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An important feature of the dynamics of double-diffusive fluids is the spontaneous
formation of thermohaline staircases, where wide regions of well-mixed fluid are separated
by sharp density interfaces. Recent developments have produced a number of one-
dimensional reduced models to describe the evolution of such staircases in the salt
fingering regime relevant to mid-latitude oceans; however, there has been significantly
less work done on layer formation in the diffusive convection regime. We aim to fill
this gap by presenting a new model for staircases in diffusive convection based on a
regularisation of the γ -instability (Radko 2003 J. Fluid Mech. vol. 805, 147–170), with
a range of parameter values relevant to both polar oceans and astrophysical contexts. We
use the results of numerical simulations to inform turbulence-closure parametrisations as
a function of the horizontally averaged kinetic energy e, and ratio of the haline to thermal
gradients R∗

0 . These parametrisations result in a one-dimensional model that reproduces
the critical value of R∗

0 for the layering instability, and the spatial scale of layers, for a
wide range of parameter values, although there is a mismatch between the range of R∗

0 for
layer formation in the model and observational values from polar oceans. Staircases form
in the one-dimensional model, evolving gradually through layer merger events that closely
resemble simulations.

Key words: double diffusive convection, stratified flows

1. Introduction
Across large regions of the Earth’s oceans, observations have shown the existence of
clear layered structures, with well-mixed convective layers separated by sharp, stably
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stratified interfaces. These ‘thermohaline staircases’ were first discovered in the 1960s in
the Mediterranean outflow (Tait & Howe 1968), and have since been found across many
different areas, from the Caribbean (Schmitt et al. 1987) to the Arctic (Shibley et al. 2017).
Characteristic staircase-like structures are seen in the temperature and salinity fields, and
soon after their discovery, the link was made with double-diffusive convection (DDC) –
an instability of a stably stratified fluid caused by the effect on buoyancy of two scalars
that diffuse at different rates. In saltwater, the molecular diffusivity of temperature is
O(100) times that of salt. Such DDC also occurs in a range of astrophysical contexts,
with a compositional gradient (of some heavy element) taking the place of ‘salinity’. By
analogy to the oceanic case, it has commonly been proposed that double-diffusive layers
may exist in stably stratified regions of stars and giant planets, where instead of salinity, the
slower-diffusing component of density is the concentration of heavy elements. Significant
work has been done to investigate the effects of such potential staircases on the dynamics
of these bodies (e.g. Spruit 1992; Chabrier & Baraffe 2007; Leconte & Chabrier 2012)

There are two distinct regimes of DDC. ‘Salt fingering’ (SF) refers to the configuration
in which the temperature gradient acts to stabilise the fluid, with a destabilising salinity
gradient, while the opposite case with a stabilising salinity gradient and destabilising
temperature gradient is called ‘diffusive convection’ (DC). Thermohaline staircases have
been found in regions of the ocean susceptible to both SF and DC instabilities (Schmitt
1994; Timmermans et al. 2008), in numerical studies of oceanic and astrophysical fluids
(Radko 2003; Stellmach et al. 2011; Rosenblum et al. 2011; Mirouh et al. 2012; Hughes
& Brummell 2021), and in laboratory experiments of salt–sugar mixtures (Stern & Turner
1969; Krishnamurti 2003). Despite a long history of study, the formation and evolution of
these staircases is not yet well understood.

Reviews by Merryfield (2000) and Radko (2013) summarise several of the theories
proposed for the driving mechanism for layering. At present, the leading theory (for both
SF and DC staircases) is the so-called ‘γ -instability’, which relies on variation of the ratio
of thermal and haline fluxes with respect to the ratio of their gradients (Radko 2003).
Writing T (z, t) and S(z, t) as the one-dimensional (horizontally averaged) temperature
and salinity fields, Radko applies a model in terms of the fluxes:

Tt = fz, (1.1)

St = cz, (1.2)

where f (R) is the temperature flux, and c(R) is the salinity flux, which are assumed to
be functions of the density ratio R = Tz/Sz , and subscripts denote partial differentiation.
In both SF and DC regimes, the background density ratio R0 is positive, but for an overall
stable stratification, R0 > 1 in SF, and R0 < 1 in DC. By convention, the inverse density
ratio R∗

0 = 1/R0 is used in the DC regime, to give a quantity greater than unity.
The flux ratio γ (R) is defined as γ = f/c, and is generally positive. Applying a linear

stability analysis of these equations, perturbations are found to be unstable if

dγ

dR
< 0. (1.3)

From the results of numerical simulations of DDC (in both regimes; Radko 2003), it is
clear that γ has single minimum, leading to a finite range of R where instability takes
place, with the instability arrested in other regions where dγ /dR > 0. In both regimes,
numerical studies indeed show that layers develop from an initial DDC instability for
which dγ /dR < 0 (e.g. Stellmach et al. 2011; Rosenblum et al. 2011), so this model
provides an important conceptual base for further work. However, it does not provide a full
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description of the dynamics. The linear instability condition predicts a divergent growth
rate s → ∞ as wavenumber m → ∞, suggesting instability on infinitesimally small spatial
scales. To diagnose a preferred wavelength or maximal growth rate, the model must be
regularised. One approach that has been taken is that of Radko (2019a), who proposed
a model based on an asymptotic multiscale analysis, introducing hyperdiffusion terms
that give negative growth rates at high wavenumbers. This model was developed for SF
staircases, but a similar approach would also work for DC layers.

