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Acoustic flow in porous media
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We calculate the steady acoustic flow – the steady drift of fluid mass or acoustic streaming
appearing along the path of an acoustic stimulus – in porous media. In particular, we
suggest a mechanism to explain acoustic contributions to mass transport in porous media
at geological, unit operation and lab-on-a-chip length scales. We study several cases of
steady acoustic flow for a planar acoustic wave whose wavelength is large compared with
the pore size. We commence our analysis at the ideal limit of same acoustic properties
in the solid and fluid. The effective flow may then be treated intuitively according to the
Darcy equation for flow through porous media in addition to a correction for the average
azimuth of the pores compared with the acoustic path. We further consider the framework
of a rigid porous frame, where the presence of a flow forcing mechanism resulting from
the viscous dissipation of the acoustic wave at the solid surface of the pores hinders the
intuitive application of the Darcy equation. However, we show that the steady acoustic
flow in this case may be written as a quasi-Darcy-type equation. The analysis is conducted
by a detailed calculation of the transport of mass through cylindrical pores of similar size
but arbitrary azimuth compared with the acoustic path. We consider large, medium and
small pore diameter limits relative to the viscous penetration length of the acoustic wave
near the pore surface.

Key words: convection in porous media,microscale transport

1. Introduction

The transport of fluid in a porous medium under an acoustic stimulus is ubiquitous
in geology and employed in unit operations and lab-on-a-chip platforms. For example,
seismic waves appear to displace underground water (Elkhoury, Brodsky & Agnew 2006);
a high power acoustic excitation of kHz frequency appears to assist the motion of brine
in sandstone and of air through packed beds of silica particles (Poesio et al. 2002;
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Yao et al. 2012); the latter excitation further appears to separate underground oil/water
mixtures (Hamida & Babadagli 2008). The authors in the given studies have assumed
different connections between the acoustic stimulus and transport of mass. In particular,
the authors have suggested that the acoustic stimulus alters the soil structure or that the
acoustic stimulus introduces thermal effects, which alter mass transport. However, these
analyses are devoid of the possibility of a direct transport of momentum from the acoustic
stimulus in the porous medium to a net flow of fluid therein.

A direct connection between acoustic excitation and flow through the instantaneous
transport of momentum by convection is well known in the fields of ocean science and
acoustic flow (acoustic streaming). The latter is the drift of mass appearing in the presence
of acoustic waves. There are several types of acoustic flow mechanisms, which one
may observe under acoustic excitation. Rayleigh (1884) examined flow patterns in Kundt
tubes, where standing sound waves graze the tube surface to generate a periodic viscous
boundary layer flow. The characteristic thickness of the boundary layer is referred to as the
viscous penetration length of the acoustic wave in the fluid, δ = √

2μ/ρω, where μ, ρ and
ω are the shear viscosity and density of the fluid and the angular frequency of the acoustic
wave, respectively. Rayleigh highlighted that weak convective effects support steady drift
flow patterns – steady acoustic flow – which appear in the fluid beyond the boundary
layer region. A similar acoustic boundary layer was observed and discussed previous to
the work by Rayleigh (Chladni 1787; Faraday 1831) but without the use of mathematical
tools to quantify the phenomenon. Schlichting (1932) extended the work by Rayleigh to
predict the flow above a solid boundary which undergoes tangential vibrations. The weak
convective nonlinearity in both problems gives rise to a similar expression for the drift flow
far from the solid surface, which was coined the ‘Rayleigh law of streaming’ by Lighthill
(1978) in his seminal review on this topic. We differentiate between the work by Lord
Rayleigh and by Schlichting according to the type of excitation which they employed in
their work. These are an acoustic wave in the fluid in the work by Lord Rayleigh and a
vibration in the solid substrate in the work by Schlichting. In this paper, we are concerned
with the former type of flow excitation. Hence, we refer to the resulting steady acoustic
flow in the body of the paper in the presence or absence of a boundary layer flow by the
notation: Rayleigh streaming.

The work by Lord Rayleigh and by Schlichting was further extended to account for the
contribution of shallow ocean waves to drift flow by Longuet-Higgins (1953), for general
periodic excitations in the fluid which are parallel to the solid boundary by Nyborg (1965),
Nyborg (1952), Stuart (1966), Westervelt (2004) and Riley (1998, 2001), for periodic
excitations by a combination of parallel and normal periodic motions of the solid boundary
to account for the presence of propagating surface acoustic waves at a solid boundary
under a half-space of fluid (Manor, Yeo & Friend 2012; Morozov & Manor 2016) and
under a thin Landau–Levich-type coating film (Altshuler & Manor 2015, 2016; Morozov &
Manor 2016), for acoustic flow inside channels (Hamilton, Ilinskii & Zabolotskaya 2003)
and for many other applications. Moreover, Eckart (1948) found that the same convective
nonlinearity in the Navier–Stokes equations supports a steady drift in the form of vortical
flows in the bulk of the fluid, far from any solid surface. The latter type of acoustic flow
emerges as a result of variations in the intensity of an acoustic wave. Such variations
appear to be due to the viscous and thermal attenuation of the waves in the bulk of the
fluid (Shiokawa, Matsui & Ueda 1989) or due to the spatial attenuation of an acoustic
wave in the solid, which leaks (diffracts) planar acoustic waves (sound/ultrasound) into
the fluid (Arzt & Salzmann 1967; Campbell 1970). Kenneth, Keith & Shawn (2004)
and Reyta, Bailliet & Valiere (2014) further used experiment and theory, respectively,
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Acoustic flow in porous media

to study acoustic streaming in cylindrical channels, a step toward realizing acoustic flow
in cylindrical pores.

Late studies on the actuation of fluid by MHz frequency surface acoustic waves (SAWs)
have in particular been used for generating phenomena that are known to be present
during the transport of fluids in porous media. For example, SAWs have been used for
manipulating (Miansari & Friend 2016) and pumping (Guttenberg et al. 2004) liquids in
nano-channels (Connacher et al. 2018; Xu 2018), powering dynamic wetting (Rezk et al.
2012, 2014; Altshuler & Manor 2015; Manor et al. 2015; Horesh et al. 2019), manipulating
thin liquid films in confined mixtures (Horesh, Morozov & Manor 2017; Horesh, Zigelman
& Manor 2020) and actuating submicron thick electrolyte solutions for the analysis and
manipulation of biochemical and biological agents (Friend & Yeo 2011). Moreover, Ang
et al. (2017) employed SAWs to pump water through membranes that were comprised
of graphene nano-channels for eliminating nanometre size pollutants. Using a different
platform, Martinez et al. (2010), Ho et al. (2011) and Parolo & Merkoçi (2013) employed
SAWs to pump water through porous paper channels, although it is believed that the flow
mechanism in these cases is associated with SAW induced capillary effects in the paper
channels. We now turn our attention to acoustic waves in porous media.

Many of the studies on acoustic waves in porous media were inspired by the work of
Darcy (1856) on the linear connection between a pressure gradient, ∇p, along the medium
and the effective flow velocity, U = −(K/μ)∇p, through the pores, where K is the
permeability coefficient of the solid. In addition, the simplifying approach of modelling
a porous medium as an array of channels in a solid medium is best known through the
work of Kozney (1927) and Carman (1937, 1956), which connected the permeability of
the solid to its porosity, ζ . The Kozeny equation gives the single phase permeability
K = βζ 3 ∗ D2

p/(1 − ζ )2, where β and Dp are an arbitrary proportionality coefficient and
the characteristic length of pores in the solid, respectively. In the original study, the latter
is meant to be the characteristic diameter of sand grains in a sand filter. Moreover, in
the absence of inertia, the Ergun equation (Ergun 1952) gives a similar result for the
permeability.

