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MODULI SPACE OF BRODY CURVES, ENERGY AND

MEAN DIMENSION

MASAKI TSUKAMOTO

Abstract. A Brody curve is a holomorphic map from the complex plane C

to a Hermitian manifold with bounded derivative. In this paper we study the

value distribution of Brody curves from the viewpoint of moduli theory. The

moduli space of Brody curves becomes infinite dimensional in general, and we

study its “mean dimension”. We introduce the notion of “mean energy” and

show that this can be used to estimate the mean dimension.

§1. Main results

1.1. Moduli space of Brody curves

M. Gromov introduced a remarkable notion of mean dimension in [8]

(see also Lindenstrauss-Weiss [10] and Lindenstrauss [9]). Mean dimension

is a “dimension of an infinite dimensional space”. In this paper we study

the mean dimension of the moduli space of Brody curves. We introduce

the notion of mean energy and study the relation between mean energy and

mean dimension. Mean energy can be considered as an infinite dimensional

version of characteristic number, and our approach is an attempt to attack

an infinite dimensional index problem.

Let CPN be the complex projective space and [z0 : z1 : · · · : zN ] be the

homogeneous coordinate in CPN . We define the Fubini-Study metric form

ωFS on CPN by

(1) ωFS :=

√
−1

2π
∂∂̄ log

(

1 +
N
∑

i=1

|zi|2
)

on {[1 : z1 : · · · : zN ]}.

This 2-form ωFS smoothly extends over CPN and defines the Fubini-Study
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28 M. TSUKAMOTO

metric. This is normalized so that
∫

CP 1

ωFS = 1 for CP 1 := {[z0 : z1 : 0 : · · · : 0] ∈ CPN}.

Let z = x + y
√
−1 be the natural coordinate in the complex plane C, and

let f : C → CPN be a holomorphic map. We define the pointwise norm

|df |(z) ≥ 0 of the differential df by

(2) f∗ωFS = |df |2 dxdy,

i.e., for a holomorphic curve f = [1 : f1 : · · · : fN ] with holomorphic

functions f1, . . . , fN

|df |2(z) = 2|df(∂/∂z)|2 =
1

4π
∆ log

(

1 + |f1|2 + · · · + |fN |2
)

(

∆ :=
∂2

∂x2
+

∂2

∂y2

)

.

We call a holomorphic map f : C → CPN a Brody curve if it satisfies

|df | ≤ 1 (cf. Brody [3]). Let M(CPN ) be the moduli space of Brody curves

in CPN :

M(CPN ) := {f : C → CPN | f is holomorphic and

|df |(z) ≤ 1 for all z ∈ C}.

We consider the compact-open topology on M(CPN ) (i.e. the topology of

uniform convergence on compact sets). This topology is metrizable and

M(CPN ) becomes a compact topological space.

The Lie group C naturally acts on M(CPN ):

C ×M(CPN ) −→ M(CPN ), (a, f(z)) 7−→ f(z + a).

The main objects of study in this paper are C-invariant closed subsets in

M(CPN ) 1. The following are basic examples:

Example 1.1. Let X ⊂ CPN be an algebraic set in CPN (not nec-

essarily smooth), and let M(X) be the moduli space of Brody curves in

X:

(3) M(X) := {f ∈ M(CPN ) | f(C) ⊂ X}.
1In the theory of dynamical systems, the study of closed invariant subsets is very

fundamental. C-invariant closed subsets in M(CP N) are their analogue.
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Since X is closed in CPN , M(X) is closed in M(CPN ) and obviously C-

invariant.

Example 1.2. Let V ⊂ CPN be a hypersurface in CPN , i.e. the zero

set of a homogeneous polynomial. Let M(CPN \ V ) be the closure of the

set of Brody curves in CPN \ V :

M(CPN \ V ) := {f ∈ M(CPN ) | f(C) ⊂ CPN \ V },

where the overline means the closure with respect to the compact-open

topology. This becomes a C-invariant closed subset.

1.2. Mean dimension and mean energy

We introduce the notion of mean energy in this subsection. This is the

key notion of this paper. For a holomorphic curve f : C → CPN , let T (r, f)

be the Shimizu-Ahlfors characteristic function:

T (r, f) :=

∫ r

1

dt

t

∫

|z|≤t
|df |2(z) dxdy for all r ≥ 1.

We define the mean energy e(f) by

(4) e(f) := lim sup
r→∞

2

πr2
T (r, f).

If f is a Brody curve, then we have T (r, f) ≤ πr2/2. Hence

0 ≤ e(f) ≤ 1 for all f ∈ M(CPN ).

It is easy to see that e(f) is a C-invariant functional on M(CPN ):

e(f(z)) = e(f(z + a)) for any f(z) ∈ M(CPN ) and a ∈ C.

For an algebraic set X ⊂ CPN , we define e(X) by

e(X) := sup
f∈M(X)

e(f).

Here M(X) is the moduli space of Brody curves in X defined by (3). Ob-

viously e(X) satisfies

0 ≤ e(X) ≤ 1.
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Remark 1.3. In [14], we introduced and studied the notion of packing

density of Brody curves. For a Brody curve f : C → CPN , we define the

packing density ρ(f) by

ρ(f) := lim sup
r→∞

1

πr2

∫

|z|≤r
|df |2(z) dxdy.

For an algebraic set X ⊂ CPN , we define ρ(X) by

ρ(X) := sup
f∈M(X)

ρ(f).

ρ(f) and ρ(X) obviously satisfies

0 ≤ ρ(f) ≤ 1 and 0 ≤ ρ(X) ≤ 1.

The integral of |df |2(z) dxdy is usually called “energy”. Hence ρ(f) measures

the packing density of the energy of f over the complex plane.

It is easy to see that

e(f) ≤ ρ(f) and hence e(X) ≤ ρ(X).

The crucial point of these notions is the fact that they are non-trivial in-

variants. In [14], the following is proved:

0 < ρ(CPN ) < 1,

i.e., the value of ρ(CPN ) is non-trivial 2. Hence we can see that 3

0 < e(CPN ) < 1.

In particular we have

e(X) ≤ e(CPN ) < 1 for any algebraic set X in CPN .

2For the case of CP 1, we have an effective upper bound (cf. [14]):

ρ(CP
1) ≤ 1 − 10−100

.

3The upper bound e(CP N) < 1 follows from e(CP N) ≤ ρ(CP N). The lower bound
follows from, for example, the fact that

e(f) > 0 for a non-constant elliptic function f : C → CP
1
.
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If f : C → CPN extends to a holomorphic map f̃ from CP 1 = C∪{∞}
to CPN , then the total energy is equal to the degree of the map f̃ :

∫

C

|df |2 dxdy =

∫

CP 1

f̃∗ωFS = deg(f̃).

Therefore e(f) and ρ(f) are “regularized degree” of Brody curves.

Remark 1.4. There is a notion “type of meromorphic functions” (see

Nevanlinna [12, p. 215]). Let f be a meromorphic function of finite order

λ. Consider the following quantity:

(5) lim sup
r→∞

T (r, f)/rλ.

If (5) is infinite, then f is said to be of maximum type of order λ. If (5) is

finite and positive, then f is said to be of mean type of order λ, and if (5)

is zero, then f is said to be of minimum type of order λ. If f ∈ M(CP 1)

satisfies e(f) > 0, then f is of mean type of order 2.

