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Self-propulsion of an elliptical phoretic disk
emitting solute uniformly
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Self-propulsion of chemically active droplets and phoretic disks has been studied widely;
however, most research overlooks the influence of disk shape on swimming dynamics.
Inspired by experimentally observed prolate composite droplets and elliptical camphor
disks, we employ simulations to investigate the phoretic dynamics of an elliptical
disk that emits solutes uniformly in the creeping flow regime. By varying the disk’s
eccentricity e and the Péclet number Pe, we distinguish five disk behaviours: stationary,
steady, orbiting, periodic and chaotic. We perform a linear stability analysis (LSA) to
predict the onset of instability and the most unstable eigenmode when a stationary
disk transitions spontaneously to steady self-propulsion. In addition to the LSA, we
use an alternative approach to determine the perturbation growth rate, illustrating the
competing roles of advection and diffusion. The steady motion features a transition from
a puller-type to a neutral-type swimmer as Pe increases, which occurs as a bimodal
concentration profile at the disk surface shifts to a polarized solute distribution, driven
by convective solute transport. An elliptical disk achieves an orbiting motion through
a chiral symmetry-breaking instability, wherein it repeatedly follows a circular path
while simultaneously rotating. The periodic swinging motion, emerging from a steady
motion via a supercritical Hopf bifurcation, is characterized by a wave-like trajectory. We
uncover a transition from normal diffusion to superdiffusion as eccentricity e increases,
corresponding to a random-walking circular disk and a ballistically swimming elliptical
counterpart, respectively.

Key words: propulsion, swimming/flying

1. Introduction

Synthetic microswimmers have attracted much attention owing to their promising
potential in biomedical and bioengineering applications (Sitti et al. 2015), e.g. detection
and collection of metal ions (Ban er al. 2018), targeted controlled drug delivery
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(Kagan et al. 2010; Tang et al. 2020), and cancer cell microsurgery (Vyskocil et al.
2020). Drawing inspiration from the propulsion strategies of microorganisms in nature,
various biomimetic swimmers that propel in viscous fluids have been developed (Ghosh
& Fischer 2009; Van Oosten, Bastiaansen & Broer 2009; Ahmed er al. 2016; Soto
et al. 2021). Unlike their biological counterparts, these synthetic microswimmers are
commonly powered by external forces or torques coming from the electric, optic, acoustic
or magnetic fields (Rao et al. 2015; Palagi et al. 2016; Koleoso et al. 2020); for example, a
sperm-mimicking microswimmer with a flexible filament actuated magnetically (Dreyfus
et al. 2005). Despite the rapid development of externally actuated microswimmers, some
practical difficulties, such as miniaturization and manufacturing of moving parts for
certain swimmers, have limited their applications in realistic scenarios (Ebrahimi et al.
2021; Joh & Fan 2021; Li et al. 2022).

Unlike externally actuated swimmers, chemically active swimmers convert chemical
energy stored internally or extracted from their surroundings into motion (Moran & Posner
2017). They can be classified broadly by whether their surface properties, e.g. surface
activity and mobility, are anisotropic or isotropic. A classical anisotropic swimmer is the
Janus colloid, e.g. the autophoretic Au—Pt Janus colloid (Paxton et al. 2004). Typically,
the chemically patterned asymmetric colloid features two distinct compartments, each
composed of a different material or bearing diverse functional groups (Lattuada &
Hatton 2011), which enables asymmetric chemical reactions at the surface. The inherent
asymmetry allows it to self-generate a concentration gradient, which drives a slip flow
inducing net phoretic propulsion, as revealed by experimental (Paxton et al. 2006; Duan
et al. 2015; Campbell et al. 2019), theoretical (Golestanian, Liverpool & Ajdari 2007;
Brady 2011; Datt et al. 2017; Nasouri & Golestanian 2020a) and numerical (Popescu
et al. 2010; Sharifi-Mood, Mozaffari & Cérdova-Figueroa 2016; Kohl ef al. 2023) studies.
The Janus swimmer is typically micro-scale or even smaller, and its phoretic motion is
Brownian (Michelin 2023). Its self-propulsion requires a built-in asymmetry in the surface
properties. This requirement presents a challenge to the controlled and reproducible
manufacturing of Janus colloids, hence hindering their high-throughput production (Su
et al. 2019).

Chemically isotropic swimmers are much easier to manufacture compared to their
anisotropic counterparts. A simple and typical representative of such swimmers is a
chemically active droplet, e.g. a water droplet dissolving slowly in a surfactant-saturated
oil phase, which has been researched extensively since its first experimental realization
(Izri et al. 2014). These active droplets are generally larger than the Janus microswimmers
and have typical radii ranging from 10 to 100 um. Active droplets consist mainly of
reacting droplets (Thutupalli & Herminghaus 2013; Kasuo et al. 2019; Suematsu et al.
2019) and solubilizing droplets (Peddireddy et al. 2012; Seemann, Fleury & Maass 2016;
Hokmabad et al. 2021). The former involve chemical reactions producing or changing
surfactant molecules at their surface, while the latter feature a micellar dissolution into the
surfactant-saturated ambient phase. In both instances, spatial modulation of the surface
tension at the droplet interface may potentially induce Marangoni flows. Such droplets do
not rely on built-in asymmetry like the Janus colloids, but instead attain self-propulsion
via an instability spontaneously breaking the spatial symmetry. This instability arises
from the nonlinear convective transport of solute species by fluid flow, resulting from
Marangoni and/or phoretic effects produced by local chemical gradients surrounding the
droplet (Morozov & Michelin 20194; Picella & Michelin 2022). Besides the active droplet,
another class of chemically isotropic swimmers consists of camphor disks that surf at a
liquid—air interface (Tomlinson 1862; Nakata et al. 2006; Suematsu et al. 2010). In this
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scenario, camphor molecules dissolved from the disk diffuse into the interface and further
the subsurface liquid, and the Marangoni flows resulting from the solute gradient drive
the disk to propel (Matsuda et al. 2016; Boniface et al. 2021). Notably, the Marangoni
flows generated by active droplets are solely at their surface, while those triggered by
camphor disks are along the air-liquid interface and depend significantly on the depth of
the subsurface liquid (Matsuda et al. 2016; Michelin 2023).

