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Generalized Factorization in Hardy Spaces
and the Commutant of Toeplitz Operators

Michael Stessin and Kehe Zhu

Abstract. Every classical inner function ϕ in the unit disk gives rise to a certain factorization of func-

tions in Hardy spaces. This factorization, which we call the generalized Riesz factorization, coincides

with the classical Riesz factorization when ϕ(z) = z. In this paper we prove several results about the

generalized Riesz factorization, and we apply this factorization theory to obtain a new description of

the commutant of analytic Toeplitz operators with inner symbols on a Hardy space. We also discuss

several related issues in the context of the Bergman space.

1 Introduction

Let D be the open unit disk in the complex plane C. For 0 < p < ∞ the Hardy space

H p consists of analytic functions f in D such that

‖ f ‖p
p = sup

0<r<1

1

2π

∫ 2π

0

| f (reit)|p dt < ∞.

It is well known that if

f (z) =

∞
∑

k=0

akzk, z ∈ D,

then

‖ f ‖2
2 =

∞
∑

k=0

|ak|2,

and H2 is a Hilbert space whose inner product, 〈 , 〉, is the polarization of the above

norm. See [6] for the classical theory of H p spaces.

Let H∞ be the space of all bounded analytic functions in D. For each ϕ ∈ H∞ we

define an operator Tϕ on H2 as follows:

Tϕ f = ϕ f , f ∈ H2.

For historical reasons Tϕ will be called the analytic Toeplitz operator with symbol ϕ;

Tϕ is simply the multiplication operator induced by ϕ.

The commutant of Tϕ, denoted by (Tϕ) ′, is the algebra of all bounded linear op-

erators S on H2 with STϕ = TϕS. A closed subspace M of H2 is called a reducing

subspace of Tϕ if it is invariant under both Tϕ and T∗
ϕ. It is well known that a closed

Received by the editors February 6, 2002; revised December 4, 2002.
AMS subject classification: 47B35, 30D55, 47A15.
c©Canadian Mathematical Society 2003.

379

https://doi.org/10.4153/CJM-2003-017-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-017-1


380 Michael Stessin and Kehe Zhu

subspace of H2 is a reducing subspace of Tϕ if and only if the orthogonal projection

of H2 onto this subspace is in the commutant of Tϕ.

In this paper we study Tϕ when ϕ is an inner function. In this case the operator

Tϕ is an isometry, so that the Wold decomposition theorem (see [7]) determines

a decomposition of H2 into the direct sum of singly generated subspaces invariant

under Tϕ. This decomposition leads to a certain factorization which generalizes the

classical inner-outer factorization.

Throughout the paper we assume that ϕ is an inner function. For 0 < p < ∞ we

say that a function f ∈ H p is ϕ-p inner if ‖ f ‖p = 1 and

∫ 2π

0

| f (eit )|pϕ(eit )n dt = 0

for all positive integers n. A function f ∈ H p is called ϕ-p outer if f = F ◦ ϕ, where

F ∈ H p is outer.

It was proved in [8] that every f ∈ H p admits a factorization f = hF ◦ ϕ, where

h is ϕ-p inner and F ◦ ϕ is ϕ-p outer. Moreover, the ϕ-p inner and outer factors are

uniquely determined by f up to a unimodulus constant multiple.

We further investigate this factorization in Sections 2 and 3 and obtain several

characterizations (and estimates) for ϕ-p inner and outer functions. We then apply

these results in Section 4 to obtain a description of the commutant of Tϕ.

To state our main results, Theorems A, B and C below, we introduce a class of

measures dσζ defined via Herglotz’s theorem by

Re
ζ + ϕ(z)

ζ − ϕ(z)
=

∫

T

Re
w + z

w − z
dσζ(w), z ∈ D, ζ ∈ T,

where T is the unit circle.

Theorem A For 0 < p < ∞ we have

(a) A function h ∈ H p with ‖h‖p = 1 is ϕ-p inner if and only if

∫

T

|h(z)|p dσw(z) = 1

for almost all w ∈ T.

(b) If h is ϕ-p inner, then

|h(z)|p ≤ 1 − |ϕ(z)|2
1 − |z|2

for all z ∈ D.

(c) If f ∈ H p and f = hF ◦ ϕ is the ϕ-p factorization of f , then

F(z) = exp
{ 1

p

∫

T

ζ + z

ζ − z
log

(

∫

T

| f (τ )|p dσζ(τ )
)

dm(ζ)
}

for all z ∈ D, where dm is the normalized Lebesgue measure on T.
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For any analytic function we will use M f to denote the operator of multiplication

by f .

Theorem B There exists a sequence {Sn} of operators on H2 (depending on ϕ) such

that the following conditions are equivalent for a bounded linear operator S on H2:

(a) S belongs to the commutant of Tϕ.

(b) There exists a sequence {ϕn} in H2 such that

S = Mϕ1
S1 + · · · + Mϕn

Sn + · · · ,

where the series converges in the strong operator topology and the ϕ-2 outer part of

each ϕn is bounded.

We will have explicit descriptions for the operators Sn. In general, a ϕ-p inner

function is not necessarily bounded. However, in the special case when ϕ is a Blaschke

product of N zeros with N < ∞, we will see that the ϕ-p inner part of each function

in H p is bounded, and the ϕ-p outer part of f ∈ H p is bounded if and only if f

itself is bounded. In this particular case, our result realizes the commutant of Tϕ as

N copies of H∞.