The first comprehensive studies on acoustic waves in porous media date back to
Kirchhoff (1868), Rayleigh (1945) and to Zwikker & Kosten (1949). The latter further
integrated the former studies and additional studies given in references therein to elucidate
the transport and absorption of sound waves in porous media of rigid and elastic frames
with emphasis on thermal and viscous losses. In particular, early studies (Morse & Bolt
1944; Scott 1946; Beranek 1947; Morse 1952) have predominantly concentrated on the
transport of acoustic waves through the fluid phase within empty voids and porous media.
They ignored, to a large extent, the transport of acoustic energy through the solid. This is
the rigid frame approximation. This approximation is compatible with the case of a small
acoustic particle motion in the solid relative to the one in the fluid and a large difference
between the acoustic impedances of the two.

An extension to the rigid frame approximation (Beranek 1947) further attempted to
account for the acoustic absorption of a randomly distributed solid matrix. It appears to
agree with experiment in the case of soft fillings. However, rigid fillings render deviation
of experiment from theory at acoustic frequencies above 1 kHz. Following studies further
emphasized variable permeability and multiple fluid phases (Johnson 2001; Olny &
Boutin 2003; Pride & Berryman 2003; Lo, Sposito & Majer 2005), applications of sound
propagation through porous biological media (Hosokawa & Otani 1997; Haire & Langton
1999) and an elastic porous frame, capable of supporting and scattering the propagation of
acoustic wave modes. A partial list of the latter includes Zwikker & Kosten (1949), Biot
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(1962), Attenborough (1971, 1982), Pride, Morgan & Gangi (1993), Buckingham (1997),
Zarek (2002), Williams et al. (2002), Sides (2003) and references therein. The transport
of acoustic waves in both solid and fluid phases usually render the analysis complicated.
The various details of the solid require different treatments and yield a large variety of
corresponding theoretical models, which often require elaborate numerical procedures.

Our objective is to use previous studies on the propagation of an acoustic wave in a
porous medium to find the resulting steady acoustic flow in the pores. A previous and
highly technical study employed Green’s function-type computations to assess the acoustic
streaming in soft porous media during ultrasound measurements (Raghavan 2018). Our
objective is to obtain analytical results to quantify acoustic streaming in simple porous
media. We predominantly have in mind the case of MHz frequency acoustic waves, in line
with modern developments in acoustofluidics. However, our analysis should be appropriate
for lower acoustic frequencies as well. We restrict our attention to macro-scale acoustic
effects by considering cases where the wavelength of sound is large compared with the
pore size. The wave may be approximated as propagating in a homogenous medium of
averaged acoustic properties, avoiding the necessity of accounting for acoustic diffraction
resulting from the porosity of the solid. We consider several limits which yield analytical
results for a steady acoustic flow in a porous medium. In the first case in § 2, the acoustic
impedance and phase velocity are same in the solid and fluid phases. We then consider the
case of a rigid porous frame in § 3, where the acoustic wave propagates solely through the
fluid phase. In § 3.1, we discuss previous work about the propagation of acoustic waves
and then consider the steady acoustic flow in the limit where the pore size is large when
compared with the viscous penetration length of the acoustic wave in § 3.2 and in the limits
where the pore size is comparable to or smaller with respect to the viscous penetration
length in § 3.3. We discuss and compare our results in § 4 and conclude and summarize
our findings in § 5.

2. Same acoustic properties in the fluid and solid

Here, we assume that both the solid and fluid support the same acoustic properties – the
same acoustic impedance and acoustic phase velocity – and that the fluid/solid interface
is transparent to the acoustic wave since the latter does not differentiate between the solid
and fluid phases. An implication of this assumption is that the leading-order displacement
of molecules – the particle velocity of the acoustic wave – is the same in the fluid and solid.
Hence, there is no acoustic boundary layer flow in the Rayleigh-type streaming near the
solid/fluid interface at the pore surface. A difference between the motion of molecules in
the solid and fluid phases does appear when considering secondary convective and viscous
effects which bring about acoustic flow in the pores.

The leading-order component of the flow and pressure fields are associated with a
propagating planar acoustic wave. The particle velocity of the wave is assumed to satisfy
the form,

uwave x̂ = U cos(ωt − kx) e−αxx̂, (2.1)

where x̂ and x are a unit vector and a coordinate along the path of the acoustic wave and
U, t, k, ω, and α are the particle velocity amplitude, time, wavenumber, angular frequency
and attenuation coefficient, respectively. If one may postulate that the acoustic wave mostly
undergoes viscous dissipation in the fluid phase of the porous medium, the attenuation
coefficient may be approximated to leading order by a simple formula, α ≈ μbk3ζ/2ρω,
where μb ≡ μb + 4μ/3 and μb is the bulk viscosity coefficient: This is the product of the
attenuation coefficient in a pure fluid (Nyborg 1965) and the porosity of the solid, ζ .
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Acoustic flow in porous media
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Figure 1. An illustration of a porous medium that is comprised of an array of cylindrical pores, where (a) pore
number n, of diameter Dp, is oriented so that its axial axis, zn, and its axial flow component, un, are at an angle,
θn, with respect to the path of the acoustic wave, x; the pores in the solid medium may be (b) aligned along
the path of the acoustic wave, (c) aligned along a path different to the acoustic wave or (d) randomly aligned,
among other options.

A previous analysis (Morse 1952) connected the particle velocities along the path of the
acoustic wave, x, and its projection along the axial path of pore number n, given by zn,
using the relation un = uwave x̂ · ẑn = uwave cos(θn). The terms x̂ and ẑn are unit vectors
along the x and zn coordinates and θn is the angle at which pore n is aligned relatively to
the path of the acoustic wave, respectively. This is illustrated in figure 1(a). Moreover, one
may write the particle velocity along pore n as,

un = U cos(θn) cos(ωt − kzn) e−αnzn ẑn, (2.2)

where αn is the rate of the wave attenuation along the coordinate zn. Moreover, the
assertion that at each point in space the particle velocity of the acoustic wave is unique
requires that αx = αnzn.

As noted earlier, the same particle velocity across the fluid/solid boundary of the
pore renders the absence of surface effects (acoustic boundary layer flow or Rayleigh
streaming). As a consequence, the mechanism for acoustic flow in this case is Eckart
streaming (Eckart 1948) in the bulk of the pore. Usually in such cases, the particle velocity
is small compared with the phase velocity of the acoustic wave, so that St−1 = Uk/ω � 1.
The large Strouhal number, St, indicates that the contribution of viscous effects to the
periodic flow along an acoustic wavelength is significant. One may thus represent the
flow and pressure fields using the asymptotic series, u = u0(x, t)+ u1(x, t)+ · · · ; p =
p0(x, t)+ p1(x, t)+ · · · , where x is an arbitrary position vector, |u0| � |u1| and |p0| �
|p1|. In addition, u ≡ (u, v), where u and v are flow components along and transverse to the
pore surface. Substituting the series in the Navier–Stokes equations yields a leading-order,
O(1), result, which is the particle velocity of the acoustic wave along the pore in (2.2),
u0 = un. The second-order analysis, O(St−1), has both periodic and steady components.
Since we are interested in the steady component of the flow, we average over the equations
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using the operator 〈Z〉 ≡ limT→∞
∫ T

t=0 Z dt, where Z and T are an arbitrary function and a
large time period such that periodic effects cancel each other, respectively. In the present
problem, we assume an acoustic wave of one frequency. Thus, it is sufficient to require
that T = 2π/ω. The equations which govern the average steady acoustic flow through a
pore are given by

μ∇2〈u〉1 − ∇〈p〉1 − Fx̂ = 0,

F =
N∑

i=1

Fnx̂ · ẑn/N =
N∑

n=1

Fn cos(θn)/N,

Fn ≡ ρ〈un(x, t) · ∇un(x, t)+ un(x, t)∇ · un(x, t)〉,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.3)

where N is an arbitrary (large) number of cylindrically shaped pores in a unit volume.
The first equation in (2.3) governs the average flow per pore along the path of the acoustic
wave, x̂; the second expression gives the spatially averaged acoustic forcing, F, to a steady
acoustic flow along the same path; the third expression gives the acoustic forcing, Fn, to a
steady acoustic flow along pore n (along ẑn).