Active droplets exhibit complex and tunable motion as a result of the nonlinear
physico-chemical hydrodynamics (Hokmabad et al. 2021; Li 2022), characterized by
the Péclet number Pe as the ratio of flow advection to solute diffusion. At low Pe, an
isolated droplet remains stationary. Morozov & Michelin (2019b) identified the critical
Péclet number for an undeformable droplet through a stability analysis, beyond which an
unstable dipolar mode of hydrodynamics emerges, driving the spontaneous propulsion
of the droplet. This critical Pe is unchanged when the droplet internal flow is neglected,
as identified for a chemically isotropic spherical particle initially proposed to mimic an
active droplet (Michelin, Lauga & Bartolo 2013). Besides, the critical Pe determined
for a two-dimensional (2-D) undeformable droplet (Li 2022) is also consistent with that
for a phoretic disk (Hu e al. 2019). Near the critical Pe, the dipolar mode is the only
unstable one (Schnitzer 2023; Peng & Schnitzer 2023). However, higher-order modes, e.g.
the quadrupolar mode, become successively unstable with increasing Pe, leading to the
possible coexistence of multiple unstable modes with different polar symmetries (Morozov
& Michelin 2019a; Hokmabad et al. 2021). Accordingly, the active droplet sequentially
exhibits quasi-ballistic, unsteady curvilinear and even chaotic motions (Kriiger ez al. 2016;
Suga et al. 2018; Hokmabad et al. 2021; Li 2022) as Pe grows. Analogous behaviours
of 2-D (Hu et al. 2019, 2022) and three-dimensional (3-D) isotropic phoretic particles
have also been observed (Chen er al. 2021; Hu et al. 2022; Kailasham & Khair 2022).
Besides an isolated unbounded droplet/particle, the effect of nearby boundaries/fluid
interfaces (Jin et al. 2018; Malgaretti, Popescu & Dietrich 2018; Thutupalli et al. 2018;
de Blois et al. 2019; Lippera et al. 2020b; Desai & Michelin 2021; Dey et al. 2022;
Picella & Michelin 2022), that of an ambient flow (Yariv & Kaynan 2017; Dwivedi
et al. 2021; Dey et al. 2022), and interaction among multiple droplets/particles (Jin,
Kriiger & Maass 2017; Lippera, Benzaquen & Michelin 2020a; Meredith et al. 2020;
Nasouri & Golestanian 2020b; Hokmabad et al. 2022; Wentworth et al. 2022; Yang et al.
2023) have been investigated. One specific point that we should mention is that an active
droplet/particle near boundaries (Daddi-Moussa-Ider, Vilfan & Golestanian 2022), fluid
interfaces (Malgaretti er al. 2018) or another droplet/particle (Michelin & Lauga 2015)
generally exploits geometric asymmetry to propulsion, which is significantly distinct from
an isolated droplet/particle.

Most of the active droplets observed in experiments were weakly deformed and
remained spherical; one exception is the recent work by Hokmabad et al. (2019), reporting
the self-propulsion of a prolate composite droplet along its minor axis, with that oil
droplet trapping two aqueous daughter droplets at the opposing poles of its major axis,
suspended in an aqueous surfactant solution. The daughter droplets are submicellar,
whereas the external aqueous phase is supramicellar. The micellar dissolution at the
external oil-water interface induces a self-sustaining surface tension gradient, driving
the droplet motion. Compared to droplets, solid self-propelling swimmers relying on a
similar symmetry-breaking mechanism exhibit greater flexibility in shape. Kitahata, lida
& Nagayama (2013) and Ilida, Kitahata & Nagayama (2014) investigated experimentally
and theoretically the spontaneous motion of an elliptical camphor disk at the air-liquid
interface, and found that the disk swam along its minor axis resembling the swimming
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Figure 1. Self-propulsion of an elliptical disk uniformly releasing chemical solutes in a Newtonian solvent,
where ey, e, denotes the laboratory frame. The disk moves along an undulatory path with translational velocity
U, and the colour of the path is coded by the time 7. The disk orientation es coinciding with its major axis
deviates from ey and U by angles 6 and «, respectively. The inset shows the induced slip velocity u; by
local solute gradients within a thin boundary layer of thickness 4 < b. Here, n denotes the unit normal vector
pointing away from the disk surface. All the variables here are dimensionless.

prolate droplet (Hokmabad e al. 2019). Shimokawa & Sakaguchi (2022) observed that
an elliptical camphor-coated paper disk exhibited spontaneous rotation at a constant
angular velocity. Motivated by these non-spherical phoretic swimmers with uniform
chemical reactions at their surface, especially Kitahata et al. (2013) and Hokmabad
et al. (2019), here we explore theoretically and numerically, in the creeping flow regime,
the instability-driven spontaneous propulsion of an elliptical phoretic disk that releases
chemical species uniformly. We perform a linear stability analysis (LSA) to investigate the
onset of instability, and direct numerical simulations to explore the swimming behaviour
of the phoretic disk.

This paper is organized as follows. We describe the problem set-up, assumptions
and governing equations in § 2. The implementation for the LSA is introduced in § 3,
followed by § 4 demonstrating numerical and theoretical results. Finally, we conclude our
observations and provide some discussion in § 5.

2. Problem set-up, governing equations and methodology
2.1. Problem set-up and governing equations

We consider a chemically active elliptical disk emitting or absorbing solute molecules
uniformly in an incompressible Newtonian fluid of dynamic viscosity 7 (see figure 1).
From here on, the bar indicates a dimensional variable unless stated otherwise. The

semi-major and semi-minor axes of the disk are a and b<a, respectively, and ¢y =
va? — b? denotes half of its focal length. Hence the disk shape can be characterized
by the eccentricity e = ¢¢/a, which amounts to 0 or approaches 1 as the disk becomes
circular or needle-like. We choose the major axis of the disk to denote its orientation
e; = sin6 e, + cos 0 e, which is characterized by its angular deviation from e,

974 A57-4


https://doi.org/10.1017/jfm.2023.858

https://doi.org/10.1017/jfm.2023.858 Published online by Cambridge University Press

An elliptical disk swimmer driven by uniform solute emission

We now describe the phoretic dynamics of the elliptical disk and the associated
governing equations (Anderson 1989; Michelin et al. 2013). The disk’s surface Iy
uniformly emits or absorbs solutes at a constant rate A (activity), hence

Dn V¢, = —A. 2.1)

Here, ¢ is the solute concentration, D denotes the molecular diffusivity of the solute,
and n is the unit outward normal at the surface. Positive or negative A corresponds to
the solute emission or absorption at the disk surface, respectively. The solute interacts
with the disk surface through a short-range potential, and here we focus on the classical
thin-interaction-layer limit & < b, with / the thickness of the interaction layer. Within
this layer, the slip velocity along the disk surface induced by the local tangential solute
gradients (Anderson 1989) reads

