
Ergod. Th. & Dynam. Sys. (1981), 1, 237-253
Printed in Great Britain

Orbit equivalence and rigidity of ergodic
actions of Lie groups

ROBERT J. ZIMMERt

From the Department of Mathematics, University of Chicago, USA

{Received 2 November 1980)

Abstract. The rigidity theorem for ergodic actions of semi-simple groups and their
lattice subgroups provides results concerning orbit equivalence of the actions of
these groups with finite invariant measure. The main point of this paper is to extend
the rigidity theorem on one hand to actions of general Lie groups with finite
invariant measure, and on the other to actions of lattices on homogeneous spaces
of the ambient connected group possibly without invariant measure. For example,
this enables us to deduce non-orbit equivalence results for the actions of SL (n, Z)
on projective space, Euclidean space, and general flag and Grassman varieties.

1. Introduction
If G and G' are locally compact separable groups acting ergodically on measure
spaces (S, n), (S", fi') respectively, the actions are called orbit equivalent if there
exists (possibly after discarding null sets) a measure class preserving Borel bijection
that takes G-orbits onto G'-orbits. For actions of amenable groups, orbit
equivalence is a very weak notion as one now has the result that any two free
ergodic actions of amenable groups with finite invariant measure are orbit equivalent
as long as both groups are either discrete or continuous and unimodular [16], [3],
On the other hand, we recently showed in [24] that for free irreducible ergodic
actions of semi-simple Lie groups with finite centre and real rank at least 2, orbit
equivalence completely determines the group up to local isomorphism and, in the
centrefree case, completely determines the action as well up to an automorphism
of the group. As explained in [24], this result for semi-simple groups is a direct
analogue in ergodic theory of the rigidity theorems for lattices in semi-simple Lie
groups of G. D. Mostow [15] and G. A. Margulis [10]-[12]. In fact, a basic
ingredient of the proof of the rigidity theorem for ergodic actions in [24] is the use
of a technique of Margulis for showing the rationality of certain measurable maps
between algebraic varieties.

The results of [24] can be applied to actions of lattice subgroups and, for example,
we deduce in [24] that the actions of SL (n, Z) on the torus R"/Z" are mutually
non-orbit equivalent as we vary n, for n > 2. On the other hand, the results of [24]
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are strongly dependent upon the actions in question having finite invariant measure
and thus do not apply to many natural and classical examples, for instance the
action of SL («, Z) on projective space and more general Grassman and flag
varieties. The main point of this paper is to extend the rigidity theorem of [24] to
enable us to deduce non-orbit equivalence results for this situation, and more
generally for the ergodic actions of lattices in semi-simple Lie groups defined by
translation on homogeneous spaces of these Lie groups. As an example of our
results, we have the following. (See § 4 for a more general formulation.)

THEOREM 4.2. (a) The actions of SL («, Z) on the projective spaces P""1 are mutually
non-orbit equivalent as n varies, n ^ 2 .

(b) The actions of SL (n, Z) on U" are mutually non-orbit equivalent as n varies,
n > 2 .

(c) For a fixed n^A, let Gn,k be the Grassman variety of k-planes in U". Then
the actions of SL (n, Z) on Gn,k are mutually non-orbit equivalent as k varies,
l</k<[«/2] .

The extension of the rigidity theorem upon which these results depend is a result
concerning orbit equivalence of ergodic actions of general (i.e. not necessarily
semi-simple) Lie groups with finite invariant measure.

We recall that in any locally compact separable group H there is a unique
maximal normal closed amenable subgroup N. In connected groups, for example,
this subgroup can be explicitly described as follows. Let K be a compact normal
subgroup such that H/K is a Lie group. Let R be the radical of H/K and Z the
centre of (H/K)/R. Then

({H/K)/R)/Z = f[Gi,
i

where G, are connected centreless simple Lie groups. Letting

be projection onto the product of the non-compact factors, we obtain a homomorph-
ism H -»111 Gt. The kernel of this homomorphism is the group N. Our first extension
of the rigidity theorem to connected groups is the following.

THEOREM 3.1. Suppose H, H' are connected locally compact second countable
groups, N, N' the maximal normal closed amenable subgroups, and that the real
rank of every simple component of H/N is at least 2. Suppose S, S' are {essentially)
free ergodic H, H'-spaces, respectively, with finite invariant measure and that the
actions are orbit equivalent. Then H/N and H'/N' are isomorphic and N is compact
if and only if N' is compact.

One can actually weaken the assumption that the real rank of every simple
component of H/N is at least 2 to the assumption that the real rank of H/N itself
be at least 2 if one makes in addition certain irreducibility assumptions on the
ergodic action of H on S, which, for example, will always hold if the restriction of
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the //-action to N is still ergodic. (See theorem 3.3 below.) As in [24], the assumption
on the R-rank is necessary in order to employ Margulis' techniques for proving
the rationality of appropriate measurable maps. For results in a similar direction
in the K-rank one case, the reader is referred to [26] where Mostow's results on
quasi-conformal mappings [14] are applied. When both the groups and actions are
direct products, we obtain the following sharper result.

THEOREM 3.4. Let A, A' be amenable groups, G,, G'h i = 1 , . . . , n, j = 1 , . . . , p, be
connected semi-simple centreless Lie groups of U -rank at least 2, and suppose that
neither G, and Gj nor G\ and G\ have common factors for i¥=j. Let Si(Sj, T, 7")
be a free ergodic Gi(G'h A, A')-space with finite invariant measure and suppose
Si,Sj are irreducible. Let X= TxY[S,; (Y = T'xUS'j) be the product ergodic
A xf] G, (A' x{\ G))-space. Suppose the actions are orbit equivalent and that either

(a) A and A' are compact, or
(b) the R-rank of every simple ergodic component of each G, is at least 2.