Substituting (2.2) in (2.3) gives that the time averaged forcing term along a pore is,

Fn = 2ρ〈un × dun/dzn〉 = −2ραnU2 e−2αnzn cos2(θn). (2.4)

The spatially averaged acoustic forcing per pore along the path of the acoustic wave, x̂,
where each pore may be arranged arbitrarily with respect to the path of the wave at an
angle θn, is given by,

F =
N∑

n=1

cos(θn)Fn/N = −2ραU2 e−2αx
N∑

i=1

cos2(θn)/N = −2ραU2 e−2αx/m, (2.5)

where we employed the equality αnzn = αx and the connection x = zn cos(θn) which
requires that α = αn/ cos(θn). The term m = N/

∑N
i=1 cos2(θn) is the structural coefficient

of the porous medium (Morse 1952). In the case that the pores are aligned along (θn = 0)
or perpendicular to (θn = π/2) the propagating acoustic wave, we obtain that m = 1 or
∞, respectively; see an illustration in figure 1(b,c). Another case is randomly oriented
pores. The pores are arbitrarily aligned between the two limiting cases of the angles
θn = 0 and π/2; see an illustration in figure 1(d). In this case, one may consider an
arbitrary volume which contains a large number of pores, to find that

∑N
i=1 cos2(θn)/N ≈

(1/V)
∫

V cos2(θ) dV = 1/3, where θ = [0,π/2] is the smoothed (or coarse-grained) angle
between the pores and the acoustic wave. The corresponding magnitude of the structural
coefficient in this case is m = 3.

Substituting (2.5) in (2.3) gives an equation for the average momentum conservation
in a pore along the path of the acoustic wave. By further accounting for the porosity, ζ ,
we may obtain the effective flow in a porous medium. However, in this case, we avoid
these technicalities and further restricting assumptions about the structure of the porous
medium or specific boundary conditions for the flow at the surface of the pores. We take
advantage of the representation of the acoustic forcing term, F, in a form which is similar
to the pressure gradient forcing term in the Darcy equation to write the effective flow rate
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Acoustic flow in porous media

through a porous medium,

U = −K
μ

(
F + ∂〈p〉1

∂x

)
= 2ραKU2

mμ
e−2αx, (2.6)

where, following the second equality, we assume that the steady pressure in the pores is
the ambient pressure and thus, ∂〈p〉1/∂x = 0. Moreover, the permeability coefficient, K,
naturally accounts for the porosity, size and shape distribution of pores, and boundary
conditions at the fluid/solid interface. The similarity between the Darcy equation and (2.6)
suggests that one may obtain the magnitude of K from one type of flow excitation to study
the volume flux under another type of excitation.

The assumption that the pressure in the porous medium is ambient, ∂〈p〉1/∂x = 0, which
we follow throughout this work, is appropriate in the case in which the width of the
acoustic wave front is smaller than the width of the porous medium of interconnected
pores. In this case, fluid in the porous medium is free to flow between regions which
are excited by and devoid of the acoustic wave to conserve mass and alleviate pressure
differences. Ignoring viscous dissipation in the motion of the fluid between these regions
renders the pressure throughout the porous medium the ambient pressure. A different limit
is the case in which the width of the acoustic wave is at least as large as the width of the
porous medium. The latter is closed to fluid flow on the sides. Thus, the fluid may not
flow to regions which are devoid of the acoustic wave. The attenuation of the acoustic
wave will result in a spatial variation in the pressure in the porous medium, 〈p〉1, which
will satisfy the mass conservation of fluid by imposing additional Poiseuille flow in the
pores. Assuming an ambient pressure at the entrance of fluid to the porous medium and
that the intensity of the acoustic wave does not change normal to its path (a flat front of
the acoustic wave), the contribution of the spatially varying pressure, 〈p〉1, will exactly
cancel the contribution of the acoustic attenuation to fluid flow along the acoustic path.
This will result in a similar expression for the effective velocity of fluid as in (2.6), albeit
in the absence of the attenuation term: U = 2ραKU2/mμ. Similar arguments apply in the
following case of a rigid porous frame.

3. Rigid porous frame

3.1. Acoustic wave
In this section we assume a large difference between the acoustic impedance in the solid
and fluid phases. The acoustic wave exists predominantly in the fluid. We further assume
that the wavelength of the acoustic wave is large compared with the diameter of the pores,
kDp � 1, and could be taken as propagating in a medium of averaged acoustic impedance.
In our analysis, we will employ the seminal work on the propagation of sound waves
in rigid porous media by Morse (1952). The simple results and insights given by Morse
appear to agree well with experiment. In particular, our approach is compatible with their
guiding assumption that kDp � 1. Moreover, they assume that the pores are cylindrical
tubes and are arbitrarily aligned, in a similar manner to the structural assumptions by
Kozney (1927) and Carman (1937, 1956) for the structure of porous media. Under these
assumptions, a propagating wave in a rigid porous medium may be described by (2.1)
and (2.2). The wavenumber is given by k = ω

√
m/c0, the attention coefficient is given by

α = Rζ/(2ρc0
√

m) and the effective phase velocity is c = c0/
√

m, where c0 is the phase
velocity of the acoustic wave in the fluid and R is the dynamic flow resistance in the pores.

One may distinguish two regimes (Zwikker & Kosten 1949), which are determined
by the ratio between the diameter of the pores, Dp, and the viscous penetration length,
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δ = √
2μ/ρω. In the case that Dp � δ, one may approximate the attenuation of the

acoustic wave by assuming a viscous Poiseuille flow in the pores, which gives R ≈
8μm/ζD2

p. In the opposite case, where Dp � δ, one may approximate the leading-order
attenuation of the acoustic wave by accounting for the dynamic convection of momentum
and viscous dissipation in the pores, which gives R ≈ m

√
2μωρ/ζqDp; the property q is

a proportionality coefficient between the size of the pore under acoustic excitation and at
rest.

The two regimes, discussed in the previous paragraph, mark two regimes of acoustic
flow. One regime is associated with a large pore size, Dp � δ. Hence, one expects a
boundary layer flow (Rayleigh streaming) near the solid boundary of a pore, where inertial
and viscous contributions to the flow are comparable. In addition, one may expect a
unidirectional bulk flow away from the pore surface. Both the viscous dissipation of
the acoustic wave in the bulk (Eckart 1948), known as Eckart streaming, and near the
solid surface of the pore (Rayleigh 1884), known as Rayleigh streaming, contribute to
the acoustic flow. The second regime is associated with a medium to small pore size,
Dp < δ. The contribution to the flow in this case is mainly associated with a Rayleigh-type
streaming. The acoustic flow appears due to the viscous dissipation of the acoustic wave
near the solid boundary of the pore, albeit the pore is not wide enough to support a
boundary layer type flow.