5|, =MV, (2.2)

where ug indicates the slip velocity, Vi = (I — nn) - V is the surface gradient operator,
and M denotes the phoretic mobility coefficient. The coefficient M determines the
chemotactic direction of the phoretic swimmer. For active droplets, M can be adjusted by
tuning the relationship between surface tension and chemical solute, as shown by recent
experiments (Wentworth er al. 2022): M > 0 when they are positively correlated, and
M < 0 when negatively correlated. Prior studies (Michelin et al. 2013; Hu et al. 2019)

revealed that spontaneous symmetry-breaking propulsion is present only when AM > 0;
in other cases, the disk remains stable. Without loss of generality, our analysis focuses on
A > 0and M > 0, but the results will remain in the converse scenarios. Also, we assume
that the inertia of both fluid and disk is negligible compared to the viscous force because
the Reynolds number Re is typically small in the experiments (Peddireddy et al. 2012;
Maass et al. 2016; de Blois et al. 2019; Hokmabad er al. 2021, 2022; Michelin 2023).
Hence the fluid flow surrounding the disk can be described approximately by the Stokes
equation.

In the following, we introduce the dimensionless governing equations. We choose
AM /D, b and bA /D, respectively, as the characteristic velocity V, length and concentration
for the non-dimensionalization. All variables below are dimensionless unless specified
otherwise. The dimensionless equations for the velocity u, pressure p and concentration ¢
are

Vo =0, V.u=0, (2.3a,b)
dc 1
— «Ve=— Ac, 2.4
3t+u ¢ Pe ¢ 24)

where Pe = AMb/D? measures the ratio of flow advection to solute diffusion, and o =

—pI +Vu+ (Vu)T is the hydrodynamic stress tensor. At the disk surface, the constant
flux boundary condition (2.1) for the concentration reads

n-Vclp, =—1. (2.5)

It is known that (2.4) does not support a steady-state solution within a 2-D infinite domain
due to the logarithmic divergence (Sondak et al. 2016; Yariv 2017; Kailasham & Khair
2023). To resolve this issue, we consider a circular fluid domain with a finite radius R, and
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prescribe on its exterior I, that
clr, =0. (2.6)

Following Hu et al. (2019) and Li (2022), here we set R = 200. In fact, we also examine
the convergence of numerical results with respect to the domain size R, and reveal that
the chosen R is sufficiently large to ensure that the disk motion remains unaffected, as
depicted in figure 13 of Appendix C.

We perform numerical simulations in the frame co-moving with the disk centre. Hence
the boundary conditions for the velocity at the disk surface I'; and the outer boundary I,
are

ulr, =us + £ x (xg — xc), 2.7a)
ulr, =-U, (2.7b)

where uy; = V¢ is the slip velocity at the disk surface, and x; and x. denote the coordinates
of a general point at the disk surface and the disk centre, respectively. Here, U and
2 denote the translational and rotational velocities of the disk, respectively, which are
determined by the force-free and torque-free conditions (Lauga & Powers 2009)

F:/ n-odl =0, (2.8a)
Iy

T = Xy —xc) X (n-0)dl=0. (2.8b)
]

In other words, the total force and torque exerted on the disk swimmer are zero. The
initial condition is zero velocity, pressure and concentration within the domain. Equations
(2.3a,b)—(2.8) form the complete set of governing equations for an elliptical phoretic disk
in the frame co-moving with the disk.

2.2. Numerical method

We solve numerically the governing equations, using a finite-element method solver
implemented in the commercial package COMSOL Multiphysics (I-Math, Singapore). We
adopt the moving mesh technique to tackle the deformation of the fluid domain caused by
disk rotation. Taylor-Hood and quadratic Lagrange elements are employed to discretize
the flow field (u, p) and the concentration c, respectively. The computational domain is
discretized by approximately 85 000-127 000 triangular elements, and the mesh is refined
locally near the disk. Our COMSOL implementations are validated extensively against
several published datasets, as shown in Appendix A.

3. Linear stability analysis

Prior studies reveal that a chemically isotropic disk/droplet possesses a stable stationary
state at a sufficiently low Pe. As Pe grows beyond a critical value, an instability arises,
leading the disk/droplet to swim autonomously (Hu et al. 2019; Morozov & Michelin
2019h; Li 2022). Our numerical results indicate that the elliptical disk here exhibits
analogous behaviour, hence we conduct an LSA to examine the onset of instability at a

critical Péclet number Peél).
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We first decompose the space- (x) and time-dependent state variables (c, u, p) into the
sum of a base state and a perturbation state as

c(x, 1) = cp(x) + ' (x, 1), (3.1a)
u(x, t) = up(x) + u'(x, 1), (3.1b)

where the subscript b denotes base-state fields, and the primed variables are infinitesimal
perturbations. The base state can be obtained numerically. By substituting (3.1) into
(2.3a,b) and (2.4), and retaining linear terms, we obtain

V.¢'=0, V.-u=0, (3.2a,b)

0 oV b u -V LA (3.3)
— 4+ up- V' +u - Vep = — A .
at b b= Pe

Note that up(x) = 0 for a stationary circular disk, while for its elliptical counterpart,
up(x) #0 due to the anisotropic concentration distribution at the disk surface (see
figure 6a). The perturbations are assumed to vary exponentially in time with a complex
growth rate 4 = A, + id;, i.e.

c(x, 1) = ¢(x) exp(Ar), (3.4a)
U (x, 1) = u(x) exp(A1), (3.4b)
P (x, 1) = p(x) exp(A). (3.4¢)

Consequently, (3.2a,b) and (3.3) can be reformulated to
V.6=0, V-u=0, (3.5a,b)
/lé—l—ub.Vé—l—it-Vcb:%eAé. (3.6)

By expanding the translational and rotational velocities similarly, we arrive at
U=U,+ U exp(Ar) and 2 = 2, + Q exp(Ar). Substituting these with (3.1) into
(2.5)—(2.7) enables us to derive the boundary conditions for ¢ and & at the disk surface
and outer boundary:

n-Véilp, =0, &, =0, (3.7)
ilr, =V + R x (xy—xc), #lp,=-U. (3.8)

Note that U} and $2; disappear in (3.8), corresponding to a stationary disk of the base
state. The force-free and torque-free conditions still hold as

A

F:/n-&dl:O, (3.90a)
Iy

T=| (xgq—x) x(n-6)dl =0, (3.9b)