For an algebraic set X ⊂ CPN , M(X) is a compact topological space

whose topology is metrizable, and the Lie group C acts on M(X). Then

we can consider the mean dimension dim(M(X) : C) (cf. Gromov [8]

and Subsection 4.1). The mean energy e(X) gives an upper bound for

dim(M(X) : C):

Theorem 1.5.

dim(M(X) : C) ≤ 4e(X) dimC X.

Here dimC X denotes the complex dimension of X. For the definition of

complex dimension of algebraic sets, see Grauert-Remmert [6, Chapter 5].

This result is a start point of the study of the relation between mean

dimension and mean energy.

1.3. The case of CPN

Applying Theorem 1.5 to the case of X = CPN , we get an upper bound:

(6) dim(M(CPN ) : C) ≤ 4e(CPN )N < 4N.

Here we have used the fact e(CPN ) < 1. On the other hand, from Gromov

[8, p. 328, 0.6.2], we have dim(M(CPN ) : C) > 0. Actually we can prove
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Theorem 1.6. There exists a positive constant C independent of N

such that

dim(M(CPN ) : C) ≥ C · N.

Therefore

C · N ≤ dim(M(CPN ) : C) ≤ 4e(CPN )N < 4N.

Remark 1.7. M. Gromov gives a certain upper bound for dim(M(CPN):

C) in [8, p. 396, (c)]. Unfortunately, I could not find the definition of the

Fubini-Study metric used in [8, p. 396, (c)] (the Fubini-Study metric has

several conventions). Therefore I could not decide whether our estimate

(6) is better than Gromov’s estimate in [8, p. 396, (c)] or not. But Gro-

mov referred to the paper of A. Eremenko [5] there, and our argument in

Lemma 2.1 is similar to the argument in [5, Theorem 2.5]. And I think that

the use of mean energy (or packing density) makes the related estimates

sharper.

Problem 1.8. In [14, Section 4] we proved that

lim
N→∞

ρ(CPN ) = 1.

In the same way as in [14, Section 4], we can prove

lim
N→∞

e(CPN ) = 1.

Hence it might be interesting to study the asymptotic behavior of

dim(M(CPN ) : C)/N as N → ∞.

1.4. Definition of M+ and some examples of mean dimension

= 0

Let M ⊂ M(CPN ) be a C-invariant closed subset in M(CPN ). We

define M+ ⊂ M as the closure of the set of Brody curves in M of positive

mean energy:

M+ := {f ∈ M | e(f) > 0}.
M+ is a C-invariant closed subset in M. We have the following general

fact:

Theorem 1.9.

dim(M : C) = dim(M+ : C).

If M+ is empty, then we set dim(M+ : C) = dim(∅ : C) := 0.
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If M+ is a finite dimensional space (in the sense of topological covering

dimension), then we have dim(M+ : C) = 0. Therefore

Corollary 1.10. If dim(M : C) is positive, then M+ is an infinite

dimensional space.

The following are examples of spaces whose mean dimensions are 0.

Example 1.11. This is a trivial example. Let X ⊂ CPN be a com-

pact hyperbolic manifold, i.e., all holomorphic curves in X are constant

maps. Then M(X) consists of constant maps, and it is homeomorphic to

X. M(X)+ is empty and we have

dim(M(X) : C) = dim(M(X)+ : C) = 0.

Example 1.12. Let H0,H1, . . . ,HN be the N +1 hyperplanes in CPN :

Hi :

N
∑

j=0

aijzj = 0 (0 ≤ i ≤ N).

Suppose that H0,H1, . . . ,HN are linearly independent, i.e., the coefficients

matrix (aij)0≤i,j≤N is regular. Let M be the closure of the set of Brody

curves contained in CPN \ (H0 ∪ · · · ∪ HN):

M := M(CPN \ (H0 ∪ · · · ∪ HN ))

= {f ∈ M(CPN ) | f(C) ⊂ CPN \ (H0 ∪ · · · ∪ HN )}.

Then M is a finite dimensional space and M+ is empty. In particular we

have

dim(M : C) = dim(M+ : C) = 0.

Proof. We consider only the case of Hi = {zi = 0} (0 ≤ i ≤ N) for

simplicity. If f is contained in M, then we have

f(C) ∩ Hi = ∅ or f(C) ⊂ Hi for each Hi.

Suppose that

f(C) ∩ Hi = ∅ for i = 0, 1, . . . ,m, and

f(C) ⊂ Hj for j = m + 1,m + 2, . . . ,N.
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Then f = [g : 0 : · · · : 0] with a Brody curve g : C → CPm \ (H0 ∪H1∪ · · · ∪
Hm). From the theorem of F. Berteloot and J. Duval in [1, Appendice] (see

also [14, Section 6] and [15]), the Brody curve g can be expressed by

g(z) = [1 : ea1z+b1 : · · · : eamz+bm]

for some complex numbers a1, b1, . . . , am, bm.

Hence all f ∈ M can be expressed by (cf. [1, Section 3])

f(z) = [c0e
a0z : c1e

a1z : · · · : cNeaN z]

for some complex numbers a0, c0, . . . , aN , cN .

In addition we have e(f) = 0. Therefore

dim(M) = 4N and M+ = ∅.

Example 1.13.

M := M(CP 1 \ {∞})
= {f ∈ M(CP 1) | f(C) ⊂ C = CP 1 \ {∞} or f(C) = {∞}}.

For any polynomial p(z), if we choose ε > 0 sufficiently small, p(εz) belongs

to M. Then it is easy to see that M is an infinite dimensional space. But

it is known that all f ∈ M has order ≤ 1:

lim sup
r→∞

log T (r, f)/ log r ≤ 1.

For its proof, see Clunie-Hayman [4, Theorem 3], Minda [11, pp. 210–211]

or Eremenko [5, Theorem 5.2]. Hence e(f) = 0 for all f ∈ M and M+ = ∅.
Therefore

dim(M : C) = dim(M+ : C) = 0,

i.e., M is an infinite dimensional space whose mean dimension is 0.

Problem 1.14. I don’t know whether there is a hypersurface V ⊂
CPN such that

dim(M(CPN \ V ) : C) > 0,

(cf. Example 1.2). I don’t know even whether there is a hypersurface V

such that M(CPN \ V )+ is not empty.
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1.5. Holomorphic 1-forms and mean dimension

Theorem 1.5 can be applied to general algebraic sets. If X ⊂ CPN is

smooth, connected and has holomorphic 1-forms, then we can improve the

estimate.

Let X ⊂ CPN be a smooth connected projective variety (i.e. a compact

connected complex manifold embedded in CPN ), and let H1,0 be the space

of holomorphic 1-forms on X. Let ω1, . . . , ωh (h = dimC H1,0) be a basis of

H1,0, and let α be the Albanese map:

α : X −→ Alb(X) := C
h/Γ, x 7−→

(
∫ x

p
ω1, . . . ,

∫ x

p
ωh

)

,

where p ∈ X is a reference point and Γ ⊂ C
h is the lattice given by periods:

Γ :=

{(
∫

C
ω1, . . . ,

∫

C
ωh

)

∈ C
h

∣

∣

∣

∣

C ∈ H1(X; Z)

}

.

The important data for us is the derivative dα of the Albanese map α:

(7) dαx : TxX = T 1,0
x X −→ C

h, v 7−→ (ω1(v), . . . , ωh(v)) for x ∈ X.

