign a bilateral contract, which can then be
novated to and cleared by a CCP. In addition to bilateral payments, a cleared
contract implicitly specifies contingent transfers among all investor pairs and
the CCP.

In the model, we consider a general multilateral contract between all investors
and the CCP. In Section III, we discuss the mapping to a cleared contract in practice.
A contract specifies transfers, and, if necessary, a monitoring scheme: bilateral
(counterparty) monitoring or centralized (CCP) monitoring. To streamline the
exposition in the main text, we focus on contracts with monitoring. The optimal
contract without monitoring is derived in the proof of Proposition 4, when we
characterize conditions for monitoring to be optimal.

13In practice, CCPs require members to post a fraction of collateral as cash (Armakolla and Bianchi
(2017)), and their cash reinvestment policy is limited to safe low-return vehicles (e.g., Article 47 of
Regulation EMIR).
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With monitoring, all investors have the same asset pledgeability β and thus,
a single contract is offered to all investors.14 Given their preferences, S-investors
should receive payments and S0-investors should pay only in states S when the
former have high marginal utility of consumption. The model is symmetric across
S, so we focus on contracts with symmetric transfers. We then drop the reference to
S and label investors with their ex post role: payer or receiver. Then, a general
contract specifies an investor’s transfer contingent on three factors: the aggregate
state summarized by the number of defaulting payers d; the investor’s ex post role;
and, within each pair, the payer’s asset outcome o∈ s, ff g, where s stands for
success and f for failure (with asset payoff or pledgeability being zero). This last
feature implies that a receiver transfer can depend on the outcome of her matched
payer. The CCP’s date-1 transfer is indexed by d only. Formally, a contract is
defined as follows:

Definition 1. A contract C = x,po dð Þ,ro dð Þ,e,π dð Þf g, with o∈ s, ff g and
d∈ 0,…,Nf g is a set of nonnegative transfers. At date 0, investors post an amount
of collateral x, and the CCP contributes capital Ne. At date 1, a payer pays po dð Þ,
a receiver gets ro dð Þ, and the CCP gets compensation Nπ dð Þ. The contract also
specifies a monitoring scheme by the indicator function 1cm, which is equal to 1
when the CCP monitors all investors (centralized monitoring) and 0 when each
investor monitors her own counterparty (bilateral monitoring).

Definition 1 illustrates what we mean by symmetric contracts. For a given
combination o,dð Þ, an S-investor receives the same transfer ro dð Þ in state S as an
S0-investor in state S0. The same applies to payments. Transfers rs Nð Þ, ps Nð Þ, rf 0ð Þ,
and pf 0ð Þ are set to 0 as they are not well-defined: There cannot be N (0) defaulting
payers if one payer succeeds (fails).

We now formally define the investors’ problem.

Investors’ Problem

max
C,1cmf g

U = qRþ ν�1

2
E min ro dð Þ, ĉf g½ �� xk� 1�1cmð Þψ�1

2
E π dð Þ½ ��eð Þ,(3)

s:to ∀d, ps dð Þ ≤ xþ 1� xð Þ2R,(4)

∀d, pf dð Þ ≤ x,(5)

∀d, N �dð Þrs dð Þþdrf dð ÞþNπ dð Þ=N xþ eð Þþ N �dð Þps dð Þþdpf dð Þ,(6)

E π dð Þ½ �≥ κþ1ð Þeþ1cm2ψ,(PCCCP)

Es po dð Þ½ ��Ef po dð Þ½ � ≤ 1� xð Þβ,(LP)

14As we show in Proposition A1 in Appendix A, even in the case without monitoring, a single
(pooling) contract will be offered to investors with heterogeneous asset pledgeability. Separating
contracts are not feasible because the single-crossing property fails. In particular, all investors have
the same cost of collateral.
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If 1cm = 1, 2ψ ≤E π dð Þjm = 1½ ��E π dð Þjm = 0½ �;(MICcm)

If 1cm = 0,
ψ

q 1�αð Þ ≤
1

2
Es ro dð Þ½ ��Ef ro dð Þ½ �� �

þν�1

2
Es min ro dð Þf½ , ĉg��Ef min ro dð Þ, ĉg�f Þ,½�(MICbm)

where expectation E �½ � is over d, the number of defaulting payers, and
Eo0 �½ � �E �jo= o0½ �.

We note that, as the contract can implement any date-0 investment decisions and
date-1 consumption profiles, the solution to the investors’ problem is also the
constrained-efficient allocation chosen by a social planner whomaximizes the inves-
tors’ expected utility.15 We discuss the elements of the investors’ problem below.

An investor’s expected utility is given by equation (3). To obtain equation (3)
from equation (1), we substitute for the expected payment using an expected
version of equation (6), E po dð Þ½ �=E ro dð Þ½ �þE π dð Þ½ �� x� e, which we derive in
Appendix A. The second term of equation (3) captures gains from trades; the third,
fourth, and fifth terms represent costs from using collateral, monitoring, and CCP
compensation.

Resource constraints are represented in equations (4) and (5) at individual
payer’s level and equation (6) at aggregate level. The latter says that in any state, the
sum of receivers’ transfers and the CCP compensation must equal total resources
available: those committed at date 0 by receivers (collateral) and the CCP (capital),
and payments by payers at date 1. The CCP’s participation constraint is formalized
by equation (PCCCP).

Investors’ limited pledgeability constraint (LP) is the first key constraint.
Recall that an investor can shirk at date 0 to enjoy private benefit B= q R� β

2

� �
per unit of asset while causing the asset to fail. Hence, an investor would not shirk if
and only if

1

2
q xþ 1� xð Þ2R�Es po dð Þ½ �ð Þþ 1�qð Þ x�Ef po dð Þ½ �� �� �

≥
1

2
x�Ef po dð Þ½ �� �þB 1� xð Þ,

(7)

which says that a nonshirking payer’s expected consumption (and utility) is weakly
higher than a shirking payer’s expected consumption and the private benefits from
shirking. Such incentive constraint can be rewritten as the limited pledgeability
constraint (LP), implying that the additional expected liability upon success relative
to that upon failure cannot exceed an investor’s pledgeable income from the 1� x
units of asset.16

15Specifically, x and e determine the amount of collateral and CCP capital at date 0. The date-1
consumption for receivers, payers with succeeded assets, payers with failed assets, and the CCP agent
are, respectively, ro dð Þ, xþ 1� xð Þ2R�ps dð Þ, x�pf dð Þ, and π dð Þ.

16We impose only that equation (LP) holds under the expectation that other investors behave. That is,
we abstract from coordination problem whereby investors would shirk because they expect others to
shirk.
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The second key constraints are the monitoring incentive constraints, equation
(MICcm) or equation (MICbm), imposed because monitoring efforts are unobser-
vable. Under the centralized monitoring scheme, equation (MICbm) ensures that the
CCP prefers monitoring everyone to no one (we verify later this is the relevant
deviation). Under the bilateral monitoring scheme, equation (MICbm) guarantees
that each investor monitors her counterparty. It states that the utility loss for an
investor from the default of her counterparty must be greater than the monitoring
cost ψ weighted by its efficacy in reducing the probability of counterparty default
q 1�αð Þ½ ��1.

Figure 3 provides a numerical example of a contract and the transfers involved
at date 1 with N = 2 pairs of investors. In Graph A, no payer defaults (d = 0) and
receivers consume their desired amount ĉ= 1:8 = rs 0ð Þ. In Graph B, payer P1
defaults (d = 1) and pays with all his collateral holding, pf 1ð Þ= x= 0:3. Despite
P1’s default, both receivers’ consumption remains unchanged rs 1ð Þ= rf 1ð Þ= 1:8� �
because lossmutualization is at play. The comparison across graphs reveals how the
loss is mutualized. The payment shortfall of P1 is ps 0ð Þ�pf 1ð Þ= 1:5. Part of the
loss is then absorbed by the CCP, whose compensation drops from π 0ð Þ= 0:8 to
π 1ð Þ= 0. The residual loss 1:5�0:8 = 0:7ð Þ is borne by the surviving payer P2,
whose payment increases from ps 0ð Þ= 1:8 to ps 1ð Þ= 2:5. The aggregate budget
constraint (6) can be used to directly pin down the surviving payerP2’s contribution
in state d = 1. By plugging in the ex ante collateral and capital contribution (x= 0:3,
e = 0:1), receivers’ consumption rs 1ð Þ= rf 1ð Þ= 1:8� �

, defaulter’s payment
pf 1ð Þ= 0:3, and the CCP’s compensation π 1ð Þ= 0, ps 1ð Þ= 2:5 are obtained. More
generally, this example shows that the CCP enables loss mutualization by aggre-
gating payers’ resources and redistributing them to receivers, as described in
aggregate budget constraint (6).

C. Assumptions

In this section, we describe our main assumptions and explain how they affect
the analysis.

FIGURE 3

Example – Contract with N = 2 and bc= 1:8

In Figure 3, date-1 transfers are represented in states d =0 (Graph A) and d =1 (Graph B). Values for investors’ collateral and
CCP capital are x ,eð Þ= 0:3,0:1ð Þ. Transfers are π 0ð Þ,ps 0ð Þ, r s 0ð Þf g= 0:4,1:8,1:8f g for d =0, π 2ð Þ,pf 2ð Þ, r f 2ð Þf g= 0,0:3,0:7f g
for d =2 (not depicted), and π 1ð Þ,pf 1ð Þ,ps 1ð Þ, r f 1ð Þ, r s 1ð Þf g = 0,0:3,2:5,1:8,1:8f g for d =1. Dotted lines are bilateral investor
links. Label P (R) is for payer (receiver). A red circle indicates a default.

Graph A. State d = 0 Graph B. State d = 1

CCP
�(0) = 0.8

CCP
�(1) = 0
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R2
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x = 0.3 x = 0.3

x = 0.3 x = 0.3
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) = 2.5

p
f (1) = 0.3
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1.5
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Assumption 1 (collateral needs). 2> ĉ> β

Assumption 1 ensures that cash collateral is both necessary and sufficient to
satisfy investors’ hedging needs. Without any collateral (x= 0), by equation (LP),
each payer can pay at most β, which is less than each receiver’s hedging need ĉ. If,
instead, each investor posts ĉ

2< 1 units of cash collateral, a receiver’s hedging needs
can always be met with collateral from herself and from her counterparty.

Assumption 2 (monitoring cost). ψ ≤ �ψ� min 1�qð Þ ν�1ð Þ
ν 2�βαqð Þ 1�αqð Þ ,

1
2

n o
βq 1�αð Þ 1� ĉ

2

� �
The first term in the minimum argument ensures that there are parameters such

that monitoring is optimal and the CCP plays a role. The expression for this upper
bound will be derived in Proposition 7. The second term in the argument plays a
technical role.

Assumption 3 (resources). N ≤ 2R
ĉ

Assumption 3 ensures that the hedging demand Nĉ of all receivers can be
satisfied even if only one payer’s asset succeeds, as the asset pays out 2R in this case.
This implies that the resource constraint (4) is slack for all d ≤N �1. Assumption 3
simplifies our analysis in that the only aggregate risk receivers must bear is that of
all payers’ joint default.17

Assumption 4 (capital cost). κ≥ k

Assumption 4 states that CCP capital is not cheaper than investors’ collateral;
that is, the CCP does not possess a superior technology to convert date-1 resources
into cash.We will show that CCP capital plays a role in the optimal contract despite
this cost disadvantage.18

III. Optimal Contract Properties

We first provide a result that characterizes the set of relevant contracts for our
analysis. This characterization also allows us to map our multilateral contracts to
centrally cleared contracts in practice.