3.2. Acoustic flow in large pores (δ � Dp � k−1)
When the diameter of the pore, Dp, is large compared with the viscous penetration length,
δ, one may consider the contribution of bulk and surface mechanisms to the overall
acoustic flow in a pore. By integrating both flow mechanisms and the structural properties
of the porous medium, we obtain the effective volume flux through the medium.

3.2.1. Acoustic flow near the surface of the pore – Rayleigh streaming
In this case, where the characteristic thickness of the boundary layer flow is small when
compared with the diameter of the pores, δ � Dp, one may ignore the contribution of the
radial curvature at a pore surface to the boundary layer flow. One may assume to leading
order a problem of flow near a flat surface. Examples of previous studies on acoustic
boundary layer flow near flat surfaces are standing acoustic waves in the absence of
acoustic attenuation (Rayleigh 1884; Stuart 1966), standing and propagating ocean waves
in the absence of wave attenuation (Longuet-Higgins 1953), standing wave motion in the
solid, tangent to the solid surface, (Schlichting 1932) and propagating SAWs in a solid
substrate that possesses both tangent and transverse motion components (Manor et al.
2012; Morozov & Manor 2016).

Below, we solve for the acoustic flow due to the presence of an acoustic wave in the
fluid, which grazes a flat solid surface. Unlike most studies, we account for the attenuation
of the propagating wave in our calculations. In § 3.1 we highlight that the rate of wave
attenuation in a rigid porous frame may be faster than in a pure fluid. Hence, one must
examine the possibility of greater non-local contributions than usual from the attenuation
of the wave to the acoustic flow. However, we show that even in this case, the non-local
contribution of the attenuation coefficient to the acoustic flow near a solid surface is small.
Previous descriptions of the contribution of acoustic attenuation to flow in channels are
given elsewhere (Doinikov, Thibault & Marmottant 2017; Pavlic & Dual 2021).

We ignore the curvature of the pore (δ � Dp) in the boundary layer and adopt
Cartesian coordinates, zn and y = Dp/2 − r, along pore n and transverse to the pore
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Acoustic flow in porous media

surface, respectively. Outside the boundary layer flow, the leading-order velocity field is
given by the acoustic wave in (2.2). Moreover, the typical thickness of the pores under
consideration is assumed small compared with the acoustic wavelength, Dp � k−1, which
renders compressional contributions to flow in a pore small (Rayleigh 1884; Stuart 1966).
To calculate the acoustic flow in a pore, we rewrite the continuity and Navier–Stokes
equations in terms of the streamfunction ψ . The latter is defined by using the axial and
radial components of the velocity field (u, v) = (ψy,−ψzn), respectively, along pore n.
In what comes next, we use a shorthand notation for derivatives, e.g. ψzn ≡ ∂ψ/∂zn and
ψzz ≡ ∂2ψ/∂z2

n, alongside the usual derivative notation.
Using the scaling transformations,

t → t/ω, y → δy, zn → zn/k, ψ → δUψ, αn → kαn, (3.1)

we write the dimensionless streamfunction equation and boundary conditions in Cartesian
coordinates,

2ψyyt + St−1(ψyψznyy − ψznψyyy) = ψyyyy + · · · ,
(u, v)|r=0 = (0, 0), u|r→∞ = cos(θn) cos(t − zn) e−αnzn,

}
(3.2)

where we require the velocity field far from the solid surface to satisfy the particle velocity
of the acoustic wave in the bulk of the pore, (2.2); we assume that the fluid satisfies a
no-slip condition at the pore surface and does not penetrate the solid; the reciprocal of the
Strouhal number, St−1, is a small number, and the term ‘. . .’ is associated with additional
small contributions to the equation, which are multiplied by powers of δk. Expanding the
streamfunction in St−1, ψ = ψ0 + St−1ψ1 + · · · , gives the leading-order problem,

2ψ0,yyt = ψ0,yyyy, (ψ0,y,−ψ0,x)|r=0 = (0, 0), ψ0,y = cos(θn) cos(t − zn) e−αnzn,

(3.3)

which is satisfied by the solution,

ψ0 = cos(θn) e−αnzn−y(sin(t − zn − y)+ cos(t − zn − y))/2

+ cos(θn) e−αnzn((2y − 1) cos(t − zn)− sin(t − zn)))/2 + f (t), (3.4)

where f (t) is a function of time, which does not contribute to the velocity field. We
demonstrate the streamlines of the solution in figure 2.

We are interested in the steady component of the solution. Hence, we average the
second-order problem over long times using the operator 〈 〉, which we discuss in § 2.
The leading-order, time averaged, problem takes then the form,

2〈ψ〉1,yyt − 〈ψ〉1,yyyy = −〈ψ0,yψ0,znyy − ψ0,znψ0,yyy〉,
(〈ψ〉1,y,−〈ψ〉1,x)|r=0 = (0, 0),

}
(3.5)

in addition to the relaxed requirement that the second-order component of the solution ψ1
is not more singular than the leading-order solution ψ0. The problem is satisfied by the
solution,

〈ψ〉1 = cos2(θn) e−2αnzn[(−13αn + 6(αn + 1)y − 3)/8 + (αn − 1) e−2y/8

+ cos2(θn) e−y((αn(r + 2)− 2) sin( y)+ (3αn + y + 1) cos( y))/2]. (3.6)

We plot the axial component of the flow field for different magnitudes of αn in figure 3.
The axial acoustic flow far away from the solid surface of the pore is then given by
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1

0

y/δ
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Figure 2. Spatial variations of the velocity field, given by the scaled streamfunction ψ0/δU cos(θn) along the
axial and radial coordinates kx and y/δ, respectively, where we ignore wave attenuation (αn = 0) and time,
define the surface of the pore at y = 0 and represent the different properties using dimensional notation. We
use arrows to give the path of the velocity field and colours to indicate the relative flow velocity, which is
quantified in the colour legend to the right.

2

1

0

0 2 4 6 8

y/δ

u 1
,n
/
u c

αn/k = 2

αn/k = 1

αn/k = 0.5

αn/k = 0.1

αn/k = 0

Figure 3. Spatial variations of the dimensional axial drift velocity, un, along pore n for different values of
the effective wave attenuation coefficient along the pore αn, where uc ≡ St−1 cos2(θn) e−2αnzn U and where we
represent the different properties using dimensional notation. The acoustic streaming far from the solid, ud,n =
un( y/δ � 1), flows along the path of the wave and increases in magnitude with the attenuation coefficient, αn,
although the acoustic flow may change direction near the solid surface when αnk > 1.

ud,n = limy→∞〈ψ〉y = St−1 limy→0〈ψ〉1,y, noting that ψ0 is a periodic function of time
and hence vanishes over long times. Introducing (3.6) in the expression for ud,n, gives
that,

ud,n = 3St−1 cos2(θn) e−2αnzn(1 + αn)/4. (3.7)

The first term in the brackets appears from the contribution of the interaction between the
solid surface and the acoustic wave. The second term is the non-local contribution of the
wave attenuation along the pore. The dimensional counterpart of (3.7) is given by,

ud,n = 3St−1U cos2(θn) e−2αnzn(1 + αn/k)/4. (3.8)
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Acoustic flow in porous media

Moreover, the radial component of the acoustic flow, vd,n = limy→∞〈−ψzn〉 = O(St−1δk),
is small since δk � 1.

3.2.2. Acoustic flow in the bulk of the pore
The flow in the bulk of the pore is of a characteristic radial length, Dp, which is large
compared with the viscous penetration length, δ, so that Dp � δ. Hence, the axial drift
flow, ud,n, in (3.8) is a boundary condition of magnitude O(USt−1) to the bulk acoustic
flow near the pore surface. This analysis is equivalent to using the leading-order term of
a matched asymptotic expansion procedure to connect between the acoustic flow in the
boundary layer and in the bulk of the pore.