Then
(i) n =p and by reordering the indices we have G, = G,'.

(ii) The G, actions on 5, and S[ are conjugate modulo an automorphism of Gi.
(iii) Under assumption (b), A is compact if and only if A' is compact.
As in [24], these theorems can be applied to yield non-orbit equivalence theorems

for ergodic actions of lattices in connected groups. See, for example, § 4 below.
The proofs of these theorems are based on a cohomological result which is a

generalization of the cohomological result that is at the basis of the strong rigidity
theorem proved in [24]. The proof of the present cohomological result in turn
closely follows the proof in [24], with additional arguments needed to deal with
the present more general hypotheses. In order to deduce theorem 3.4, we also
make use of a vanishing theorem for cohomology of ergodic actions of semi-simple
Lie groups proved in [25] by different techniques (those of representation theory).

§ 2 below contains the proof of the cohomological result and § 3, the proofs of
the theorems for connected groups stated above. § 4 contains the applications to
(not necessarily measure preserving) actions of lattices.

2. The main cohomological result
§ 2 of [24] provides a brief summary of some of the notions from ergodic theory
that we shall need. Here we shall only recall the notion of a cocycle and its
connection to orbit equivalence, referring the reader to [24] and the references
there for further background.

Suppose (5, /u.) is an ergodic G-space where fi(S) = 1 and G is locally compact
and separable. If M is a standard Borel group, a Borel function a:Sx.G-*M is
called a cocycle if, for all g,heG,

a(s,gh) = a(s,g)a(sg,h) a.e.

Two cocycles a, fl: S x G -*M are called equivalent if there is a Borel function
(f>:S->M such that, for each g,

)f()~1 = l3{s,g) a.e.
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Cocycles arise naturally in a variety of questions, in particular in problems concern-
ing orbit equivalence.

Suppose 5, 5' are free ergodic G, G' spaces respectively and that the actions are
orbit equivalent. (By 'free' here, we mean essentially free, i.e. almost all stabilizers
are trivial.) Then, possibly after discarding Borel null sets, there is a measure class
preserving Borel isomorphism d:S-*S' which takes orbits onto orbits. Define
a :SxG-»G'by

6(s)-a(s,g) =

This is well defined by the freeness of the action and it is straightforward to check
that a is a cocycle. If T T : G - » G ' is a homomorphism, one also obtains a cocycle
j 3 : 5 x G - » C simply by defining

Then /? is called the restriction of v to 5 x G. A basic connection between orbit
equivalence and the cocycle a is the following result proved in [24, proposition
2.4]. (For more details of the technical aspects of the proof in [24] see lemma 3.5
below.) We recall that ergodic G-spaces 5, S' are called conjugate if, possibly after
discarding invariant Borel null sets, there is a measure-class preserving Borel
bijection S-*S' which is a G-map, and are called automorphically conjugate if the
action on S is conjugate to the G-action on S' defined by (s, g)-*s • A{g), where
A is an automorphism of G.

PROPOSITION 2.1 [24, proposition 2.4]. Suppose S, S' are orbit equivalent G-spaces
and a:S xG-*Gis the cocycle corresponding to an orbit equivalence. If a is equivalent
to the restriction of an automorphism of G, then the actions are automorphically
conjugate. If the automorphism is inner, the actions are conjugate.

If a: S x G -* H, where H is a locally compact group, there is a naturally associated
ergodic //-space X called the Mackey range of a [9], [24]. If a is a cocycle coming
from an orbit equivalence, the Mackey range is just the orbit equivalent //-space.
If H is a real algebraic group, any ergodic action has an 'algebraic hull' which is
a conjugacy class of algebraic subgroups [23], [24]. This conjugacy class of algebraic
subgroups is characterized by the property that the ergodic action in question is
induced from an action of an algebraic subgroup if and only if the subgroup is
contained in a member of the conjugacy class. An action is called Zariski-dense if
the algebraic hull is H itself. If H is a Zariski-connected real algebraic group with
no compact factors, then the Borel density theorem [1] implies that any ergodic
action of H with finite invariant measure is Zariski-dense [23, theorem 1.4]. The
main cohomological result we shall need is the following.

THEOREM 2.2. Let H be a locally compact group, N the maximal normal amenable
subgroup of H, G = H/N, and suppose that G is a connected semi-simple Lie group.
{For example, take H connected.) Suppose further than each of the simple components
of G has U-rank at least 2. Let G' be a connected semi-simple centrefree Lie group
with no compact factors and suppose G'<= G', where G' is a Zariski-connected real
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algebraic group with trivial centre and G' of finite index in G'. Let a:Sx-H->G'
be a cocycle with Zariski-dense range. Then there is a surjective homomorphism
(2:G->G' such that a is equivalent to the restriction of /8 ° p to SxH, where
p:H -* G is the natural projection.

This theorem is, of course, a generalization of [24, theorem 4.1]. There are two
respects in which the hypotheses in [24] are weakened. First, we are considering
cocycles defined on an //-space, where H is considerably more general than a
semi-simple group. Secondly, we are making no irreducibility assumptions on the
ergodic action. Thus, for example, in the case in which H = G =\\ G,, we do not
assume each G, acts ergodically. We do assume, however, that the R-rank of each
Gt is at least 2. In [24], with an irreducibility assumption, we needed to assume
only that the R-rank of G was at least 2. One can formulate the theorem so as to
subsume both situations but the statement is somewhat cumbersome and so we
postpone presenting it until after the proof of theorem 2.2. However, the
modifications of the arguments of [24, theorem 4.1] which are needed to prove
the result in the more general form are all present in the proof of theorem 2.2.