We define the closed analytic set Y ⊂ X by

(8) Y := {x ∈ X | dαx is not injective}.

Since X ⊂ CPN , Y is also an algebraic set in CPN .

Theorem 1.15. 4

dim(M(X) : C) = dim(M(Y ) : C).

Example 1.16. Let X be a compact smooth algebraic curve of genus

≥ 1. It is well-known that the Albanese map α : X → Alb(X) becomes an

embedding. Hence Y = ∅ and

dim(M(X) : C) = 0.

(In fact M(X) is a finite dimensional space in this case.)

4Here we assume that X is projective. But actually this theorem is valid for compact
connected Kähler manifolds. See Section 5.
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If h = dimC H1,0 < dimC X, then Y = X and Theorem 1.15 becomes

meaningless. Next we will develop a theorem which can cover this case. The

map

dα : TX −→ C
h, v 7−→ (ω1(v), . . . , ωh(v))

is a holomorphic map. Hence for each u ∈ C
h, the inverse image (dα)−1(u) ⊂

TX is a closed analytic set in TX. If h > 0, then (dα)−1(u) is nowhere

dense in TX (by connectedness of X), and we have

dimC(dα)−1(u) < dimC TX = 2dimC X for all u ∈ C
h.

This dimension dimC(dα)−1(u) can be used for an upper bound of the mean

dimension:

Theorem 1.17. If X is a smooth connected projective variety, then

dim(M(X) : C) ≤ 2e(X) max
u∈Ch

{dimC(dα)−1(u)}.

In particular, if h > 0, then

dim(M(X) : C) ≤ e(X)(4 dimC X − 2).

For any u ∈ C
h we have

dimC(dα)−1(u) ≤ dimC X + max
x∈X

dimC(dαx)−1(u)

≤ dimC X + max
x∈X

(dimC ker dαx),

where dαx is the map (7). Therefore

Corollary 1.18.

dim(M(X) : C) ≤ 2e(X)(dimC X + max
x∈X

(dimC ker dαx)).

Example 1.19. Let An be an n-dimensional abelian variety and V k ⊂
A be a k-dimensional smooth subvariety (0 ≤ k ≤ n−2). Let π : X → A be

the blow-up of A along V . Then it is easy to see that Y (defined by (8)) is

contained in the exceptional divisor E := π−1(V ). (Actually, A = Alb(X)

and E = Y .) Hence we have (here we fix an embedding X ⊂ CPN )

dim(M(X) : C) = dim(M(E) : C).
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Let α : E → Alb(E) be the Albanese map. (Here we assume that E is

connected, i.e., V is connected. When E is not connected, we can apply the

following argument to each component and deduce the same conclusion.)

From the universality of Albanese map, there exists β : Alb(E) → A sat-

isfying β ◦ α = π|E. Hence ker dαx ⊂ ker(dπ|E)x for each x ∈ E. Since

E is a fiber bundle over V whose fiber is isomorphic to CPn−k−1, we have

dimC ker(dπ|E)x = n − k − 1. Then Corollary 1.18 implies

dim(M(E) : C) ≤ 2e(E)((n − 1) + (n − k − 1)) = e(E)(4n − 2k − 4).

We will return to this example in the end of Section 5. (Remark: Winkel-

mann [16, Theorem 3] shows the following interesting result; There exists an

abelian threefold A with a smooth curve V ⊂ A such that all non-constant

Brody curves in X are contained in E.)

1.6. Organization of the paper

In Section 2 we study “discretization” of holomorphic curves and prove

Theorem 1.5. In Section 3 we prove Theorem 1.6. In Subsection 4.1 we

review the definitions and basic properties of mean dimension. Readers

who are not familiar with mean dimension can read Subsection 4.1 first

before reading other sections. In Subsection 4.2 we show some general re-

sults on mean dimension and prove Theorem 1.9. In Section 5 we prove

Theorems 1.15 and 1.17.

§2. Discretization of holomorphic curves

Let Λ ⊂ C be a lattice in the complex plane C. Let (CPN )Λ be the

infinite product of the copies of CPN indexed by Λ:

(CPN )Λ := {(wλ)λ∈Λ | wλ ∈ CPN}.

First we study the following “discretization map” (cf. Gromov [8, p. 329]):

M(CPN ) −→ (CPN )Λ, f 7−→ f |Λ := (f(λ))λ∈Λ.

Lemma 2.1. Let f, g : C → CPN be holomorphic maps with e(f),

e(g) < ∞, and suppose

e(f) + e(g) < 1/|C/Λ|,

where |C/Λ| denotes the volume of the elliptic curve C/Λ, i.e. the area of

the fundamental domain of Λ in C. If f |Λ = g|Λ, then we have f ≡ g.
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Proof. 5 Let [z0 : · · · : zn] be the homogeneous coordinate in CPN .

Since f(Λ) = g(Λ) is a countable set in CPN , there is a hyperplane H ⊂
CPN such that f(Λ) ∩ H = ∅ (by Baire’s theorem). We can suppose that

H = {z0 = 0} without loss of generality.

Then we can express f and g by f = [1 : f1 : · · · : fN ] and g =

[1 : g1 : · · · : gN ] with meromorphic functions f1, . . . , fN , g1, . . . , gN such

that fi|Λ = gi|Λ and ∞ /∈ fi(Λ) = gi(Λ). The standard argument in the

Nevanlinna theory gives

T (r, fi) ≤ T (r, f) + O(1).

Hence we have e(fi) ≤ e(f) and e(gi) ≤ e(g). We want to prove that

fi ≡ gi for all i. Suppose f1 6≡ g1. Then non-constant meromorphic function

(f1 − g1)
−1 has a pole at each point of the lattice Λ. (Here we have used

∞ /∈ fi(Λ) = gi(Λ).) From the first main theorem of Nevanlinna,

πr2

2|C/Λ| + O(r) ≤ T (r, (f1 − g1)
−1) = T (r, f1 − g1) + O(1)

≤ T (r, f1) + T (r, g1) + O(1).

Then
1

|C/Λ| ≤ e(f1) + e(g1) ≤ e(f) + e(g).

This contradicts the assumption.

Remark 2.2. In the above proof, we did not use the second main theo-

rem of Nevanlinna. Actually we don’t need the second main theorem in any

part of this paper. I don’t know how to apply the second main theorem to

the theory of mean dimension.

Next we study the following map:

M(CPN ) −→ (TCPN )Λ,

f 7−→ df |Λ := (df(∂/∂z)|z=λ)λ∈Λ ∈
∏

λ∈Λ

Tf(λ)CPN .

This map has the information of derivative of holomorphic curves at each

point of the lattice Λ.

5This proof is similar to the argument of Eremenko [5, Theorem 2.5]. See Remark 1.7.
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Lemma 2.3. Let f, g : C → CPN be holomorphic maps with e(f),

e(g) < ∞, and suppose

e(f) + e(g) < 2/|C/Λ|.

If df |Λ = dg|Λ, then we have f ≡ g.