Here, we regularise the instability by appealing to the related problem of staircase
formation in a stratified flow with a single component of density, which was studied by
Phillips (1972) and Posmentier (1977). They found that for a buoyancy field modelled by

bt = fz, (1.4)

there is instability if

d f

dbz
< 0. (1.5)

Notably, this condition takes a form very similar to the γ -instability (1.3), and leads to
the same ultraviolet catastrophe. Whereas the γ -instability occurs due to interaction of
temperature and salinity fluxes, layering the single-component case must be driven by
an external energy source such as stirring with a rod or grid, as in the experiments of
Ruddick et al. (1989), Park et al. (1994) and Holford & Linden (1999). The problem was
regularised by Balmforth et al. (1998) (referred to as BLY), who added a separate equation
for the kinetic energy, giving a regularised two-component phenomenological model that
predicted a spatial scale for layers. Pružina et al. (2022) developed this further, presenting
a derivation based on a horizontal averaging process and investigating the behaviour of
staircase solutions to late times. A similar approach has also been used to model layering
in SF. Based on numerical simulations, Paparella & von Hardenberg (2014) made the
assumption that across each system of layers, γ is constant in space and time, with
‘stirring’ provided by clusters of salt fingers moving together, allowing the SF system to be
mapped directly to the two-component BLY system. This model produces clear staircase
solutions, but relies on the parametrisation of an up-gradient salt-finger flux, rather than
the instability being driven directly by double-diffusive effects.

More recently, Pružina et al. (2023) (PHP) developed a BLY-style model for layering
in the SF regime, by applying the averaging process of Pružina et al. (2022) to the
governing equations for DDC, giving a three-component model for T , S and e. The system
undergoes the γ -instability, which is regularised by the inclusion of the energy equation.
Well-resolved layers develop in numerical solutions, with qualitatively realistic long-term
behaviour. However, the parametrisations chosen apply only to the SF regime, with no
possibility for application to DC.

So far, there has been significantly more focus on modelling layers in SF than in DC.
One reason for this is that oceanic SF staircases exist in a similar parameter range to the
basic SF instability (1 < R0 � 1.8) and the γ -instability (e.g. Stellmach et al. 2011). On
the contrary, oceanic DC staircases occur in the range 2 < R∗

0 < 7 (where R∗
0 = 1/R0)

(Timmermans et al. 2008), which is disjoint from the range for the basic DC instability
1 < R∗

0 < 1.14 (Turner 1973). As such, it seems that something other than double-diffusive
processes is also necessary for the formation of oceanic DC layers. Several different
suggestions have been put forward, including staircases resulting from lateral thermohaline
intrusions (Merryfield 2000; Bebieva & Timmermans 2017), or a thermohaline-shear
instability (Radko 2016; Brown & Radko 2019). More recently, Ma & Peltier (2022)
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proposed a model based on stratified turbulence asymptotics, where layers form via the
Phillips mechanism (relying on external turbulence), with double-diffusive effects playing
a secondary role in stabilising the diffusive interfaces. This provides a good description
of a layering process, in the correct parameter range for polar oceans. However, care must
be taken when applying fully turbulent models in these regions, which are characterised
by quiescent regions interspersed with weak turbulence with buoyancy Reynolds number
Reb � 100 (Guthrie et al. 2013; Lincoln et al. 2016; Dosser et al. 2021). We are interested
in whether the Phillips effect is necessary, or if it is possible to produce a regularised model
for diffusive staircases relying only on double-diffusive processes via the γ -instability.

There has been more work on modelling the formation of DC staircases in astrophysical
contexts, establishing that the γ -mechanism provides a good predictor of layer formation
(Rosenblum et al. 2011; Mirouh et al. 2012), as well as the effects of such staircases
on mass transport (Chabrier & Baraffe 2007; Wood et al. 2013), but so far there is
no one-dimensional reduced model that avoids the ultraviolet catastrophe of Radko
(2003), allowing the full dynamics to be captured from the initial layering instability to
long times.

In this work, we modify the PHP model to describe DC staircases. By revisiting some
of the basic assumptions in the construction of the model, we can adapt it for the DC
regime. We base our parametrisations on the results of numerical simulations of the full
governing equations, resulting in a model that gives quantitative predictions for the critical
value of R∗

0 for layering, and the vertical scale on which layers form. The advantages of
such a horizontally averaged model are twofold. First, the horizontal averaging removes
the possibility for layer formation via intrusions or shear instabilities, so a purely γ -style
instability can be seen. Second, by reducing the dynamics to one dimension, the model can
easily be solved numerically for very long times without specialist computing resources,
allowing the investigation of the entire evolution of staircases from early times to the
final state. We investigate a range of physical parameters with relevance to oceanic,
astrophysical and laboratory contexts. We find good agreement between the results of the
model and of numerical simulations; however, we demonstrate that for oceanic parameters,
the range of R0 that produces layers does not match that found in polar staircases,
suggesting that this model is most applicable to astrophysical layering.

The paper is structured as follows. In § 2, we introduce the governing equations of
DDC, and discuss the key dimensionless parameters in the system. In § 3, we present a
reduced model for layering in DDC, derived by PHP for the SF regime, and discuss its
applicability to DC. The linear stability properties of this model are stated in § 3.2. We
describe numerical simulations of the Boussinesq equations in § 4, and use these results to
parametrise the closure in the reduced model. In § 5, we compare the results of the model
with the simulations, in both linear theory (§ 5.1) and nonlinear dynamics (§ 5.2). Finally,
we summarise and discuss our results in § 6.

2. Governing equations of thermohaline convection
We consider a domain of height H , with background dimensional temperature gradient
Θz , salinity gradient Σz , and a reference density ρ0. The evolution of the velocity
u(x, t) = (u, v, w), perturbation temperature T (x, t) and perturbation salinity S(x, t) are
governed by the Boussinesq equations with a linear equation of state:

ut + u · ∇u = − 1
ρ0

∇ p + g
ρ − ρ0

ρ0
ez + ν ∇2u, (2.1)

Tt + u · ∇T + wΘz = κT ∇2T, (2.2)
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St + u · ∇S + wΣz = κS ∇2S, (2.3)
∇ · u = 0, (2.4)

ρ = ρ0 (1 − αgT + βgS) , (2.5)

where ρ(x, t) is the density, and p(x, t) is the pressure. The equations depend on
the kinematic viscosity ν, the thermal and solutal diffusivities κT and κS , gravitational
acceleration g, and coefficients of thermal expansion and haline contraction α and β.