Proof. We shall, in general, follow the proof of [24, theorem 4.1], referring the
reader there for those parts of the argument that carry through without essential
modification. Let G = [li G,, where G, are connected simple centreless Lie groups
of R-rank at least 2. Let P, be a minimal parabolic subgroup of Gi,P = ]\Pi, and
P' a minimal parabolic subgroup of G'. Let B=p1{P). Then B is a minimal
boundary subgroup of H in the sense of Furstenberg [7] and is a maximal amenable
(non-normal except in degenerate cases) subgroup of H. We have N <^B <= / / and
H/B = G/P as //-spaces. The action of N on G/P is, of course, trivial. •

LEMMA 2.3. 5 x G/P is an ergodic H-space.

Proof. S x G/P = SxH/B and by [21, theorem 4.2] H is ergodic on this product
if and only if B is ergodic on 5. Let {E, v) be the space of ergodic components of
the action of N on 5. Then there is an induced action of G on (E, v) and this is
clearly measure preserving and ergodic, the latter since H is ergodic on S. To see
that B is ergodic on 5 it clearly suffices to show that B/N = P is ergodic on E.
However, this follows from Moore's ergodicity theorem [13]. •

We now remark that the //-space SxG/P = SxH/B is an amenable ergodic
//-space in the sense of [20]. This follows from the amenability of B as in [24].
Arguing exactly as in [24] we see that there is an amenable algebraic subgroup
/'<= G' (this is denoted by / / ' in [24]) and a measurable map <£:S x G/P^G'/J'
such that for each h e H and almost all (s, x) € S x G/P,

<f>(sh,xh) • a(s, h)~l = a(s, x).

We now show that [24, lemma 4.2] is still valid.

LEMMA 2.4. For almost all s, <f>s: G/P -> G'/J' defined by <f>s(x) = <f> (s, x) is a rational
mapping.
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Proof. Let A, be a maximal U -split connected Abelian subgroup of P,. Fix i and
suppose teAh t^e. Let H = p~1(Gi) and Y, be the space of ergodic components
of the Hi action on S. Thus, for almost all y e Yh we have H is ergodic on (Sy, >u.y),
where the latter is an ergodic component. Then for almost all y e Yt we have, for
all h € Hh that

for almost all (s, x)eSyx G/P. We can then view <j> as a map from Sy x G -> G'/J'.
Let G,=n,v,G; and Pi=X\j^iPi; we shall then write G = GiXGt and similarly
for P. Since // ; acts trivially on G,, we have, for all h e H, that for almost all

, gh, | ) • a{s, h)'1 = <f>(s, g, g).

Let C be the centralizer of t e G,. Define for (5, g) e 5y x G, and
geGi, w(s,gU:C-*G'/J'by

Define T, 1, £, w as in [24]. Arguing exactly as in [24], we can view w as a map
from Sy x GJT x G, -* 2 and again as in [24] we have that the map w is //(-invariant.
We now claim that H is ergodic on Sy x GJT. The latter can also be expressed as
Sy xHi/p~x(T) and so, by [21, theorem 4.2], it suffices to see that p~\T) is ergodic
on Sy. Let E be the space of ergodic components of N acting on Sy. As in lemma
2.3 there is an induced ergodic action of G, = H/N on E preserving a finite measure.
To see that p^iT) is ergodic on Sy, it suffices to see that T is ergodic on E, which
follows from Moore's theorem [13]. With the ergodicity of H on Sy x GJT estab-
lished, one can argue exactly as in [24], fixing y e Y, and g e G,. Namely, suppose
that G, <= G, is a subgroup of finite index, where G, is a Zariski-connected real
algebraic group with trivial centre, and that i> = G, n Ph where Pt is a minimal
parabolic in Gt. Let £/; be the intersection with G, of the unipotent radical of a
parabolic in G, opposite to Pt. Then the arguments of [24, lemma 4.2] and [11, p.
43] show that for almost all y e Y,, s € Sy, g e G,, and g € G,, </>($, «g, g) depends
rationally on u € [/,. By the definition of Y,, this implies that <̂  (5, «g, g) depends
rationally on ueUi for almost all (5, g, g) e S x G, x G,. Letting / vary, we have that
for almost all s e S, g i , . . . , gk e G,

< £ ( S , M l g l , - • . , « f c g f c ) = </>(•*, ( M l , . . . , M f c ) ' ( g l , • • . , g f c ) )

depends rationally on each M, for almost all M7, for any y 5̂  /. Applying Margulis'
result that a measurable function on U" xU" which is rational in x for almost all y
and rational in y for almost all x must be rational [11, p. 43], [12], we deduce that
for almost all 5 6 S, g € G, 4> (s, ug) is rational in u for u e II Ut. Arguing as in [11,
p. 43], an application of [2, 4.10] completes the proof of the lemma. •

The remainder of the proof of [24, theorem 4.1] now carries over with only minor
modifications, and we make only one further observation. Define 4>0 and /8 as in
[24]. Then one obtains a homomorphism @:H -* G' such that
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In particular, for heN,p(h) leaves 4>0(G/.P) pointwise fixed. Arguing as in [24]
(where it is shown that /3 as first defined is independent of s), we obtain that /?
factors to a homomorphism G -> G'. This observation and the arguments of [24]
then complete the proof of theorem 2.2. •

We recall that a semi-simple Lie group acts irreducibly on a probability space if
the restriction to each non-central normal subgroup is ergodic. Basically the same
proof as above, using irreducibility as in [24, theorem 4.1], shows the following
variant of theorem 2.2. In certain situations it allows one to pass from the assumption
that every simple component of H/N has R-rank at least 2 to the assumption that
H/N has K-rank at least 2.