Proposition 1. Contracts with the following properties are optimal:

1) A receiver with a successful payer gets rs dð Þ= rs. Otherwise, rf dð Þ= rf ≤ rs
if at least one (other) payer survives (d<N ), and rf Nð Þ= 2xþ e ≤ rf if all payers
default.

2) A defaulting payer’s collateral is seized: pf dð Þ= x. A successful payer’s
transfer is

17InAppendix IA.1 of the SupplementaryMaterial, we derive the optimal contract whenAssumption
3 fails for the caseN = 3. Then, risk-sharing is further limited because receivers’ hedging needs cannot be
satisfied when too few payers survive. We show, however, that the key trade-off identified in the main
text continues to hold.

18In Appendix B, we consider the case κ< k and show that CCP capital can play another role as
insurance against counterparty risks, similar to collateral. Our analysis shows, however, that CCP capital
will never fully substitute for investors’ collateral due to the limited pledgeability friction.
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ps dð Þ= rs� x�e|fflfflfflfflffl{zfflfflfflfflffl}
Bilateral transfer

þ d

N �d
rf �2x� e
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Loss mutualization transfer

þ N

N �d
π dð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

CCPcompensation

:(8)

Proposition 1 says that given a collateral amount x and a CCP contract
e,π dð Þf g, investors’ transfers can be parametrized with two scalars rf and rs only.

The intuition for this result is as follows: As mentioned above, receivers are risk-
averse, and thus wish to minimize the variability of their transfers. Yet, transfers
may be state-contingent for two reasons. First, receivers are exposed to the aggre-
gate risk of a joint payer default. In this state of the world, by budget constraint (6),
their transfer rf Nð Þ cannot exceed precommitted resources 2xþ e, as no payer
survives. Second, investors may optimally retain some counterparty risk exposure
(rs > rf ) to satisfy the bilateral monitoring constraint (MICbm). For payers now, it is
optimal to set pf dð Þ= x because a larger payment in default relaxes investors’
limited pledgeability constraint, equation (LP). This makes larger payments sus-
tainable in case of success. This payment ps dð Þ is pinned down residually by budget
constraint (6).

Proposition 1 offers an interpretation of the general multilateral contract as a
cleared OTC contract. The bilateral component of the surviving payer’s transfer in
equation (8) is the transfer from a payer to the receiver with whom he matched. The
second term captures loss-mutualization transfers across investor pairs that com-
pensate receivers whose payer defaults. Without loss mutualization, each receiver
with a defaulting payer could consume at most rf Nð Þ= 2xþ e, which is the collat-
eral plus the CCP capital per investor pair. When some (other) payers survive, they
can transfer resources to the receiver whose consumption rf can increase above
rf Nð Þ. This loss-mutualization transfer corresponds to investors’ contributions to a
default fund in practice. Finally, the third term captures the surviving payer’s
contribution to the CCP compensation.

IV. Clearing with Observable Monitoring

In this section, we provide two benchmarks in which monitoring do not need
to be incentivized. In Section IV.A, we characterize the frictionless case where
monitoring is redundant, whereas in Section IV.B we analyze the case with limited
pledgeability and observable monitoring effort. Additionally, we provide condi-
tions for (observable) monitoring to be optimal in Section IV.C.

A. Frictionless Benchmark

In the frictionless benchmark, there are no benefits from shirking (~B= 0),
hence the asset is fully pledgeable (~β = 2R). Monitoring is thus redundant because
its only role is to increase asset pledgeability.

Proposition 2 (no friction). The solution to the investors’ problem with ~β = 2R is

1) if k ≤ kN � ν�1ð Þ 1�qð ÞN , a full-hedging contract with rs = rf = ĉ and
x,eð Þ= ĉ

2 ,0
� �

,
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2) otherwise, a complete-loss-mutualization contract with rs = rf = ĉ and
x= e = 0.

The results are intuitive. If collateral is cheap enough, investors fully secure
payments to meet their hedging needs in all states of the world. If not, they rely on
the CCP to mutualize losses to deal with counterparty risks. Loss mutualization is
said to be complete because a receiver’s transfer is not affected by the default of her
counterparty (rf = rs = ĉ) as long as one other payer survives. Loss mutualization
does not involve collateral whose only role here is to hedge the joint default state
(probability 1�qð ÞN ). The CCP does not pledge capital because it is more expen-
sive than collateral as an insurance tool (Assumption 4). As the CCP does not
monitor investors, it receives no compensation.19 Central clearing via the CCP is
needed, however, to implement loss mutualization.

B. Limited Pledgeability

In this section, we add back the limited pledgeability friction, but monitoring
remains observable. Specifically, we solve the investor’s problemwithout equation
(MICbm) or equation (MICcm). We refer to the optimal contract in this case as the
observable monitoring (OM) contract.

The limited pledgeability friction gives collateral a new function: satisfying
receivers’ hedging needs when payers survive. To see this, let us consider an
investor pair. If each investor pledges x units of collateral ex ante, a nondefaulting
payer can credibly pay xþ 1� xð Þβ in expectation (substituting pf dð Þ= x in equa-
tion (LP)). Also, the receiver can use her own collateral x for consumption, thereby
reducing her hedging needs to ĉ� x. Together, a nondefaulting payer’s payment
capacity in excess of her receiver’s needs is

xþ 1� xð Þβ� ĉ� xð Þ:(9)

Without collateral, this excess payment capacity is negative because β< ĉ; that
is, an investor’s payment capacity β already falls short of her counterparty’s hedging
needs ĉ. Hence, without collateral, central clearing cannot improve upon a simple
contract that features no loss mutualization.

Equation (9) shows that pledging collateral increases excess payment capacity
at the investor-pair level because β< 2 (from Assumption 1). Therefore, collateral
is needed to support payments for loss mutualization or to compensate the CCP.

We begin the analysis with the choice of monitoring scheme.

Lemma 1. If monitoring is observable, the optimal monitoring scheme is bilateral.

Lemma 1 stems from the additional collateral cost ofmonitoring byCCPwhen
asset pledgeability is limited. To support the CCP’s compensation at t = 1, investors
have to pledge collateral ex ante. Since the CCP has no intrinsic technological
advantage as a monitor and collateral is costly, bilateral monitoring is superior. As

19When κ = k and k ≤ kN , the preference for collateral over CCP capital is weak, and capital can
replace collateral to provide full hedging. See alsoAppendix B for a detailed discussion of the case κ< k.
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wewill show in SectionV,whenmonitoring is not observable, the above conclusion
can be overturned.

Proposition 3 (optimal clearingwith observablemonitoring). There exists a thresh-
old for collateral cost �k� 1

2 ν�1ð Þ 2�qβð Þ> kN such that the OM contract is as
follows:

1) For k ≤ kN , it is the full-hedging contract of the frictionless case (Proposition 2).
2) For k∈ kN ,�k

	 

, there is complete loss mutualization: rOMs = rOMf = ĉ, eOM = 0

and

xOM �
1� 1�qð ÞN
h i

ĉ�βq

2 1� 1�qð ÞN
h i

�βq
∈ 0,

ĉ

2

� �
:(10)

3) For k ≥ �k, the contract is uncollateralized with rOMs = β,
rOMf = xOM = eOM = 0.

Proposition 3 shows how the limited pledgeability friction changes the eco-
nomics of a CCP. In the frictionless benchmark (Proposition 2), the CCP’s function
is to substitute for collateral with loss mutualization when collateral is too costly.

Here, in contrast, when investors’ asset is not fully pledgeable, the CCP can
only play a role with the help of collateral. Investors must now pledge collateral to
mutualize losses (case 2). The intuition is that investors must be able to pay to the
default fund with loss mutualization, and their payment capacity can be expanded
only by pledging collateral.

When collateral is needed for central clearing, as Proposition 3 shows, loss
mutualization is no longer optimal if the collateral cost is too high. Above a
threshold �k, no collateral is used, receivers do not satisfy their hedging needs
(rs < ĉ), and they are fully exposed to counterparty risk (rf = 0). This threshold
measures the total hedging value of collateral as counterparty risk insurance and as a
tool to increase pledgeability. If k> �k, hedging and, thus, loss mutualization are too
costly.

Proposition 3 sheds light on the benefits of having a CCP.We say that a CCP is
essential if the OM contract cannot be implemented via a bilateral contract, defined
as follows:

Definition 2. A contract is bilateral if it satisfies ro dð Þ= po dð Þþ x for all
d∈ 0,1, ::,Nf g.

Intuitively, with a bilateral contract, an investor pair does not receive transfers
from ormake payments to other investors or the CCP.Notably, the contracts in cases
1 and 3 can be implemented bilaterally. In both cases, CCP capital is too expensive
to be used for insurance. Additionally, loss mutualization is not used for different
reasons. When collateral is cheap (case 1), the payer’s transfer is fully backed by
collateral (pOMo = x) and the receiver is fully hedged (rOMo = 2x= ĉ), which leaves no
counterparty risk to mutualize. When collateral is expensive (case 3), loss mutual-
ization, which requires collateral, is too costly.
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These observations imply that clearing benefits are hump-shaped in the cost of
collateral.

Corollary 1 (essentiality of CCP). A CCP is essential for k∈ kN ,�k
	 


. This region
strictly expands with N .

Corollary 1 implies that in the intermediate region of collateral cost, clearing
with a CCP strictly dominates bilateral trading, as the contract cannot be imple-
mented bilaterally. Additionally, this region expands when market size becomes
larger. When there are more investors to share idiosyncratic default risks, the joint-
default state becomes less likely, and thus, full hedging is less desirable relative to
loss mutualization.

As central clearing also changes collateral requirements, we compare the
demand for collateral in the multilateral contract of Proposition 3 to that in the
optimal bilateral contract.

Corollary 2 (bilateral contract vs. CCP). When a CCP is essential for some
N ≥ 2, the bilateral contract requires strictly more (less) collateral when k is
low (high).

The effect of central clearing on collateral needs depends on the contract that
investors would choose if they could only trade bilaterally. As collateral is bilateral
traders’ only defense against counterparty risk, they fully hedge when collateral is
cheap. Central clearing then economizes on collateral because it relies on loss
mutualization to mitigate counterparty risk.When collateral is expensive, however,
it serves only to support incentive-compatible transfers. Large transfers in a CCP
due to loss mutualization, relative to bilateral trading, increase collateral needs in
this case.

C. Optimal Monitoring

To conclude this section, we provide conditions for monitoring to be optimal.

Proposition 4. Monitoring is optimal (when observable) if and only if k ≥ k̂
m
, with

k̂
m
an increasing function of ψ. The threshold satisfies k̂

m
∈ kN ,�k
	 �

.