To non-dimensionalise (2.2)–(2.5), we choose the characteristic length scale d such that
the local Rayleigh number is equal to unity:

1 = αg |Θz| d4

νκT
⇒ d =

(
νκT

αg |Θz|
)1/4

. (2.6)

The classical stability analysis of Stern (1969) showed that this is the characteristic scale
for salt fingers.

We choose a dynamical time scale based on the thermal diffusivity, and non-
dimensionalise the variables as follows, with hats denoting dimensionless quantities:

t̂ = κT

d2 t, x̂ = 1
d

x, û = d

κT
u, T̂ = αgd3

κT ν
T, Ŝ = βgd3

κT ν
S, p̂ = d2

ρ0νκT
p.

(2.7)

With these scalings, the background temperature and salinity gradients are non-
dimensionalised to Θz = ±1 and Σz = ±R∗

0 . The dimensionless forms of (2.1)–(2.5) are

ût̂ + û · ∇̂û = −Pr ∇̂ p̂ + Pr b̂ ẑ + Pr ∇̂2û, (2.8)

T̂t̂ + û · ∇̂T̂ + w sgn(Θz) = ∇̂2T̂ , (2.9)

Ŝt̂ + û · ∇̂ Ŝ + w sgn(Θz) R∗
0 = τ ∇̂2 Ŝ, (2.10)

∇̂ · û = 0, (2.11)

b̂ = T̂ − Ŝ. (2.12)

This system depends on five key dimensionless numbers. The (inverse) density ratio
R∗

0 = Σz/Θz , the diffusivity ratio τ = κS/κT , and the Prandtl number Pr = ν/κT all
appear directly in the equations, while the dimensionless height and width of the domain
also control the dynamics as proxies for the dimensional temperature gradient and the
length scale. The regime is set by the sign of the background gradients, with Θz, Σz > 0
for SF, and Θz, Σz < 0 corresponding to DC. For thermohaline convection in oceans, the
physical parameters take values τ ≈ 0.01 and Pr ≈ 7; for salt–sugar solutions common
in experimental work, the diffusivity ratio is increased to τ ≈ 1/3. In astrophysical
applications, these parameters may take values several orders of magnitude smaller. Here,
we focus on the ranges 0.01 � τ � 0.4 and 0.5 � Pr � 20, aiming to capture the behaviour
across different physical regimes, although the results presented are applicable to other
parameter ranges.

3. Reduced model
To investigate the long-term evolution of SF staircases, PHP proposed a reduced model,
derived by applying a horizontal averaging process to the Boussinesq equations. With
the same scalings as in (2.8)–(2.12), this reduced model describes the evolution of the
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horizontal mean kinetic energy, temperature and salinity fields as follows:

Tt =
(

D2
T

DT + 1
(Tz + sgn(Θz))

)
z

, (3.1)

St =
(

D2
S

DS + τ

(
Sz + sgn(Θz) R∗

0
))

z

, (3.2)

et =
(

D2
e

De + Pr
ez

)
z
+ Pr ezz

− Pr

[
D2

T

DT + 1
(Tz + sgn(Θz)) − D2

S

DS + τ

(
Sz + sgn(Θz) R∗

0
)]− ε

e2

De
. (3.3)

The temperature, salinity and energy evolve following turbulent-diffusion laws. The
quantities DT,S,e represent the turbulent diffusivities. These turbulent components
combine with the (dimensionless) molecular diffusivities to give the fluxes in the equations
(cf. PHP). The terms in square brackets in the energy equation represent the transfer of
potential to kinetic energy, and the final term in (3.3) accounts for viscous dissipation,
carrying the dimensionless dissipation parameter ε.

To close the model, the turbulent diffusivities must be parametrised. It was assumed by
PHP that

DT = DS = De = D, (3.4)

and following BLY, they wrote D = le1/2 for some mixing length l. For the stirred single-
component system, BLY proposed the length scale l = √

e/
√

e + bz – this does not lead
to layer formation unless the system also includes an external energy source (representing
stirring, for example). Then PHP adopted the form

l = D/e1/2 =
√

e2 + δR2

R
, (3.5)

which produced well-resolved SF staircases. However, in a double-diffusive system, the
meaning of a mixing length is less clear than in the stirred system, while the diffusivity
has a more obvious physical interpretation. As such, we use the notation DT,S,e in the
present work, rather than directly parametrising the length scale l.

3.1. Applicability of the PHP model to DC
In the SF regime, the model (3.1)–(3.3) with DT,S,e = D given by (3.5) admits uniform-
gradient steady states (with Tz = Sz = 0, e = e0(R0)), representing ‘uniform’ SF across the
domain. Note that while DT = DS = De, the fluxes are not the same, due to the presence
of the molecular diffusivity in the denominators. This uniform SF state can be interpreted
as the result of an initial double-diffusive instability, where double-diffusive release of
potential energy is balanced by dissipation. The layering process is a secondary instability
acting on the uniform SF field. However, no such steady states with positive energy exist in
the DC regime. To show this, we consider the steady-state energy equation, setting space
and time derivatives to zero in (3.3) to give

− Pr

(
D2

T

DT + 1
− D2

S

DS + τ
R∗

0

)
sgn(Θz) = ε

e2

De
. (3.6)
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The dissipation term εe2/De is positive definite, so for solutions of (3.6) to exist, the
other terms must provide a source of energy. (i.e. the left-hand side must be positive). In
the SF regime, sgn(Θz) = +1, so taking DT,S,e = D, solutions are possible in the range