Ia
Equations (3.5a,b)—(3.9) define an eigenvalue problem. The stability of the base state is
determined by the eigenvalue with the largest real part /19, namely the leading eigenvalue,
and the corresponding perturbations (i, p, ¢)" are called leading eigenmodes. The base
974 A57-7
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Figure 2. An elliptical disk of eccentricity e = 0.87 follows typical trajectories depending on Pe: (a) steady,
(b) orbiting, (c¢) periodic, (d) steady, and (e) chaotic. The colour of a trajectory is coded by the time 7. Green
and red arrows denote the direction of the translational velocity U and the disk orientation ey, respectively.
(f) Polarized concentration distribution with respect to es at Pe = 0.4. (g) Periodic pendulum-like swinging
of the disk at Pe = 10 in the frame co-moving with its centre. The star and triangle symbols marked in
(g) denote the two distinct moments when the disk reaches the peak and trough of its trajectory, respectively,
as shown in (c¢).

state is stable when A% < 0, but unstable when A% > 0. The Péclet number at which 2% = 0

is precisely the critical Péclet number Peél) signifying the transition from a stationary
state to steady propulsion. Unless stated otherwise, the eigenvalues mentioned below refer
to the leading eigenvalues, and the superscript O is omitted for simplicity. We solve the
eigenvalue problem with COMSOL using the eigenvalue solver ARPACK. The validation
of our approach is demonstrated in Appendix A.

4. Results
4.1. Diverse behaviours of an elliptical phoretic disk
By increasing Pe, we demonstrate the diverse Pe-dependent behaviours of a disk with

eccentricity e = 0.87. For a sufficiently small Pe below a critical value Pegl), the disk
undergoes transient rotation before recovering a stationary state. When Pe goes above

Pegl), e.g. Pe = 0.4, the stationary state transits into steady propulsion, in which the
fore—aft symmetry in the concentration profile is broken (see figure 2 f), and the resultant
concentration polarity induces a rectilinear motion with a constant swimming speed,
as depicted in figure 2(a). Further increasing Pe to 0.62, the directed motion loses its
stability, leading to a secondary instability characterized by spontaneous chiral symmetry
breaking. Consequently, the disk repeatedly traces a circular path, exhibiting spontaneous
rotation (clockwise, in this instance), as depicted in figure 2(b). This regime featuring
circular trajectory and self-rotation is called the orbiting regime. Hu et al. (2019) and Li
(2022) observed analogous circular trajectories executed by circular swimmers without
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Figure 3. Phase diagram characterizing the behaviours of an elliptical phoretic disk depending on its
eccentricity e and the Péclet number Pe. It shows five regimes: stationary, steady, orbiting, periodic and chaotic.
The solid line denotes the LSA prediction.

self-rotation. At Pe = 10, the elliptical disk favours a wave-like trajectory after a transient
period of swimming straight forwards (see figure 2¢). From the viewpoint of the frame
co-moving with the disk centre, the disk swings periodically like a pendulum (see
figure 2g). This swimming behaviour is analogous to that exhibited by an active prolate
double-core droplet that moves along an undulatory trajectory (Hokmabad ef al. 2019). Li
(2022) also reported that a high-Pe active drop swims along a periodic zigzag trajectory.
As Pe increases to 25, the elliptical disk surprisingly recovers to steady propulsion, as
illustrated in figure 2(d). In correspondence, chiral symmetry recovers. Unlike the ballistic
motion after rotation at low Pe, the disk here travels straight from the onset of instability
without any rotation. The steady propulsion becomes unstable at a higher Pe, e.g. Pe = 33;
accordingly, the disk swims straight forwards at an oscillating speed (see figure 12 in
Appendix B). Hu et al. (2022) and Kailasham & Khair (2022) identified the similar motion
of a 3-D isotropic phoretic particle in an axisymmetric set-up, where the particle does
not rotate, and the flow and concentration fields are symmetric about an axis parallel
to the particle’s translational direction. Figure 2(e) indicates that the disk enters into a
chaotic regime characterized by an erratic trajectory at Pe = 60. In contrast to frequent
intermittency and random walk occurring in the chaotic regime for a circular disk, as
observed by Hu er al. (2019), the change of velocity in both direction and magnitude
experienced by the elliptical disk is not drastic, yielding a less chaotic trajectory.

Having observed distinct swimming behaviours of a disk with a specific eccentricity
at varying Pe, we then systematically examine how the eccentricity e affects these
Pe-dependent behaviours. The phase diagram in figure 3 shows that shifts in Pe-dependent
behaviours of an elliptical disk with e below 0.75 resemble those of a circular counterpart
(e = 0). The elliptical disk executes successively stationary, steady, periodic and chaotic
motion with increasing Pe. As e exceeds 0.75, the disk exhibits richer dynamics: the
orbiting motion emerges with broken chiral symmetry. In fact, we have also explored
the scenarios at e > 0.9, e.g. e = 0.96, and observed that the swimming dynamics of
the elliptical disk is almost dominated by orbiting and chaotic regimes (not shown here).
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These two regimes have been revealed in the current phase diagram, hence the
characteristic locomotory modes can be well captured in the range of e considered.

We further discern from the phase diagram that the variation of e categorizes certain
identified swimming patterns into two types. In the stationary or steady swimming regime,
the aforementioned observations indicate that the disk experiences transient rotation before
recovering a stationary state or retaining a steady motion (see figure 2). Nevertheless,
these situations are applicable only at a higher e, clearly distinguished by light-coloured
symbols. When e < 0.75, the disk remains stationary or swims straight without any
rotation. Besides, two types of periodic motions are depicted in the phase diagram: (1)
a disk swings along a wavy trajectory (light-coloured squares); (2) a disk swims straight
at an oscillating swimming speed (dark-coloured squares). The former and the latter are
termed swinging and straight periodic motions, respectively.

4.2. Spontaneous steady propulsion triggered by instability

Upon gaining a general understanding of the phase diagram, we then explore the detailed
swimming dynamics within each regime. We first focus on the transition from the
stationary to steady swimming regime. The disk is stationary in the base state. As Pe

exceeds Peg.l), an instability arises, and the disk sets into steady propulsion along its

major axis. Here, we perform a LSA, as introduced in § 3, to identify quantitatively Peél)

and its dependence on the disk shape. The Pegl) value predicted by the LSA decreases
monotonically with e, as depicted by the solid line in figure 3. Figure 4(a) depicts the
concentration field ¢ of the eigenmode at Pegl) ~ (0.42 for e = 0.55. We see that the
symmetry of the base concentration field ¢ is broken in the direction of the major axis at
Pegl). The fore—aft asymmetric concentration distribution induces a downward slip flow,
as shown by the flow field & of the eigenmode in figure 4(b), driving the steady motion
of the disk along its major axis. In close proximity to Pegl) , the swimming speed Uy, is

proportional to 1/ Pe — Pegl) (see figure 4c¢), implying that the instability occurs through a
supercritical pitchfork bifurcation. This is parallel to the observation of Hu et al. (2019)
and Li (2022).