In a similar manner to the analysis leading to (2.3), the mathematical description
of the unidirectional flow along the axial path, zn, of pore n, away from the pore
surface, is given by representing the axial flow and pressure field in the porous medium
using the asymptotic series, u = u0(x, t)+ u1(x, t)+ · · ·; p = p0(x, t)+ p1(x, t)+ · · · ,
where |u0| � |u1| and |p0| � |p1|. As before, u = (u, v), where the former and latter
flow components are along and transverse to the pore. Substituting the series in the
Navier–Stokes equations gives the leading-order periodic flow velocity along the pore in
(2.2), namely u0 = un. It is the component of the acoustic wave along pore n. The leading
steady flow in the same pore is given by time averaging over the equations and boundary
conditions, which yields,

μ∇2〈u〉1 − ∇〈p〉1 − Fnẑn = 0, (3.9)

where Fn is given in (2.4). Moreover, in a pore, the radial coordinate, r, scales like the pore
diameter, Dp, and the axial coordinate, zn, scales like the wavenumber k−1. Considering
that Dp � k−1, the problem in (3.9) may be simplified to

μ
1
r

d
dr

(
r

d〈u〉1

dr

)
− ∂〈p〉1

∂zn
− Fn + · · · = 0, (3.10)

where we require radial symmetry of the flow about the centre line of the pore (along ẑn).
The flow field should further satisfy the boundary conditions

d〈u〉1/dr|r=0 = 0, 〈u〉1|r→Dp/2 = ud,n, (3.11a,b)

where ud,n is given in (3.8). The problem in (3.10) and (3.11a,b) is satisfied by the steady
flow in the pore

〈u〉1 = cos2(θn)U2 e−2αnzn

(
12αnμ+ αnDp

2ρω + 12kμ
16μω

− αnρr2

4μ

)
, (3.12)

where we assume the absence of a steady pressure distribution ∂〈p〉1/∂zn = 0. The average
flow along the pore is then

upore,n = A−1
∫

A
〈u〉1 dA = cos2(θn)U e−2αnzn

(
Re
32

Dpαn + 3St−1

4

(
1 + αn

k

))
, (3.13)

where A = πD2
p/4 is the cross-section (radial) area of the cylindrical pore, dA = 2πr dr,

and Re ≡ ρUDp/μ. In (3.13), we neglect the volume flux inside the boundary layer region.
The first and the second terms in the outer brackets are contributions to the flow in the bulk
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of the pore resulting from the attenuation of the acoustic wave and the acoustic boundary
layer flow (Rayleigh streaming). Moreover, we average the flow rate along the path of the
wave over a large number of pores, N, where each pore may be aligned arbitrarily with
respect to the wave path at an angle, θn. By further accounting for the porosity ζ of the
solid, we obtain the effective steady flow rate through the integral porous medium along
the path of the acoustic wave, x̂,

U = ζ

N

N∑
n=1

cos(θn)upore,n = Uζ e−2αx

(
Dpα

32
Re
m

+ 3
4

(
1 + m′

m
α

k

)
St−1

m′

)
, (3.14)

where we employ the equality αnzn = αx, the connections x = zn cos(θn) and α =
αn/ cos(θn), the definition of the structural coefficient m = N/

∑N
n=1 cos2(θn) and define

the modified structural coefficient m′ = N/
∑N

n=1 cos3(θn). The analysis is similar to the
one that yields (2.5) and is discussed in § 2. Moreover, in the case that the pores are aligned
along or perpendicular to the propagating acoustic wave, we obtain that m′ = 1 and ∞,
respectively, in a similar manner to m. In the case of randomly oriented pores, where the
pores may be aligned between the two limiting cases of θn = 0 and π/2, we obtain that
m′ = 4, noting again that m = 3 in this case.

As a last note in this section, we assess the contribution of the attenuation coefficient,
α, to the effective acoustic flow in the porous medium, U . We find that the term
for the non-local attenuation contribution to the flow near the solid surface of the
pores, (m′/m)(α/k) in the inner brackets in (3.14), is small. Briefly, the attenuation
coefficient may be approximated by α = Rζ/(2ρcm), where R ≈ m

√
2μωρ/ζqDp. See

our discussion in § 2.1 for further detail. We substitute the approximations for α and R
in (3.14) and obtain that α/k = (2q)−1(δ/Dp), where we employ the relation c = ω/k.
The relative deviation of the pore size under acoustic excitation from its size at rest, q,
should be near unity. Hence, it is apparent that α/k � 1 since δ/Dp � 1. In addition,
the terms m and m′ are similar in magnitude, so that m′/m = O(1). It is not a surprise
that the non-local contribution of the wave attenuation to the acoustic flow near the solid
surface of the pore is small. Most studies on acoustic flow near a solid surface neglect
non-local contributions from the attenuation of the acoustic wave. However, most studies
usually consider the presence of the acoustic wave in a half-space of fluid, where the rate
of acoustic attenuation is slower than in the present case. Thus, this insight for the case of
a porous medium is not trivial. In conclusion, one may approximate the effective steady
flow rate by

U ≈ Uζ e−2αx

(
Dpα

32
Re
m

+ 3
4

St−1

m′

)
. (3.15)

3.3. Acoustic flow in small pores (Dp < δ � k−1)

3.3.1. Problem definition
As noted previously in § 3.2, the typical thickness of the pores under consideration
is assumed small compared with the acoustic wavelength, Dp � k−1, which renders
compressional contributions to flow in a pore small (Rayleigh 1884; Stuart 1966).
As before, we calculate the acoustic flow in a pore by rewriting the continuity and
Navier–Stokes equations in terms of the streamfunction ψ . The streamfunction in this
case is associated with cylindrical coordinates and satisfies that (u, v) = (ψr/r,−ψzn/r).
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Acoustic flow in porous media

Using the scaling transformations,

t → t/ω, r → δr, αn → αnk, zn → znk−1, ψ → δ2Uψ, (3.16)

we write the dimensionless streamfunction equation (Leal 2007)

2
ψtr

r
− 2ψtrr − 3

ψr

r3 + 3
ψrr

r2 − 2
ψrrr

r
+ ψrrrr

+ St−1
(

3
ψznψr

r3 + ψrψrzn

r2 − 3
ψznψrr

r2 − ψrψrrzn

r
+ ψznψrrr

r

)
+ · · · = 0, (3.17)

where St−1 � 1 and where we omit smaller-order terms which are multiplied by powers
of δk. We require a no-slip condition at the pore surface, u|r=R = 0, and that the velocity
field satisfies symmetry at the centre of the pore, (ur, v)|r=0 = (0, 0). Moreover, we
employ an additional constraint by following the guidelines of the analysis by Zwikker
& Kosten (1949) in their attempt to calculate the viscous dissipation of an acoustic
wave, which propagates through small pores. We require that the leading-order solution
to (3.17) satisfies a volume flux in pore n, which is comparable to the one generated by
the acoustic wave,

∫
A udA = A cos θn cos(t − zn) e−αnzn + · · · , where A = πD2

p/4 is the
(radial) cross-sectional area of the cylindrical pore, dA = 2πr dr, and the term ‘ · · · ’ is
associated with smaller-order corrections. The steady component of the correction to the
flow in the latter is our goal in this analysis. Moreover, the conservation of fluid mass
requires finite periodic radial velocity at the surface of the pore. Hence, the pore radius, R,
is not a constant but varies in time and space. It is given by the kinematic condition

Rt = St−1v, (3.18)

subject to a no-slip condition at the pore surface.
To simplify the analysis of the problem in (3.17), (3.18) and the given boundary

conditions, we expand the streamfunction, corresponding velocity field and the radius of
the pore in the inverse of the Strouhal number, St−1, by assuming the series

ψ = ψ0 + St−1ψ1 + · · · ,
R = R0 + St−1R1 + · · · .
u = u0 + St−1u1 + · · · ,
v = v0 + St−1v1 + · · · ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.19)

where R0 ≡ Dp/2 is the radius of the pore at rest.