R0 <
D + 1
D + τ

, (3.7)

where recall that R0 = 1/R∗
0 . In the DC regime, sgn(Θz) = −1, so solutions to (3.6) are

possible only when

R∗
0 <

D + τ

D + 1
< 1. (3.8)

The DC regime occurs in the quadrant Tz, Sz < 0 for R∗
0 > 1. This range does not intersect

with (3.8), meaning that in the DC regime, the left-hand side of (3.6) represents a sink
of kinetic energy, and no source dissipation balance can exist (i.e. the model does not
capture the ‘uniform’ DC state resulting from an initial linear DC instability, on which
the layering instability could act). To allow for these uniform DC states, we drop the
assumption (3.4) that the eddy diffusivity D is the same for T , S and e, allowing each
quantity to be transported at different rates. In this case, for uniform gradient steady states,
the condition for solutions to exist reduces to

R∗
0 <

(DS + τ) D2
T

(DT + 1) D2
S

. (3.9)

The right-hand side of (3.9) can be greater than unity when DS < DT , allowing uniform
DC states to exist.

3.2. Linear stability of the reduced model
To investigate the layering process for uniform SF states, PHP analysed the linear stability
of the general system (applicable to both SF and DC regimes)

gt = fzz, (3.10)

dt = czz, (3.11)

et = (κez)z + p, (3.12)

where g = Tz and d = Sz are the temperature and salinity gradients, f (g, d, e) and
c(g, d, e) are their fluxes, κ(g, d, e) is the turbulent energy diffusivity, and p(g, d, e)
is a source/sink term. For the PHP model (3.1)–(3.3), f , c, κ and p are are given by

f = D2
T

DT + 1
(g + sgn(Θz)) , (3.13)

c = D2
S

DS + τ

(
d + sgn(Θz) R∗

0
)
, (3.14)

κ = D2
e

De + Pr
ez, (3.15)

p = −Pr

(
D2

T

DT + 1
(g + sgn(Θz)) − D2

S

DS + τ

(
d + sgn(Θz) R∗

0
))− ε

e2

De
. (3.16)
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It is important to note, however, that the following stability results apply generally to
systems of the form (3.10)–(3.12) and do not depend on the specific forms (3.13)–(3.16).

For (3.10)–(3.12), the growth rate s of perturbations with wavenumber m around the
uniform basic state (g0, d0, e0) is given by the characteristic equation

s3 + s2[m2( fg + cd + κ) − pe
]

+ s
[
m4( fgcd − fdcg + κ fg + κcd) + m2( fe pg − fg pe + ce pd − cd pe)

]
+ m6κ( fgcd − fdcg) + m4( fgce pd − fgcd pe + fecd pg − fecg pd

+ fdcg pe − fdce pg
)= 0. (3.17)

Here, subscripts denote partial derivatives, evaluated in the steady state (g0, d0, e0). It
was shown by PHP that steady states are linearly unstable if one of the roots of (3.17) has
positive real part, which occurs when

FgCd − FdCg < 0, (3.18)

where Fg = fg − fe pg/pe represents the total derivative of f with respect to g (and Fd ,
Cg and Cd are defined similarly). This is a low-wavenumber instability, with positive
growth rates Re(s) > 0 for wavenumbers 0 < m < m∗, with the cut-off wavenumber
given by

m∗ =
√

pe
(
FgCd − FdCg

)
κ
(

fgcd − fdcg
) . (3.19)

For the parametrisation to be physically reasonable, the energy diffusivity κ must be
positive, otherwise it represents an antidiffusion term, leading to a divergent growth rate
as m → ∞. It was shown by PHP that if pe > 0, then there is instability at m = 0, leading
to energy growth on the domain scale. This provides a further reality check; for the
parametrisations to be realistic, pe must be negative.

Assuming that both of these physical conditions are met (i.e. κ > 0 and pe < 0), and that
(3.18) is satisfied, if

fgcd − fdcg < 0, (3.20)

then (3.19) does not predict a real cut-off wavenumber m∗. Instead, there is instability as
m → ∞, leading to growth on infinitesimally small scales. It was shown by PHP that if
we consider the two-component T –S system (3.10)–(3.11), then there is never a cut-off
wavenumber, and the only possible instability is via (3.20). By letting f and c depend on
g and d only through R = g/d, then it is simple to show further that this high wavenumber
instability is equivalent to the γ -mechanism of Radko (2003).

Condition (3.18) represents a generalisation of the γ -mechanism that is regularised by
the inclusion of the energy equation (analogously to how the instability of BLY regularises
the Phillips instability). It was demonstrated by PHP that if the dependence on e is
neglected, then (3.18) reduces exactly to (1.3). The existence of a high-wavenumber cut-off
means that there is a well-defined most unstable scale, which predicts the spatial scale of
the layering instability.

4. Direct numerical simulations
In previous BLY-style models, the parametrisation for D (via the length scale l = D/e1/2)
has been chosen based on dimensional or phenomenological arguments, by considering
the expected dependence of D on the buoyancy gradient(s) and energy, and writing down
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Dimensionless parameter Values

sgn(Θz) −1
τ 0.01, 0.03, 0.06, 0.1, 0.15, 0.2, 0.3, 0.4
Pr 0.5, 0.7, 1, 3, 7, 10, 20
R∗

0 1–4
H 625 Pr1/4

Lx 0.5H

Table 1. Range of dimensionless parameter values for the simulations.
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〈S〉
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Figure 1. Results of a simulation of the Boussinesq equations (2.8)–(2.12) in a doubly periodic domain, with
Pr = 7, τ = 0.1 and R∗

0 = 1.064, showing a snapshot at time t = 100. Heatmap shows buoyancy field showing
uniform DC throughout the domain. Dashed lines show horizontally averaged temperature, salinity and energy
fields, showing uniform T and S gradients, and uniform energy across the depth.

a physically reasonable form. For example, PHP used (3.5), while BLY and Paparella &
von Hardenberg (2014) adopted two different prescriptions for l in otherwise very similar
models. In each case, the qualitative behaviour of D is crucial, while the exact functional
form is less important. Here, we aim to improve on these physical arguments by deriving
DT and DS from the results of simulations, to reduce the uncertainty of an arbitrary
parametrisation.