Proof. df |Λ = dg|Λ implies f |Λ = g|Λ by definition. Hence we can

suppose that we can express f and g by f = [1 : f1 : · · · : fN ] and g =

[1 : g1 : · · · : gN ] with meromorphic functions f1, . . . , fN , g1, . . . , gN such

that fi|Λ = gi|Λ and ∞ /∈ fi(Λ) = gi(Λ). We have also e(fi) ≤ e(f) and

e(gi) ≤ e(g). From df |Λ = dg|Λ, we have fi(λ) = gi(λ) and f ′
i(λ) = g′i(λ) for

all λ ∈ Λ. Suppose f1 6≡ g1. Then the non-constant meromorphic function

(f1 − g1)
−1 has a pole of multiplicity ≥ 2 at each point of Λ. From the first

main theorem,

πr2

|C/Λ| + O(r) ≤ T (r, (f1 − g1)
−1) = T (r, f1 − g1) + O(1)

≤ T (r, f1) + T (r, g1) + O(1).

Then
2

|C/Λ| ≤ e(f1) + e(g1) ≤ e(f) + e(g).

This contradicts the assumption.

We prove Theorem 1.5 by using Lemma 2.1. (Lemma 2.3 will be used

later in the proof of Theorem 1.17.)

Proof of Theorem 1.5. Let Λ ⊂ C be a lattice satisfying

2e(X) < 1/|C/Λ|

where X ⊂ CPN is a given algebraic set. Consider the “discretization map”:

(9) M(X) −→ XΛ, f 7−→ f |Λ.

This map naturally becomes a Λ-equivariant map, and it is continuous (here

we consider the direct product topology on XΛ). For any two f, g ∈ M(X)

we have

e(f) + e(g) ≤ 2e(X) < 1/|C/Λ|.
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Then Lemma 2.1 implies that the discretization map (9) is injective. Since

M(X) is compact, this means that M(X) is Λ-equivariantly homeomorphic

to the image of (9). Therefore

dim(M(X) : Λ) ≤ dim(XΛ : Λ) = dim X = 2dimC X

where dim X denotes the topological covering dimension of X. Then (cf.

Subsection 4.1)

dim(M(X) : C) = |C/Λ|−1 dim(M(X) : Λ) ≤ 2|C/Λ|−1 dimC X.

|C/Λ|−1 can be taken arbitrarily close to 2e(X). Hence

dim(M(X) : C) ≤ 4e(X) dimC X.

§3. Constructing a shift space in M(CPN )

To begin with, note that the following map is a holomorphic isometric

embedding:

CP 1 −→ CPN , [1 : z] 7−→ [1 : z/
√

N : · · · : z/
√

N ].

This fact is behind the arguments in this section.

In this section we will prove Theorem 1.6 by constructing a “shift space”

in M(CPN ). Our argument is a variant of the argument of Gromov [8,

p. 398, 3.5.1]. Let Λ ⊂ C be a lattice, A > 0 be a positive number. We

define the annulus Ω ⊂ C by

Ω := {z ∈ C | A ≤ |z| ≤ 2A}.

For a = (anλ)1≤n≤N,λ∈Λ ∈ (ΩN )Λ (i.e. A ≤ |anλ| ≤ 2A), we define the

holomorphic map fa : C → CPN by

fa(z) :=

[

1 :
1√
N

∑

λ∈Λ

a1λ

(z − λ)3
:

1√
N

∑

λ∈Λ

a2λ

(z − λ)3
: · · · :

1√
N

∑

λ∈Λ

aNλ

(z − λ)3

]

.

The following is the basis of the proof:

Proposition 3.1. There is a positive constant C(Λ, A) independent of

N such that

|dfa|(z) ≤ C(Λ, A) for all z ∈ C and all a ∈ (ΩN )Λ.

(The important point of this statement is that C(Λ, A) is independent of N .)
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Let δ = δ(Λ) be a positive number satisfying

2δ ≤ |λ1 − λ2| for any λ1, λ2 ∈ Λ with λ1 6= λ2.

The proof of Proposition 3.1 needs the following lemma (similar estimates

are given in Eremenko [5, Lemma 6.2]):

Lemma 3.2. For positive numbers s > 2 and d ≤ δ, there is a positive

constant c1(Λ, s, d) such that

∑

λ∈Λ

1

|z − λ|s ≤ c1(Λ, s, d) for all z ∈ C with d(z,Λ) ≥ d.

Moreover there is a positive constant c2(Λ, s) satisfying the following ; for

any z ∈ C with d(z,Λ) < δ, let λ0 ∈ Λ be a (unique) point in Λ such that

|z − λ0| < δ. Then
∑

λ∈Λ\{λ0}

1

|z − λ|s ≤ c2(Λ, s).

Proof. We can prove these results by direct estimation; we omit the

detail.

Proof of Proposition 3.1. Set fa(z) = [1 : f1(z) : f2(z) : · · · : fN (z)].

From (2), we have

π|dfa|2 =

∑ |f ′
n|2 +

∑

n<m |fnf ′
m − f ′

nfm|2
(1 +

∑ |fn|2)2
.

Set

d := min

(

δ,

(

1

4c2(Λ, 3)

)1/3
)

.

Suppose z ∈ C satisfies d(z,Λ) ≥ d. Then Lemma 3.2 shows

|f ′
n(z)| ≤ 1√

N

∑

λ∈Λ

6A

|z − λ|4 ≤ 6A√
N

c1(Λ, 4, d).

From this, we have
∑

n

|f ′
n(z)|2 ≤ constΛ,A.
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Here constΛ,A denotes a positive constant independent of N (and depending

on Λ, A). In the same way, we have
∑

n<m

|f ′
nfm − f ′

mfn|2 ≤ constΛ,A.

Hence

|dfa|(z) ≤ constΛ,A for z ∈ C with d(z,Λ) ≥ d.

Next suppose z ∈ C satisfies d(z,Λ) < d. From d ≤ δ, there is a unique

λ0 ∈ Λ such that |z−λ0| < d. We suppose λ0 = 0 for simplicity, i.e. |z| < d.

We have

fa(z) =

[

z3 :
a10√
N

+
z3

√
N

∑′ a1λ

(z − λ)3
: · · · :

aN0√
N

+
z3

√
N

∑′ aNλ

(z − λ)3

]

.

where
∑′ denotes the sum over λ ∈ Λ \ {0}. Set

gn(z) := z3fn(z) =
an0√

N
+

z3

√
N

∑′ anλ

(z − λ)3
.

Then we have

π|dfa|2(z) =

∑ |z3g′n − 3z2gn|2 +
∑

n<m |gng′m − g′ngm|2
(|z|6 +

∑ |gn|2)2
.

From |z| < d, d3 ≤ 1/4c2(Λ, 3) and Lemma 3.2, we have

|gn(z)| ≥ A√
N

− d3

√
N

∑′ 2A

|z − λ|3 ≥ A√
N

− 2Ad3

√
N

c2(Λ, 3) ≥ A

2
√

N
.

Hence
∑

|gn(z)|2 ≥ A2

4
.

Therefore

π|dfa|2(z) ≤ 16

A4

[

∑

|z3g′n − 3z2gn|2 +
∑

n<m

|gng′m − g′ngm|2
]

.

Then some calculation shows

|dfa|(z) ≤ constΛ,A for |z| < d.

Thus we conclude that

|dfa|(z) ≤ C(Λ, A) for all z ∈ C.
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If we set f̂a(z) := fa(z/c(Λ, A)), then we have |df̂a|(z) ≤ 1. Therefore

we get the following:

Corollary 3.3. There are Λ and A independent of N such that

|dfa| ≤ 1 for all a ∈ (ΩN )Λ.

Hence we get the following map:

F : (ΩN )Λ −→ M(CPN ), a 7−→ fa.