3.3.2. Leading-order problem
Substituting the series in (3.19) in the streamfunction equation in (3.17) and in the
corresponding boundary conditions gives the leading-order problem, O(1)

2
ψ0,tr

r
− 2ψ0,trr − 3

ψ0,r

r3 + 3
ψ0,rr

r2 − 2
ψ0,rrr

r
+ ψ0,rrrr = 0,

u0|r=R0 = u0,r|r=0 = v0|r=0 = 0, 2
∫ R0

r=0
u0r dr = R2

0 cos (θn) cos(t − zn) e−αnzn .

⎫⎪⎪⎬⎪⎪⎭
(3.20)

The solution of the problem is simplified by assuming that ψ0 = Real{g(r) ei(t−zn)−αnzn},
where g(r) is a complex function of r. Further accounting for the boundary conditions in
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Figure 4. Spatial variations of the velocity field, given by the streamfunction ψ0/δ

2U cos(θn), along the axial
and radial coordinates kzn and r/δ, respectively, where we ignore wave attenuation (αn = 0) and time, define
the positions of the centre and surface of the pore at r = 0 and δ/2, respectively, and represent the different
properties using dimensional notation. We further use arrows to give the path of the velocity field and colours
to indicate the relative flow intensity, which is quantified in the colour legend to the right.

(3.20) yields the solution to the problem

ψ0 = Real
{

rI0[(1 + i)R0] − (1 − i)I1[(1 + i)r]
2I2[(1 + i)R0]

cos (θn)r ei(t−zn)−αnzn

}
, (3.21)

where Ii[Z] is the modified Bessel function of the first kind of order i; the argument Z is
an arbitrary complex number. While the solution in (3.21) is elegant, it is difficult to work
with the complex Bessel functions. Hence, in preparation for calculating ψ1, which will
involve nonlinear operations, we substitute the modified Bessel functions by the series
Ii[Z] = ∑∞

n=0(Γ (n + i + 1)n!)−1(Z/2)2n+i, where Γ () is the gamma function. For the
positive and integer sum n + i, it may be simplified to Γ (n + i + 1) = (n + i)!. Employing
the two first terms in the series for the modified Bessel functions in (3.21) gives that

ψ0 ≈ 3 cos (θn)r2(2R0
2 − r2)(R0

2 sin(t − zn)+ 6 cos(t − zn))

R0
2(R0

4 + 36)
e−αnzn, (3.22)

which differs from the exact solution in (3.21) by up to 2.7 % for R0 ≤ 1 (corresponding
to Dp ≤ 2δ in dimensional terms). We illustrate the streamlines of the flow field in
figure 4. The leading-order volume flux in the pore is periodic and hence will vanish over
long times. Next, we calculate the steady component of the second-order problem which
becomes the leading-order measurable, component of the flow at long times.
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Acoustic flow in porous media

3.3.3. Steady second-order problem
We use the time averaging operator 〈〉 to find that the steady state component of the order
of magnitude O(St−1) problem is given by

−3
〈ψ〉1,r

r3 + 3
〈ψ〉1,rr

r2 − 2
〈ψ〉1,rrr

r
+ 〈ψ〉1,rrrr = forcing.

forcing ≡ 〈3ψ0,znψ0,r

r3 + ψ0,rψ0,rzn

r2 − 3
ψ0,znψ0,rr

r2 − ψ0,rψrrzn

r
+ ψ0,znψ0,rrr

r
〉,

〈u〉1|r=R0 = −〈u0,rR1〉|r=R0, ∂〈u〉1/∂r|r=0 = 〈v〉1|r=0 = 0,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.23)

where the condition on the volume flux is omitted since it is not known; as noted before,
steady volume flux in the pores is our goal in this analysis. The additional constraint
required to solve (3.23) is the absence of a steady pressure distribution in the pore.
Moreover, the no-slip condition for the flow at the pore surface in (3.23) is found by
expanding the velocity field in the radius of pore, R, about its magnitude at rest, R0, which
gives u|r=R = u|r=R0 + ur|r=R0St−1R1 + · · · = 0. Further accounting for the expansion
of the axial velocity, u, in (3.19) gives that u0|r=R0 + St−1(u1 + u0,rR1)|r=R0 + · · · = 0.
The property, R1, is given from the kinematic condition in (3.18). The latter translates to
R1,t = v0|r=R0 + · · · subject to the series expansion in (3.19). Averaging the result over
long times, collecting terms of the order of magnitude O(St−1) and using the result for ψ0
in (3.22) gives the boundary condition

〈u〉1|r=R = −〈u0,rR1〉|r=R0 = 36 cos2 (θn)

36 + R4
0

e−2αnzn . (3.24)

The forcing term in (3.23) is given by

forcing = 144r2(r2 − R0
2)

R0
4(R0

4 + 36)
αn cos2 (θn) e−2αnzn, (3.25)

when using the result for ψ0 in (3.22). The problem in (3.23), subject to the result for the
forcing term in (3.25), is satisfied by the general solution

〈ψ〉1 = c1(zn)r2 + c2(zn)(−2 + 4 log(r))r2 + c3(zn)r4 + c4(zn)

− r6(6R0
2 − r2)

8R0
4(R0

4 + 36)
αn cos2(θn) e−2αnzn, (3.26)

where c1(zn), c2(zn), c3(zn), c4(zn) are coefficients of integration. The coefficient c3(zn)
is associated with a steady pressure distribution along the pore. The absence of a pressure
distribution renders c3(zn) = 0. Further accounting for the boundary condition in (3.24)
and the requirement that the velocity field is symmetrical about the centre of the pore in
(3.23) gives that

〈ψ〉1 = 144R4
0 + αn(r6 − 6r4R2

0 + 14R6
0)

8R4
0(R

4
0 + 36)

cos2(θn)r2 e−2αnzn . (3.27)

We show the distribution of the axial velocity along the pore for R0 ≡ Dp/2 and for
different values of the attenuation coefficient of the acoustic wave, αn, in figure 5.
Increasing the magnitude of αn increases the steady acoustic flow velocity in the pore.
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Figure 5. Radial (r) variations of the dimensional axial drift velocity, un, along pore n for different values
of the effective wave attenuation coefficient along the pore, where we use dimensional notation and uc ≡
St−1 cos2(θn) e−2αnzn U αn.

The volume flux along the pore is given by Q = 2π(〈ψ〉|r=R0 − 〈ψ〉|r=0) and the
corresponding spatially averaged drift velocity along the pore is

upore,n = Q
〈A〉 = St−1 9 cos2(θ)

4
16 + αnR0

2

36 + R0
4 e−2αnzn, (3.28)

where 〈A〉 ≈ πR2
0 is the time averaged radial cross-sectional area of the pore. The average

velocity field along the acoustic path in the integral porous medium is then given by

U = ζ

N

N∑
n=1

cos(θn)upore,n = 9ζSt−1

4
16/m′ + αR0

2/m

36 + R0
4 e−2αx, (3.29)

noting again that α = αn/ cos(θn) and αnzn = αx. Using dimensional terms, this result
reads,

U = 9ζSt−1U
4

16/m′ + αR0
2/mδ

36 + (R0/δ)
4 e−2αx = 9ζSt−1U

4
16/m′ + αDp

2/4mδ

36 + (Dp/2δ)4
e−2αx, (3.30)

where we employed the definition R0 ≡ Dp/2 following the second equality. The
expression in (3.30) is associated with the sum of a term which originates from Rayleigh
streaming and a term which originates from Eckart streaming. The latter is multiplied
by the attenuation coefficient of the acoustic wave, α. In the limit of small pores, where
Dp/δ � 1, this expression further simplifies to

U ≈ St−1ζU e−2αx/m′. (3.31)

The Eckart streaming-type contribution to the flow vanishes and the contribution to the
flow appears solely from a Rayleigh streaming-type contribution.