We solve the Boussinesq equations (2.8)–(2.12) using the Oceananigans.jl package in
Julia (Ramadhan et al. 2020), in a doubly periodic domain, with T , S and e initialised with
a small-amplitude random perturbation to the background state Θz = 1, Σz = R∗

0 . We run
simulations for a range of values of τ , Pr and R∗

0 listed in table 1.
Figure 1 shows the buoyancy field of a simulation for parameters τ = 0.1, Pr = 7, R∗

0 =
1.064, showing the spatially homogeneous DC field at an early time.
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4.1. Obtaining a parametric form for DT and DS

To determine empirical values of DT and DS from the simulation results, we first calculate
the spatially averaged fluxes across the entire domain V ,

FT = 1
V

∫
V

w′T ′ dV, FS = 1
V

∫
V

w′S′ dV, (4.1)

then use the relations

FT = D2
T Tz

DT + 1
, FS = D2

S Sz

DS + τ
, (4.2)

to invert for DT and DS . We obtain these empirical forms for DT and DS in the
initial pre-layered phase of the simulations. This relies on the key assumption that the
flux terms in (3.1)–(3.3) can be parametrised entirely in terms of local quantities, so
the existence of layers and interfaces does not affect the local dependence. The same
assumption was used by BLY and PHP, although with phenomonelogical, rather than
empirical, parametrisations. At very small scales less than the characteristic length d (cf.
(2.6)), the local dependence must break down. However, the layering process happens
on significantly larger scales, so the assumption is still appropriate for modelling the
formation of staircases.

The data for DT and DS are plotted against R∗
0 and the volume-averaged kinetic energy

〈e〉V in figures 2(a,b), for τ = 0.1, Pr = 7 and a range of values of R∗
0 , showing a

decreasing dependence of DT,S on R∗
0 . Each cross represents the values of DT,S (and

〈e〉V ) time-averaged across a single simulation with a different choice of R∗
0 . The solid

lines demonstrate a good fit for the parametric form

DT,S =
√
λT,Se3 R4 + μT,S

1 − R
. (4.3)

In the simulations, R is the independent variable, with e emerging from the dynamics.
However, the dependence on e can be investigated, while R∗

0 is controlled, by considering
the relationship between DT,S and 〈e〉V (t) over the course of a single simulation. This is
shown in figure 2(c), with each plus sign representing the values of 〈e〉V and DT,S at a
single point in time. Once again, the form (4.3) provides a good fit to the data.

Determining the turbulent energy diffusivity from the simulations is less
straightforward, as ez ≈ 0 in the uniform DC state, resulting in very large swings in the
empirical value of De based on the sign of ez . As such, we instead choose to parametrise

De = 1
2 (DT + DS) , (4.4)

on the basis that in a turbulent diffusion model, the turbulent diffusivities of all
components can be expected to be similar. A different combination of DT and DS may
be used, but the effect is minimal on the predictions of the model.

Rather than aiming to parametrise DT,S exactly from the data, we will instead adopt
the functional form (4.3), and fit the values of λT,S and μT,S based on the condition for
layering (3.18). By running the simulations for longer times than shown in figure 1, it is
simple to diagnose the critical value R∗

c below which layers form. For parameters τ = 0.1,
Pr = 7, figure 3 shows results of six simulations for reducing values of R∗

0 . For the largest
value (R∗

0 = 1.136 > R∗
c ), no layers form, and the energy decays. Just above the critical

point (for R∗
0 = 1.11), layers can be discerned in the space–time plot of bz , despite being

difficult to identify in the final-time heatmap of b. More obviously, there is growth in the
total energy. Further below R∗

c , clear layers are visible in both the final buoyancy field
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100

101

10–3

〈e〉V (t)

〈e〉V

R0
∗

DT
DS

Figure 2. Space- and time-averaged DT and DS as functions of (a) R∗
0 and (b) 〈e〉V , calculated according

to (4.1)–(4.2), for a series of simulations with τ = 0.1, Pr = 7 and 1 < R∗
0 < 4. Crosses show the empirically

calculated values; solid lines show the fitted values of DT and DS following the form (4.3). (c) Dependence of
DT and DS on 〈e〉V over the course of a single simulation with R∗

0 = 1.04, with each plus sign representing a
single point in time. Solid lines represent the fitted values according to (4.3).

and the space–time plot of bz . For the three smallest values of R∗
0 (and, to a lesser extent,

for R∗
0 = 1.064), the interfaces can be seen to drift and merge over time. In the majority

of mergers, interfaces drift and combine (the H-merger pattern of Radko 2007), although
B-mergers are also present, where strong interfaces grow in place at the expense of weaker
interfaces that decay and vanish. From figure 3, it is clear that growth in kinetic energy
may be used as a proxy for layer formation, hence for each pair (τ, Pr) we identify R∗

c as
the minimum value of R∗

0 above which 〈e〉(t = tend)/〈e〉(t = 0) > 1. These values of R∗
c

are plotted in figure 4. A generalised linear model finds a good fit to the form

R∗
c ∼ Pr + 1

0.997 Pr + 0.987τ + 0.053
. (4.5)
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Figure 3. Results of simulations for τ = 0.1, Pr = 7, and six values of R, showing (left to right) the buoyancy
field at time t = 2000, space–time plots of the horizontally averaged buoyancy gradient, and the time evolution
of the mean kinetic energy across the domain, normalised by its initial value. Rows show (top to bottom)
R∗

0 = 1.363, R∗
0 = 1.111, R∗

0 = 1.064, R∗
0 = 1.042, R∗

0 = 1.020 and R∗
0 = 1.001, respectively.
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Figure 4. Plots of R∗
c , determined as the maximum value of R∗

0 for which there is growth in the total energy in
the domain. Crosses show the empirical values; solid lines show the predicted Rc according to the model with
parametrisations (4.3), (4.4) and (4.8).