THEOREM 2.5. Let H be a locally compact separable group, N the maximal normal
amenable subgroup and suppose H/N = G is a product \[ Gt of semi-simple Lie
groups with U-rank of G, at least 2. Suppose further that each G, acts irreducibly on
almost all ergodic components of its action on E, where the latter is the space of
ergodic components of the N-action. Let G', a be as in theorem 2.2. Then the
conclusion of theorem 2.2 is true.
The hypotheses of theorem 2.5 hold in particular if N is already ergodic on 5.
They are also satisfied if H = N x G, G acts irreducibly on 5, and the R-rank of G
is at least 2. The latter includes the situation dealt with in [24].

3. Rigidity theorems
In this section, we prove the theorems for connected groups stated in the
introduction.

THEOREM 3.1. Suppose H,H' are locally compact separable groups, N,N' the
maximal normal amenable subgroups, and suppose G = H/N and G' = H'/N' are
connected (or equivalently, that G and G' are centrefree semi-simple connected Lie
groups). Suppose further that the U-rank of every simple component of G is at least
2. Let S, S' be free ergodic H, H'-spaces, respectively, with finite invariant measure,
and suppose that the actions are orbit equivalent. Then G and G' are isomorphic and
Nis compact if and only if N' is compact.

We prepare the proof by recalling some results we shall need. If E is a subset of
a space X on which a group acts, its saturation \_E~\ is the union of all orbits
intersecting E. If E <= A <= X, we shall call E saturated in A if [E] r\A=E. In
particular, E is saturated in X if and only if it is invariant. A Borel subset of X is
called a countable section if it intersects every orbit in at most countably many
points, and the countable section is called complete if its saturation is conull [6].
Every action of a locally compact separable group on a standard measure space
has a complete countable section [6, theorem 2.8]. Furthermore, there exists a
measure class on the countable section whose null sets are precisely the negligible
sets (contained in the section) [17, theorem 6.17], [6, prop. 3.6, 3.7]. (We recall
that a set is negligible if its saturation is null.) This measure class on the section
has the further property that it is invariant under the partial automorphisms of the
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countable equivalence relation defined on it [5]. It is also not difficult to see that
one can choose the section to lie inside any predetermined conull set. We also
recall that if a group G acts on a standard measure space (S, (i), by an inessential
reduction of the action we mean a subset

S0*G = {(s, g)eSxG\s,sg€So},

where So is conull. A basic technical fact proven by A. Ramsay [17, lemma 5.2]
is the following.

LEMMA 3.2. / / UcSxG is conull, Borel, and satisfies {s, g),(sg, h)e U implies
(s, gh)e U, then Ucontains an inessential reduction.

We now turn to the proof of theorem 3.1.

Proof of theorem 3.1. Let 6:S^>S' be an orbit equivalence and a:SxH-*H' the
corresponding cocycle. Let p':H'-> G' be the natural projection. The Mackey range
of a is just the / / ' action on S" and it is not difficult to verify that the Mackey
range of p' ° a is then just the G' action induced on the space of ergodic components
of the N' action on S". But this G' action has finite invariant measure and hence
the Mackey range of p' ° a is Zariski-dense in G' [23, theorem 1.4]. It follows from
theorem 2.2 that p' ° a is equivalent to the restriction of a surjective homomorphism
fi.H -*G' which is trivial on N. With the hypothesis of theorem 3.1, one can now
quickly deduce that G and G' are isomorphic by observing that the existence of a
surjective homomorphism G-*G' implies that the R-rank of every simple com-
ponent of G' must be at least 2 and so one can apply theorem 2.2 to the cocycle
coming from 6'1 as well. However, we shall present an alternative proof which
will simultaneously yield the conclusion about N and N' and generalize immediately
to provide a proof of theorem 3.3 below.

Let K be the kernel of /3, so N <= K <=• H. Let A: S -* G' be a Borel function such
that for each heH,

\(s)p'(a(s,h))\(shy1 = l3(h)

for almost all seS. Composing A with a Borel section of p' we obtain a Borel
function A: S -* H' such that, for all heH,

p'Ck(s)a(s,h)\(shy1) = P(h) a.e.
Define f:S-*S' by

By lemma 3.2 and the definition of orbit equivalence we can find an inessential
reduction S0*H of the //-action on S such that:

(i) For all (s, h)e S0*H, A(s)p'(a(s, h))k(sh)~l = /3(/i).
(ii) a is strict on S0*H, i.e. the cocycle identity holds for all (s, g), (sg, h)e S0*H.
(iii) 6{sh) = d(s)-a(s,h).