We further probe the physical mechanism underlying the instability by adopting an
approach resembling the energy budget analysis (Bendiksen 1985; Abubakar & Matar
2022). By taking an inner product, denoted by (-, -), of (3.6) with ¢ in the I? space, we
arrive at

1
(A¢,¢) + (up - V&, 0) + (- Vep, ¢) = 7o (Ac, ©). (4.1)
e

Using integration by parts, the divergence-free condition in (3.5a,b), and the boundary
conditions (3.7) and (3.8), we derive

(up - VE,8) = S(n-up, )y + 5(n-up, ), =0, (4.2)
(&-Vep, &) = —(cp, i1+ VO, (4.2b)
1 (A&, ¢) = L 1ve)?, (4.2¢)

Pe Pe

with || - || denoting the L*-norm. By substituting (4.2) into (4.1), we obtain
de = Ac + A4, (4.3)
974 A57-10
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Figure 4. Eigenmodes at the critical Péclet number Peél) ~ (.42 for an elliptical disk with e = 0.55. The
eigenmode is characterized by (a) the perturbation concentration ¢, and (b) the perturbation velocity & (red
arrows) and its y component 9 (colour map). (¢) Dependence of time-averaged disk speed (U,ug) on Pe — Pegl)
at varying e. In the vicinity of Pegl), (Ung) is proportional to |/ Pe — Pegl). (d) The Pe-dependent growth rate
A based on the LSA and A, = A, + A4 derived from the concentration perturbation equation (3.6). The latter
comprises the contributions A, and A, from advection and diffusion, respectively.

with
(cp,u+Ve)
de = ———, 4.4
e (40
Ivel?
Ag=——x. 4.4b
T T (Pe, 2) (445)

Here, the growth rate A, is introduced in (4.3) to be distinguished from A obtained by
the LSA. Also, A, and Ay represent the contributions of advection and diffusion to A,
respectively. For a steady motion, the imaginary part of the growth rate vanishes, thus
the growth rate has only its real part, e.g. 4 = A,. Figure 4(d) shows that A, and A lie on
top of each other, giving us the confidence to analyse the dominant physical ingredient
that drives the instability using (4.3). We infer naturally from (4.3) that A, is responsible
for A, turning positive by realizing that A; is consistently negative, as confirmed by
figure 4(d). Hence, as anticipated, advection drives the instability and diffusion dampens
the perturbation, and the balance between them dominates the phoretic dynamics of the
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Figure 5. (a) A puller-type steady swimmer at Pe = 0.5 transitions to (b) a neutral-type counterpart at Pe =
1.5, where the eccentricity e is 0.55. The flow fields are shown in the frame co-moving with the disk. Black
arrows denote swimming direction. The colour maps indicate the distribution of ¢. The stagnation point P
coincides with the peak of ¢ at the disk surface. (c¢) Polar velocity magnitude u; - ¢ at the disk surface, following
the definition in Downton & Stark (2009). Here, B is the polar angle with respect to the disk orientation e,
with ¢ the corresponding unit tangent vector. (d) Pe—e phase diagram shows puller-type and neutral-type steady
swimmers demarcated by the dashed line. Solid lines separate regimes identified in figure 3.

elliptical disk: at small Pe, diffusion dominates, and its homogenizing effect maintains a

fore—aft symmetric solute distribution. As Pe grows beyond Pegl), advection suppresses
diffusion and amplifies the asymmetric solute disturbance. The slip flows triggered by the
asymmetric concentration distribution drive the disk to swim spontaneously.

Next, we analyse the steady propulsion of the autophoretic disk. We show in
figures 5(a,c) that the elliptical disk with e = 0.55 swims as a puller, attracting the fluid
from its front and rear at Pe = (.5. In contrast, it becomes a neutral-type swimmer at Pe =
1.5, as indicated in figures 5(b,c). In retrospect, Suda et al. (2021) reported an analogous
transition from a puller swimming straight into a pusher-type swimmer executing unsteady
curvilinear motion when Pe increases. In that case, the droplet motion is triggered by the
concentration gradient caused by a point source of surfactant at the surface. Besides, Li
(2022) observes that an active drop transits from a steady pusher to a mixed pusher—puller
propelling unsteadily as Pe grows. In the case of these droplet swimmers, the switching
of their disturbance flow occurs as they go from steady to unsteady motion. Morozov
& Michelin (2019a) describes a Pe-dependent neutral-to-pusher transition for a 3-D
axisymmetric droplet impelling steadily. Notably, this transition occurs without a shift
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Figure 6. Normalized concentration at the surface of a disk swimming steadily: (a—c) for an elliptical disk with
e = 0.55at Pe = 0.3, 0.5 and 1.5, respectively; (e, f) for a circular disk at Pe = 0.3 and 0.5, respectively. Here,
cmayx denotes the peak concentration at the disk surface. The stagnation point P coincides with the location of
Cmax at Pe = 0.5. (d) Transition from a bimodal to a polarized concentration distribution at the surface of an
elliptical disk by increasing Pe. (g) Similar to (d), but for a circular disk with a transition from an isotropic
solute distribution.

in the droplet’s swimming pattern, resembling that exhibited by the disk swimmer here.
We examine further the flow field in the frame co-moving with the disk throughout
the whole steady swimming regime, and summarize these results in a phase diagram
in figure 5(d). It is found that a circular (e = 0) or nearly circular disk can be only a
neutral swimmer, and the puller-to-neutral transition emerges as e > 0.20. The critical
Péclet number Pe; signifying this transition depends monotonically on e, as indicated
by the dashed line. When e > 0.65, the transition disappears and the disk swims solely
as a puller. In fact, this peculiar transformation can be understood by examining the
solute distribution at the disk surface, as discussed below. For visualization purposes,
we normalize the concentration via ¢ = 0.3(¢pax — ¢)/(Cmax — Cmin), Where cpqy and cpin
denote the maximum and minimum concentrations at the disk surface, respectively.