Note that we have calculated the critical values based directly on layer formation.
Previous studies (e.g. Mirouh et al. 2012) have produced similar results based on the form
of γ −1(R∗), finding that γ −1(R∗) increases for low values of R∗, and decreases for larger
values. Then R∗

c is identified as the stationary point where ∂γ −1/∂ R∗ = 0. A potential
criticism of this approach is that over the course of each simulation, the values of γ −1 and
R∗ remain fixed, with ∂γ −1/∂ R∗ being calculated across a large set of simulations. Hence
it is not obvious how each individual simulation can respond to such a global condition.
By contrast, our approach identifies R∗

c empirically, rather than being based on stability
theory. Mirouh et al. (2012) investigate parameter ranges for very small values of τ and
Pr compared to our study (relevant to astrophysical applications), so a direct comparison
of results is not possible.

4.2. Fitting the parametrisations
With the parametrisations for DT,S,e given by (4.3)–(4.4), the system (3.1)–(3.3) admits
uniform gradient steady states for R∗

0 in the range

1 < R∗
0 � R∗

max , (4.6)

where

R∗
max = 2τμT

μT
√

μS + τ + μS +
√(

μT
√

μS + τ + μS
)2 − 4τμT μS

(√
μT + 1

) . (4.7)

As discussed in § 3.2, the uniform steady state g0, d0, e0 is unstable to layering whenever
FgCd − FdCg < 0. We fit the coefficients λT,S , μT,S and the dissipation parameter ε such
that (FgCd − FdCg)(R∗

c (τ, Pr)) = 0, for the values of R∗
c shown in figure 4. There is a

good fit with the empirically derived values of R∗
c , shown in figure 4, with the following

parameter choices, where μS is found by inverting (4.7):

λT = 1, λS = 1, μT = 1, R∗
max = Pr+1

Pr+1.15τ−0.4 , ε = 7Pr+6
11 ,

μS =
(

μT R∗1/2
max +

√
μ2

T R∗2
max+4τ(R∗

max−1)μT (R∗
max−1+R∗

max
√

μT )

2R∗1/2
max (R∗

max−1+2R∗
max

√
μT )

)2

. (4.8)
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This is not the only possible parametrisation, but rather a relatively simple choice that
keeps several parameters constant. Note that μS is fixed by the choice of R∗

max , so the
two degrees of freedom are provided by R∗

max and ε. The dependence of ε on Pr is not
unexpected, as the dissipation term in the full three-dimensional energy equation takes
the form Pr |∇u|2 (cf. PHP). These parametrisations, with the form (4.3) for DT,S , also
satisfy κ > 0 and pe < 0, as discussed in § 3.2. Finally, it is important to note that the
prescription (4.8) has been chosen to fit the ranges of τ and Pr in our simulations, and
will break down for smaller values of these parameters due to the negative term in the
denominator of R∗

max . This can be seen in figure 4, where the fit is very good across
most of the range, but for Pr = 0.5 and τ < 0.1, the parametrised model significantly
overestimates R∗

c compared to the simulations.

5. Comparison of model results with simulations
The system (3.1)–(3.3) with parametrisations (4.3), (4.4) and (4.8) is now a closed model
for the formation and evolution of staircases in DC. In this section, we compare the results
of this model with the solutions of the Boussinesq equations presented in § 4.

5.1. Comparison of linear theory
From figure 3, it is clear that the scale of layers decreases monotonically as R∗

0 increases;
hence for the model to match the simulations, it should be expected that mmax increases as
R∗

0 increases above unity. The dependence of mmax on R∗
0 is shown in figure 5 for Pr = 7

and τ = 0.1. For values of R∗
0 near 1, mmax increases with R∗

0 as expected; however, as
R∗

0 increases further, mmax decreases again, reaching zero at R∗
c . This mismatch between

simulations and model is not unique to the parametrisations used in this work, but is
common to models of this type. Given the characteristic equation (3.17), the maximal
value of s occurs whenever ∂s/∂m = 0, at

0 = s2( fg + cd + κ) + 2sm2
max ( fgcd − fdcg + κ fg + κcd)

+ s( fe pg − fg pe + ce pd − cd pe) + 3m4
maxκ( fgcd − fdcg)

+ 2m2
max ( fgce pd − fgcd pe + fecd pg − fecg pd + fdcg pe − fdce pg). (5.1)

From figure 5, it appears that mmax  1 for all R∗
0 . Writing A = FgCd − FdCg , we note

that if A passes smoothly through 0 at the critical point, then sufficiently near R∗
c , A is

also small. Taking a small-m, small-A approximation, and solving (3.17) with (5.1), it can
be shown that

mmax ∼
√

−2A

fgcd − fdcg
, (5.2)

which increases monotonically from 0 as A decreases past the critical point. Assuming
that ∂ A/∂ R∗ �= 0 at R∗

c (i.e. the critical point is not an inflexion point), then A(R∗
0) ∼

(R∗
0 − R∗

c ) in the vicinity of the critical point, hence

mmax ∼ |R∗
0 − R∗

c |1/2. (5.3)

This relation can be seen clearly in the vicinity of R∗
c in figure 5.