Now restrict the //-action to K and choose a complete countable section T for the
iT-action with T <= So. We now claim that for s, t e So, s and t are in the same /T-orbit
if and only if f(s), f(t) are in the same AT'-orbit. If 5 = t • h for h € K, then

f(s) = 8(th) • 'k(th)-1 = 6(t)a(t, h)a(t, hy'Xity'n = f(t) • n,
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for some n e N'. Conversely, suppose f(s)=f(t) • n for some n e N'. Then

"a = 6{t)l(tTln

and hence 6(s) and 6(t) are in the same H' orbit. Since 0 is an orbit equivalence,

this implies s, t are in the same H orbit, so we have t = s-h for some heH. Thus

and, by the definition of a, we have
a(s, h) =

Let T' = f(T). Let v be a probability measure on 7 whose null sets are the
/f-negligible sets and let v'= f*{v), a measure on 7". By discarding a »/'-null set
of 7', we can choose a Borel section o-: 7 ' -» 7 of /. Let 70 = cr(7') and r0 = <r*W).
Then one easily checks that 70 is also a complete countable section and that î o-null
sets are the ^-negligible sets contained in 70. In other words, replacing (7, v) by
(70, v0), we may assume f:(T, c)-»(7', v') and its inverse are measure preserving
Borel isomorphisms which preserve the countable equivalence relations defined by
the K and TV actions respectively. Now let dn' be a probability measure on TV in
the same measure class as Haar measure, and define

m = | (p'-n')dn'.

Then m is a measure quasi-invariant under TV' and the ^'-null sets coincide with
the m-negligible subsets of 7 ' under the N'-action. Since the i^-action on {S, fi)
and the TV'-action on (S', m) have isomorphic (in the sense of countable ergodic
equivalence relations [5]) complete countable sections, it follows frorn the results
of [6] (e.g. propositions 3.6, 3.7, corollary 5.8) that the iC-action on (S, /J.) and the
TV' action on (5', m) are orbit equivalent. The notion of an amenable ergodic action
[20] can be extended without difficulty to the non-ergodic case and, since TV' is
amenable, the action on (5', m) will be amenable [20, theorem 2.1]. Since the
.^-action on (S, /M) is free and orbit equivalent to the TV'-action, the ^-action on
(S, fi) is amenable. But this action has finite invariant measure and hence K is
amenable. By the definition of TV, this implies K = TV, and hence /8 is injective on
G. This proves the first assertion of the theorem.

To prove the second assertion of the theorem, suppose N' is compact. Then the
action of N' on S' is smooth, i.e. S'/N' is a standard Borel space, and we have an
induced action of G' on S'/W which is clearly ergodic. Furthermore, by the results
of [6] (theorem 2.8 and those quoted in the previous paragraph), the G' action
on S'/N' and the H' action on 5' are orbit equivalent. In other words, we may
assume N' = {e}. However, as shown above, the N action on 5 is similar in the
sense of [6] to the N' action on 5' (since they have isomorphic complete countable
sections). This implies that the N action on S is also type I, i.e. almost every ergodic
component of the TV action on 5 is a transitive TV-space. But since the action on
S has finite invariant measure, and since the action is free, this implies that Haar
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measure on N is finite. Hence, N is also compact. This completes the proof of the
theorem. D

Using theorem 2.5 in place of theorem 2.2, one obtains the following generalization
of theorem 3.1. The proof is basically the same.

THEOREM 3.3. Let H, H' be locally compact separable groups, N, N' the maximal
normal amenable subgroups, G = H/N, G' = H'/N', and suppose G, G' connected.
Let S, S' be free ergodic H, H'-spaces respectively, with finite invariant measure, and
suppose the actions are orbit equivalent. Let E be the space of ergodic components of
the N-action on S. Suppose further that G = fl Gv where each G,- is a semi-simple Lie
group of U-rank at least 2; and that Gt acts irreducibly on almost all of its ergodic
components on E. Then G and G' are isomorphic and N is compact if and only if
N' is compact.

When the groups are product groups and the actions are product actions, we deduce
a sharper result.

THEOREM 3.4. Let A, A' be amenable groups, G,, G'h i = 1, . . . , « , / = 1 , . . . , p, be
connected semi-simple centrefree Lie groups of U-rank at least 2 and suppose that
neither G, and G, nor G\ and G) have common factors for i ^ j . Let 5, (5,, T, T')
be a free ergodic Gi(G'j, A, A')-space with finite invariant measure and suppose
Si,S'j are irreducible. Let X=Tx\[Si (Y=T'xHS'j) be the product ergodic
AxY\Gi (A'x\\ G'j)-space. Suppose the actions are orbit equivalent and that either

(a) A and A' are compact, or
(b) the U-rank of every simple ergodic component of each G, is at least 2.

Then
(i) n = p and by reordering the indices we have Gi = G\.

(ii) The G, actions on St and S\ are conjugate modulo and automorphism of Gi.
(iii) Under assumption (b), A is compact if and only if A' is compact.

Proof. We first remark that, since any amenable ergodic action is hyperfinite [16],
[3], we can assume that A is either the real line, the integers, or the identity (the
latter in case A is compact, using [6] as above). Let G = n G,, G' = Y\ G'h d.X^Y
an orbit equivalence and a:XxAxG-*A'xG' the corresponding cocycle. Write
a =(ai , a2), where a, is the composition of a with the projection on A' and G'
respectively. By theorems 2.5 and 3.3, there is a function A :X -* G' such that, for
each (a, g) e A x G and almost all x eX,

X(x)a2(x, a, g)X(x • (a, g))"1 = /3(g),

where p-.G^G' is an isomorphism. If A and A' are not the identity, then by
hypothesis (b) and [25, theorem A], the cocycle ai\X x G is trivial. In other words,
we can find </>:X -» A' such that for all geG,

<f>(x)ati(x, e, g)<f>(x • (e, g))'1 - e for almost all x.