F is obviously injective and Λ-equivariant. Moreover some consideration

shows that F is continuous (here we consider the product topology on (ΩN )Λ

and the compact-open topology on M(CPN )). Hence F is a topological

embedding.

Proof of Theorem 1.6. M(CPN ) contains a “shift space” (ΩN )Λ. Hence

dim(M(CPN ) : Λ) ≥ dim((ΩN )Λ : Λ) = 2N.

Therefore (cf. Subsection 4.1)

dim(M(CPN ) : C) = dim(M(CPN ) : Λ)/|C/Λ| ≥ 2N/|C/Λ|.

Note that Λ is independent of N . Hence this shows the theorem.

§4. General theory of mean dimension

4.1. Review of mean dimension

We review the basic definitions of mean dimension given in Gromov

[8] (see also Lindenstrauss-Weiss [10]). All results in this subsection are

given in [8], [10]. Let (X, d) be a compact metric space and Y a topological

space. For a positive number ε > 0, a continuous map f : X → Y is called

an ε-embedding if we have Diam(f−1(y)) ≤ ε for any point y ∈ Y . We

define Widimε(X, d) as the minimum number n such that there exist an n-

dimensional finite polyhedron P and an ε-embedding f : X → P . Since X

is compact, Widimε(X, d) < ∞. Widimε(X, d) is monotone non-decreasing

as ε → 0, and we have

lim
ε↓0

Widimε(X, d) = dimX

where dim X denotes the topological covering dimension of X (of course

dim X can be infinite). The following is a fundamental example (this is

given in [8, pp. 332–333] and [10, Lemma 3.2]).
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Example 4.1. Let d∞( · , · ) be the sup-distance on [0, 1]N : d∞(x, y) =

maxi |xi − yi|. Then

Widimε([0, 1]
N , d∞) = N for any ε < 1.

The important point of this statement is that the estimate ε < 1 is inde-

pendent of N .

Proof. [0, 1]N is itself a finite polyhedron of dimension N . Hence

Widimε([0, 1]
N , d∞) ≤ N is obvious. Consider the constant sheaf Z on

[0, 1]N , and we define the subsheaf F ⊂ Z by

Fp = Zp for p ∈ (0, 1)N and Fp = 0 for p ∈ ∂[0, 1]N .

The Čech cohomology Ȟ∗([0, 1]N ,F) is equal to the cohomology H∗([0, 1]N ,

∂[0, 1]N ). In particular

ȞN ([0, 1]N ,F) = Z.

Set U0 := [0, 1) and U1 := (0, 1], and we define the open covering U =

{Ui1···iN} of [0, 1]N by

Ui1···iN := Ui1 × · · · × UiN for all i1, . . . , iN = 0, 1.

U is acyclic for F , and hence the natural map Ȟ∗(U ,F) → Ȟ∗([0, 1]N ,F)

is isomorphic (by Leray’s theorem).

Suppose Widimε([0, 1]
N , d∞) ≤ N −1 for some ε < 1. Then there exists

a open covering V of [0, 1]N such that V is a refinement of U and the order

of V is ≤ N −1, i.e., any intersection of N +1 open sets in V is empty. Then

the isomorphism ȞN (U ,F) → ȞN ([0, 1]N ,F) = Z is equal to the zero map:

ȞN (U ,F) −→ ȞN (V,F) = 0 −→ ȞN ([0, 1]N ,F).

This is a contradiction.

Suppose that the additive group Z
k (k ≥ 1) acts on X. For a finite

subset Ω in Z
k, we define the distance dΩ( · , · ) on X by

(10) dΩ(x, y) := max
γ∈Ω

d(γ.x, γ.y) for x, y ∈ X.

(X, dΩ) is homeomorphic to (X, d). In particular, (X, dΩ) is compact and

Widimε(X, dΩ) can be defined. For a positive integer n, we set In := [0, n)k∩

https://doi.org/10.1017/S0027763000025964 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025964


MODULI SPACE OF BRODY CURVES 45

Z
k. The sequence {In}n≥1 is amenable in Z

k (in the sense of [8, p. 335]),

and we can define Widimε(X : Z
k) by

Widimε(X : Z
k) := lim

n→∞

1

nk
Widimε(X, dIn

).

This limit always exists; see [8, pp. 335–338] and [10, Appendix]. Widimε(X :

Z
k) is monotone non-decreasing as ε → 0, and we define the mean dimension

dim(X : Z
k) by

dim(X : Z
k) := lim

ε↓0
Widimε(X : Z

k).

If dim X < ∞, then Widimε(X : dIn
) ≤ dim X < ∞ and Widimε(X : Z

k) =

0. In particular (cf. Lindenstrauss-Weiss [10, p. 6])

dim(X : Z
k) = 0 for all finite dimensional X.

If the Lie group R
k acts on X, we define dΩ( · , · ) for any bounded set

Ω ⊂ R
k by (10). (X, dΩ) is homeomorphic to (X, d), and we can define

Widimε(X : R
k) and the mean dimension dim(X : R

k) by

Widimε(X : R
k) := lim

n→∞

1

nk
Widimε(X, d[0,n)k),

dim(X : R
k) := lim

ε↓0
Widimε(X : R

k),

where nk is the volume of [0, n)k. Here we have considered only Z
k and R

k.

But actually we can consider much more general groups; see Gromov [8].

Remark 4.2. In the above definitions we have chosen special “amenable

sequences” {In}n≥1 and {[0, n)k}n≥1 for simplicity of the explanation. Actu-

ally the value of mean dimension does not depend on the choice of amenable

sequences (this is a very important point). See Gromov [8, pp. 335–338] and

Lindenstrauss-Weiss [10, Appendix].

Remark 4.3. The above definition of mean dimension uses a distance.

But actually mean dimension is a topological invariant; if d′ is another

distance on X such that (X, d′) is homeomorphic to (X, d), then we have

dim((X, d′) : Z
k) = dim((X, d) : Z

k).

This can be (easily) proved by using the fact: the identity map id : (X, d) →
(X, d′) becomes uniformly continuous (by the compactness of X). See Gro-

mov [8, p. 339].
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The following is a basic example (this is given in Gromov [8, p. 340]

and Lindenstrauss-Weiss [10, Proposition 3.1 and Proposition 3.3]):

Example 4.4. Let X be a compact metric space of finite covering di-

mension and set X := XZk

. Z
k acts on X by

Z
k × X −→ X, (γ, (xa)a∈Zk ) 7−→ γ.(xa)a∈Zk = (xγ+a)a∈Zk

We define the distance d(x, y) for x = (xa)a∈Zk and y = (ya)a∈Zk in X by

(11) d(x, y) :=
∑

a∈Zk

2−|a|d(xa, ya)

where |a| = |a1| + · · · + |ak| for a = (a1, . . . , ak).

Then X becomes a compact metric space. The mean dimension of X is

estimated by:

dim(X : Z
k) ≤ dim X.

In addition, if X is a finite polyhedron, then

dim(X : Z
k) = dim X.

Proof. Let n, s > 0 be positive integers and set J := (−s, n + s)k ∩Z
k.

Let π : X → XJ be the natural projection. Some calculation shows that if

x, y ∈ X satisfy π(x) = π(y), then

dIn
(x, y) ≤ Ck,X 2−s,

where Ck,X is a positive constant depending on k and Diam X . For any

ε > 0, let s be an integer satisfying Ck,X 2−s < ε. (Note that we can take s

independent of n.) Then if π(x) = π(y), we have dIn
(x, y) < ε.