Intuitively, as monitoring substitutes for collateral in expanding asset pledge-

ability, it is optimal when collateral cost is high. A lower bound for k̂
m
is kN because

monitoring is suboptimal when the contract is fully collateralized (k< kN ). The

upper bound on the monitoring cost in Assumption 2 ensures that limψ!�ψ k̂
m
< �k;

that is, there always exists a region of collateral costs inwhichmonitoring is optimal
and the CCP is essential. In the next section, we will restrict our analysis to

k∈ k̂
m
,�k

h i
to show how the incentive problem in monitoring affects the contract

design and the role of the CCP.20

20In Appendix IA.2 of the Supplementary Material, we extend Corollary 1, which characterizes the
region in which a CCP is essential, to account for the optimal monitoring choice. The lower bound of the
essential region changes relative to the case inwhichmonitoring is imposed, but the result that this region
expands with N remains.
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V. Clearing with Monitoring Incentives

In this section, we add back the friction of unobservable monitoring and
analyze the investors’ problem in full. The main new insight is that clearing
conflicts with investors’ incentives tomonitor their counterparty and, consequently,
the CCP can emerge as the efficient monitor.

Monitoring incentives matter only if the OM contract is not incentive-
compatible with bilateral monitoring. The following lemma describes the corre-
sponding parameter region.

Lemma 2. When monitoring is optimal, the OM contract violates equation
(MICbm) when k∈ k̂

m
,�k

� �
andN >N∗, whereN∗ is the largest value ofN such that

ψ
q 1�αð Þ ≤ ν 1�qð ÞN�1 ĉ

2
� xOM

� �
,(11)

with xOM given by equation (10).
The intuition for Lemma 2 is as follows: When k> �k, the OM contract is

bilateral and uncollateralized. Investors are exposed to sufficient counterparty risk
and the monitoring cost is low enough (Assumption 2) to induce monitoring. In the
intermediate case k∈ kN ,�k

� �
with loss mutualization, investors retain only partial

exposure to counterparty risk. This exposure and thus investors’ incentives to
monitor are captured by the right-hand side of equation (11), which decreases with
N for two reasons. First, the only state inwhich losses are notmutualized, that is, the
joint-default state, becomes less likely as N increases. Second, as the amount
of collateral xOM increases with N , the “loss given joint default” ĉ�2xOM is also
reduced.

To focus on the interesting case where monitoring is optimal but not incentive
compatible, we impose parametric restrictions in Assumption 5.

Assumption 5. k∈ k̂
m
,�k

h i
and N >N∗.

The rest of Section V proceeds as follows: We derive the optimal contract
under bilateral monitoring in Section V.A and under centralized monitoring in
Section V.B. We compare the two schemes to show when the CCP emerges as
the efficient monitor in Section V.C. Finally, Section V.D discusses the equilibrium
level of CCP capital.

A. Bilateral Monitoring

We first consider the bilateral monitoring scheme. The main tension under this
scheme is that counterparty risk insurance via loss mutualization reduces an inves-
tor’s incentive to monitor her counterparty. We use the superscript ∗ for the equi-
librium variables of the optimal contract with unobservable monitoring.

Proposition 5 (optimal contract under bilateral monitoring). Let �k
bm

= 1�q
1�qþνq

�k.
The optimal contract with incentive-compatible bilateral monitoring is as follows:
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1) If k ≤ �k
bm
, a contract with a higher payoff upon counterparty success, that is,

r∗s > r∗f = ĉ, no CCP capital, e∗ = 0, and more collateral than in the OM contract,

x∗ > xOM.
2) If k∈ �k

bm
,�k

h i
, a contract with lower payoff upon counterparty default, that

is, r∗s = ĉ> r∗f , no CCP capital, e∗ = 0, and less collateral than in the OM contract,

x∗ < xOM.
Proposition 5 shows how to efficiently preserve enough counterparty risk

exposure to restore incentives for bilateral monitoring. Increasing the transfer
received by an investor conditional on counterparty success (r∗s > ĉÞ is more
efficient than decreasing the transfer conditional on counterparty default (r∗f < ĉ)
when the collateral cost is low enough k< �k

bm
� �

. This is intuitive because a larger
transfer to receivers requires more collateral to increase investors’ excess payment
capacity.

The main takeaway from the analysis of bilateral monitoring is that counter-
party risk cannot be mutualized completely because counterparty risk insurance
conflicts withmonitoring incentives. This result motivates the following analysis of
monitoring by the CCP.

B. Centralized Monitoring by the CCP

In this section, we analyze clearing with centralized monitoring. As monitor-
ing tasks are delegated to the CCP, the incentive problem associated with monitor-
ing no longer interferes with investors’ risk-sharing needs. Compensating the CCP
for its service is costly, however, because it increases investors’ liability and thus
requires additional collateral (Lemma 1). Investors minimize this cost by optimally
designing the CCP compensation π dð Þ and its capital contribution e.

Proposition 6 (centralized monitoring contract). The optimal contract with cen-
tralized monitoring features complete loss mutualization, with r∗s = r

∗
f = ĉ and

x∗ > xOM. The CCP breaks even; its compensation and capital contribution are
given by

π∗ 0ð Þ= 2ψ
qN 1�αNð Þ , π∗ dð Þ= 0 for d> 0 and(12)

e∗ = e� 1

κþ1ð Þ
2ψαN

1�αNð Þ :(13)

Proposition 6 shows first that, relative to the OM contract, investors post
additional collateral x∗� xOM to support the CCP’s compensation. However, as
monitoring and risk-sharing are now separated, investors can continue to mutualize
loss completely (r∗o = r

OM
o ), unlike with bilateral monitoring.

Proposition 6 delivers two new insights for the CCP compensation and capital
contribution. Regarding compensation, the CCP should get paid only when no
investor defaults. The intuition is as follows: Due to unobservable monitoring and
limited liability, the CCP always receives a compensation above its monitoring
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costs. This agency rent, E π dð Þ½ ��2ψ, is minimized when all compensation is paid
when no payer defaults π∗ dð Þ> 0only if d = 0ð Þ, which is the state most indicative
of CCP monitoring efforts.

The optimal compensation is then the minimum value of π 0ð Þ that satisfies
equation (MICcm). As this compensation scheme implies that the CCP loses all of its
promised compensation when one or more payers default, the CCP effectively
holds a junior tranche and absorbs losses immediately after the defaulters’ pre-
committed resources (i.e., collateral) have been exhausted.21

The second insight is that the monitoring role of a CCP provides a rationale for
CCP capital. In the OM contract, the CCP does not pledge capital because it is too
costly to be used for hedging counterparty risk. Here, it is required to do so by the
investors, who have the bargaining power, to capture the agency rent that the CCP
earns from monitoring. Indeed, equation (PCCCP) binds at e∗ = e. We also note that
its contributed capital is akin to skin in the game in the sense that the CCPwill lose it
when one or more members default. In the proof of Proposition 6, we show that by
requiring CCP capital, investors economize on collateral.

Our results also reveal endogenous economies of scale in centralized moni-
toring. As the number of investors N grows, the no-default state becomes more
indicative of efforts and hence the rent dissipates.22 These economies of scale can be
seen in the reduction of total CCP capital contribution (Ne∗ decreases with N ). As
we discuss in Section V.C, this is a crucial force in making the CCP a superior
monitor.

Remark 1. As π∗ 0ð Þ increases exponentially with N , it would violate the resource
constraint (4) for d = 0 ifN is large enough. Still, the insight from Proposition 6 that
the CCP holds a junior tranche is robust in the following way: After exhausting all
the available resources in state d = 0 to compensate the CCP, the remaining com-
pensation is paid in the states most indicative of effort, that is, d = 1, then d = 2, and
so on. Additionally, even if resource constraints bind for low-d states, a single
monitor, hence a single CCP, remains optimal.

C. Optimal Monitoring Scheme

Having characterized the optimal contract under both monitoring schemes, we
now answer the question: Who should monitor? To illustrate the relevant economic
forces, we begin with a numerical example. Figure 4 shows the range of collateral
cost and market size in which centralized monitoring is optimal (green region) for
two different values of α, a measure of the monitoring incentive friction.

In both graphs, centralized monitoring is optimal when the cost of collateral is
intermediate. The intuition is as follows: If collateral is cheap enough, any form of
monitoring is wasteful because counterparty risk is better dealt with collateral. If

21In practice, for-profit CCPs also collect noncontingent fees from members. In our model, if,
instead, the CCP has bargaining power, it would charge such fees to extract members’ benefits from
central clearing (formal results are available from the authors). In contrast, the high-powered compen-
sation described in Proposition 6 does not depend on bargaining power, as it is used to efficiently sustain
the CCP’s monitoring incentives.

22This result is known as “cross-pledging” (see Cerasi and Daltung (2000), Laux (2001)).
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collateral is very expensive, bilateral monitoring (blue region) is more efficient than
centralized monitoring: Although loss mutualization is reduced, it requires less
collateral (case 2 of Proposition 5). Therefore, centralized monitoring can be
optimal only in the intermediate range of collateral cost.

We further observe that market size N and the severity of the monitoring
friction α favor centralized monitoring with respect to bilateral monitoring. A larger
N and α require more reduction in loss mutualization to maintain incentives in
bilateral monitoring. At the same time, the economies of scale in centralized
monitoring becomes more relevant. We note, however, that when N or α increase,
loss mutualization also becomes more efficient without monitoring (red region
expanded). Hence, the overall effect of these variables on the optimality of cen-
tralized monitoring is ambiguous.

To provide analytical support for these observations, we characterize the condi-
tions inwhich centralizedmonitoring is optimal whenN !∞. This analysis is subject
to the caveat that Assumption 3 cannot hold when N becomes large. We present this
result because it is also informative for small values ofN : The terms that depend onN
in the general condition decrease exponentially (see the proof for details).

Proposition 7. At the limit N !∞, when α> 0, centralized monitoring is optimal

with complete loss mutualization for k∈ k̂
cm
,�k

cm
h i

, where k̂
cm

> k̂
m
and �k

cm
< �k.

This region is nonempty, as k̂
cm

< �k
cm

is implied by ψ< �ψ (Assumption 2).

Proposition 7 first supports the claim that centralized monitoring is optimal
in an intermediate range of collateral. We also confirm the ambiguous effect of
monitoring friction by showing that k̂

cm
and �k

cm
both increase with α in the proof.

D. Bargaining over CCP Capital

Our model follows the principal-agent literature in assuming that the principal
(here the investors) has all the bargaining power. As a result, investors require CCP
to pledge capital as a way to recoup the CCP’s rent frommonitoring. In this section,

FIGURE 4

Optimal Monitoring with bc= 0:8, β= 0:4, v= 2, q=0:7, κ= 0:9, ψ = 5:6�10�3

Figure 4 shows the parameter region in which centralized monitoring, bilateral monitoring, or no monitoring is optimal. The
collateral cost k is on the x-axis and thenumber of pair of investorsN is on the y-axis. Theparameter alpha captures the severity
of the monitoring friction.
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we show that the CCPwould never pledge capital if it had the bargaining power, that
is, if it could make a take-it-or-leave-it offer to all the investors collectively. The
novel takeaway is that CCP capital contribution is determined by the relative
bargaining power between members and the CCP. As we discuss later, this finding
echoes the ongoing debate between members and CCPs about the suitable amount
of capital contribution (see Section VI.C).

Proposition 8. The CCP would not pledge capital if it had the bargaining power.

We recall the result of Proposition 6 that when investors have bargaining
power, they require the CCP to pledge capital only when it monitors in order to
recoup the agency rent from monitoring. It follows that a CCP with the bargaining
power would prefer not to contribute capital, as doing so would lower its profit.