In the final section of the paper we will discuss several related problems in the

context of Bergman spaces. In particular, we will obtain several results about the

reducing subspaces and commutants of analytic Toeplitz operators on the Bergman

space induced by finite Blaschke products. One of the results proved in this section is

the following.

Theorem C Let B be a finite Blaschke product which vanishes at the origin,

B(z) = z

n
∏

k=1

z − ak

1 − akz
, |ak| < 1, k = 1, 2, . . . , n.

Then the subspace

M = Span{B ′Bm, m = 0, 1, . . . }

is reducing for the operator TB on A2, and its orthogonal complement is given by

M⊥
= Span

{ Bm

1 − ākz
: 1 ≤ k ≤ n, m ≥ 0

}

.

Here Span denotes the closed linear span of a collection of vectors in A2.

Remark The condition of vanishing at the origin is imposed just for convenience.

It is not necessary for the first statement and without it the second one needs a small

adjustment.

Acknowledgement The authors would like to thank the referee for a number of

suggestions which considerably improved the presentation.
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2 Generalized Riesz Factorizations

In this section we present some facts about the Wold decomposition of the Toeplitz

isometry Tϕ, show how this decomposition leads to a natural generalization of the

classical inner-outer factorization in Hardy spaces, and obtain several characteriza-

tions (and estimates) for the corresponding inner and outer functions.

For each 0 < p < ∞ we set

H p[ϕ] = { f ◦ ϕ : f ∈ H p}.

Since ϕ is inner, the composition operator Cϕ is bounded from above and below for

all p; see [4]. In particular, the space H p[ϕ] is closed in H p . The image of Tϕ on

H p , denoted by ϕH p, is also a closed subspace of H p. When p = 2, we will need the

defect space

D[ϕ] = H2 	 (ϕH2),

which is just the kernel of T∗
ϕ. Defect spaces are also called model spaces in the litera-

ture and are sometimes denoted by Kϕ. They have been extensively studied by those

who work on Hardy spaces and operator theory; see [9].

Recall that the Wold decomposition theorem [7] states that every isometry T :

X → X of a Hilbert space X determines the following decomposition of X:

X = X0

∞
⊕

n=0

TnX1,

where

X1 = X 	 TX

is the wandering subspace, and

X0 =

∞
⋂

n=0

TnX

is the stable subspace.

In the special case when M = X is a closed subspace of H2 invariant under T =

Tϕ, the stable subspace is obviously trivial, so that

M =

∞
⊕

n=0

Tn
ϕ(M 	 ϕM).

In particular, if M = H2 and {e1, . . . , en, . . . } is an orthonormal basis of the defect

space of Tϕ, the above decomposition implies that any function f ∈ H2 is uniquely

represented in the form

f =

∞
∑

k=1

( fk ◦ ϕ)ek,
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where each fk ◦ ϕ ∈ H2[ϕ] and

‖ f ‖2
=

∞
∑

k=1

‖ fk‖2.

Conversely, every sequence { f1, . . . , fn, . . . } of functions in H2 with

∞
∑

n=1

‖ fn‖2
2 < ∞

determines a function in H2 as follows:

f =

∞
∑

n=1

( fn ◦ ϕ)en.

This follows from the simple fact (see [8], for example) that if

f =

∞
∑

n=1

( fn ◦ ϕ)en, g =

∞
∑

n=1

(gn ◦ ϕ)en,

then

(1) 〈 f , g〉 =

∞
∑

n=1

〈 fn, gn〉.

As a consequence of equation (1) we obtain the following.

Lemma 1 Suppose {ek} is an orthonormal basis for D[ϕ]. For each k let Hk[ϕ] be the

H2-closure of the set of vectors of the form (p ◦ ϕ)ek, where p is a polynomial. Then

Hk[ϕ] ⊥ Hm[ϕ] whenever k 6= m, and

H2
=

⊕

k

Hk[ϕ].

We will call the decomposition of H2 in the above lemma the Wold decomposition

of H2 with respect to ϕ.

As another consequence of equation (1) we obtain the following well-known fact

representing the Toeplitz operator with symbol ϕ̄:

(2) (Tϕ)∗ f = Tϕ̄ f =

∞
∑

n=0

[(S fn) ◦ ϕ]en,

where the operator S defined by

S f (z) =

f (z) − f (0)

z

is the backward shift.

As a consequence of the representation (2) we obtain the following result proved

in [7] and [10].
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Lemma 2 Suppose X is any subset of the defect space D[ϕ]. Let HX be the closed linear

span in H2 of the set of vectors of the form (p ◦ϕ) f , where f ∈ X and p is a polynomial.

Then HX is a reducing subspace of Tϕ.

In particular, it follows from the above lemma that the commutant of Tϕ contains

a lot of orthogonal projections. We will need the following result from [8].

Proposition 3 Suppose {en} is an orthonormal basis of the defect space D[ϕ] and 0 <
p < ∞. Then

(i) A function f in H p is ϕ-p inner if and only if

‖(h ◦ ϕ) f ‖p = ‖h‖p

for every h ∈ H p .

(ii) A function

f =

∞
∑

n=0

( fn ◦ ϕ)en

is ϕ-2 inner if and only if

∞
∑

n=0

| fn(eiθ)|2 = 1

for almost all θ.

(iii) Every function f ∈ H p admits a unique (up to a unimodular scalar factor) factor-

ization f = hF ◦ ϕ, where h is ϕ-p inner and F ◦ ϕ is ϕ-p outer.