Despite this mismatch between the model and linear predictions near the critical value
R∗

c , the linear theory provides a good description of the simulations for values of R∗
0

closer to unity. Figure 6 compares the results of linear theory with the simulations for a
range of values of τ , Pr and R∗

0 . For each row, the left-hand plot shows the growth rates
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Figure 5. Wavenumber of maximum growth rate mmax plotted as a function of R∗
0 for τ = 0.1, Pr = 7,

showing dependence of the form (5.3). The cut-off value of the density ratio R∗
0 is marked with a dashed line.

as a function of wavenumber, calculated by solving (3.17). For each choice of parameters,
there is a single mode with positive growth rate with a unique maximum at wavenumber
mmax , denoted by a dashed line. Above this maximum, the growth rate decreases and
eventually becomes negative. In addition, each plot shows two modes that are stable (i.e. s
has negative real part) for all wavenumbers. The right-hand plots show the evolution of the
horizontally averaged buoyancy gradient over time. White lines denote the most unstable
scale according to the model, calculated as λ= 2π/mmax ; the plots show that this scale is
indeed the scale on which layers first form.

Figures 6(i,j) show a choice of parameter values (R∗
0 = 1.111, τ = 0.001, Pr = 7) for

which the linear theory fails. The wavenumber of maximum growth rate is mmax = 0.055,
predicting layer scale λ= 125. However, figure 6(j) shows layers forming with thickness
approximately 60 – less than half of the predicted linear scale. For this choice of τ and Pr ,
the value of R∗

0 falls in the region where mmax is decreasing (cf. figure 5), demonstrating
the limitations of models of this form near to the critical point.

5.2. Comparison of nonlinear evolution
We now compare the nonlinear evolution of solutions to the reduced model with the
simulations shown in § 4. We solve the system (3.1)–(3.3) with parametrisations (3.9),
(4.8). The solution is initialised with the uniform gradient background state, plus a small
perturbation with wavenumber mmax (R∗

0):

T (t = 0) = −z + gi sin (mmax z) , (5.4)
S(t = 0) = −R∗

0 z + di sin (mmax z) , (5.5)
e(t = 0) = e0(R∗

0) + ei cos (mmax z) . (5.6)

The coefficients gi , di and ei are chosen such that the initial condition is an eigenstate of
the linear stability problem. We adopt Dirichlet boundary conditions for the temperature
and salinity, and Neumann conditions on the energy:

T (z = 0) = 0, T (z = H) = −H, (5.7)
S(z = 0) = 0, S(z = H) = −H/R0, (5.8)

ez(z = 0) = ez(z = H) = 0. (5.9)
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Figure 6. (a,c,e,g,i) Linear growth rate as function of wavenumber according to (3.17). Dashed lines show
the position of the wavenumber of maximum growth rate mmax . (b,d,f ,h,j) Space–time plots of the buoyancy
gradient in simulations for a range of values of R∗

0 , τ and Pr . White vertical lines show the linearly most
unstable scale, calculated as λ= 2π/mmax .

The numerical solutions are calculated using the MATLAB pdepe solver, in a domain of
depth H = 12 × 2π/mmax with 2000 spatial grid points.

The evolution of the buoyancy b is shown in figure 7 for parameter values τ = 0.1,
Pr = 7, R∗

0 = 1.064 (cf. the simulation in figures 3g–i). Figure 7(a) shows profiles of the
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Figure 7. Nonlinear evolution of the system (3.1)–(3.3) with parametrisations (4.3), (4.4) and (4.8), subject to
initial conditions (5.4)–(5.6) and boundary conditions (5.7)–(5.9), for parameter values R∗

0 = 1.064, τ = 0.1,
Pr = 7, ε = 5. (a) Depth profiles of the overall buoyancy b. (b) Profiles of the buoyancy gradient bz , scaled
by its maximum value at each time. (c) Evolution of the range of gradients (max(bz) − min(bz)). Profiles are
shown on a split time axis: the first section shows the development of the initial layered state, the second section
shows in detail the coarsening via mergers, and the third section shows the final dying out of the staircase.

buoyancy b plotted at a range of times, showing the evolution from the initial uniform
profile into a system of layers and interfaces, which gradually migrate and merge until
no interfaces remain. Figure 7(b) shows the normalised buoyancy gradient bz at the same
times, with sharp spikes in the gradient corresponding to narrow interfaces. Figure 7(c)
shows the range of gradients in the solution as a function of time, representing the
buoyancy jump across an interface. There is a sharp jump in the profile of (max(bz) −
min(bz)) every time a layer merger takes place. The total buoyancy difference across the
depth of the domain must be conserved, so every time a layer merger takes place, the
remaining interfaces must become sharper to compensate.
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Layer mergers follow the ‘H-merger’ pattern described by Radko (2007), where
neighbouring interfaces drift, collide and merge, resulting in a single sharper interface.
The ‘B-merger’ is also present, where relatively weak interfaces weaken further while
strong interfaces sharpen – some mergers show a mixture of the two patterns, with one
interface weakening while simultaneously drifting towards a sharpening neighbour. Radko
(2007) showed that each of these merger patterns is due to a secondary instability of the
layered state, with H-mergers taking place if the buoyancy flux increases with the layer
height, and B-mergers present if the buoyancy flux decreases with the interfacial buoyancy
difference. These coarsening dynamics match well with the results of the simulations
shown in figure 3, where significant drifting is evident, as well as a smaller number of
B-mergers.

Figure 8 shows the results of the model for the parameter values R∗
0 = 1.02, τ = 0.2,

Pr = 12, corresponding to the simulation in figure 6(g). Compared with figure 7, the initial
scale of layers is larger (the ratio of the most unstable wavenumbers is approximately 2.6).
As well as the layers, the interfaces are wider and less sharp – the maximum interfacial
gradient seen in figure 8(c) is 1.07, compared to 6.8 for the larger value of R∗

0 in figure 7(c).
This too agrees with the simulations in figures 3(h) and 6(g), where wider layers are
accompanied by wider, more dispersed interfaces.