We note that both investors’ and the CCP’s optimal choice of CCP capital are
Pareto efficient. As we show in the proof of Proposition 8, however, these capital
levels may not maximize total welfare, the objective of a utilitarian planner. The
reason is that utility is not transferable and investors request costly capital in order to
capture the CCP rent.

VI. Implications for CCP Design

In this section, we relate our results to practical questions about CCP design
and derive associated empirical predictions.

A. CCP Roles and Determining Factors

Our results rationalize potential roles of a CCP and qualitatively assess their
relevance. First, a CCP can play the role of a risk pooler. By ex ante arranging a loss
mutualizing scheme, a CCP pools idiosyncratic member default risks. Second, as
discussed below, the CCP can monitor investors. In Appendix B, we analyze yet a
third role of CCPs as insurance providers. A CCP can use its capital as insurance
against members’ defaults, but this is efficient only when the CCP is small and has a
lower cost of capital than that of members’ collateral. In our view, these conditions
are very restrictive and hence the CCP’s role as an insurance provider is very
limited.

The monitoring role of CCPs is the novel emphasis of our article. Monitoring
mitigates counterparty risk and is a valuable substitute of costly collateral. CCPs
can emerge as efficient monitors due to endogenous economies of scale. In practice,
adequate monitoring of members is indeed often cited by many CCPs as their first
line of defense against counterparty risks.

Monitoring effort in our model represents the costs associated with sound risk
management. ESMA (2020) reports that CCPs use internal credit classifications,
send mandatory due diligence questionnaires, and conduct on-site visits of their
members. These tasks require significant investment in data collection and proces-
sing capacity as well as in hiring experienced and capable personnel (Pirrong
(2011)). The provisions of incentives for adequate monitoring are thus paramount
and, as we discuss below, have implications for the loss allocation process. There-
fore, the two key roles of a CCP in our article are intertwined.
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B. Default Waterfall Design

Our analysis of the lossmutualization role of CCPs explains important features
of the loss allocation process, also known as the CCP’s default waterfall. First, we
rationalize the commonly observed defaulter-pay principle because seizing the
pledged collateral of defaulting members efficiently discourages ex ante risk-
taking. Then, the remaining loss will be allocated among surviving members. Their
resources pledged in the default fund are thus useful to absorb losses and guarantee
further contingent payments at the request of the CCP.

The analysis of monitoring incentives endogenizes the relatively junior posi-
tion of CCP in the default waterfall. A CCP’s incentives to monitor its members are
best preserved when it holds an equity tranche, which would be wiped out when
members default. This default waterfall structure is indeed very common among
CCPs in practice (Duffie (2015)).

C. The Determinants of CCP Capital

Our analysis sheds light on the intense debate about the size of CCP capital, the
so-called skin in the game (SITG). SITG is, in general, a small fraction of total
prefunded resources, which some commentators take as evidence that SITG is
either unimportant or insufficient. We argue that SITG is a consequence of bargain-
ing between members and the CCP and is related to the rent paid to the CCP for its
monitoring role. It needs not be large, as incentives come in the form of the equity
tranche held by the CCP or by its executives.23 The view that SITG is an outcome of
bargaining is acknowledged by market participants.24

While SITG is on average a small fraction of total prefunded resources, there is
substantial heterogeneity across asset classes and jurisdictions of the CCPs.25 Our
model can generate such variations provided that asset pledgeability β differs across
assets (e.g., constructing a portfolio with “wrong-way” risk is easier for some assets
than others) and jurisdictions (e.g., some courts enforces contracts better than
others). Additionally, we predict that market size (number of members) is also a
determinant of such ratio.

23CCPs in practice make executive compensation contingent on the actual usage of SITG to induce
risk-management effort. For instance, OCC, a CCP for equity derivatives, says that “OCCwill contribute
the unvested funds held under its Executive Deferred Compensation Plan (EDCP), on a pro rata basis
pari passu with nondefaulting clearing members’ default fund contributions” (OCC (2020)). LCH,
another CCP, states that besides SITG, “LCH has further strengthened this incentive structure by linking
management compensation directly to usage of the SITG layer” (LCH (2015)).

24In 2020, a group of 20 major institutional investors and investment banks collectively issued a
discussion paper (ABN-AMRO et al. (2020)) to request more substantial capital contribution from
CCPs. The International Swap and Derivative Association concedes that “the level of SITG is ultimately
a judgment call and is still debated between many CCPs and clearing members. We believe that the
optimum level of SITG is difficult to agree between CCPs and clearing participants and ask global
regulators to develop standards and guidelines as to sizing SITG for CCPs” (International Swaps and
Derivatives Association (ISDA) (2019))).

25The ratio of CCP capital to total funded resources varies from 1.6% in interest-rate CCPs to 9.1% in
commodity CCPs and from 0.1% in CCPs in South America to 12.2% in Asia (Paddrik and Zhang
(2020)).
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Empirical Prediction 1. The ratio of CCP capital to total prefunded resources e∗

x∗þe∗

strictly increases with β and decreases with N .

As pledgeability improves, less collateral is required, which increases the ratio
of capital to collateral. The second result is driven by the reduction in the CCP’s
agency rent from monitoring when the number of members increases. The amount
of CCP capital that investors can request thus decreases.

In practice, a larger CCP would have more bargaining power vis-à-vis
its members and could thus further reduce its capital contribution, as shown in
Section V.D. This effect would reinforce our result.

Another key metric considered by market participants is the ratio of SITG
capital to CCP realized profit, whose model equivalent is the CCP profit when no
member defaults.26

Empirical Prediction 2. The ratio of CCP capital to realized profit e∗

π∗ 0ð Þ�2ψ strictly
decreases with N .

As observed above, CCP capital decreases with N . Additionally, as CCP
compensation is concentrated in the state with no member default, the realized
profit increases with N .

D. CCP Ownership Structure

The discussion of default waterfall and CCP capital would be incomplete
without considering the CCP’s ownership structure. In a member-owned CCP,
the line between CCP capital and members’ collateral is blurry (McPartland and
Lewis (2017)). In contrast, as a third-party CCP contributes its own capital and
retains profit from clearing, the seniority of CCP’s claims vis-à-vis members in the
default waterfall is relevant.

Our analysis of monitoring schemes relates to ownership structure. Under
bilateral monitoring, the CCP purely mutualizes losses and does not receive com-
pensation. Thus, this scheme resembles member-owned CCP. Under centralized
monitoring, the CCP contributes capital ex ante and receives an equity-like com-
pensation, resembling a third-party agent. Therefore, Proposition 7 yields the
following prediction.

Empirical Prediction 3. A third-party CCP is preferable to a member-owned CCP
when the number of clearing members is large.

E. Collateral Requirement in Cleared Contracts

An important concern raised by market participants about central clearing is
that it can substantially increase collateral requirements. Corollary 2 shows this is
not necessarily the case.

26There is substantial variation in this ratio. The European Association of CCP Clearing Houses
reports an average ratio of 1.6 for EU and UK CCPs, and our own calculations based on regulatory
reports from ESMA for 16 CCPs show that this number can vary from 0.3 to 9.51. The data is self-
collected from the various CCPs’ disclosure and reports in 2020.
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Empirical Prediction 4. Bilateral contracts require more (less) collateral than
cleared contracts when collateral is cheap (expensive).

While indeed central clearing requires collateral to perform lossmutualization,
bilateral contracts also rely on collateral because there is no other way to mitigate
counterparty risks.

VII. Conclusion

In this article, we characterized the optimal allocation of losses in a CCPwhen
contracts are subject to counterparty risk. The mutualization of losses hedges
investors against their counterparty’s default, but this protection lowers market
discipline because investors’ incentives to trade with creditworthy counterparties
become weaker. We show that when the market is large a third-party CCP can
mitigate these inefficiencies by acting as a centralized monitor. Our model endo-
genizes the typical default waterfall of a CCP with defaulter’s collateral, a CCP
junior equity tranche and surviving members’ default fund contributions. Members
and the CCP disagree about the size of the SITG capital.

To understand the basic determinants of the default waterfall, we assumed that
one CCP clears all trades. In practice, several third-party CCPsmay compete for the
market. Introducing several CCPs would allow us to analyze the relationship
between competition and CCP stability. Relatedly, we also believe that competing
CCPsmay cater to different clienteles in amodel with heterogeneous investors (see,
e.g., Santos and Scheinkman (2001)). We leave these venues for future research.

Appendix A. Proofs

A.1. Derivation of equation (3)

We first derive the expected version of equation (6), given by

E po dð Þ½ �=E ro dð Þ½ �þE π dð Þ½ �� x� e:(A-1)

As a payer succeeds with probability q, and default is idiosyncratic the number of
defaulting payers among k payers is a random variable with a binomial distribution
B k,1�qð Þ. Taking expectations over equation (6), we thus obtain

Es po dð Þ½ �=
XN�1

d = 0

1�qð ÞdqN�1�d
N �1

d

 !

rs dð Þþ d

N �d
rf dð Þ�pf dð Þ
� �

� N

N �d
xþ e�π dð Þð Þ

 �
,

=Es ro dð Þ½ �þ
XN�1

d = 1

1�qð ÞdqN�1�d
N �1

d�1

 !
rf dð Þ�pf dð Þ
� �

� xþ eð Þ
XN�1

d = 0

1�qð ÞdqN�1�d
N

d

 !
,

(A-2)

þ
XN�1

d = 0

1�qð ÞdqN�1�d N

d

� �
π dð Þ,(A-3)

24 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109023000121  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000121


=Es ro dð Þ½ �þ1�q

q

XN�2

l = 0

1�qð ÞlqN�1�l
N �1

l

 !
rf lþ1ð Þ�pf lþ1ð Þ
� �

,

� xþ eð Þ
q

1� 1�qð ÞN
h i

þ1

q
E π dð Þ½ �� 1�qð ÞNπ Nð Þ
h i

(A-4)

=Es ro dð Þ½ �þ1�q

q
Ef ro dð Þ½ ��Ef po dð Þ½ �� �� xþ e

q
þE π dð Þ½ �

q
,(A-5)

where to obtain the last line, we used equation (6) for d =N. The last line is equivalent to
equation (A-1).

Using equation (1), we can now derive equation (3). We have

U =
1

2
q 1� xð Þ2Rþ x�E po dð Þ½ �ð Þþ1

2
E ro dð Þ½ �þ ν�1ð ÞE min ro dð Þ, ĉf g½ �ð Þ

� 1�1cmð Þψ:
(A-6)

Substituting E po dð Þ½ � thanks to equation (A-1), we obtain

U = qRþ1

2
x�qRxþ1

2
xþ eð Þ�1

2
E π dð Þ½ �þ ν�1

2
E min ro dð Þ, ĉf g½ �

� 1�1cmð Þψ,
(A-7)

which is equivalent to equation (3).

A.2. Proof of Proposition 1

Weprove the results in several steps. Step 1 proves that resource constraint (4) binds.
Step 2 proves that for all d<N , rs dð Þ is constant. Step 3 proves that for all d<N , rf dð Þ is
a constant lower than ĉ and rs. In Step 4, we prove that we can focus on contracts with
2xþ e ≤ ĉwithout loss of generality. Finally, in Step 5,weprove that rf > rf Nð Þ. For some
arguments in this proof, we will refer to certain contracts introduced later in themain text.

Step 1. Resource constraint (4) binds, pf dð Þ= x.