We demonstrate in figures 6(a,d) the bimodal distribution of normalized concentration
caused by the curvature variation of the disk surface in the base state (Pe = 0.3). The
maximum normalized concentration ¢, is located at the left vertex of the minor axis
corresponding to B = 90°, where B denotes the polar angle with respect to e;. Here,
we consider only the left half of the disk (8 € [0, 180°]) for its symmetry. At Pe = 0.5,
the base state loses stability and solutes are advected toward the disk’s rear (8 = 180°).
Correspondingly, the position of ¢,y migrates rearwards from g = 90° to the stagnation
point P, as depicted in figure 6(b). Considering that the slip velocity u; = V¢ is directed
from low to high concentration at the disk surface, the fluid is attracted from the front and
rear of the elliptical disk to the stagnation position P, forming a puller-type swimmer
(see figure 5a). As Pe increases to 1.5, the enhanced convective transport of solutes
causes the shift from a bimodal to a polarized concentration profile with the peak
concentration located at 8 = 180° (see figure 6¢). Correspondingly, the slip flow induced
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Figure 7. (a) Time evolution of the angle o between the translational velocity U and the disk orientation e;
as the elliptical disk with e = 0.87 approximately follows a circular trajectory for Pe = 4. The inset shows
the monotonic decrease of the time-averaged o with Pe. (b) Solute distribution and streamlines at the instant
t = 5840 marked in (a). Three hexagons denote the stagnation points at the rear of the disk.

by the concentration gradient is driven from the front to the rear of the disk (see figure 6b),
generating a prototypical neutral-type swimmer. We comment that as an elliptical disk
swims steadily, a bimodal concentration profile at its surface yields a puller-type swimmer,
while a polarized one leads to a neutral-type counterpart. Different from the elliptical
disk, a circular disk has an isotropic base distribution of the solute (Pe = 0.3), as shown
in figures 6(e,g). For an unstable base state at Pe = 1.5, solutes are advected rearwards
along the disk surface, leading to the direct transition from an isotropic to a polarized
concentration profile. Hence the circular disk behaves as a neutral swimmer solely.

4.3. Chiral symmetry-breaking orbiting motion

Having observed the puller—neutral transition in the steady swimming regime, we direct
our focus onto the chiral symmetry-breaking orbiting motion of the elliptical disk. Here,
the disk swims approximately along a circular trajectory (see figure 2b) with rotational
velocity §2. The time evolution of £2 resembles that of « in figure 7(a) oscillating around
a constant value: the constant value determines a globally circular trajectory, and the
oscillations contribute to a locally undulatory trajectory. We find that the translational
velocity U (green arrow in figure 2b) deviates from e; (red arrow) by an angle o
oscillating slightly around 15° for Pe = 4. In fact, the misalignment of U and es can
be rationalized by examining the solute distribution c(x, y) around the disk. Figure 7(b)
illustrates c(x, y) and streamlines at a specific moment ¢t = 5840. The left-right asymmetry
of the solute distribution about e, gives rise to the asymmetric slip velocity, as reflected by
the streamlines, hence causing diverging directions of U and e;. Besides, we notice that
three stagnation points near the rear of the disk in figure 7(b) migrate gradually towards
the rear with increasing Pe in the orbiting regime (not shown here). Accordingly, the
time-averaged (o) = fOT o dt/T within a time window T decreases monotonically with Pe,
as shown in the inset of figure 7(a). Intuitively, we infer that U is aligned with e; (¢ = 0)
as the three stagnation points coincide exactly at the rear of the disk, and indeed they do

as Pe grows beyond 14 where the disk executes a steady motion, e.g. Pe = 25 (streamlines
and concentration distribution are analogous to figure 5b0).
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Figure 8. (a) Time evolution of the rotational velocity §2 of an elliptical disk with e = 0.87 at Pe = 12.5. The
dashed line denotes certain local peaks §2,; of §2, and the inset shows the linear dependence of log §2, on t.
(b) Linear variation of .Q,%,g in Pe near the critical Pe ~ 13.5 (star), where £2,,¢ denotes the constant amplitude
of §2 at t > 5400, as depicted by the dotted line in (a). The periodic motion recovers to steady propulsion as
Pe grows beyond the critical value. (¢) Phase portrait in the £2—U plane, with the colour of the unstable spiral
coded by 7.

The orbiting regime is characterized by the continuous rotation of an elliptical disk,
which loses its chiral symmetry spontaneously. Conversely, a circular disk maintains
this symmetry irrespective of the Pe value. In particular, for Pe € [9, 13], despite
the asymmetric solute distribution and streamlines resembling those in figure 7(b)
occasionally, the circular disk executes only a meandering motion (Hu et al. 2019) without
rotation. Ideally, a secondary stability analysis similar to the one performed above will
help us to understand the mechanism for the shape-induced chiral symmetry breaking.
This task is, however, technically challenging, and will be pursued in the future.

Notably, experiments on active droplets in a Hele-Shaw cell showed that the droplet
preferred to avoid the concentration trail emitted by itself at earlier times, termed a
self-avoiding walk phenomenon (Hokmabad et al. 2021). The elliptical disk here does
not avoid similarly but instead repeats its previous trajectory, as shown in figure 2(b). The
difference can be rationalized by a scaling analysis. We estimate that the time 7, required
for the concentration to decay to zero is of the order of 5?/D. The disk moves with speed

Umg]_/, hence the travelling time 7, taken to execute a circular trajectory of perimeter I:p is
I}p / (UmgV), approximately. Recalling the definitions of V and Pe in § 2, we rewrite 7, as
Lyb/(Upg Pe D). The ratio between these two time scales is

b _ Lp/b

= = . 4.5
tq Umg Pe ( )

At a specific Pe, e.g. Pe = 4, in the orbiting regime, 7,/7; ~ 87.2 > 1. This substantial
ratio indicates that the disk swimmer can barely sense and thus avoid its own rapidly
decaying chemical trace. In contrast, for a sufficiently larger Pe, we may observe the
self-avoidance due to the significantly reduced travel time 7, (Hokmabad et al. 2021;
Hu et al. 2022).