4. Discussion

It is of value to compare the steady acoustic flow in the different results given in (2.6),
where the porous medium and fluid possess the same acoustic properties, and in (3.15),
(3.30) and (3.31), where the porous medium has rigid and large, medium to small and
small pores, respectively. In particular, for different flow regimes, it is instructive to assess
the difference between the steady acoustic flow, i.e. the acoustic streaming, subject to
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different properties of the porous medium. We show that (2.6) appears from a similarity
between the Darcy equation for flow through porous media under a pressure gradient and
the equations that govern steady acoustic flow in porous media in the specific case of the
same acoustic properties in the solid and fluid therein. This type of analysis is not trivial in
the case of rigid porous media. However, one may employ the similarity between the result
in (2.6) and the later results for rigid porous media to identify approximate permeability
coefficients for each case.

One may write the result for large pores in (3.15) in a similar manner to the Darcy
equation-type formula in (2.6) by identifying two quasi-permeability coefficients. For
convenience, we take a different approach to writing quasi-Darcy formulas, which is
intuitive for acoustic flow. Instead of writing permeability coefficients multiplied by
the force per unit volume in porous media, as is the Darcy equation, we suggest
quasi-permeability coefficients whose product with the local particle velocity of the
acoustic wave, U e−2αx will give the effective flow through the porous medium in
the form: U = (K′ × Re + K′′ × St−1)× U e−2αx. The first term between the brackets
is associated with acoustic forcing in the bulk of the pores (Eckart streaming). The
second term is associated with the interaction between the acoustic wave and the pore
surface, which results in an acoustic boundary layer flow (Rayleigh streaming). The
corresponding quasi-permeability coefficients are K′ ≡ ζαDp/32m and K′′ ≡ 3ζ/4m′. A
similar analysis to the above is appropriate for the case of medium to small pores in
(3.30). Here, the permeability coefficients are K′ = (9ζαk/8mδ3)× (1/(36 + (Dp/2δ)4))
and K′′ ≡ (36ζ/m′)/[36 + (Dp/2δ)4]. In the limit of small pores in (3.31), the driving
mechanism for the flow is solely Rayleigh streaming. Hence, one may employ just one
permeability coefficient, K′ = 0,K′′ ≡ ζ/m′. The corresponding effective flow through
the porous medium is given by U = K′′ × St−1U e−2αx. Thus, one may use experiment
to measure the coefficient K′′′ = K′ × Re + K′′ × St−1 for rigid porous media to estimate
the magnitude of a steady acoustic flow therein. A quantitative comparison between the
different equations derived for rigid porous media is given next.

In figure 6, we plot the different results for the scaled steady acoustic flow, U , in rigid
porous media for various pore sizes, Dp, and a random pore azimuth distribution (m =
3,m′ = 4). For the case of large pores in (3.15), we plot the equation U/UζSt−1 e−2αx ≈
DpαReSt/96 + 3/16 = (Dp/δ)

2(α/k)/48 + 3/16 (applicable for Dp/δ � 1). For the case
of medium to small pores in (3.30), we plot the equation U/UζSt−1 e−2αx ≈ (9/4)×
[4 + (Dp/δ)

2(αδ)/12]/[36 + (Dp/δ)
4/16] (applicable for Dp/δ < 2). For the case of the

limit of small pores in (3.31), we plot the equation U/UζSt−1 e−2αx ≈ 1/4 (applicable
for Dp/δ � 1). It is possible to show that both α/k and αδ are small numbers in the
corresponding equations. Hence, we allocate these quantities values between 0 to 1 in the
figure.

The curves for the steady acoustic flow, U , that are products of the limit of small pores
and of the case of medium to small pores, coincide as Dp/δ → 0. The limit of small pores
is independent of the ratios Dp/δ, αδ and α/k. In the other cases, we observe an increase
in the magnitude of the scaled U when increasing the magnitudes of Dp/δ, αδ and α/k, at
least within the pore size applicability regions of the equations. In particular, the trend of
an increase in the scaled U when increasing Dp/δ is reversed in a non-physical manner at
approximately Dp/δ � 2 in the case of (3.30). The non-physical behaviour originates from
the truncation of the Bessel series during the derivation of (3.30) and was noted above. It
is clear then that one must introduce more terms in the truncated Bessel series to obtain
realistic results for Dp/δ > 2 in this case. Moreover, it is interesting to note that the result
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Figure 6. Scaled pore size, Dp/δ, variations of the scaled steady acoustic flow, U/UζSt−1 e−2αx, in rigid
porous media of randomly distributed pore azimuths with respect to the acoustic path (m = 3,m′ = 4) for
the cases of small pores in (3.31) (dashed black line), medium to small pores in (3.30) (dashed blue line) for
αδ = 0, 0.5, 1 and large pores (red solid lines) in (3.15) for α/k = 0, 0.01, 0.1, 0.5, 1, where (b) is an inset of
panel (a) for small pore sizes and where (3.31) is applicable for Dp/δ � 1, (3.30) is applicable for Dp/δ < 2
and (3.15) is applicable for Dp/δ � 1.

for the scaled U , subject to large pores in (3.15), is not too different from the exact result
for small pores in (3.31) for a vanishing pore size, Dp/δ → 0. In particular, the result by
the latter equation is 1/4. The result by the former equation is 3/16. The ratio between
the two results is 3/4. As a reminder, the main constraint employed when deriving (3.15)
is that we ignore the pore curvature when calculating the acoustic boundary layer flow
(Rayleigh streaming). Hence, the cost of this geometrical simplification to the magnitude
of U outside the applicability region of (3.15) appears to be small, at least in this case,
considering the small deviation of (3.15) from (3.31) for Dp/δ → 0.

5. Conclusions and summary

In this study, we calculate the steady acoustic flow, also known as acoustic streaming
or drift, along the path of an acoustic wave in a solid porous medium. The common
denominator in our findings is that the propagation of an acoustic wave in a porous
medium supports an effective acoustic flow. For same acoustic properties in the fluid and
solid, the acoustic forcing for flow is equivalent to a pressure gradient throughout the
porous medium. The similarity to the Darcy equation for flow in porous media yields an
expression for the acoustic flow, which is proportional to the square of the particle velocity
and attenuation coefficient of the acoustic wave, U and α, the Darcy permeability and the
reciprocal of the structural coefficient of the solid medium, K and m, respectively, and
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the reciprocal of the shear viscosity of the fluid therein, μ. In the general case where the
acoustic properties of the fluid deviate from those of the solid, the acoustic forcing for
flow is further associated with surface effects. The similarity to the Darcy equation is not
trivial in this case. The effective velocity of the acoustic flow is found in the rigid porous
frame limit to be proportional to the particle velocity and attenuation coefficient of the
acoustic wave, U and α, the porosity of the medium, ζ , the reciprocals of the two structural
factors m and m′, the reciprocal of the Strouhal number, St−1 = Uk/ω, and the Reynolds
number in the pores, Re=ρUDp/μ, where k, ω,Dp and ρ are the acoustic wavenumber
and angular frequency, the diameter of the pores (assumed cylindrical) and the density of
liquid, respectively. Below, we briefly summarize and discuss our assumptions and results.