From equation (6), increasing pf dð Þ for d<N allows investors to increase rs dð Þ in
this state. Such a change may only relax constraints (LP) and (MICbm). Because
investors’ utility in equation (3) is weakly increasing with rs dð Þ, it is thus optimal to
set pf dð Þ = x for all d<N .

For state d =N , suppose the inequality in equation (5) is slack and consider
increasing pf Nð Þ by Δpf Nð Þ∈ð0,x�pf Nð Þ�. Denote ΔEf po dð Þ½ � the corresponding
increase in Ef po dð Þ½ �. Let us also increase Es po dð Þ½ � by ΔEs po dð Þ½ �=ΔEf po dð Þ½ � in
order to ensure that limited pledgeability constraint (LP) still holds. Consider then a joint
increase in rf Nð Þ and Es ro dð Þ½ � such that

Δrf Nð Þ ≤Δpf Nð Þ, ΔEs ro dð Þ½ �≥ νΔEf ro dð Þ½ �, and ΔEs ro dð Þ½ � ≤ΔEs po dð Þ½ �:(A-8)

The first constraint ensures that resource constraint (5) is still satisfied following
the perturbation. The second constraint ensures that bilateral monitoring
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constraint (MICbm) is satisfied after the perturbation if needed. The last constraint
ensures that budget constraint (6) is still satisfied. Since Δpf Nð Þ> 0 and
ΔEs ro dð Þ½ �> 0, by construction, such a perturbation exists and it is weakly optimal
because investors’ utility weakly increases with ro dð Þ. Hence, pf Nð Þ = x is optimal.

Step 2. rs dð Þ= rs for all d<N .

Suppose instead that there are two states d,d0ð Þ such that rs dð Þ> rs d
0ð Þ. We argue

that the following perturbation weakly increases investors’ utility: a decrease in rs dð Þ
and ps dð Þ and an increase in rs d0ð Þ and ps d

0ð Þ such that Es ro dð Þ½ � and Es po dð Þ½ � are
unchanged. This perturbation is feasible because it does not affect limited pledgeability
constraint (LP) and it weakly relaxes bilateral monitoring constraint (MICbm) (strictly if
rs dð Þ> ĉ> rs0 d

0ð Þ). It is (weakly) profitable because the objective function in equation
(3) is concave in rs dð Þ and rs d0ð Þ.

Step 3. rf dð Þ= rf ≤ min rs, ĉf g for all d<N .

We first show that setting rf dð Þ= rf for all d<N is optimal. Suppose instead that
there are two states d,d0ð Þ such that rf dð Þ> rf d0ð Þ. The argument used in Step 2 above
also applies here if rf dð Þ> rf d0ð Þ≥ ĉ or if rf d0ð Þ< rf dð Þ ≤ ĉ. Hence, we are left to
analyze the case in which rf d0ð Þ< ĉ< rf dð Þ. For ε> 0 small enough, consider the
following perturbation:

Δrf d0ð Þ,Δrf dð Þ� �
= ε,� f d0ð Þ

f dð Þ νε
� �

,(A-9)

with f dð Þ the probability that d payers default among N �1. The perturbation is
designed such that the right-hand side of bilateral monitoring constraint (MICbm) is
unchanged. To satisfy budget constraint (6) in state d and d0, setΔps dð Þ= 1�q

q Δrf dð Þ and
Δps d

0ð Þ= 1�q
q Δrf d0ð Þ. Limited pledgeability constraint (LP) still holds after the pertur-

bation as the expected payment Es po dð Þ½ � increases by

ΔEs po dð Þ½ �= �1�q

q
ν�1ð Þf d0ð Þε:(A-10)

The perturbation strictly increases the objective function in equation (3), which is
concave in rf .

We then show that rf ≤ min rs, ĉf g is optimal. The result rf ≤ ĉ follows from
two observations. First, the objective function in equation (3) is independent of rf when
rf > ĉ and increasing rf does not relax any constraint but it tightens bilateral monitoring
constraint (MICbm).

For the second part of the result, suppose that rf > rs and consider the following
perturbation:

Δrf < 0, Δrs = �1�q� 1�qð ÞN
q

Δrf , such that rf þΔrf = rsþΔrs:(A-11)

Let Δps dð Þ be the perturbation to ps dð Þ needed in state d<N to satisfy the budget
constraint (6) while keeping other variables constant. The perturbation is designed such
that E ps dð Þ½ � does not change, as can be seen from equation (A-1). This implies that
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limited pledgeability constraint (LP) still holds. Hence, the perturbation is feasible under
limited pledgeability constraint (LP) and bilateral monitoring constraint (MICbm)
because the right-hand side of the latter constraint is increasing with rs and decreasing
with rf . With this perturbation, E ro dð Þ½ � is unchanged, which means investors’ utility is
unchanged. Hence, it is weakly optimal to set rs ≥ rf , and it can be strictly optimal if it
relaxes the inequality in equation (MICbm).

Step 4. Proof that rf Nð Þ= 2xþ e≤ ĉ.

To prove this statement, we first rely on properties of the CCP’s compensation
contract shown later in the text. Proposition 6 shows that it is optimal not to compensate
the CCP in state d =N . Hence, we set π Nð Þ= 0. Using the result in Step 1, we can rewrite
budget constraint (6) in state d =N as rf Nð Þ ≤ 2xþ e. Setting rf Nð Þ ≤ ĉ is weakly
optimal by the same argument used in Step 3 for rf . Hence, we are left to show that
we can focus on contracts such that 2xþ e ≤ ĉ. We proceed by contradiction considering
a “candidate” contract such that 2xþ e> ĉ.

In this case, the candidate contract is dominated by the full-hedging contract
described in Proposition 2. Because this contract does not require monitoring, it is
enough to show that the candidate contract is more costly since hedging benefits are
lower. The combined cost of collateral and CCP capital with the candidate contract is
given by

xkþ1

2
eκ>

ĉ

2
kþ1

2
e κ� kð Þ> ĉ

2
k,(A-12)

where the last inequality follows from Assumption 4. The last expression is the cost for
the full-hedging contract. Hence, the candidate contract cannot be optimal.

Step 5. Proof that rf ≥ rf Nð Þ.

We consider again the centralized monitoring scheme and the bilateral monitoring
scheme in turn. Consider first the centralized monitoring scheme. Either rs = rf = ĉ or
(LP) binds. In the first situation, rf Nð Þ= 2xþ e ≤ ĉ= rf by Step 4. In the second situa-
tion, two cases are again possible. If ν�1

2 2�qβð Þ≥ k, then increasing x to increase rs and
rf until they are equal to ĉ is optimal. The result follows again. If instead
ν�1
2 2�qβð Þ> k, it is optimal to decrease x until it reaches 0 so that

E r½ �= qβ�κe�2ψ:(A-13)

Then, it should be optimal to switch to bilateral monitoring with e= 0 because it
increases the right-hand side and thus the transfers of the left-hand side of the equality
above. Bilateral monitoring is incentive-compatible with contract rs = β, rf = 0, and
x = 0 under Assumption 2, as we will show in Lemma 2. Again, the desired result
holds.

Consider now the bilateral monitoring scheme. With a similar argument, we can
focus on the case in which limited pledgeability constraint (LP) binds. The argument
when ν�1

2 2�qβð Þ> k is similar to that above. Suppose then that ν�1
2 2�qβð Þ ≤ k. This

implies that x should be increased until rs = ĉ. Increasing rf , however, entails an
additional cost because the bilateral monitoring constraint (MICbm) needs to be satis-
fied. Hence, to increase rf , one must also increase rs. Two cases are possible. First, if the
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cost of collateral is low, rf should be increased until it reaches ĉ and the proof follows
by Step 4. Otherwise, rf should be set such that rs = ĉ and limited pledgeability
constraint (LP) and bilateral monitoring constraint (MICbm) hold as equality. This
contract is the contract considered in case 2 of Proposition 5, and, as we show there,
it satisfies rf ≥ 2xþ e under Assumption 2. This concludes the proof. □

A.3. Proof of Proposition 2

Using Proposition 1, we derive a simplified version of the investor’s problem in the
absence of friction. Recall that monitoring is redundant if the asset is fully pledgeable.
The investors solve

max
x,e,rs,rf

ν�1

2
qmin rs, ĉf gþ 1�qð Þ 1� 1�qð ÞN�1

h i
min rf
�

, ĉgþ 1�qð ÞN�1 2xþ eð Þ
� �h i

�x qR�1ð Þ�1

2
eκ:

(A-14)

The objective function is strictly increasing with rs and rf for all rs ≤ ĉ and rf ≤ ĉ,
and it is constant otherwise. Hence, it is optimal to set rs = rf = ĉ. To determine the
optimal values of x and e, compute the derivative of the objective function with respect
to the following variables:

U 0 eð Þ= 1

2
ν�1ð Þ 1�qð ÞN �1

2
κ, and(A-15)

U 0 xð Þ = ν�1ð Þ 1�qð ÞN � k:(A-16)

First, equations (A-15) and (A-16) imply that U 0 xð Þ≥ 2U eð Þwith a strict inequal-
ity if κ> k. Hence, if e> 0, a perturbation Δx,Δeð Þ= 1=2e,�eð Þ increases investors’
utility, which means e= 0 is optimal. Furthermore, equation (A-16) shows that setting
rf Nð Þ= 2x equal to ĉ is optimal if and only if k ≤ ν�1ð Þ 1�qð ÞN . This concludes the
proof. □

A.4. Proof of Proposition 3

Step 1. Limited Pledgeability Constraint.
We first rewrite the limited pledgeability constraint (LP). We showed in Proposition

1 that Ef po dð Þ½ �= x, and in Lemma 1 that 1cm = 0. Using these results together with the
binding participation constraint of the CCP, equation (PCCCP), and equation (A-1), we
obtain

q Es po dð Þ½ ��Ef po dð Þ½ �� �
=Es ro dð Þ½ ��2xþκe(A-17)

= qrsþ 1�qð Þ 1� 1�qð ÞN�1
h i

rf � 1� 1�qð ÞN
h i

2xþ eð Þþκe:(A-18)

We can thus rewrite equation (LP) as a function of rs,rf ,e,x
� �

.

qrsþ 1�qð Þ 1� 1�qð ÞN�1
h i

rf ≤ qβþ 2�qβ�2 1�qð ÞN
� �

x� κþ1 1� 1�qð ÞN
n oh i

e:(A-19)

Investors thus solve the problem described in equation (A-14) under constraint
(A-19).
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Step 2. Analysis.

We first show that the optimal level of CCP capital is eOM = 0. We showed in
Proposition 2 that e= 0 is optimal in the absence of the pledgeability friction. In the
presence of limited pledgeability constraint (LP), equation (A-19) shows that increasing
e tightens this constraint. Hence, setting eOM = 0 remains optimal.

We now argue that we can consider two different cases for the analysis: Either
rs = rf = ĉ or constraint (A-19) binds. This observation follows from Proposition 2,
where we showed that rs = rf = ĉ is optimal in the absence of constraint (A-19). Addi-
tionally, the relative weight on these two variables is the same in the objective function
in equation (A-14) and in constraint (A-19).

Suppose first that rs = rf = ĉ and k ≤ kN = ν�1ð Þ 1�qð ÞN . Then, increasing x until
rf Nð Þ= 2x equals ĉ is optimal because it increases investors’ utility as shown by
condition (A-16) in the proof of Proposition 2, and it relaxes constraint (A-19). Hence,
in this case, the optimal OM contract is the full-hedging contract derived in Proposition 2.