6. Discussion
We have presented a model for staircase formation in diffusive convection (DC), based
on the horizontally averaged model of Pružina et al. (2023) (PHP), with the added
assumption that the turbulent transport of temperature and salinity occurs at different
rates. With suitable choices of parametrisations informed by the results of numerical
simulations, the model provides good quantitative predictions of the critical density ratio
for the layering instability across a range of parameter values chosen to cover both
thermohaline layering and lower-Pr DC. For the majority of the unstable range, the most
unstable scale predicted by a linear stability analysis of the model successfully predicts
the scale on which layers form in the simulations, with the layer thickness decreasing as
R∗

0 increases. However, as R∗
0 approaches the critical value R∗

c , there is a region where
the opposite holds, and the model no longer predicts the layer scale correctly. We have
shown that this is a characteristic common to models of this type. This may be due to the
assumption that the same equations (3.1)–(3.3) can describe the dynamics on all scales
in terms of local parameters. In reality, it is possible that the small-scale dynamics is
also influenced by larger-scale effects, and considering the large-scale influence on local
dynamics may be necessary. Radko (2019a) described such a multiscale model for layering
in the SF regime, which produced a non-monotonic dependence similar to that shown
in figure 5, with mmax (R0) increasing for R0 near 1, then decreasing for larger values
of R0.

Solutions of our model show the development of staircases that gradually coarsen
through merger events, until eventually all the interfaces have vanished. These results
closely resemble the behaviour of simulations, with layer mergers in both cases following
mainly the H-merger pattern in which neighbouring interfaces collide and merge. This
contrasts with the results of the original PHP model for SF, and with several previous
numerical studies in which B-mergers were dominant (e.g. Wood et al. 2013; Radko et al.
2014). According to the classical theory of Turner (1967), the interfacial fluxes depend
purely on the density difference across the step, rather than the layer height, suggesting
that the B-merger may be more important. However, when the total density difference
across the domain remains constant, the buoyancy difference across each step and the
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Figure 8. Nonlinear evolution of the system (3.1)–(3.3) with parametrisations (4.3), (4.4) and (4.8), subject
to initial conditions (5.4)–(5.6) and boundary conditions (5.7)–(5.9), for parameter values R0 = 1.02, τ = 0.2,
Pr = 12, ε = 8.2. (a) Depth profiles of the overall buoyancy b. (b) Profiles of the buoyancy gradient bz , scaled
by its maximum value at each time. (c) Evolution of the range of gradients (max(bz) − min(bz)). Profiles are
shown on a split time axis: the first section shows the development of the initial layered state, the second section
shows in detail the coarsening via mergers, and the third section shows the final dying out of the staircase.

layer height are intrinsically linked, so the dominance of H-mergers does not necessarily
contradict the interfacial flux model.

There is a significant difference in the time scale for the dynamics between the
simulations and the reduced model: figure 3 shows layers to have formed by t ≈ 200,
with some mergers taking place within a few hundred dimensionless time units. On the
other hand, figures 7 and 8 do not show layers in the model until t = 104–105, with the
first mergers happening at approximately t = 1 × 105. This may be due to the difference in
initial conditions – in the simulations, a linear DC instability leads to large-scale nonlinear
perturbations to the background, which then develop into layers, while by contrast the
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model represents the initial DC instability by a small-amplitude single-wavenumber
perturbation.

This work builds on that of PHP by extending the model to the DC regime,
which has remained relatively elusive. From the original Balmforth et al. (1998)
(BLY) phenomenological model for stratified staircase formation, Pružina et al. (2022)
represented a refinement with a more physically derived system of equations. Then PHP
developed this further by adding the second component of density for a double-diffusive
fluid, with qualitatively realistic results in the SF regime. Here, we have further refined
the model, using simulations of DC layering to fine-tune the parametrisations to provide
quantitative predictions of R∗

c . The key difference between the stratified layering models
(BLY; Pružina et al. 2022; Paparella & von Hardenberg 2014) and the double-diffusive
models (PHP; this paper) is in how the layering instability is generated. In the former,
an external energy source is included, representing stirring with a rod (or by clusters of
salt fingers), and layers form by the Phillips mechanism. By contrast, in double-diffusive
layering no external energy source is required, with layers forming by interaction of the
competing temperature and salinity fluxes through the γ -instability.

For parameters relevant to polar oceans (τ = 0.01, Pr = 7), our model predicts staircase
formation in the range 1 < R∗

0 � 1.11, so does not recover the true range (2 < R∗
0 < 7)

where oceanic diffusive staircases are found. However, the parametrisations were chosen
to match the results of simulations. By instead choosing the parameters in (4.8) to fit
observed staircases, it is likely that the model could be adapted to these observations.
We elected not to do this as the basic states of our model represent a uniform DC field
throughout the domain, so do not make sense physically for values of R0 where DC
is linearly stable. Additionally, Arctic water masses display very low levels of external
turbulence (e.g. Guthrie et al. 2013), so a model that relies on turbulence parametrisations
even in early non-layered stages may not be the most appropriate. While the work of Ma &
Peltier (2022) has shown the potential for turbulence-induced layering in polar parameter
regimes, this may be limited to small regions, with the majority of staircases forming
due to large-scale laminar processes such as intrusions (Bebieva & Timmermans 2017) or
interaction with weak shear (Brown & Radko 2019). Both of these mechanisms require
horizontal processes, so it seems unlikely that a one-dimensional model could capture the
dynamics.

The results of this paper are therefore most applicable to laboratory fluids and
astrophysical contexts with lower Prandtl number. Due to numerical constraints, the
smallest value considered here was Pr = 0.5; however, the same analysis could be applied
to simulations with more extreme values Pr  1 to produce similar results that more
closely approach true astrophysical cases.
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