In our analysis, we assume that the acoustic wavelength is large compared with the
characteristic size of the pores. Under this condition, the acoustic wave, which propagates
through a porous medium, may be approximated in the form of a planar acoustic wave,
such as sound or ultrasound waves, (2.1),

uwave = U cos(ωt − kx) e−αx, (5.1)

where t and x are time and the axial coordinate along the path of the wave, respectively.
When the acoustic properties of the fluid and solid are the same, the solid/fluid interface

is ‘transparent’ to the acoustic wave and both phases support similar particle velocities
along the path of the wave. A consequence of our assumptions is that the acoustic flow
in the pore is solely a product of the Eckart streaming. It is generated by the inertial
transport of momentum from the attenuating acoustic wave to flow. The steady velocity
of the acoustic flow in this case is given by (2.6),

U = 2ραKU2

mμ
e−2αx, (5.2)

where the structural coefficient, m, is a function of the average azimuth between the axial
coordinates of the pores and the acoustic path. It accepts values of 1, 3 and ∞ for the cases
where the pores are aligned along, randomly and perpendicular to the path of the wave,
respectively. Moreover, if one may postulate that the acoustic wave mostly attenuates by
viscous dissipation in the fluid phase, one may approximate to leading order the attenuation
coefficient by α ≈ μbk3ζ/2ρω, where ρ is the density of the fluid, μb ≡ μb + 4μ/3
and μb is the bulk viscosity coefficient. This is a simple product of the wave attenuation
coefficient in fluid (Nyborg 1965) and the porosity factor.

In a rigid porous frame, the acoustic wave is assumed to propagate solely along the
fluid in the pores; the porous solid is static. The problem for the wavenumber and rate of
acoustic wave attenuation under such conditions was solved previously and appears to be
in good agreement with experiment (Zwikker & Kosten 1949; Morse 1952). We consider
three cases that are similar to well-known analytical results for the wave attenuation given
in the literature: the first case is of a pore diameter that is large compared with the viscous
penetration length of the acoustic wave, Dp � δ, where δ ≡ √

2μ/ρω. The second case
is of a pore diameter that is comparable to or smaller than the viscous penetration length,
Dp < 2δ. The third case is the limit of small pores, Dp � δ.

The steady acoustic flow in a pore is forced by two mechanisms, which transfer
instantaneous momentum from the acoustic wave to steady flow. One mechanism
dominates the bulk of the pore and is associated with the attenuation of the acoustic
wave – Eckart streaming. The other mechanism dominates the vicinity of the pore surface
– a Rayleigh-type streaming. We show that one may write corresponding quasi-Darcy
equations for the different cases in the rigid porous frame in the form U = K′′′U e−2αx.

920 A11-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

43
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.436


O. Manor

The quasi-permeability coefficient, K′′′, is a measurable quantity and a function of the
dimensionless numbers Re ≡ ρUDp/μ and St−1 ≡ Uk/ω.

The effective steady acoustic flow in a porous medium of large pores is given by (3.15),

U ≈ Uζ

(
Dpα

32
Re
m

+ 3
4

St−1

m′

)
e−2αx, (5.3)

where m′ is a modified structural parameter. The latter accepts values of 1, 4 and ∞ for
the cases where the pores are aligned along, randomly and perpendicular to the path of
the wave, respectively. Previous studies suggest that the rate of attenuation of the wave
for this case may be approximated to leading order by α ≈ (2q)−1(δk/Dp), where q is the
ratio between the pore size in the presence and absence of the acoustic wave. The effective
steady acoustic flow in a porous medium of medium to small pores is given for Dp < 2δ
by (3.30),

U = 9ζSt−1U
4

16/m′ + αDp
2/4mδ

36 + (Dp/2δ)4
e−2αx. (5.4)

Moreover, in the limit of small pores, Dp � δ, the above result is simplified to (3.31),

U ≈ St−1ζU e−2αx/m′. (5.5)

When considering a case study for randomly distributed pores and comparing the
different results in the range 0 < Dp/δ < 100, we observe that the predictions for the
steady acoustic flow, U , in the limit of small pores in (3.31) and in the case of medium to
small pores in (3.30) are similar for a vanishing pore size. The steady acoustic streaming
in the limit of small pores is solely forced by a Rayleigh streaming-type mechanism. The
steady acoustic flow in the case of medium to small pores is governed by contributions
from both Rayleigh and Eckart streaming-type mechanisms. Increasing the size of the
pores, (increasing Dp/δ values), also increases the steady acoustic flow, U , at least for
small Dp/δ values. Above a threshold value of Dp/δ, we observe that U decreases in
magnitude in an unphysical manner. This result emphasizes the limited applicability of the
expression in (3.30) for Dp < 2δ. To obtain realistic results for Dp > 2δ in the case of small
to medium pores in (3.30), one must introduce additional terms in the truncated Bessel
series when calculating (3.30). In the case of large pores in (3.15), we find that U increases
in magnitude when increasing the size of pores (increasing Dp/δ values). Interestingly,
(3.15) appears to give a reasonable prediction for U also in the limit of a vanishing pore
size. The main constraint on the large pore result is that we ignore the pore curvature when
calculating the acoustic boundary layer flow (Rayleigh streaming). Under the assumption
of randomly distributed pores, we observe that the geometrical simplifications in (3.15)
give a prediction that deviates from the exact limit for small pores in (3.31) by a factor of
3/4 for a vanishing pore size (Dp → 0).

It is of value to note that the analysis which yields (2.6), (3.15), (3.30) and (3.31) is
appropriate for the case where the pressure throughout the porous medium is the ambient
pressure. This assumption corresponds to the case where the front width of the acoustic
wave is smaller than the width of the porous medium and the pores are interconnected. In
the case where this analysis is not relevant, one may consider an opposite case where the
distribution of steady pressure in the porous medium is solely a function of the acoustic
wave and fluid mass conservation. This case is appropriate when the acoustic front may
be considered flat (its intensity is independent of the direction normal to the path of the
wave), the acoustic front is at least as wide as the porous medium, the porous medium is
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closed to liquid flow on the sides and the pressure at the entrance to the porous medium is
the ambient pressure. The conservation of fluid mass will result in a distribution of steady
pressure in the porous medium. Overall, this opposite limit for the pressure distribution
will result in similar expressions for the effective acoustic flow given, albeit in the absence
of the decaying exponent term e−2αx. Moreover, in this case, the quasi-Darcy equation will
take the form, U = K′′′U.

Finally, the characteristic frequency regime employed in the present literature on
acoustofluidics is mostly in the range of 0.1–400 MHz. The given range of acoustic
frequencies translates to a range of viscous penetration lengths of δ ≈ 1400 − 20 nm in
water at room temperature. Hence, by altering the realistic pore size, which traverse the
characteristic lengths of 1 nanometre to 1 millimetre, and the given acoustic frequency
range, one may traverse in the laboratory the regimes of Dp < δ and Dp � δ. Moreover,
there are several cases which are not considered in this analysis and may deserve future
work. These include acoustic streaming when the acoustic wave propagates solely through
the solid, through both the solid and fluid, varies in time and when the acoustic wavelength
is small (or comparable) to the pore size. Other cases of interest are acoustic streaming in
porous media that include a distribution of pore sizes and in deformable porous media,
where the pores greatly deform in the presence of acoustic waves and flow.
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