It follows from the representation (2) that each ek is a ϕ-2 inner function. Com-

bining this observation with part (i) of Proposition 3 above, we conclude that

Hk[ϕ] = ekH2[ϕ] in Lemma 1, so that the Wold decomposition of H2 associated

with ϕ can be written as

H2
=

⊕

k

(ekH2[ϕ]).

If ϕ(z) = z, the factorization mentioned in part (iii) of Proposition 3 coincides

with the classical inner-outer factorization.

If ϕ is a finite Blaschke product of order N , then every ϕ-p inner function is in

H∞. In fact, the defect space consists of rational functions in this case, so any element

of the defect space is bounded in the unit disk. If

h =

N
∑

k=1

ekhk ◦ ϕ

is ϕ-2 inner, then by part (ii) of Proposition 3, each hk is bounded, so h is bounded as

well. If 0 < p < ∞ and h = gF is ϕ-p inner, where g is a classical inner function and

F is outer, then Fp/2 is ϕ-2 inner and hence bounded, which implies that h ∈ H∞.

If ϕ is not a finite Blaschke product, a ϕ-p inner function need not be bounded

(see [8] and the example following Corollary 8 in the present paper). Still, we are

able to obtain some growth estimates.
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Theorem 4 Let 0 < p < ∞ and h be a ϕ-p inner function. Then

|h(z)|p ≤ 1 − |ϕ(z)|2
1 − |z|2 .

for all z ∈ D.

Proof By Proposition 3, for every function g ∈ H p we have

‖hg ◦ ϕ‖p = ‖g‖p.

In particular, this implies that

|h(z)|
∣

∣ g
(

ϕ(z)
)
∣

∣ ≤ ‖g‖p

(1 − |z|2)1/p

for every z ∈ D. Choosing

g(w) =

1

[1 − wϕ(z) ]2/p

leads to the desired estimate.

Corollary 5 Let ϕ = Bg, where B is a Blaschke product and g is a singular inner

function generated by a singular measure µ. If w ∈ T is neither a limit point of the

zeros of B nor a point in the closure of the support of µ, then any ϕ-p inner function is

bounded near w.

Proof It is well known that ϕ has an analytic extension to a neighborhood of w.

In particular, ϕ has a finite angular derivative at w. The result then follows from

Theorem 4.

We proceed to describe ϕ-p inner and outer functions in terms of singular mea-

sures introduced by Clark in [2]. More specifically, if |w| = 1, then

Re
w + ϕ(z)

w − ϕ(z)
=

1 − |ϕ(z)|2
|w − ϕ(z)|2 > 0

for all z in the unit disk. By Herglotz’s theorem there is a nonnegative measure σw on

the unit circle T such that

Re
w + ϕ(z)

w − ϕ(z)
=

∫

T

Re
ζ + z

ζ − z
dσw(ζ)

for all z ∈ D. Since ϕ is inner, σw is singular with respect to the normalized Lebesgue

measure dm on T. If Ew is the set of points in T where ϕ has w as a nontangential

limit, then (see [1])

(3) σw(T \ Ew) = 0.
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Furthermore, if ϕ(0) = 0, then σw is a probability measure for all w ∈ T.

These measures σw are related to the conditional expectation operator E( · |ϕ) as-

sociated with the σ-algebra generated by ϕ:

E( f |ϕ)(w) =

∫

T

f (ζ) dσw(ζ),

where f ∈ L1(T) and w ∈ T. This was proved by Alexandrov in [1], where he also

proved that every f ∈ L1(T) belongs to L1(T, σw) for almost all w ∈ T and

(4)

∫

T

f (ζ) dm(ζ) =

∫

T

(

∫

T

f (ζ) dσw(ζ)
)

dm(w).

Theorem 6 Suppose 0 < p < ∞ and h is a unit vector in H p . Then h is ϕ-p inner if

and only if
∫

T

|h(z)|p dσw(z) = 1

for almost all w ∈ T.

Proof It follows from equations (3) and (4) that

∫

T

|h(z)|pϕ(z)k dm(z) =

∫

T

wk
(

∫

T

|h(z)|p dσw(z)
)

dm(w)

for all positive integers k. Thus, the uniqueness theorem implies that h is ϕ-p inner

if and only if
∫

T

|h(z)|p dσw(z)

is a constant function of w. Since ‖h‖p = 1, we conclude that h is ϕ-p inner if and

only if
∫

T

|h(z)|p dσw(z) = 1

for almost all w ∈ T.

Note that statement (i) of Proposition 3 is a straightforward corollary of Theo-

rem 6 and equation (4). This offers a proof of part (i) of Proposition 3 that is different

from the one in [8].

Theorem 7 Suppose 0 < p < ∞, f ∈ H p , and f = hFp ◦ ϕ is the ϕ-p factorization

of f . Then

(5) Fp(z) = exp
{ 1

p

∫

T

ζ + z

ζ − z
log

(

∫

T

| f (τ )|p dσζ(τ )
)

dm(ζ)
}

for all z ∈ D.
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Proof It follows directly from the classical Riesz formula and (4) that the function

given by the integral on the right-hand side of (5) is outer and in H p and the absolute

value of its nontangential boundary limit at almost all ζ ∈ T is

(

∫

T

| f (τ )|p dσζ(τ )
) 1/p

.