The covering dimension of XJ is ≤ |J |dim X. Then for any δ > 0 there

are a finite polyhedron P of dimension ≤ |J |dim X and a δ-embedding

f : XJ → P . (Here we consider a distance on XJ ; the choice of the

distance is not important.) If we take δ sufficiently small, then the map

f ◦ π : (X, dIn
) → P becomes an ε-embedding. Hence

Widimε(X, dIn
) ≤ |J |dim X = (n + 2s − 1)k dim X.

https://doi.org/10.1017/S0027763000025964 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025964


MODULI SPACE OF BRODY CURVES 47

Since s is independent of n, we have

Widimε(X : Z
k) = lim

n→∞
n−k Widimε(X, dIn

)

≤ lim
n→∞

(

1 +
2s − 1

n

)k
dim X = dim X.

Therefore dim(X : Z
k) ≤ dim X.

Next we suppose that X is a finite polyhedron of dimension N . We want

to prove dim(X : Z
k) ≥ N . There is a topological embedding [0, 1]N →֒ X,

and this induces a Z
k-equivariant embedding ([0, 1]N )Zk →֒ X. We want to

prove dim(([0, 1]N )Zk

: Zk) ≥ N . Mean dimension is a topological invariant.

Hence we can use any distance on ([0, 1]N )Zk

. Here we consider the sup-

distance d∞ on [0, 1]N as in Example 4.1, and we define the distance on

([0, 1]N )Zk

by (11):

d(x, y) :=
∑

a∈Zk

2−|a|d∞(xa, ya).

Let ι : [0, 1]N |In| = ([0, 1]N )In →֒ ([0, 1]N )Zk

be the embedding defined

by

ι : (xa)a∈In
7−→ (ya)a∈Zk

where ya = xa ∈ [0, 1]N for a ∈ In and ya = 0 for a 6∈ Z
k.

By the definition of the distance dIn
, we have

d∞(x, y) ≤ dIn
(ι(x), ι(y)) for x, y ∈ [0, 1]N |In|.

Then, for any ε < 1,

Widimε(([0, 1]
N )Zk

, dIn
) ≥ Widimε([0, 1]

N |In|, d∞) = N |In|.

Therefore

Widimε(([0, 1]
N )Zk

: Z
k) = lim

n→∞
n−n Widimε(([0, 1]

N )Zk

, dIn
) ≥ N.

This shows

dim(([0, 1]N )Zk

: Z
k) ≥ N.
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In the proof of Theorem 1.5 we used the following proposition (this is

given in Gromov [8, p. 329] and Lindenstrauss-Weiss [10, Proposition 2.7]).

Proposition 4.5. Let (X, d) be a compact metric space acted by the

Lie group R
k, and let Λ ⊂ R

k be a lattice. Then

dim(X : Λ) = |Rk/Λ|dim(X : R
k),

where |Rk/Λ| denotes the volume of the fundamental domain of Λ in R
k.

Proof. We give the proof for the case of Λ = Z
k ⊂ R

k. Other cases can

be proved in the same way (by using different amenable sequences).

Since dIn
( · , · ) ≤ d[0,n)k( · , · ), we have

Widimε(X, dIn
) ≤ Widimε(X, d[0,n)k).

Hence

dim(X : Z
k) ≤ dim(X : R

k).

On the other hand, since the identity map id : (X, d) → (X, d[0,1)k ) is

uniformly continuous, for any ε > 0 there exists δ = δ(ε) > 0 such that

d(x, y) ≤ δ ⇒ d[0,1)k(x, y) ≤ ε for any two x, y ∈ X.

Note that

[0, n)k =
⊔

u∈In

{u + [0, 1)k}.

Then

dIn
(x, y) ≤ δ ⇒ d[0,n)k(x, y) ≤ ε for any two x, y ∈ X.

Therefore

Widimǫ(X, d[0,n)k) ≤ Widimδ(X, dIn
).

Hence

Widimε(X : R
k) ≤ Widimδ(X : Z

k) ≤ dim(X : Z
k).

Thus

dim(X : R
k) ≤ dim(X : Z

k).
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4.2. Some general results on mean dimension

The proof of Theorem 1.9 needs the following theorem.

Theorem 4.6. Let (X, d) and (Y, d′) be compact metric spaces acted

by the additive group Z
k, and let f : X → Y be a Z

k-equivariant continuous

map. Suppose that there exists a Z
k-invariant closed subset A in X such

that f |X\A is injective. Then we have

dim(X : Z
k) ≤ dim(Y : Z

k) + dim(A : Z
k).

Proof. 6 Let m be a positive integer and ε be a positive number. Let

i : (A, dIm
) → P be an ε/2-embedding with a Widimε/2(A, dIm

)-dimensional

finite polyhedron P . Since a finite polyhedron is ANR (absolute neighbor-

hood retract), there exist a open set U ⊃ A in X and a continuous map

ĩ : U → P with ĩ|A = i. Let ρ : X → [0, 1] be a cut-off function on X such

that ρ = 1 on A and supp(ρ) ⊂ U . Then we can define a continuous map j

from X to the cone C(K) := {pt}∗K (the join of K and the one-point space

{pt}) by j(x) := (1 − ρ(x))pt + ρ(x)̃i(x). Then we have the commutative

diagram:

A
i−−−−→ K





y





y

X
j−−−−→ C(K)

We set T := [0, Diam(X, d)]×C(K) and define the continuous map g from

X to T by

g : X −→ T, x 7−→ (d(x,A), j(x)).

Then the map (f, g) : (X, dIm
) → Y ×T becomes an ε/2-embedding because

f is injective on X \ A and g|A : (A, dIm
) → T is an ε/2-embedding. (Note

that g(A) and g(X \ A) have no intersection: g(A) ∩ g(X \ A) = ∅.) Then

there exists a positive number β = β(m, ε) such that if two points x1 and x2

in X satisfy d′(f(x1), f(x2)) ≤ β and g(x1) = g(x2) then dIm
(x1, x2) ≤ ε.

Let n be a positive integer and define the positive integer l by

(12) m(l − 1) < n ≤ ml.

6The idea of this proof was inspired by the arguments in Robinson [13, pp. 384–386]
and Bowen [2, Theorem 17].
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We define the subset Γ in In by

Γ := {(ma1,ma2, . . . ,mak) ∈ mZ
k | a1, a2, . . . , ak ∈ Z and

0 ≤ a1, a2, . . . , ak ≤ l − 1}.
From (12), we have

(13) dIn
(x1, x2) ≤ max

γ∈Γ
dIm

(γ.x1, γ.x2).

Let π : (Y, d′In
) → Q be a β-embedding with a Widimβ(Y, d′In

)-dimensional

finite polyhedron Q. Define Π : (X, dIn
) → Q × TΓ by

Π(x) := (π(f(x)), (g(γ.x))γ∈Γ).

Suppose that two points x1 and x2 in X satisfy Π(x1) = Π(x2). Then

we have g(γ.x1) = g(γ.x2) for all γ ∈ Γ and d′In
(f(x1), f(x2)) ≤ β. In

particular, d′(f(γ.x1), f(γ.x2)) ≤ β for all γ ∈ Γ. From the definition of β,

this implies dIm
(γ.x1, γ.x2) ≤ ε for all γ ∈ Γ. Then (13) shows

dIn
(x1, x2) ≤ ε.