4.4, Periodic swinging

Typically, the orbiting motion transitions to periodic swinging (refer to figure 2¢) as Pe
increases, which will be analysed below. Figure 8(a) illustrates that the time-evolving
rotational velocity §2 of the disk with e = 0.87 at Pe = 12.5 is characterized by two phases.
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First, £2 grows rapidly due to self-oscillation, and the dashed line connecting local peaks
§2p) of £2 indicates an exponential growth of §2 in time. This trend is confirmed by the
linear relationship between log §2,x and 7 shown in the inset of figure 8(a). Second, £2
saturates nonlinearly to a periodic state with a constant amplitude £2,,,,. The sinusoidal-like
variation of §2 leads to a wave-like trajectory. We plot Q,%g as a function of Pe near the

critical Pe &~ 13.5 (star) in figure 8(b). The linear dependence of Qig on Pe implies that
the steady motion loses stability through a Hopf bifurcation. The critical Pe signifies
the boundary between the periodic swinging and steady motion. We further present in
figure 8(c) the phase portrait in the £2-U plane, where the unstable spiral at the origin
grows continuously to an elliptical stable limit circle, indicating the supercritical nature
of the Hopf bifurcation. Notably, when e < 0.87, we observe a transition from steady to
periodic swinging with increasing Pe, e.g. e = 0.81 (see figure 3). The Hopf bifurcation
still holds for the onset of instability that triggers this transition.

4.5. Chaotic swimming dynamics

Finally, we analyse the chaotic motion of elliptical disks by examining their mean square
displacement (MSD) and the velocity autocorrelation function (VAF). We calculate the
MSD(7) of a disk (Michalet 2010) that depends on a time lag T by

T—1
MSD(7) = ﬁ /0 [r(t + 1) — r(0)]* dt, (4.6)

where r(¢) denotes the time-dependent displacement of a disk relative to its original
position. Clearly, combining a large time period T and 7 < T can improve the statistical
confidence. We calculate VAF using

VAF(t)—l / il t
T Jo IUOINUGE+ An|

T
where a sufficiently large 7 is used to attain statistical invariance (Chen et al. 2021).
We examine how the eccentricity e of a disk affects its chaotic motion. First, we

determine the shape-dependent Pe?) (e) when chaos emerges. Then we investigate the

chaotic dynamics at Pe(e) = Pegz) (e) + 10 above that threshold by a fixed offset, namely
10 here. The corresponding MSD and VAF are depicted in figure 9(a). At early times,
despite the diversity in the disk shape, they all swim persistently, resulting in the
quadratically growing MSD in t. At long times, the disk shape considerably affects its
phoretic movement, leading to a transition from a random-walking circular disk to a
ballistically swimming elliptical counterpart. For the former, we reproduce perfectly its
random walk behaviour as reported by Hu et al. (2019, 2022) and Lin, Hu & Misbah
(2020), which features the linear scaling MSD o< 7 and the decorrelation in velocity U due
to the rapidly changing swimming direction (see the inset). As the eccentricity e increases
to 0.1, MSD o< 7!, reminiscent of the self-avoidance walk identified experimentally

(Hokmabad er al. 2021). We wonder whether this growth scaling, ocz!-, results from
the self-avoidance walk. By utilizing the scaling analysis mentioned above, we compare
the decay time of the chemical 7; and the travelling time 7, of the disk, and find that
t,/tq = 40.8 > 1 (see (4.5)), precluding self-avoidance here. At e = 0.87, the MSD’s
quadratic growth over lag time implies that the elliptical disk approximately executes the
ballistic motion, as confirmed by the trajectory shown in figure 2(e). Accordingly, the VAF
is almost constant in time, indicating a correlation in velocity U. It is worth noting that
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Figure 9. (a) Mean square displacement (MSD) and velocity autocorrelation function (VAF) for disks with

different shapes at Pegz) + 10, where Pegz) is the shape-dependent critical Péclet number corresponding to the

onset of chaos. (b) The exponent k of the power-law scaling MSD o< T¥ versus e. (¢) Monotonic dependence
of k on Pe for the disk of e = 0.2. (d) Chaotic trajectories (colour-coded by ¢) followed by an elliptical disk of
e = 0.2 at Pe = 8, 27 and 47, respectively.

Hu et al. (2022) and Morozov & Michelin (2019a) also found the quadratic variations of
MSD for the chaotic swimming of a phoretic particle and an active droplet, respectively,
under the axisymmetric assumption.

By probing further in figure 9(b) the exponent k of power-law scaling MSD o ¥ at
varying e, we notice that the normal diffusion (k = 1) transitions to superdiffusion (k > 1)
as e increases. This observation demonstrates that the shape of a disk can significantly
affect its diffusion behaviour. In addition, we explore the effect of Pe on the chaotic motion
of an elliptical disk at long times, as depicted in figure 9(c). In contrast to the eccentricity e,
k decreases monotonically with Pe, implying the transition from superdiffusion to normal

diffusion. Accordingly, the elliptical disk undergoes a ballistic motion near Pe!” and

swims randomly at a larger Pe, e.g. Pe = 47 (see figure 9d). An analogous dependence of
k on Pe for the chaotic motion of an axisymmetric spherical particle was also reported by
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Kailasham & Khair (2022). Note that the system exhibits ballistic evolution (MSD « 72)
at short times regardless of Pe.

5. Conclusions and discussions

In this work, we investigate numerically and theoretically the swimming dynamics of an
elliptical disk releasing solutes uniformly in the creeping flow regime. The disk with an
eccentricity e < 0.75 mimics a circular counterpart: it shows stationary, steady, periodic
and chaotic behaviours, dependent on Pe. When e > 0.75, the disk attains an orbiting
motion via an instability spontaneously breaking the chiral symmetry.

By performing an LSA, we predict theoretically the critical Péclet number Pegl)
above which a stationary disk becomes a steady swimmer spontaneously triggered by
instability. Besides the LSA, we calculate the perturbation growth rate via a method akin to
energy budget analysis. The results agree with the LSA predictions, and two contributing
components of the growth rate showcase the competing roles of advection and diffusion.

We observe that the transition from a puller-type to a neutral-type steady disk swimmer
is induced by a stronger rearward advection of solute due to growing Pe. Accordingly,
a bimodal concentration profile corresponding to a puller-type swimmer becomes a
polarized profile leading to a neutral-type swimmer. The orbiting disk repeatedly swims
along a circular trajectory while simultaneously rotating.

Two distinct types of periodic motion are identified: swinging and straight. The former
develops from a steady motion through a supercritical Hopf bifurcation, and features a
wave-like trajectory. The latter is characterized by a rectilinear motion with an oscillating
swimming speed. Finally, the effects of the disk shape and Pe on the chaotic motion
are examined. We uncover a shift from normal diffusion to superdiffusion with growing
eccentricity e: the former and latter correspond to a random-walking circular disk and
a ballistically swimming elliptical counterpart, respectively. The influence of Pe on the
disk’s diffusion behaviour stands in contrast to that of e.