Indeed, if we denote the last function by F̂p(ζ), then by (4) it is in L1(dm), and,

hence, log+ F̂p ∈ L1(dm). Since f ∈ H p , log− | f | ∈ L1(dm). Now, the concavity of

the function log and (4) show that log− F̂p ∈ L1(dm).

Further, it follows from (4) and (5) that

∫

T

| f (τ )|p
∣

∣ F̂p

(

ϕ(τ )
)
∣

∣

−p
ϕ(τ )k dm(τ ) =

∫

T

|F̂p(ζ)|−pζk
(

∫

T

| f (τ )|p dσζ(τ )
)

dm(ζ)

=

∫

T

|F̂p(ζ)|−p|F̂p(ζ)|pζk dm(ζ)

=

{

0 if k 6= 0

1 if k = 0.

This implies that f (F̂p ◦ ϕ)−1 is ϕ-p inner, so F̂p is the ϕ-p outer part of f .

Note that if ϕ(z) = z, then σw is a point mass at w of mass 1 and (5) converts to

the classical Riesz formula.

Corollary 8 Suppose f ∈ H p , 0 < r ≤ p ≤ +∞, and f = hrFr ◦ ϕ is the ϕ-r

factorization of f . Then Fr ∈ H p .

Proof This follows directly from equation (4), the proof of Theorem 7, and Hölder’s

inequality.

In view of the last corollary it is natural to ask if for 0 < r ≤ p the ϕ-r inner

part of an H p-function f must be in H p . For example, if f is bounded, Corollary 8

implies that its ϕ-p outer part is bounded (in fact, its H∞ norm does not exceed the

H∞ norm of f ) for all p. Must the ϕ-p inner part of f be bounded? The following

example shows that in general the answer is negative.

Example Assume that ϕ has the property that the measures σw are continuous (that

is, they have no point masses) for almost all w ∈ T; see [1] for examples of such

functions. Choose a set of circular arcs In, n = 1, 2, . . . , satisfying the following

conditions:

(i) In ∩ Im = ∅ for n 6= m,

(ii) |In| = 3−n for all n.
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Write Vn = ϕ−1(In) and note that Vn are disjoint subsets of T of positive Lebesgue

measure. It follows from the definition of σw that

σw(T) =

1 − |ϕ(0)|2
|1 − w̄ϕ(0)|2 > 0

for all w ∈ T. For each n we consider the points w ∈ In for which the measure

σw is continuous; for each such point w there exists an arc Jw = (1, eiθ(w)) with

0 < θ(w) < π/2 and

σw( Jw) =

1

n
σw(T).

We then define

Ũn =

⋃

{ Jw : w ∈ In},
and

Un = Ũn ∩Vn.

Since σw(T \ Vn) = 0 for all w ∈ In, we have σw(Un) =
1
n
σw(T). Thus equation (5)

implies that Un has positive Lebesgue measure for all n. Now define a function ρ on

T as follows:

ρ(w) =

{

1 if w ∈ (T \ ⋃

n Vn)
⋃

n Un

1
n

if w ∈ Vn \Un.

It is easily seen that ρ is a bounded positive function on T and

∫

T

| log ρ(z)| dm(z) ≤ C

∞
∑

n=1

log n

3n
,

where C is a positive constant. So log ρ is in L1(T), which implies that there is a

bounded analytic function f in D such that | f | coincides with ρ almost everywhere

on T; here we denote the radial limits of f by the same letter f . Let 0 < p < ∞ and

f = hpFp ◦ ϕ be the ϕ-p factorization of f . For each w ∈ In, an application of (4)

and Theorem 7 gives

|Fp(w)| =

(

∫

Ew

| f (z)|p dσw(z)
) 1/p

=

(

1

np

n − 1

n

1 − |ϕ(0)|2
|1 − w̄ϕ(0)|2 +

1

n

1 − |ϕ(0)|2
|1 − w̄ϕ(0)|2

) 1/p

∼
{

n−1/p if p ≥ 1

n−1 if 0 < p < 1.

Since |Un| > 0, the set of points ζn ∈ Un where the functions ϕ, f , Fp ◦ ϕ, and hp all

have radial limits has positive measure. Since for all such ζn we have wn = ϕ(ζn) ∈ In,

the last estimate shows that

|hp(wn)| =

ρ(wn)

|Fp(wn)| ∼
{

n1/p if p ≥ 1

n f 0 < p < 1,

so that hp is unbounded.
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3 ϕ-Multipliers

For 0 < p ≤ s ≤ ∞ we will denote by Hϕ,p,s the collection of all functions in H p

whose ϕ-p outer part is in Hs. For 0 < r ≤ p ≤ ∞ we say that an analytic function

f in the unit disk is a ϕ-multiplier of type (p, r) if for every h ∈ H p[ϕ] the product

f h is in Hr .

Theorem 9 An analytic function f is a ϕ-multiplier of type (p, r) if and only if f ∈
Hϕ,r,t , where t = pr/(p − r).

Proof Since constants are in H p[ϕ] for all p, any ϕ-multiplier of type (p, r) must be

in Hr . Let f ∈ Hr and f = hrFr ◦ ϕ be the ϕ-r factorization of f . For every g ∈ H p ,

part (i) of Proposition 3 gives

‖ f g ◦ ϕ‖r = ‖Frg‖r ≤ ‖Fr‖ pr
p−r

‖g‖p ≤ C‖Fr‖ pr
p−r

‖g ◦ ϕ‖p.