From this it follows that

4>(x • (a, g))"1 =4>((x- (a, e)) • (e, g))"1 = ax(x • (a, e), e, g)~V(x • (a, e))"1.
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Define /: X -+Y by

f(x) = 6(x)-(<f>(x),\(x))-\

Then, for almost all x e X and (a, g) € H, we have

f(x • (a, g)) = 0(x • (a, g))(<M* • (a, g))~\ A (x • (a, g))"1)

a(x, a, g)(ai(* • (a, e), e, g)-10(x • (a, e))"1, a2(x, a, g)-1A(x)"1/3(g))

= 6(x) • («I(JC, a, e)0(x • (a, e))"1, A(x)

Thus,

f(x-(a,g))=f(x)-(y(x,a),p(g)),

where y(x, a) is the cocycle

4>(x)ai(x, a, e)<(>(x • (a, e))~\

Let f = {f\,fj), where f\ and fi are the compositions of / with the projection of Y
onto T and 5' = IT S\ respectively. Writing x 6 X = T x 5 as x = (f, 5) we have

Mf, s) • (a, g))=/2(t *)•£(«),
and, setting g = e, we obtain

f2(ta,s)=f2{t,s).

For each aeA, this equality holds for almost all (t, s). Thus, for all a in a countable
dense subgroup of A, and for almost all s, this equality holds for almost all t. But
a Borel function which is essentially invariant under a countable dense subgroup
is actually essentially invariant under the entire group. (To see this one can, for
example, argue as follows. Choose a Borel isomorphism of S' with [0,1] so that
the function is then identified with an element of L°° <= L2. Then use the continuity
of the naturally induced representation on L2.) Thus for s in a conull set, for all
a 6 A, we have

fi{ta, s) = f2{t, s) for almost all t.

By ergodicity of the A-action on T this implies that f2 is essentially independent
of t, and so we can write

f2(t,s) = F2(s) a.e.,

where F2:S-> S'. Furthermore, we have

h(U,s)(e,g))=fl(t,s),

and so a similar argument shows that

f1(t,s) = F1(t) a.e.,

where Ft: T-* T. We thus have

f(t,s) = (Fl(t),F2(s)) a.e.

We now show, via a technical argument, that F2 is measure class preserving,
essentially bijective, and defines a Boolean map B(S')-*B{S) that behaves well
with respect to the G and G' actions.

We first remark that, for all g,

= F2(s)-p(g) a.e.
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By lemma 3.2 there is a conull Borel set Si c 5 such that this equality holds for
all (s, g) eSi*G. By the definition of / (and of orbit equivalence), there is a conull
set in TxS such that, if f(t, s) and f(t',s') are in the same A'xG' orbit for
(t, s), (t1, s') in this conull set, then (t, s) and (t\ s') are in the same AxG orbit.
Since f = (Fi,F2) a.e., the same statement is true if we replace / by {FUF2). By
Fubini's theorem, there is a conull Borel set S2

 c S such that, if 5, s' e S2 with F2(s)
and F2(s') in the same C-orbit, then s, s' are in the same G orbit. Let So = Si n S2.
Then, it s,s' eS0 with F2(s) = F2(s'), we have s' = sg for some geG and so

F2(s') = F2(s)-p(g).

Since the G' action is free, @(g) = e, and since /3 is an isomorphism it follows that
s = s'. Replacing So by a conull Borel subset, we can assume that So is invariant
under a countable dense subgroup Go c G.

Recall that the definition of orbit equivalence entails the existence of a conull
Borel subset ( r x S ) o c TxS such that 0:(7xS)o->0((7xS)o) is a measure class
preserving Borel isomorphism onto its image which is conull in 7" x 5' and which
takes orbits in (7 x S)o onto orbits in d((Tx S)o). In particular, viewing 6 as a map
(T x 5)0 -» 7" x 5', for an invariant set D^T'xS' we have tf"1^) is null in 7 x S
if and only if D is null in 7" x 5'. By passing to a conull subset we can clearly also
assume that f=(Fu F2) on (T x S)o. If B<=T'x S', then by the definition of / for
a point y e ( r x 5 ) 0 , we have f(y)e[B] if and only if 6(y)e[B], i.e. (taking / to
be also defined on(Tx S)o) we have

Thus, if B<= T'xS' is invariant, we have B is null if and only if (FUF2)~\B)n
(TxS)o is null. Applying this to B = T'xA, where A c 5 ' is invariant, we have
that A is null if and only if (7xF 2

 x (A)) n ( 7 x S)o is null, which is clearly true if
and only if F\~x (A) is null. Since A is invariant, F2

l (A)nSo is saturated in So by
the choice of So.

We shall now prove the following lemma, which we shall then apply to F2. We
also remark that this lemma spells out in more detail part of the argument of [24,
proposition 2.4].

LEMMA 3.5. Suppose (S,, /A,), i = 1,2, are free ergodic G-spaces with finite invariant
measure, where G is a locally compact separable group. Suppose there is a conull
Borel set So <= Si, and a Borel function F:S0-* S2 satisfying the following conditions:

(i) There is an automorphism p of G such that, for all (s, g) e S0*G, F(sg) =
F(s) • (3(g).

(ii) F is injective on So-
(iii) If s, te So with F{s) and F(t) in the same orbit, then s and t are in the same

orbit.
(iv) So is invariant under a countable dense subgroup Go c G.
(v) If A<^S2 is invariant, then A is null if and only ifF'1(A)nS0 is negligible.