It is worth mentioning that the prolate Janus droplet, as reported experimentally
(Meredith et al. 2022), propels along its major axis resembling the behaviour of our
elliptical disk in the steady swimming regime. Nevertheless, the swimming orientation
of the Janus droplet is determined by the inherent asymmetry of surface activity along
its major axis, rather than by the instability-induced symmetry breaking. Additionally,
we would like to emphasize that both the elliptical camphor disk (Kitahata et al. 2013)
and the prolate composite droplet (Hokmabad et al. 2019) in experiments demonstrated
self-propulsion along their minor axes, rather than the major axis that we observe.
The differences may result from the failure of 2-D simulations to capture the complex
3-D physico-chemical hydrodynamics present in experiments. Specifically, a swimming
camphor disk is driven by Marangoni flow at the air-liquid interface and the resulting 3-D
subsurface flow, while the prolate droplet self-propels within a Hele-Shaw cell. We are
planning 3-D studies to address these discrepancies.

Acknowledgements. We thank Q. Yang and P. Negi for helpful discussions, as well as W.-F. Hu for
generously sharing the data utilized in the validation. We appreciate the insightful comments from the
anonymous reviewers.

Funding. L.Z. thanks Singapore Ministry of Education Academic Research Fund Tier 2 (MOE-T2EP50221-
0012 and MOE-T2EP50122-0015) and Tier 1 (A-8000197-01-00) grants, and the Paris-NUS joint research grant
(ANR-18-IDEX-0001 and A-0009528-01-00). Some computation of the work was performed on resources of
the National Supercomputing Centre, Singapore (https://www.nscc.sg).

974 A57-18


https://www.nscc.sg
https://doi.org/10.1017/jfm.2023.858

https://doi.org/10.1017/jfm.2023.858 Published online by Cambridge University Press

An elliptical disk swimmer driven by uniform solute emission

(a) (b) (©)
p: 0.10 0p— —
0.10 \k\\ 0.06 —0.10} N A
btéo . / O~ }\0\0\0_(; 004 015 {}\‘0 A'A'AA.A.A,.A..A-A‘AA g,g
. AN o
~ 005 ] 7020 ‘Q’QO_ . ,0/
I 0.02 0.25k0—e = 0,995
i o ol ae =091 4
0 ¥1-0.30L0-—-e=0.5 !
0 4 8 12 0 5 10 15 20 -1.0 -0.5 0 0.5 1.0
Pe Pe e

Figure 10. Validation of our numerical implementation against published works. The numerical and published
data are represented by markers and lines, respectively. (a) Swimming speed of an isotropic autophoretic
disk in a circular domain of radius R = 200 for varying Pe, benchmarked by Hu er al. (2019). Note that

the time-averaged swimming speed (Upg) = fOT Upg dt within a time period T recovers Uy, for steady
propulsion. () Swimming speed of an autophoretic spherical particle versus Pe computed in an axisymmetric
configuration, in comparison to Michelin ez al. (2013); the inset shows the growth rate A of the unstable
eigenmode versus Pe. (¢) Swimming velocity of a spheroidal Janus particle as a function of ¢, validated
against Popescu et al. (2010). Here, ¢ denotes the height of the border dividing the particle into active and
inert (marked in grey) compartments, with { = 0 corresponding to the particle centre. The eccentricity e of the
spheroid recovers to zero for a spherical particle.
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Appendix A. Validation of numerical implementations

We show the validation of our COMSOL implementations for the numerical simulation
(2.3a,b)—(2.8) and stability analysis (3.5a,b)—(3.9). First, we study the inertialess
self-propulsion of an isotropic autophoretic disk in a circular domain of radius R = 200.
This set-up has been investigated by Hu et al. (2019), combining a stability analysis and
simulations based on a spectral method. The disk transits to a steady swimmer from its
stationary state at the first threshold Pe &~ 0.466. Increasing Pe, the swimmer becomes
unstable at the second critical condition Pe & 4.65, moving in a meandering manner. Our
numerical data shown in figure 10(a) recover exactly the reported Pe-dependent swimming
speed and two critical Pe values. Besides the 2-D case, we examine the spontaneous motion
of an axisymmetric isotropic particle in an unbounded domain. In this case, instability
occurs at Pe = 4, as predicted by Michelin et al. (2013). Our data on swimming speed
agree well with the numerical results therein, as depicted in figure 10(b). Also, its inset
shows that the present LSA recovers the threshold Pe = 4 and the eigenvalues depending
on Pe. As a side product, we probe the effect of inertia Re on this scenario. The inertial
effect systematically enhances the swimming speed, becoming pronounced when Re > 1
(see figure 11a). The inertia-induced relative enhancement of the swimming speed ¢ in
figure 11(b) is observed to scale linearly with Re in this weak inertia regime, which
deserves further theoretical underpinning.

Finally, we examine the ability of our implementation in handling non-spherical
phoretic swimmers. We focus on a spheroidal Janus colloid consisting of active and inert
compartments. Its propulsion depends on its eccentricity e and ¢, where ¢ denotes the
height of the border separating the two compartments. The obtained swimming speed
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Figure 11. (a) Swimming speed Uy, of an isotropic phoretic particle versus Pe when Re varies, which is
calculated in an axisymmetric set-up. Our numerical data are compared with those of Michelin ez al. (2013)
at Re = 0. (b) Inertia enhances the swimming speed, characterized by the linear relation between the relative
enhancement & = [U,g(Re, Pe) — Upyg(Re = 0, Pe)]/Upyg(Re = 0, Pe) and Re.
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Figure 12. Straight periodic motion of an elliptical disk with e = 0.87 at Pe = 33. (a) Straight trajectory
colour-coded by time 7. The swimming direction e (red arrow) coincides with the translational velocity U
(green arrow). (b) Time evolution of the swimming speed Uyg.

agrees well with the reference solutions over a wide range of e and ¢ (Popescu et al. 2010),
as shown in figure 10(c).

Appendix B. Periodic motion of an elliptical phoretic disk

We identify two types of periodic motion: the first showcases a wave-like trajectory caused
by the periodic rotation of the elliptical disk (see figure 2g); the second corresponds
to unidirectional rectilinear motion with a time-periodic swimming speed, as shown in
figure 12.
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Figure 13. (a) Swimming speeds, (b) rotational velocities, and (c¢) trajectories of an elliptical disk with
e = 0.87 and Pe = 11 at varying R. Results at R = 200 and R = 300 lie almost on top of each other.

Appendix C. Dependency of swimming dynamics on the domain size R

In figure 13, we show the dependency of a disk’s swimming dynamics on the domain size
R. The results obtained at R = 200 agree perfectly with those at R = 300, suggesting that
the selected size R = 200 should be sufficiently large.
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