Since g is arbitrary and the last inequality is sharp, the result follows.

Corollary 10 If 0 < p ≤ s ≤ ∞, then Hϕ,p,s is a subspace of H p.

Proof This is because the set of multipliers is obviously a linear space.

As a special case of the theorem above we see that ϕ-multipliers of type (p, p) (or

simply ϕ-p-multipliers) are those H p functions whose ϕ-p outer part is bounded in

the unit disk.

In the case when ϕ is a finite Blaschke product any ϕ-p inner function is bounded,

so that the set of ϕ-p-multipliers coincides with H∞.

Corollary 11 If f is a ϕ-multiplier of type (p, r), then there is a constant C > 0 such

that

| f (z)| ≤ C

(

1 − |ϕ(z)|2
) 1/p

(1 − |z|2)1/r

for all z ∈ D.

Proof Let f = hrFr ◦ ϕ be the ϕ-r factorization of f . By Theorem 9 the function Fr

belongs to H
pr

p−r , so that

∣

∣Fr

(

ϕ(z)
) ∣

∣ ≤
‖Fr‖ pr

p−r

(

1 − |ϕ(z)|2
)

p−r
pr

.

This together with Theorem 4 yields the desired estimate.
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4 The Commutant of Tϕ

The Wold decomposition associated with ϕ in Section 2 depends on the choice of an

orthonormal basis {ek} for the defect space D[ϕ]. In the rest of this section we fix an

orthonormal basis {ek} of the defect space D[ϕ]. Let

H2
=

⊕

(ekH2[ϕ])

be the corresponding Wold decomposition of H2. For each k we define an operator

Sk on H2 by

Sk( f ) =

Pk( f )

ek

, f ∈ H2,

where Pk is the orthogonal projection from H2 onto Hk[ϕ] = ekH2[ϕ].

Lemma 12 With the above notation we have

(a) Each operator Sk is bounded on H2.

(b) Each Sk commutes with Tϕ.

(c) Each Sk maps H∞ into H∞.

Proof The first assertion follows from part (i) of Proposition 3 and the fact that each

ek is ϕ-2 inner, the second follows from Lemma 2, and the third can be found in [11].

We now show how to combine the operators Sk with certain analytic multiplica-

tion operators to obtain all the operators in the commutant of Tϕ. As a first step, fix

any k and let h be a multiplier from H2[ϕ] into H2. By the closed graph theorem

there exists a positive constant C such that ‖h f ◦ϕ‖ ≤ C‖ f ◦ϕ‖ for all f ∈ H2. This

implies that the operator T = MhSk is bounded on H2, where Mh is the operator of

multiplication by h. In fact, if f ∈ H2, we can write

f =

∑

k

ek fk ◦ ϕ.

The definition of Sk gives Sk( f ) = fk ◦ ϕ, so by Proposition 3 we have

‖T( f )‖ = ‖h fk ◦ ϕ‖ ≤ C‖ fk ◦ ϕ‖ = C‖Sk( f )‖ ≤ C‖Sk‖ ‖ f ‖.

Since Sk commutes with Tϕ, and Mh commutes with Tϕ (at least on the dense sub-

space H∞; we then apply part (c) of Lemma 12), we conclude that T belongs to the

commutant of Tϕ.

The next result shows that this procedure will produce all the operators in the

commutant of Tϕ.
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Theorem 13 A bounded linear operator S on H2 commutes with Tϕ if and only if there

exists a sequence {ϕk} of multipliers from H2[ϕ] into H2 such that

S = Mϕ1
S1 + · · · + Mϕk

Sk + · · · ,

where the series converges in the strong operator topology.

Proof Assume that T is an operator of the form

T =

∑

k

Mϕk
Sk,

where each ϕk is a multiplier from H2[ϕ] into H2 and the series converges in the

strong operator topology. We already knew that each term Mϕk
Sk is in the commutant

of Tϕ. Since the commutant is a linear space that is closed in the strong operator

topology, T belongs to (Tϕ) ′ as well.

Next assume that T is any operator in the commutant of Tϕ. For each k let ϕk =

T(ek). We first show that each ϕk is a multiplier from H2[ϕ] into H2. To this end we

fix k and pick any f ∈ H2. Write

f =

∞
∑

n=1

en fn ◦ ϕ,

where each fn belongs to H2. Since T commutes with Tϕ, it follows easily that

T(en fn ◦ ϕ) = fn ◦ ϕT(en).

This implies that

T( f ) =

∞
∑

n=1

ϕn fn ◦ ϕ =

∞
∑

n=1

ϕn
Pn( f )

en

.

Fixing k and replacing f by ekg ◦ ϕ, where g ∈ H2, we obtain

T(ekg ◦ ϕ) = ϕkg ◦ ϕ.

Thus

‖ϕkg ◦ ϕ‖ ≤ ‖T‖ ‖ekg ◦ ϕ‖ = ‖T‖ ‖g ◦ ϕ‖.
This shows that each ϕk is a multiplier from H2[ϕ] into H2. Our earlier calculation

already gave

T( f ) =

∑

k

ϕk
Pk( f )

ek

=

∑

k

Mϕk
Sk( f )

for all f ∈ H2. So we have

T =

∑

k

Mϕk
Sk,

with the series converging in the strong operator topology.
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Corollary 14 If B is a finite Blaschke product with n zeros, then there exist operators

S1, . . . , Sn such that the commutant of TB on H2 consists of operators of the form

S = Mϕ1
S1 + · · · + Mϕn

Sn,

where ϕ1, . . . , ϕn are functions in H∞.