Thus Π : (X, dIn
) → Q × TΓ is an ε-embedding. The image space Q × TΓ

is a polyhedron. Hence

1

nk
Widimε(X, dIn

) ≤ 1

nk
dim(Q × TΓ)

=
1

nk
Widimβ(Y, d′In

) +
|Γ|
nk

dimT

≤ 1

nk
Widimβ(Y, d′In

) + (1/n + 1/m)k dim T.

Let n go to infinity. Then we get

Widimε(X : Z
k) ≤ Widimβ(Y : Z

k) + m−k dim T

≤ dim(Y : Z
k) + m−k(Widimε/2(A, dIm

) + 2).

Here we have used the fact: Widimβ(Y : Z
k) ≤ dim(Y : Z

k). Let m go to

infinity. Then

Widimε(X : Z
k) ≤ dim(Y : Z

k) + Widimε/2(A : Z
k).

Let ε go to 0. Then we get the conclusion:

dim(X : Z
k) ≤ dim(Y : Z

k) + dim(A : Z
k).
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Remark 4.7. For a general closed subset A in X (not necessarily Z
k-

invariant), we define dim(A : {In}) by

dim(A : {In}) := lim
ε↓0

(

lim inf
n→∞

1

nk
Widimε(A, dIn

)

)

.

(For the detail, see Gromov [8, pp. 338–339].) Then the above proof shows

the following result: Let (X, d) and (Y, d′) be compact metric spaces acted

by Z
k, and let f : X → Y be a Z

k-equivariant continuous map. Suppose

that there exists a closed subset A in X such that f |X\A is injective. Then

we have

dim(X : Z
k) ≤ dim(Y : Z

k) + dim(A : {In}).

Problem 4.8. I don’t know whether the following statement is true or

not (it might be too naive): Let (X, d) and (Y, d′) be compact metric spaces

acted by Z
k, and let f : X → Y be a Z

k-equivariant continuous map. Then

we have

dim(X : Z
k) ≤ dim(Y : Z

k) + sup
y∈Y

{dim(f−1(y) : {In})}.

Proof of Theorem 1.9. From M+ ⊂ M, we have dim(M+ : C) ≤
dim(M : C). The reverse inequality is the problem. Let Λ ⊂ C be an

arbitrary lattice, and we consider the discretization map (cf. Section 2):

D : M −→ (CPN )Λ, f 7−→ f |Λ.

Since e(f) = 0 for all f ∈ M \ M+, Lemma 2.1 implies that D|M\M+
is

injective. Then we can apply Theorem 4.6 to this situation, and we have

dim(M : Λ) ≤ dim(M+ : Λ) + dim((CPN )Λ : Λ).

This means

|C/Λ|dim(M : C) ≤ |C/Λ|dim(M+ : C) + 2N.

We can let |C/Λ| go to infinity. Hence

dim(M : C) ≤ dim(M+ : C).
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Next proposition will be used in the proof of Theorem 1.15.

Proposition 4.9. Let X be a compact metric space acted by Z
k and

Y ⊂ X be a Z
k-invariant closed subset in X. Suppose that the complement

Y c = X \ Y has a finite covering dimension. Then

dim(X : Z
k) = dim(Y : Z

k).

Proof. This proposition is a corollary of Theorem 4.6. If Y = X, then

the statement is trivial. Hence we suppose Y 6= X. We define X/Y by

X/Y := X/ ∼ where y1 ∼ y2 for all y1, y2 ∈ Y .

We give the quotient topology to X/Y . It is easy to see that X/Y be-

comes a second countable compact Hausdorff space. Hence we can give a

distance d( · , · ) to X/Y (by Urysohn’s theorem). In addition X/Y is finite

dimensional. In fact

X/Y =
⋃

n≥1

{x ∈ X/Y | d(x, [Y ]) ≥ 1/n} ∪ {[Y ]}

where [Y ] is the point in X/Y corresponding to Y ⊂ X. The set {d(x, [Y ]) ≥
1/n} is homeomorphic to a closed subset in Y c, and hence its dimension is

≤ dim(Y c). Thus

dim(X/Y ) = max
n≥1

(dim{d(x, [Y ]) ≥ 1/n},dim{[Y ]}) ≤ dim(Y c).

Since Y is Z
k-invariant, Z

k naturally acts on X/Y and the projection

π : X → X/Y becomes Z
k-equivariant. The finite dimensionality of X/Y

implies dim(X/Y : Z
k) = 0. π|Y c is injective. Then we can apply Theo-

rem 4.6 and get

dim(X : Z
k) ≤ dim(X/Y : Z

k) + dim(Y : Z
k) = dim(Y : Z

k).

On the other hand the reverse inequality dim(Y : Z
k) ≤ dim(X : Z

k) is

trivial.

Let X , Y be compact metric spaces of finite covering dimension and

set X := XZk

, Y := Y Zk

. The additive group Z
k acts on X and Y as
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in Example 4.4. Let f : X → Y be a continuous map. We define a Z
k-

equivariant continuous map F : X → Y by

F : (xa)a∈Zk 7−→ (f(xa))a∈Zk .

Let ∆ ⊂ Y be the diagonal (∆ ∼= Y ), and set Z := F−1(∆) ⊂ X. (This is

an easy example of “subshifts of finite type” in Gromov [8, p. 324].) The

following will be used in the proof of Theorem 1.17.

Proposition 4.10.

dim(Z : Z
k) ≤ max

y∈Y
(dim f−1(y)).

Proof. We will use the same notations as in the proof of Example 4.4:

Let s, n be positive integers and set J := (−s, n+s)k∩Z
k. Let π : X → XJ

be the natural projection. For any ε > 0, there exists s = s(ε, k,X) such

that

Diam(π−1(p), dIn
) < ε for all p ∈ XJ and any n > 0.

This implies

Widimε(Z, dIn
) ≤ dim π(Z).

By the definition of Z, there is a (unique) continuous map g : π(Z) → Y

such that the following diagram becomes commutative:

Z
F−−−−→ ∆

π





y

∼=





y

π(Z)
g−−−−→ Y

For each y ∈ Y , we have g−1(y) ⊂ (f−1(y))J . Then the topological dimen-

sion theory gives

dimπ(Z) ≤ dimY + max
y∈Y

(dim g−1(y))

≤ dimY + |J |max
y∈Y

(dim f−1(y)).

Therefore

n−k Widimε(Z, dIn
) ≤ n−k dim Y +

(

1 +
2s − 1

n

)k
max
y∈Y

(dim f−1(y)).
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Let n go to infinity. Then we get

Widimε(Z : Z
k) ≤ max

y∈Y
(dim f−1(y)).

Thus

dim(Z : Z
k) ≤ max

y∈Y
(dim f−1(y)).

§5. Holomorphic 1-forms and mean dimension

5.1. Proof of Theorem 1.15

Let X be a compact connected Kähler manifold 7 and let α : X →
Alb(X) be the Albanese map. Set

Y := {x ∈ X | dαx : TxX → Tα(x) Alb(X) is not injective}.

Y is a closed analytic set in X. We define M(X) and M(Y ) by

M(X) := {f : C → X : holomorphic | |df | ≤ 1},
M(Y ) := {f ∈ M(X) | f(C) ⊂ Y }.