Then F(S0) is conull in S2 and F:S0^F(S0) is a measure class preserving Borel
isomorphism.
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Proof. The lemma will follow by an application of the local representation of an
invariant measure as described by C. Series [18, prop. 1.1], [19, lemma 1.4]. Let
E be a complete countable section of the G-action on Si, with EcS0, such that
E is lacunary in the sense of [6]. (In the language of [19] E is a sufficient regular
transversal.) This means there is a neighbourhood U of the identity in G such that
the product map ExU-*E • C/<=5 is injective. Let v be a measure on E whose
null sets are the negligible (in Si) subsets of E. Let A be Haar measure on G. Then
by Series' results, identifying ExU with E • U, the restriction of the measure fj.
to E • U is in the same measure class as the product measure ux\ on ExU. For
y € E, let

Uy={geU\ygeS0}, and E0 = {y\\(U- f/y) = 0}.

By Fubini's theorem, Eo is a conull Borel subset of E. Let

By the hypothesis on F, F(E0) is a complete countable section for the G-action on
S2, and F^iO-null sets in F(E0) are the negligible subsets of S2 contained in F(E0).
We claim that the product map F(E0) x /?(£/) -» S2 is injective. Suppose

where yt e Eo and g, e U. The set

/8(gi)/3(g2r
1/3(t/)n/3(C/)

is clearly open and non-empty (as it contains (3(gi)). For g in this set, let

so that h(g) is also in &{U). We thus have for a set ge/3(U) of positive measure,

Since /8 is an automorphism of G, /3: U-*/3(U) is measure class preserving. Thus
we can find a e Uyi such that /3~1h(3(a)e Uy2 and such that g = /3(a) satisfies the
above condition.

But since yi, y2, yi • a, y2 • P^hfiia) e 50, we have

As F is injective on 50,

which implies yi = y2 and /8(a) = h(3(a). This implies that /3(gi) = /3(g2), and injec-
tivity of F{Eo) x /3 (U) -* S2 is thus established. Hence we can identify F(E0) • j8 ([/)
with F(E0)xf}{U) and, by the results of Series mentioned above, the measure fi2

on the former agrees up to measure class with F*(v)xA. This shows that
F:(E0- U)nS0->F(E0) • P(U) is a Borel bijection onto a conull subset of
F(E0) • j8(t/) and is measure class preserving. For any element ge Go we have a
commutative diagram (figure 1).

The conclusion of lemma 3.5 then follows by an elementary argument. •

Returning to the proof of theorem 3.4, it follows by an application of lemma 3.5
that F2 defines a Boolean <r-algebra isomorphism B(S', fi')-*B(S, fx.) which is a
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((Eo • g) • g~l Ug) n So *+(E0 -U)nS0

(F(E0) • p(g)) • (Hg-'Ug) 0

FIGURE 1

Boolean G-map when G acts on S' via s' • g = s'@(g). Thus by [8] the actions of
G on S and S' are conjugate. The isomorphism 0 can be written as a product
/?i x • • • x f}n, where /3,: d->G[ is an isomorphism, possibly after reordering Gt. To
complete the proof it clearly suffices to prove the following lemma.

LEMMA 3.6. Suppose Gt are locally compact groups, Sh S\ ergodic Grspaces, G =
FI Gh S = [I Sh S' = n S\. Suppose the G actions on S and S' are conjugate modulo
an automorphism P of G of the form fl Pi> where /?, is an automorphism of Gt. Then
the Gi actions on 5,- and S'i are conjugate modulo /?,-.

Proof. Suppose f:S-*S' is such that

f(sg)=f(s)(3(g) a.e.

Let f be the coordinate functions of / and suppose g; e Gh j ^ i. Then

fi(Sigi, . . . , S h . . . , Sngn)=fi(su . . . , Sn).

By ergodicity, /) is essentially independent of sh j # /, and so ft factors to a measure
preserving map S, -» 5J such that

)f()p() a.e.
Since f = Ylft and / is essentially injective so is each f-u and this completes the proof.

•
4. Applications to actions of lattices
Suppose Hi, H2 are closed subgroups of a locally compact group G. Then the orbit
space of the action of Hi on G/H2 and that of H2 on G/Hi can both be naturally
identified with the space of double cosets. It is, of course, possible that G/H2 has
a finite invariant measure while G/Hi does not. We may thus hope to use results
about orbit equivalence of actions with finite invariant measure to obtain results
about certain actions which have no invariant measure. (Similar ideas have been
used many times before. See, for example, [13], [21].)

THEOREM 4.1. Let G, G' be connected semi-simple Lie groups with finite centre, and
H <=-G,H' <=G' almost connected non-compact subgroups. Let F<=G, F'cG' be
irreducible lattices and suppose the T-action on G/H and the Y'-action on G'/H'
are essentially free and orbit equivalent. Let N, N' be the maximal normal amenable
subgroups ofH, H' respectively, and suppose H/Nhas U-rank at least 2. Then H/N
and H'/N' are locally isomorphic.