The commutant of an analytic Toeplitz operator on the Hardy space induced by

a finite Blaschke product has been studied extensively in the literature. We mention

here the papers [3] [7] [5] [12]. In particular, Thomson [12] gives an explicit descrip-

tion of the commutant of TB when B is a Blaschke product with two zeros; Cowen [3]

describes the commutant of TB for a finite Blaschke product in terms of the Riemann

surface generated by ϕ.

Our result differs from the known ones in that it clearly relates the commutant of

Tϕ to multiplication operators. In particular, it realizes the commutant of Tϕ as N

copies of H∞ when ϕ is finite Blaschke product with N zeros. More precisely, the

commutant of Tϕ in this case is an H∞-module generated by N elements.

We also mention that the commutant of a general isometry (such as Tϕ in the

paper) can be described in terms of block matrices; see [3] or [5].

5 Some Results for the Bergman space

It is very natural to ask how much of what we have done can be extended to the case

of the Bergman space. Although most of our results do not have obvious generaliza-

tions, we show in this section that some ideas can still be pursued in the Bergman

space setting. We will obtain several results about the reducing subspaces and com-

mutants of analytic Toeplitz operators on the Bergman space whose symbols are finite

Blaschke products.

Recall that for 0 < p < ∞ the Bergman space Ap consists of analytic functions f

in D such that

‖ f ‖p =

[

∫

D

| f (z)|p dA(z)
] 1/p

< ∞,

where dA is the normalized area measure on D. We will only consider the Hilbert

space A2, whose inner product is given by

〈 f , g〉 =

∫

D

f (z)g(z) dA(z),

and the associated norm will be denoted by ‖ ‖.

Given any ϕ ∈ H∞, we still use Mϕ or Tϕ to denote the operator of multiplication

by ϕ on A2. All operators in this section act on the Bergman space A2 unless otherwise

specified.

It was shown in [13] that the operator of multiplication by a Blaschke product

B of order 2 acting on the Bergman space has exactly two reducing subspaces, and

the two reducing subspaces were described in [13] in terms of the geodesic mid-

point of the two zeros of B. Here we will construct a non-trivial reducing subspace
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(and its orthogonal complement) of MB for any finite Blaschke product B (with more

than one zero, of course). When B has only two zeros, this construction gives an

alternative description of the reducing subspaces obtained in [13], and it produces a

new matricial representation of the commutant of MB.

If B is a finite Blaschke product with n zeros, then so is the function

B1 =

B − B(0)

1 − B(0)B
.

Since TB and TB1
have the same commutant and the same lattice of reducing sub-

spaces, we may assume, without loss of generality, that B(0) = 0. This condition will

be assumed throughout the rest of this section.

Theorem 15 Let B be a finite Blaschke product which vanishes at the origin,

(6) B(z) = z

n
∏

k=1

z − ak

1 − akz
, |ak| < 1, k = 1, 2, . . . , n.

Then the subspace

M = Span{B ′Bm, m = 0, 1, . . . }
is reducing for the operator TB on A2, and its orthogonal complement is given by

M⊥
= Span

{

Bm(z)

1 − ākz
: 1 ≤ k ≤ n, m ≥ 0

}

.

Here Span denotes the closed linear span of a collection of vectors in A2.

Proof Since M is clearly invariant under TB, it suffices to show that M⊥ is also in-

variant under TB.

We first prove that the functions in M⊥ that are analytic in the closed disk are

dense in M⊥. Let P and P1 be the orthogonal projections of A2 onto M and M⊥,

respectively. Then P1(P[z]) is dense in M⊥, because the space P[z] of polynomials is

dense in A2. Since B(0) = 0, the functions

1√
n

B ′Bm, m = 0, 1, 2, . . . ,

form an orthonormal basis of M. For a polynomial q we have

Pq =

1

n

∞
∑

k=0

(

∫

D

q(z)B ′(z)Bk(z) dA(z)
)

B ′Bk.

If k > deg(q), then the integral on the right-hand side above vanishes. Thus,

(7) Pq = B ′

deg(q)
∑

k=0

λkBk,
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where λk are constants. This shows that Pq is analytic in the closed disk, so that

P1q = q − Pq is analytic in D̄.

We next give an explicit description of M⊥. Take f ∈ M⊥ and assume that f is

analytic in D̄. By the Green-Stokes formula,

0 =

∫

D

f (z)B ′(z)B(z)k dA(z)

=

1

2πi(k + 1)

∫

T

f (z)B(z)
k+1

dz

=

1

k + 1

∫

T

z f (z)B(z)
k+1

dm(z),

where dm is the normalized Lebesgue measure on T. Thus, the function z f (z) is

orthogonal to Bm in H2 for every m > 0, and clearly, this also holds for m = 0. It

is well known (see [8] for example) that the orthogonal complement in H2 of the set

{Bm : m ≥ 0} is spanned (in the H2 topology) by the set

{ z

1 − akz
Bm(z) : k = 1, 2, . . . , n, m = 0, 1, . . .

}

.

Since multiplication by z is an isometry in H2, and since H2 convergence implies A2

convergence, we conclude that f can be approximated in the A2-norm by functions

of the form
Bm(z)

1 − ākz
, 1 ≤ k ≤ n, m ≥ 0.