Suppose now that k> kN = ν�1ð Þ 1�qð ÞN . We want to find conditions such that
rs = rf = ĉ is optimal and rf Nð Þ= 2x< ĉ. In this case, it must be that the inequality
in equation (A-19) binds. Otherwise, decreasing x while maintaining rs,rf

� �
constant

strictly increases investors’ utility because k> kN = ν�1ð Þ 1�qð ÞN . A contract with the
conjectured properties is optimal if decreasing xwhen constraint (A-19) binds decreases
the objective function. We have in this case

U 0 xð Þ= ν�1

2

∂E ro dð Þ½ �
∂x ∣e= 0, A19ð Þbinds

� k =
ν�1

2
2�qβð Þ� k� �k� k:(A-20)

The conjecture is thus optimal if k∈ kN ,�k
	 


. This corresponds to case 2 of Proposition 3.
We are left to describe the case k ≤ �k, in which rs,rf < ĉ. In this case, it is also

optimal to set x to 0 since the marginal benefit of collateral is given by equation (A-20).
The optimal contract is then characterized by eOM = 0, xOM = 0. The values of rs and rf
are pinned down by the binding constraint (A-19); that is,

rsþ1�q

q
1� 1�qð ÞN�1
h i

rf = β:(A-21)

In particular, the contract such that rs = β and rf = 0 is optimal, which corresponds
to case 3 of Proposition 3. This concludes the proof. □

A.5. Proof of Corollary 1

We prove the result here in the case where monitoring is imposed. The proof for
the case where investors can choose whether to monitor is in Appendix IA.2 of the
Supplementary Material. We verify that the OM contracts of Proposition 3 satisfy
Definition 2 only in Cases 1 and 3.

For case 1, we have ro dð Þ = 2x = po dð Þþ x for all d. For case 3, we have
rs dð Þ= ps dð Þ= β and rf dð Þ= 0 = pf dð Þ. Hence, both contracts satisfy Definition 2.
The contract in case 2 has rOMf dð Þ= ĉ> pOMf dð Þþ xOM for all d<N , and thus this
contract violates Definition 2. It follows that the upper bound for the essential CCP
region is given by �k and the lower bound is kN . This concludes the proof. □
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A.6. Proof of Corollary 2

The optimal bilateral contract is obtained from Proposition 3 for the case with
monitoring and Proposition A1 without monitoring, setting N = 1.

We first show that when k is close to the upper bound �k of the essential CCP region,
the bilateral contract requires strictly less collateral. By Proposition 3, for k lower but
close to �k, the optimal contract is given by case 2 of Proposition 3 for allN ≥ 1. Equation
(10) shows that the collateral requirement xOM is increasing in N because ĉ ≤ 2 under
Assumption 1. This proves that a bilateral contract requires less collateral for k close
to �k.

For the second part of the result, observe that kN = ν�1ð Þ 1�qð ÞN strictly
decreases with N . Hence, by Proposition 3, when k∈ kN ,�k1

	 

, the multilateral contract

features full loss mutualization with xOM < ĉ
2, while the optimal bilateral contract fea-

tures full hedging; that is xOM1 = ĉ
2. This proves the result.

A.7. Proof of Proposition 4

We first derive the optimal contract without monitoring in Appendix A.7.1 and
then derive the optimal monitoring decision in Appendix A.7.2.

A.7.1. Optimal Contract Without Monitoring

We first establish that a single (pooling) contract is offered, although investors may
have different ex post types. Without monitoring, each investor has pledgeability βwith
probability α or 0 with probability 1�α. With unobservable types, a menu of contracts
could be used to screen investors. In our environment, however, screening is not
possible due to a failure of the Mirrless–Spence sorting condition. The investor type
changes the asset pledgeability but investors’ utility in equation (3) does not depend on
the type. This implies that investors always agree on the best contract in a menu and
separation is not possible.

The result above greatly simplifies the analysis of the optimal contract without
monitoring. As only one contract is offered, we can consider investors ex ante, that is,
before their pledgeability type is realized. It follows that lack of monitoring simply
increases the probability of default of an investor from 1�q to 1�αq. The collateral
cost k, however, is the same because the asset succeeds with probability q, independent
of the investor type.

It follows from these observations that we can derive the optimal contract without
monitoring by adapting Proposition 3, substituting qwith αq (while keeping k = qR�1).
We use the superscript m to indicate that investors are not monitored.

Proposition A1. Without monitoring, there are two thresholds of collateral cost

k
�m
N = ν�1ð Þ 1�αqð ÞN , and(A-22)

�k
�m
=
1

2
ν�1ð Þ 2�αqβð Þ,(A-23)

such that
1) if k ≤ k

�m
N , then the contract in case 1 of Proposition 3 is optimal,

2) if k∈ k
�m
N ,�k

�mh i
, then a complete LM contract is optimal, with

rOM,�m
s = rOM,�m

f = ĉ, and
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xOM,�m �
1� 1�αqð ÞN
h i

ĉ�βq

2 1� 1�αqð ÞN
h i

�βαq
∈ 0,

ĉ

2

� �
, and(A-24)

3) if k ≥ �k
�m, then the contract in case 3 of Proposition 3 is optimal.

A.7.2. Optimal Monitoring Decision

We first prove that monitoring is optimal if the collateral cost is above a threshold
k̂
m
, if it exists. We then characterize k̂

m
to prove the properties listed in Proposition 4.

Step 1. Threshold condition.

The argument relies on three claims.
The first claim is that for a given monitoring choice, the difference in investor’s

utility across consecutive contracts is strictly increasing with k. A contract is consec-
utive to a reference contract if it is the next optimal contract when increasing k. For
example, the contract consecutive to the full-hedging contract is the full-loss-
mutualization contract both with and without monitoring. For each case of Proposition
3 or Proposition A1, the contract terms do not depend on k. Hence, to prove the claim, it
is enough to show that a consecutive contract uses strictly less collateral than the
predecessor contract, which follows directly from Proposition 3.

The second claim is that for a given contract type, the collateral requirement is
lower when investors monitor. A direct comparison between Proposition 3 and Prop-
osition A1 shows that the desired inequality holds strictly in all cases except in case
3, when both contracts are the same and thus require the same amount of collateral.

The third claim is that the thresholds between consecutive contracts are strictly
higher under no monitoring. The comparison between �k and �k

�m
on the one hand and kN

and k
�m
N on the other hand shows immediately that this is the case because α< 1.
These three claims together imply that the benefit from monitoring is strictly

increasing with k except when k ≤ kN , where it is constant, negative, and equal to �ψ
because then the contract is the same with or without monitoring.

Step 2. Characterization of threshold k̂
m
.

The results in Step 1 show that, if it exists, the collateral cost threshold k̂
m
above

which monitoring is optimal satisfies k̂
m
> kN for ψ> 0. For the degenerate case ψ = 0,

any value in 0,kN½ � is admissible.
Since kN < �k by Corollary 1, to show that the threshold exists, it is enough to show

that monitoring is optimal for k = �k. When k = �k, by Proposition A1, the optimal contract
without monitoring is given by case 1 or 2. In general, investors’ utility is given by

U
�m
∣k = �k = qRþ ν�1ð Þ��k

	 
 ĉ
2
þ max 0,�k� k

�m
N

� � ĉ

2
� xOM,�m

� �
(A-25)

= qRþqβ
ν�1

2

ĉ

2
þ ν�1

2
βαq 1� ĉ

2

� �
max 0,

2�qβ�2 1�αqð ÞN

2 1� 1�αqð ÞN
h i

�βαq

8<:
9=;:(A-26)
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The last term of U
�m
∣k = �k in the second line of (A-26) is increasing in N . Hence, an

upper bound for U
�m
∣k = �k is obtained by letting N !∞, that is,

U
�m
∣k = �k ≤ qRþqβ

ν�1

2

ĉ

2
þ ν�1

2
1� ĉ

2

� �
qαβ 2�qβð Þ
2�qαβ

:(A-27)

Hence, the utility without monitoring is lower for k = �k if

0 ≤Uk = �k � qRþqβ
ν�1

2

ĉ

2
þ ν�1

2
1� ĉ

2

� �
qαβ 2�qβð Þ
2�qαβ

� �
(A-28)

≤ qRþ ν�1

2
qβ�ψ� qRþqβ

ν�1

2

ĉ

2
þ ν�1

2
1� ĉ

2

� �
qαβ 2�qβð Þ
2�qαβ

� �
(A-29)

≤
ν�1

2
qβ 1� ĉ

2

� �
� ν�1

2
1� ĉ

2

� �
qαβ 2�qβð Þ
2�qαβ

�ψ(A-30)

≤
βq 1�αð Þ ν�1ð Þ

2�βαq
1� ĉ

2

� �
�ψ:(A-31)

The first term on the right-hand side of the last inequality is strictly above the upper
bound �ψ for the monitoring cost. Hence, under Assumption 2, monitoring is optimal
for k = �k, and thus the monitoring threshold k̂

m
exists and lies strictly below �k. This

concludes the proof. □

A.8. Proof of Lemma 2

Suppose first that k∈ k̂
m
,kN

h i
. In this case, by Proposition 3, the OM contract is

given by case 3, with rOMs = rOMf = rOMf Nð Þ. This implies that the bilateral monitoring
constraint (MICbm) is violated. Suppose now that k ≥ kN . Under Assumption 5, the OM
contract is given by case 2 of Proposition 3, with rOMs = rOMf = ĉ, eOM = 0, and xOM given
by equation (10). Plugging these variables into the bilateral monitoring constraint
(MICbm), we obtain condition (11).

A.9. Proof of Proposition 5

We first rewrite the bilateral monitoring constraint (MICbm) using the results from
Proposition 1, as follows:

ψ
1�α

≤
1

2
rs� rf þ 1�qð ÞN�1 rf � 2xþ eð Þ� �h i

þν�1

2
min rs, ĉf g� 1� 1�qð ÞN�1

h i
min rf , ĉ
� �þ 1�qN�1

� �
2xþ eð Þð Þ

� �h i
:

(A-32)

The optimal contract under bilateral monitoring solves problem (A-14) under
constraints (A-19) and (A-32), which correspond, respectively, to limited pledgeability
constraint (LP) and bilateral monitoring constraint (MICbm) in the investor’s problem.
In Step 1, we show that constraints (A-19) and (A-32) bind. In Step 2, we derive the
threshold �k

bm
. Finally, in Step 3, we characterize the optimal distortion to the OM

contract of Proposition 3.
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Step 1. Equations (A-19) and (A-32) bind.

Under Assumption 5, constraint (A-32) binds because the OM contract in Prop-
osition 3 violates equation (A-32). The constraint (A-19) must also bind. If it does not,
decrease x while keeping rs and rf constant. This change relaxes constraint (A-32).
Hence, the marginal effect on investors’ utility from this perturbation is given by
�U 0 xð Þ in equation (A-16), which is positive because k> �kN by Assumption 5.

Step 2. Threshold �k
bm and optimal contract.