Here we define |df | ≥ 0 by using the Kähler form ω on X and the equation

(2):

f∗ω = |df |2(z) dxdy.

We want to prove

(14) dim(M(X) : C) = dim(M(Y ) : C).

Actually we will prove the following lemma.

Lemma 5.1. For any f ∈ M(X) \M(Y ), there exists a closed neigh-

borhood K ⊂ M(X) \M(Y ) of f such that dim K ≤ 4 dimC X.

If this lemma is proved, we can prove (14) as follows; Since M(X) \
M(Y ) is σ-compact (i.e. a union of countable compact sets), M(X)\M(Y )

becomes a union of countable closed sets of dimension ≤ 4 dimC X:

M(X) \M(Y ) =
⋃

n≥1

Kn, Kn: closed and dimKn ≤ 4 dimC X.

7In the proof of Theorem 1.15 we don’t use the results in Section 2.

https://doi.org/10.1017/S0027763000025964 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025964


MODULI SPACE OF BRODY CURVES 55

Hence

dim(M(X) \M(Y )) = sup
n≥1

(dim Kn) ≤ 4 dimC X.

Then we can apply Proposition 4.9 and get

dim(M(X) : C) = dim(M(X) : Z
2) = dim(M(Y ) : Z

2) = dim(M(Y ) : C).

The proof of Lemma 5.1 uses the following obvious fact:

Lemma 5.2. Let T = C
h/Γ be a complex torus with a Hermitian met-

ric. Let f : C → T be a holomorphic curve satisfying

||df ||∞ := sup
z∈C

|df |(z) < ∞.

(Here we define |df |(z) by using a Hermitian metric on T .) Then f can be

expressed by

f(z) = [Az + B] where A,B ∈ C
h.

In particular, let f, g : C → T be holomorphic curves satisfying ||df ||∞ ,

||dg||∞ < ∞. If df(∂/∂z)|z=0 = dg(∂/∂z)|z=0 (in particular f(0) = g(0)),

then f ≡ g.

Proof of Lemma 5.1. We can suppose Y 6= X. Since f 6∈ M(Y ), we

have f(C) 6⊂ Y . We suppose f(0) 6∈ Y for simplicity. Let D ⊂ X \ Y be a

compact neighborhood of f(0). We define a closed neighborhood K of f by

K := {g ∈ M(X) | g(0) ∈ D} ⊂ M(X) \M(Y ).

K is closed in M(X) (hence K is compact), and f is an interior point of

K. Consider the following continuous map:

S : K −→ TX, g 7−→ dg(∂/∂z)|z=0 .

S is injective; if S(g1) = S(g2), then we have d(α ◦ g1)(∂/∂z)|z=0 = d(α ◦
g2)(∂/∂z)|z=0 (here α : X → Alb(X) is the Albanese map). Lemma 5.2

implies α ◦ g1 ≡ α ◦ g2. The Albanese map α is a local embedding in

a neighborhood of g1(0) = g2(0) ∈ X \ Y . Therefore g1(z) = g2(z) if

|z| ≪ 1. From the unique continuation principle, we have g1 ≡ g2. Hence

S is injective. Since K is compact, S is a homeomorphism from K to

S(K) ⊂ TX. Thus

dim K = dimS(K) ≤ dim TX = 4dimC X.
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5.2. Proof of Theorem 1.17

The proof of Theorem 1.17 is based on the following fact: A bounded

holomorphic 1-form on the complex plane C is of the form

a dz where a is a constant.

Let X be a smooth, connected projective variety, and let ω1, . . . , ωh be

a basis of H1,0 (h = dimC H1,0). Let dα : TX → C
h be the derivative of

the Albanese map α:

dα : TX −→ C
h, v 7−→ (ω1(v), . . . , ωh(v)).

Let BX be the ball bundle:

BX := {v ∈ TX | |v| ≤ 1}.

Let D := {u ∈ C
h | |u| ≤ R} be the ball of radius R in C

h. Here we take R

sufficiently large so that dα(BX) ⊂ D.

Consider a lattice Λ ⊂ C satisfying

e(X) <
1

|C/Λ| .

Then Lemma 2.3 implies that the following discretization map S is a topo-

logical embedding:

S : M(X) −→ BXΛ, f 7−→ (df(∂/∂z)|z=λ)λ∈Λ.

(Note that |df(∂/∂z)| = |df |(z)/
√

2 ≤ 1/
√

2 < 1.) Using the map dα|BX :

BX → D, we define

A : BXΛ −→ DΛ, (uλ)λ∈Λ 7−→ (dα(uλ))λ∈Λ.

Let ∆ ⊂ DΛ be the diagonal. Then Proposition 4.10 shows

dim(A−1(∆) : Λ) ≤ max
u∈D

dim{(dα)−1(u) ∩ BX} ≤ 2 max
u∈Ch

dimC dα−1(u).

For any f ∈ M(X), f∗ωi is a bounded holomorphic 1-form on C. Hence

it is of the form adz (a is a constant depending on f and ωi). This means

that S(M(X)) is contained in A−1(∆). Therefore

dim(M(X) : Λ) = dim(S(M(X)) : Λ) ≤ dim(A−1(∆) : Λ)

≤ 2 max
u∈Ch

dimC dα−1(u).
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From this, we have

dim(M(X) : C) =
dim(M(X) : Λ)

|C/Λ| ≤ 2

|C/Λ| max
u∈Ch

dimC dα−1(u).

We can take 1/|C/Λ| arbitrarily close to e(X). Thus we conclude that

dim(M(X) : C) ≤ 2e(X) max
u∈Ch

dimC dα−1(u).

Example 5.3. The idea in the above proof has another application as

follows; Let An be an n-dimensional abelian variety and V k ⊂ A (0 ≤ k ≤
n−2) be a k-dimensional hyperbolic smooth subvariety (hyperbolicity means

that all entire holomorphic curves in V are constant maps) 8. Let π : X → A

be the blow-up of A along V , and set E := π−1V (cf. Example 1.19).

Then X becomes a smooth projective variety. Fix a projective embedding

X ⊂ CPN . In this situation, we have

dim(M(X) : C) = dim(M(E) : C) ≤ 4e(E)(n − k − 1) < 4(n − k − 1).

Proof. The first equality is the consequence of Theorem 1.15 (cf. Ex-

ample 1.19). Let Λ ⊂ C be a lattice satisfying 2e(E) < 1/|C/Λ|. Then

M(E) can be (naturally) Λ-equivariantly embedded in EΛ (cf. Proof of

Theorem 1.5). Consider

Π : EΛ −→ V Λ, (xλ)λ∈Λ 7−→ (π(xλ))λ∈Λ.

Let ∆ be the diagonal of V Λ. Since V is hyperbolic, the image of the embed-

ding M(E) ⊂ EΛ is contained in Π−1(∆). Thus (using Proposition 4.10)

dim(M(X) : C) =
1

|C/Λ| dim(M(E) : Λ)

≤ 2

|C/Λ| sup
v∈V

dimC(π|E)−1(v) =
2n − 2k − 2

|C/Λ| .

|C/Λ|−1 can be taken arbitrary close to 2e(E). So the conclusion holds.

8It is known (see Green [7, Theorem 1]) that a subvariety V (⊂ A) is hyperbolic if and
only if it contains no parallel translation of a (non-trivial) abelian subvariety of A.
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