It follows that

(8) M⊥ ⊂ Span

{

Bm(z)

1 − ākz
: 1 ≤ k ≤ n, m ≥ 0

}

.

Here the span is taken in A2.

Conversely, if

f (z) =

Bm(z)

1 − ākz

for some 1 ≤ k ≤ n and m ≥ 0, then the arguments in the previous paragraph

used in reverse order show that f ∈ M⊥. This proves that the linear span in (8) is

contained in M⊥. Combining this with the conclusion of the previous paragraph, we

obtain

M⊥
= Span

{

Bm(z)

1 − ākz
: 1 ≤ k ≤ n, m ≥ 0

}

.

This description of M⊥ clearly shows that M⊥ is invariant under TB.

Corollary 16 Let B be a finite Blaschke product in the form (6). Then

A2
= Span{B ′Bm : m ≥ 0} ⊕ Span

{

Bm(z)

1 − ākz
: 1 ≤ k ≤ n, m ≥ 0

}

.
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In particular, if B is a Blaschke product of order 2,

B(z) = z
z − a

1 − āz
,

then the spaces

Span{B ′Bm : m ≥ 0}, Span

{

Bm(z)

1 − āz
: m ≥ 0

}

are reducing for TB. By [13] these must be the only two reducing subspaces for TB;

and they must coincide with the descriptions given in [13].

We now proceed to give a matricial description of the commutant of TB on A2

when B is a Blaschke product of order 2 whose zeros are 0 and a.

Denote by µ the pull-back measure on D induced by B. So for a Borel subset

C ∈ D we have

µ(C) =

∫

B−1(C)

dA(z).

The measure µ is absolutely continuous with respect to area measure,

dµ(z) = ρ(z) dA(z),

where

ρ(z) =

∑

B(τ )=z

1

|B ′(τ )|2 ,

with

B(τ ) = τ
a − τ

1 − āτ
.

A calculation shows that

ρ(z) =

∑

B(τ )=z

1

|B ′(τ )|2 =

(1 − |a|2)2 + |1 − āτ |4
|āτ 2 − 2τ + a|2 .

From this we derive the following lower estimate for the weight function ρ,

(9) ρ(z) ≥ (1 − |a|)2(1 + |a|2)

(1 + |a|)2
.

Consider the function

(10) g(z) = 1 − B ′(0)

2
B ′

=

1

1 − āz

(

2 − |a|2
2

+
ā2

2
B

)

.

By Theorem 15, g ∈ Span{Bk(z)/(1 − āz) : k ≥ 0}. Actually, it is easy to check that

Span{gBk : k ≥ 0} = Span{Bk(z)/(1 − āz) : k ≥ 0}.

It is also easy to see that

(11) 1 − |a| ≤ |g(z)| ≤ 1

1 − |a|
for all z ∈ D.
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Lemma 17 Let

(12) f =

1√
2

B ′ f1 ◦ B + g f2 ◦ B,

where f1 and f2 are functions in H∞. Then

(13) ‖ f ‖2
= ‖ f1‖2 − |a|2

2
‖ f2‖2 + ‖ f2‖2

µ,

where

‖ f2‖2
µ =

∫

D

| f2|2 dµ.

Proof By Theorem 15 and (10), we have

‖ f ‖2
=

1

2
‖B ′ f1 ◦ B‖2 + ‖g f2 ◦ B‖2

= ‖ f1‖2 +

∫

D

∣

∣

∣

∣

1 − B ′(0)

2
B ′(z)

∣

∣

∣

∣

2
∣

∣ f2

(

B(z)
)
∣

∣

2
dA(z)

= ‖ f1‖2 + ‖ f2 ◦ B‖2 +
|a|2

2
‖ f2‖2

− 2 Re

(

B ′(0)

2

∫

D

∣

∣ f2

(

B(z)
)
∣

∣

2
B ′(z) dA(z)

)

.

Write

f2(z) =

∞
∑

k=0

ckzk,

and let

h(z) =

∞
∑

k=0

ck

k + 1
zk+1

be the antiderivative of f2. We have by Green-Stokes formula
∫

D

∣

∣ f2

(

B(z)
)
∣

∣

2
B ′(z) dA(z) =

1

2πi

∫

T

f2

(

B(z)
)

h
(

B(z)
)

dz

= B ′(0)

∞
∑

k=0

|ck|2
k + 1

= B ′(0)‖ f2‖2.

The last two strings of equalities then imply that

‖ f ‖2
= ‖ f1‖2 − |a|2

2
‖ f2‖2 + ‖ f2 ◦ B‖2

= ‖ f1‖2 − |a|2
2

‖ f2‖2 + ‖ f2‖2
µ.

As a direct consequence of Lemma 17 we obtain the following lower estimate for

the composition operator with symbol B.
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Corollary 18 Let B be a Blaschke product of order 2 vanishing at 0 and a ∈ D. Then

‖ f ‖µ = ‖ f ◦ B‖ ≥ γ(a)‖ f ‖

for every f ∈ A2, where

γ(a) =

√

|a|2
2

+
(1 − |a|)4(1 + |a|2)

(1 + |a|)2
.