We now derive the optimal distortion to the case 2 contract of Proposition 3. By
Proposition 3, it is optimal to set rs ≥ ĉ under Assumption 5 when constraint (A-32) is
not imposed. Hence, it is still optimal under constraint (A-32) because increasing rs
relaxes this constraint. It is also optimal to increase rf until equation (A-32) binds. Under
Assumption 5, this value denoted rf must lie strictly below ĉ.

The optimal value of rf , and thus the optimal contract itself, depend on the
marginal value of increasing rf when rf ∈ rf , ĉ

	 

. From equations (A-19) and (A-32),

we have (for given x and e).

qrsþ 1�qð Þ rf � 1�qð ÞN�1 rf �2x� e
� �h i

= 2�qβð Þxþqβ�κe and(A-33)

rs� v rf � 1�qð ÞN�1 rf �2x�e
� �h i

=
2ψ

q 1�αð Þ� ν�1ð Þĉ:(A-34)

Hence, we obtain

1�qð Þ rf � 1�qð ÞN�1 rf �2x� e
� �h i

=
1�qð Þ 2�qβð Þxþqβ�κe½ ��q 1�qð Þ 2ψ

1�α
� ν�1ð Þĉ

 �
qvþ 1�qð Þ :

(A-35)

We can plug this relationship into the expression for investors’ utility in equation
(A-14). Because rs ≥ ĉ, the utility U is then a function of x and e only. It follows that
increasing x to increase rf above rf is profitable if and only if

k ≤
ν�1

2

1�q

1�qþ νq
2�qβð Þ= 1�q

1�qþ νq
�k� �k

bm
< �k:(A-36)

Step 3. Optimal distortion.

CCP capital e tightens (A-32). This observation implies that setting e= 0 remains
optimal when k> kN , as in the observable monitoring case. The analysis in Step 2 then
shows that only two contracts are possible depending on the ranking between k and �k

bm
.

Case i. k ≤ �k
bm

In this case, r∗f = ĉ. Setting e∗ = 0 and solving for x using equations (A-33) and
(A-34), we obtain
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ĉ 1�q� 1�qð ÞN þq� νq 1�qð ÞN�1
h i

�qβþ 2ψ
1�α

= 2�2 1�qð ÞN�1 νqþ1�q½ ��βq
� �

x:

(A-37)

Hence,

x∗ =
ĉ 1� 1�qð ÞN�1 νqþ1�q½ �
� �

�qβþ 2ψ
1�α

2�2 1�qð ÞN�1 νqþ1�q½ ��βq
> xOM:(A-38)

It can easily be verified that the conjecture 2x∗ ≤ ĉ holds under Assumption 2.

Case ii. k ≥ �k
bm

In this case, r∗s = ĉ. We then use equations (A-33) and (A-34) to solve for r∗f and x
∗

setting again e∗ = 0. We obtain

x∗ =
ĉ�qβ� 2ψ 1�qð Þ

qν 1�αð Þ
2�qβ

< xOM and(A-39)

r∗f =
ĉ�2 1�qð ÞN�1x∗� 2ψ

νq 1�αð Þ
1� 1�qð ÞN�1 :(A-40)

This concludes the proof. □

A.10. Proof of Proposition 6

We first show the results related to the CCP compensation (Step 1).We then derive
the optimal contract (Step 2).

Step 1. CCP compensation schedule.

We first show that the CCP should be compensated only in state d = 0. Define the
incentive power of a state d∈ 0,1,…Nf g as

IC dð Þ= 1� ℙ djshirk½ �
ℙ djeffort½ � ,(A-41)

with ℙ dja½ � the probability of state d under action a. We have

ℙ djeffort½ �= N

d

� �
1�qð Þdq N�dð Þ, while the term ℙ djshirk½ � depends on the number

of investor pairs that the CCP does not monitor. If it deviates by monitoring only
nm∈ j0,N �1j½ � investors,

ℙ djshirk½ � =
Xd
dm = 0

nm
dm

� �
N �nm
d�dm

� �
1�qð Þdmqnm�dm 1�αqð Þd�dm αqð ÞN�nm�dþdm :(A-42)

After some manipulation, we obtain
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ℙ djshirk½ �
ℙ djeffort½ � =

Pd
dm = 0

nm

dm

 !
N �nm

d�dm

 !
1�αq
α 1�qð Þ
h id�dm

N

d

 !

=
Xd
dm = 0

wnm dmð Þ 1�αq
α 1�qð Þ
 �d�dm

,

(A-43)

where
Pd

dm = 0wnm dmð Þ= 1 by Vandermonde’s identity. Because 1�αq
α 1�qð Þ> 1, the ratio

above is minimized by setting d = 0 and the minimum is strict. Hence, IC dð Þ is max-
imized for d = 0.

We will now define π 0ð Þ as the incentive payment such that equation (MICcm)
holds as an equality. It is defined by

NqNπ 0ð Þ�2Nψ = max
nm∈ j0, ::N�1j½ �

NqNαN�nmπ 0ð Þ�2nmψ
� �

,(A-44)

where on the right-hand side, nm is the number of investor pairs that the CCP monitors
when it deviates. The relevant deviation, however, is to monitor no investor. To prove
this statement, we need to show that the mapping g : y! y 1� ey log αð Þ� ��1

is increasing
with y for y≥ 1. We have

g0 yð Þ∝1�αyþ yαy log αð Þ≥ 1�α 1� log αð Þð Þ:(A-45)

The inequality obtains because y≥ 1 and α ≤ 1. We thus have g0 yð Þ≥ 0 because
α↦α 1� log αð Þð Þ is increasing and lim α!1α 1� log αð Þð Þ= 1. Setting nm = 0 on the
right-hand side of equation (A-44), we find that π 0ð Þ is given by equation (12). With
π 0ð Þ, e given by equation (13) is the amount of capital such that equation (PCCCP) binds.

Step 2. Optimal Contract.

Observe first that the expected compensation to the CCP is a fixed cost. Hence,
under Assumption 5, the complete loss mutualization contract of Proposition 3 is still
optimal under unobservable monitoring. We thus have r∗s = r

∗
f = ĉ, and we are left to

determine x∗ and e∗.
Building on the proof of Proposition 3, we need to determine the marginal value of

e on the investors’ utility function when r∗s = r
∗
f = ĉ and limited pledgeability constraint

(LP) binds. The key observation is that the CCP’s participation constraint (PCCCP) is
slack for any e∈ 0,e½ � when using the minimum compensation contract given by
equation (12). When e is increased over e, however, the inequality in equation (PCCCP)
is tight, and any increase in CCP capital requires an increase in expected compensation
by a factor κþ1. Using equation (A-19), which is equivalent to limited pledgeability
constraint (LP), we obtain the following result:

U 0 eð Þ∣r∗s = r∗f = ĉ, LPð Þbinds =
∂U

∂e
þ∂U

∂x

∂x

∂e
,(A-46)
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=

ν�1

2
1�qð ÞN � ν�1ð Þ 1�qð ÞN � k

h i 1� 1�qð ÞN
2�2 1�qð ÞN �βq

if e ≤ e,

κþ 1�qð ÞN
2�qβ�2 1�qð ÞN if e> e:

8>>>><>>>>:(A-47)

Since k> kN , U
0 eð Þ≥ 0 if and only if e ≤ e. It follows that the optimal choice of

CCP capital is e∗ = e. Note that ∂x
∂e< 0; that is, the amount of collateral decreases with e

for e< e, as claimed in the main text.
We are thus left to determine the optimal collateral amount. To solve for x∗, we

saturate the limited pledgeability constraint (LP) to obtain

ĉ 1� 1�qð ÞN
h i

þ 1�qð ÞN 2x∗þ e∗ð ÞþE π∗½ �= qβþ 2�qβð Þx∗þ e∗:(A-48)

We obtain

x∗ =
ĉ 1� 1�qð ÞN
h i

�βq

2 1� 1�qð ÞN
h i

�βq
þ

κþ1� 1� 1�qð ÞN
h i� �

e∗þ2ψ

2 1� 1�qð ÞN
h i

�βq
,(A-49)

= xOMþ 2ψ
κþ1ð Þ 1�αNð Þ

κþ1�αN 1� 1�qð ÞN
h i

2 1� 1�qð ÞN
h i

�βq
:(A-50)

Finally, we need to verify our conjecture that 2x∗þ e∗ ≤ ĉ. Using the first expres-
sion for x∗ above, this inequality is equivalent to

ψ ≤
1�αN

2� βqαN

κþ1

βq 1� ĉ

2

� �
:(A-51)

The right-hand side is increasing with N . Hence, the condition above holds for all
N if it holds for N = 1. This latter condition is implied by Assumption 2.

A.11. Proof of Proposition 7

We first compare centralized monitoring to nomonitoring. To avoid confusion, we
add a superscript cm to variables for the optimal centralized monitoring contract. For
large N , Proposition A1 shows that the OM contract without monitoring is given by
case 2. This is because the condition k ≤ �k in Assumption 5 implies k ≤ �k

�m
, and the lower

bound of the region k
�m
N converges to 0 as N grows large. Using Propositions 6 and A1,

we derive the following expressions for investors’ utility:

U∗,cm = qRþ ν�1� k½ � ĉ
2
þ k� ν�1ð Þ 1�qð ÞN
h i ĉ

2
� x∗,cm

� �
�1

2
νcm�1ð Þ� ν�1ð Þ 1�qð ÞN�1

h i
e∗�ψ and

(A-52)
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UOM,�m = qRþ ν�1� k½ � ĉ
2
þ k� ν�1ð Þ 1�αqð ÞN
h i ĉ

2
� xOM,�m

� �
:(A-53)

From Propositions 6 and A1 again, we have

ĉ

2
� x∗,cm =

βq 1� ĉ
2

� �
2 1� 1�qð ÞN
h i

�βq
� 2ψ

κþ1ð Þ 1�αNð Þ
κþ1�αN 1� 1�qð ÞN

h i
2 1� 1�qð ÞN
h i

�βq
, and(A-54)

ĉ

2
� xOM,�m =

βαq

2 1� 1�αqð ÞN
h i

�βαq
1� ĉ

2

� �
,(A-55)

WhenN !∞, e∗ converges to 0 at an exponential rate by Proposition 6. The second
term of ĉ

2� xcm,∗ above also converges at an exponential rate as N !∞. In the limit,
centralized monitoring dominates no monitoring, that is, U∗,cm ≥UOM,�m if and only if

k

2�βq
βq 1� ĉ

2

� �
�2ψ

 �
�ψ ≥

k

2�βαq
βαq 1� ĉ

2

� �
:(A-56)

Under Assumption 2, we have

ψ ≤
βq 1�αð Þ
2�βαq

1� ĉ

2

� �
:(A-57)

Hence, the condition can be expressed as a lower bound k̂
cm

on k with

k̂
cm

=
2�βq

βq 1�αð Þ
2�βαq 1� ĉ

2

� ��ψ

ψ
2
:(A-58)

We now turn to the comparison between centralized monitoring and bilateral
monitoring. We first consider case 1 of Proposition 5. In this case, investors’ utility
can be written as

U∗ = qRþ ν�1� k½ � ĉ
2
þ k� ν�1ð Þ 1�qð ÞN
h i ĉ

2
� x∗

� �
�ψ:(A-59)

Using equations (A-52) and (A-59), centralized monitoring dominates case 5 of
bilateral monitoring if and only if

k� ν�1ð Þ 1�qð ÞN
� �

xcm,∗� xOM
� �þ1

2
κ� ν�1ð Þ 1�qð ÞN
� �

e∗

≤ k� ν�1ð Þ 1�qð ÞN
� �

x∗� xOM
� �

:

(A-60)

Using the expression for the collateral requirement in equation (A-38), we obtain

x∗� xOM =
2ψ

1�α½ � 2 1� 1�qð ÞN
� �

�βq
h i� νq 1�qð ÞN�1

2 1� 1�qð ÞN
� �

�βq
ĉ�2x∗ð Þ(A-61)
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=
2ψ

1�α½ � 2 1� 1�qð ÞN
� �

�βq
h i

� νq 1�qð ÞN�1

2 1� 1�qð ÞN
� �

�βq

βq 2� ĉð Þ� 4ψ
1�α

2 1� 1�qð ÞN�1 νqþ1�qð Þ
h i

�βq
:

(A-62)

We thus obtain the following condition

1

2
κ� ν�1ð Þ 1�qð ÞN
� �

e∗ ≤ k� ν�1ð Þ 1�qð ÞN
h i

x∗� x∗,cmð Þ
1

2
κ� ν�1ð Þ 1�qð ÞN
� �

e∗ ≤
k� ν�1ð Þ 1�qð ÞN

2 1� 1�qð ÞN
� �

�βq

2ψ
1�α

� 2ψ
1�αN

(A-63)

� νq 1�qð ÞN�1 βq 2� ĉð Þ� 4ψ
1�α

� �
2 1� 1�qð ÞN�1 νqþ1�qð Þ
h i

�βq

35:(A-64)

Observe that the terms that depend on N are exponential in N . Taking the limit
N !∞, the left-hand side converges to 0, while the right-hand side converges to a
strictly positive number if and only if α> 0. If α = 0, the right-hand side converges
to 0.

Finally, we turn to the comparison between centralized monitoring and case 2 of
Proposition 5 for bilateral monitoring. Centralized monitoring dominates if and only if

k� ν�1ð Þ 1�qð ÞN
� �

xcm,∗�xOM
� �þ1

2
κ� ν�1ð Þ 1�qð ÞN
� �

e∗

≤
ν�1

2
2�qβð Þ� k

 �
xOM� x∗
� �

:

(A-65)

Using equation (10) for xOM and equation (A-39) for x∗, we obtain

xOM� x∗ =
2ψ 1�qð Þ

νq 1�αð Þ 2�qβð Þ�
βq 2� ĉð Þ 1�qð ÞN

2�qβ½ � 2 1� 1�qð ÞN
� �

�βq
h i :(A-66)

We observe again that the terms that depend onN are exponential inN . Taking the
limit N !∞, the condition for centralized monitoring to dominate case 2 of bilateral
monitoring becomes

ν�1
2 2�qβð Þ� k

2�qβ
2ψ 1�qð Þ
νq 1�αð Þ ≥

k

2�βq
2ψ:(A-67)

This condition holds if and only if k ≤ �k
cm
, with

�k
cm � 1�q

1�qþ νq 1�αð Þ
�k< �k:(A-68)
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Finally, we are left to derive the maximum value of the monitoring cost ψ such that
the interval k̂

cm
,�k

cm
h i

is nonempty. Observe that �k
cm

is independent of ψ, while k̂
cm

is
strictly increasing with ψ. Solving for the value of ψ such that k̂

cm
= �k

cm
, we get

0 =
1�q

1�qþ νq 1�αð Þ
ν�1

2
2�qβð Þ� 2�βq

βq 1�αð Þ
2�βαq 1� ĉ

2

� ��ψ

ψ
2
,(A-69)

0 = 1�qð Þ ν�1ð Þβq 1�αð Þ
2�βαq

� 1�qð Þ ν�1ð Þψ�ψ 1�qþ νq 1�αð Þ½ �,(A-70)

ψ =
βq 1�qð Þ 1�αð Þ ν�1ð Þ
v 2�βαqð Þ 1�αqð Þ 1� ĉ

2

� �
:(A-71)

This is the first argument of the minimum in the expression for the upper bound on
ψ given by Assumption 2. Hence, for any ψ< �ψ, the interval k̂

cm
,�k

h i
is nonempty.

A.12. Proof of Proposition 8

We first prove that a CCPwould never pledge capital if it had the bargaining power.
We then prove the additional result mentioned in the text that a utilitarian planner
maximizing total surplus may choose a lower level of capital than investors.

The result follows from our analysis of the OM contract in Proposition 3 and the
contracts with unobservable monitoring in Proposition 5 and Proposition 6.We showed
that under Assumption 5, the net value of CCP capital to investors is negative when its
cost is κþ1. Suppose then that the CCP has the bargaining power and consider an
allocation without CCP capital. For every unit it pledges, the CCP must earn an extra
profit at least equal to κþ1, which is above the investors’willingness to pay for capital.
Hence, the CCP prefers not to pledge capital.

To prove the second result, consider the allocation in the proof of Proposition 6,
indexed by the amount of capital e∈ 0,e∗½ �, with e∗ being the investors’ choice. By
linearity, it is enough to compare the allocations with e= 0 and e= e∗. Let U eð Þ denote
the investor’s utility as a function of e∈ 0,e∗½ �,

U eð Þ= qRþ ν�1� k

2
ĉ�1

2
E π∗½ �þ k� ν�1ð Þ 1�qð ÞN

h i ĉ

2
� x� e

2

� �
þ1

2
1þ k½ �e,

(A-72)

where x is a function of e given implicitly by equation (A-48), replacing e∗ with
e∈ 0,e∗½ �. When e= e∗ the CCP breaks even, while when e= 0, the CCP’s profit is equal
to N κþ1ð Þe∗. Hence, for a planner maximizing total surplus, the allocation with e= e∗

dominates if and only if

0 ≤ 2NU e∗ð Þ� 2NU e= 0ð ÞþN κþ1ð Þe∗C
� �

,(A-73)

⇔ 0 ≤ k� ν�1ð Þ 1�qð ÞN
h i

x e= 0ð Þ� x∗� e∗

2

� �
� κ� k½ �e

∗
C

2
,(A-74)
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⇔ 0 ≤
k� ν�1ð Þ 1�qð ÞN
�k� ν�1ð Þ 1�qð ÞN βq ν�1ð Þ� κ� k½ �

( )
e∗C
2
:(A-75)

When κ is high enough, this condition does not hold, which implies that the
planner’s choice is e= 0. This is lower than the investors’ preferred choice, which is
always e= e∗.

A.13. Proof of Empirical Prediction 1

CCP capital is given by equation (13) and collateral x∗ in a third-party CCP is given
by equation (A-50) in the proof of Proposition 6.

First, we prove the comparative statics with respect to β. Proposition 6 shows that
e∗ is independent from β. Hence, it is enough to show that x∗ is decreasing with β. To
prove this result, use the implicit function theorem on equation (A-48) to obtain

∂x∗

∂β
= � q 1� x∗ð Þ

2�qβ�2 1�qð ÞN < 0:(A-76)

The inequality follows because x∗ < 1 when the contract is not fully collateralized and
the denominator is strictly positive for all N ≥ 2 β< 2 because β< 2, by Assumption 1.

Next, we prove the comparative statics with respect to N . We have

rxe Nð Þ� 2Nx∗

Ne∗
=
2x∗

e∗
= 2

κþ 1�qð ÞN þ ĉ 1� 1�qð ÞN½ ��βqþ2ψ

e∗ Nð Þ

2 1� 1�qð ÞN
h i

�βq
:(A-77)

Taking the first-order derivative with respect to N , we obtain

r0xe Nð Þ= �2
∂e∗

∂N

e∗ð Þ2
ĉ 1� 1�qð ÞN
h i

�βqþ2ψ

2 1� 1�qð ÞN
h i

�βq
(A-78)

�2log 1�qð Þ 1�qð ÞN
ĉ
e∗ �1
� �

2�βqð Þ�2 ĉ�βqþ2ψ
e∗ þκ

� �
2 1� 1�qð ÞN
h i

�βq
� �2 :(A-79)

The term in the first line is positive because ∂e∗

∂N < 0; that is, CCP capital per investor
is decreasing in N . Hence, to show that r0xe Nð Þ> 0, it is enough to show that the
numerator of the second term, call it A, is positive. Indeed � log 1�qð Þ 1�qð ÞN > 0.
We have

e∗A = ĉ� e∗ð Þ 2�βqð Þ�2 ĉ�βqþ2ψþκe∗ð Þ(A-80)

= βq 2� ĉð Þ�4ψ�2 κþ1ð Þe∗þβqe∗(A-81)

= βq 2� ĉð Þ� 4ψ
1�αN

þβq
2ψαN

κþ1ð Þ 1�αNð Þ = βq 2� ĉð Þ� 2ψ
1�αN

2�βqαN

κþ1

 �
:(A-82)
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Assumption 2 implies that this expression is positive. Hence, rxe is increasing with
N which implies that e∗

x∗þe∗ is decreasing with N . This concludes the proof. □

Appendix B. Cheap CCP Capital

In this section, we analyze the case in which CCP capital is cheaper than investors’
collateral; that is, κ< k. To clearly highlight the new role of capital in this case, we
consider the version of themodel with observablemonitoring fromSection IV.We show
that capital can substitute for collateral as an insurance tool if κ< k, but tapping into
CCP capital nevertheless requires investors’ collateral due to the limited pledgeability
problem.

The following result extends Proposition 3 for any value of CCP capital κ.

Proposition B1. There exists a threshold for collateral cost,

kN � ν�1ð Þ 1�qð ÞN þ1

2

2�qβ�2 1�qð ÞN
κþ 1�qð ÞN max ν�1ð Þ 1�qð ÞN �κ,0

n o
,(B-1)

such that the optimal contract in Cases 2 and 3 of Proposition 3 is identical substituting
kN with kN . For k ≤ kN , the optimal contract features full hedgingwith rOMs = rOMf = ĉ and

1. eOM,xOM
� �

= 0, ĉ2
� �

if k< κ and

2. eOM,xOM
� �

= qβ 2�ĉð Þ
2 κþ1ð Þ�qβ ,

ĉ�eOM

2

� �
otherwise.

The proof of this result is in Appendix IA.2 of the Supplementary Material. When
CCP capital is cheap, the OM contract of Proposition 3 changes only in the full-hedging
case. CCP capital can then play a role similar to investors’ collateral in hedging
counterparty risks. When the cost of collateral or capital is lower than the value of
hedging the joint default state, ν�1ð Þ 1�qð ÞN , investors use the cheapest of the two
resources to hedge. Case 2 of Proposition B1 shows, however, that collateral is always
part of the optimal contract even when it is more expensive than CCP capital. This
asymmetry arises because of the limited pledgeability problem. Collateral relaxes
investors’ limited pledgeability constraint (LP). To use CCP capital, however, investors
must compensate the CCP at date 1, which adds to the liability of investors, thereby
exacerbating the pledgeability problem. This effect is reflected in condition k< kN for
Case 2: No CCP capital is used if collateral is too expensive because compensating the
CCP for its capital contribution requires investors’ collateral.

Overall, our robustness analysis strikes a cautious note about the role of CCP
capital as insurance. CCP capital can be used as insurance only if it is cheaper than
collateral, whichwe view as a restrictive condition. This condition is not even sufficient,
as CCP capital comes with a shadow cost of collateral.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109023000121.
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