Proof It suffices to prove the result for polynomials f . By Lemma 17 and the esti-

mates in (9) and (11),

‖ f ◦ B‖2 − |a|2
2

‖ f ‖2
= ‖g f ◦ B‖2

=

∫

D

|g(z)|2
∣

∣ f
(

B(z)
) ∣

∣

2
dA(z)

≥ (1 − |a|)2

∫

D

∣

∣ f
(

B(z)
) ∣

∣

2
dA(z)

= (1 − |a|)2

∫

D

| f (z)|2ρ(z) dA(z)

≥ (1 − |a|)4(1 + |a|2)

(1 + |a|)2
‖ f ‖2,

and the desired result follows.

As another corollary we extend (13) to the whole space A2.

Corollary 19 Every function f ∈ A2 is uniquely represented in the form (12), where

f1 and f2 are in A2 and the norms of f , f1, and f2 satisfy (13).

Proof If f is a polynomial, (7) shows that f1 is a polynomial. Since

∥

∥

∥

∥

1√
2

B ′ f1 ◦ B

∥

∥

∥

∥

= ‖ f1‖,

we have ‖ f1‖ ≤ ‖ f ‖. Furthermore, if z ∈ D, then |g(z)| ≥ 1−|a| by (11). Therefore,

‖ f2 ◦ B‖ ≤ 1

1 − |a| ‖ f ‖.

Since

|B ′(z)| ≤ 2
1 + |a|

(1 − |a|)2

for all z ∈ D, we have

‖ f2‖ ≤ 2
1 + |a|

(1 − |a|)3
‖ f ‖.
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The desired result now follows from Corollary 16, Lemma 17, and the density of

polynomials in A2.

It follows from Corollary 19 that A2 is isometric to A2 × A2 equipped with the

norm given by (13). We call this space A2
2,B. The standard norm on A2 × A2 is given

by

‖( f , g)‖A2×A2 = (‖ f ‖2
A2 + ‖g‖2

A2 )1/2.

The following simple estimate gives the relation between these two norms.

Proposition 20 Let γ be the constant defined in Corollary 18. Then

(14) γ(a)(1 − |a|)‖( f1, f2)‖A2×A2 ≤ ‖( f1, f2)‖A2
2,B

≤ ‖( f1, f2)‖A2×A2

1 − |a|

for all functions f1 and f2 in A2.

Proof Let

f =

1√
2

B ′ f1 ◦ B + g f2 ◦ B.

Since

‖( f1, f2)‖2
A2

2,B
= ‖ f ‖2

= ‖ f1‖2 +

∫

D

|g(z)|2
∣

∣ f2

(

B(z)
)
∣

∣

2
dA(z),

the estimate in (11), together with the fact that the operator of composition by B on

A2 has norm 1 (see [4]), gives us

∫

D

|g(z)|2
∣

∣ f2

(

B(z)
)
∣

∣

2
dA(z) ≤ 1

(1 − |a|)2

∫

D

∣

∣ f2

(

B(z)
)
∣

∣

2
dA(z)

≤ 1

(1 − |a|)2
‖ f2‖2.

This establishes the upper bound in (14). To prove the lower bound we use the other

part of (11) and Corollary 18.

∫

D

|g(z)|2
∣

∣ f2

(

B(z)
)
∣

∣

2
dA(z) ≥ (1 − |a|)2

∫

D

∣

∣ f2

(

B(z)
)
∣

∣

2
dA(z)

≥ (1 − |a|)2γ(a)2‖ f ‖2.

Let An stand for the space of n × n matrices of bounded analytic functions in the

unit disk. For

A = A(z) = [ai, j(z)]i, j=1,2

we define

‖A‖An
= sup{‖A(z)ζ‖Cn : z ∈ D, ζ ∈ C

n, ‖ζ‖Cn = 1},
where vectors in C

n are written as columns and

‖ζ‖Cn =

√

|ζ1|2 + · · · + |ζn|2
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for ζ ∈ C
n.

Since A2 is isometric to A2
2,B, it follows immediately that every operator S on A2

which commutes with TB corresponds to a matrix [ai j(z)]i, j=1,2 of analytic functions

in D, where

(15) S

(

B ′

√
2

)

=

B ′

√
2

a11 ◦ B + ga12 ◦ B, S(g) =

B ′

√
2

a21 ◦ B + ga22 ◦ B.

We write this correspondence in the form

[ai j] = F(S).

By Lemma 17, the functions ai j above are bounded in D. Thus F maps (TB) ′ into

A2. The following theorem states that F is an isomorphism from (TB) ′ onto A2 and

gives a norm estimate.

Theorem 21 Let B be a Blaschke product of order 2 which vanishes at 0 and a. Then

the commutant of TB is isomorphic to the space A2. The isomorphism F is given by (15)

and satisfies the estimate

(1 − |a|)2γ(a)‖F(S)‖A2 ≤ ‖S‖ ≤ 1

(1 − |a|)2γ(a)
‖F(S)‖A2

for all S ∈ (TB) ′.

Proof Given f ∈ A2, we can write

f =

1√
2

B ′ f1 ◦ B + g f2 ◦ B.

By (14), we have

‖S f ‖
‖ f ‖ =

‖F(S)( f1, f2)‖A2
2,B

‖( f1, f2)‖A2
2,B

≤ 1

(1 − |a|)2γ(a)

‖F(S)( f1, f2)‖A2×A2

‖( f1, f2)‖A2×A2

≤ 1

(1 − |a|)2γ(a)
‖F(C)‖A2 .

The lower estimate can be established in a similar way using the other part of (14).

Once again, we remark that other representations of the commutant (TB) ′ are

possible.
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