Proof. The orbit space of F on G/H is the same as that of H on G/T and, since
F is essentially free on G/H, H will be essentially free on G/T. By the results of
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[6], we have an orbit equivalence 8: G/Y-* G'/Y' of the H and //'-actions on these
spaces. Let Ho <= H, H'o c. H' be the connected components of the identity. Let
ai.G/TxH-*H/H0 be the cocycle defined by restricting projection of H onto
H/Ho and let a2: G/Yx / / ->H'/H'o be the cocycle defined by

a2(x,h) = p'(3(x,h),

where /?: G/r x / / - » / / ' is the cocycle defined by the orbit equivalence 0 and
p':H'->H'/H'o is projection. We thus have a cocycle («i,a2) taking values in
HI Ho x H'/H'o and we let F <= H/Ho x H'/H'o be the Mackey range of this cocycle.
(Here, as usual, we abuse notation and identify a transitive Mackey range with a
stabilizer of this transitive action.) Let A be a cocycle equivalent to (au a2) taking
values in F. Since Ho, H'o are ergodic on G/T, G'/Y' respectively (by Moore's
theorem [13]), a\ and a2 have Mackey range H/HO,H'/H'O respectively, and so
we have an //-map of extensions of G/Y, G/YxKF-» G/T x/ / / / / 0 . The //-space
G/YxH/Ho clearly has the same orbit space as the Ho action on G/Y, and it is
easy to see that the //-space G/YxKF has the same orbit space as the //0-action
on a finite ergodic extension Y of G/Y. On the other hand, via 6, we can identify
(«i, a2), A as cocycles on the //'-space G'/Y' and G/YxxF is thus easily seen to
be orbit equivalent to an //'-space which factors to G'/Y' x H'/H'o.

In conclusion, we have orbit equivalent Ho, //o-spaces which are essentially free
and with finite invariant measure. Let JV0 be the maximal normal amenable subgroup
of Ho and suppose L c //0 is a normal subgroup with No c L and No ^ L. Then, by
Moore's theorem [13], L is ergodic on G/Y and it is easy to deduce from this that
the space of ergodic components of L on Y is finite. But since L c Ho is normal,
Ho acts on this finite set, and the Ho action is transitive, since / /0 is ergodic on Y.
From the connectedness of Ho, the set is a point so L is ergodic on Y. Thus, the
Ho action satisfies the irreducibility condition in theorem 3.3, and an application
of theorem 3.3 then completes the proof. O

Remarks, (i) The proof and the results of [6] show that the theorem is true if we
only assume that the Y action on G/H and the Y' action on G'/H' are stably orbit
equivalent in the sense of [6].

(ii) If G and H are algebraic, H=>Z(G) (the centre of G) and H does not
contain a normal non-central subgroup, then Y/Y nZ(G) acts essentially freely on
G/H. To see this, observe that for y e Y, {x e G/H\xy = x} is a closed variety, and
hence if it has positive measure y fixes all of G/H which implies y e Z(G).

As an example of an application of theorem 4.1, we have the following.

THEOREM 4.2. (a) The actions of SL (n, I) on the projective spaces P""1 are
mutually non-orbit equivalent as n varies, n s 2.

(b) The actions of SL (n, Z) on W are mutually non-orbit equivalent as n varies,
n>2.

(c) For a fixed n >4, let Gn_k be the Grassman variety of k-planes in W. Then
the actions of SL (n, Z) on Gn,k are mutually non-orbit equivalent as k varies,
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Proof. If we compare the actions of SL (n, Z) on P""1 and SL (p, Z) on P""1 for
n # p , n , p s 3 , then we can apply theorem 4.1 (and remark (ii) above), since the
semi-simple part of the stabilizer of a point in P""1 has R-rank n-2. However,
for n = 2, the stabilizer is amenable and hence the SL (2, Z) action on P1 will also
be amenable. (This follows from the fact that if P is amenable, G/P is an amenable
G-space [20] and hence an amenable F-space [22].) Since the SL (n, Z) action on
P""1 is not amenable for n > 3 [22, proposition 3.4], the proof of (a) is complete.
The proofs of (b) and (c) are similar. •

We remark that theorem 4.2 remains true if we replace SL (n, Z) by any lattice
in SL («, R). Furthermore, the same argument yields similar results for actions on
more general real and complex flag manifolds. We leave the details to the reader.

As in [24], theorems 3.1 and 3.3 can be extended to ergodic actions of lattices
in connected groups. Thus, if F, are lattices in groups Ht as in theorem 3.1 and the
F, have free ergodic orbit equivalent actions with finite invariant measure, then the
Hj/Ni are isomorphic. The proof follows by applying theorem 3.1 to the actions
of Hi induced from F, [22]. For example, we have the following.

THEOREM 4.3. Let Tn be the semi-direct product of SL (n, Z) with Z", n s 2 , where
the former acts on the latter by matrix multiplication. Then for i ^ /, F, and F, do not
have orbit equivalent finite measure preserving free ergodic actions.

In [25] it is shown that for n ^ 3, Tn and SL (n, Z) x Z" do not have orbit equivalent
finite measure preserving free weakly mixing actions.

5. Concluding remarks
(a) It would be of interest to extend theorem 3.4 to arbitrary (i.e. not product

actions) finite measure preserving free ergodic actions of product groups, or perhaps
semi-direct product groups. For example, if H is a semi-direct product of G, and
normal Ah i = 1,2, where At is amenable and G, is a suitable semi-simple group,
when can one deduce that orbit equivalence of the Hi actions implies equivalence
of associated G,-actions (e.g. the actions of G,- obtained by restricting the //, actions;
actions of G, induced on the space of A,-ergodic components, etc.))?

(b) One can also ask about the converse assertion in (a). Namely if the G,-actions
are orbit equivalent (and hence under suitable hypotheses conjugate modulo an
automorphism) are the H,-actions orbit equivalent? When G, = {e} this, of course,
follows from hyperfiniteness of amenable actions [16], [3] and Dye's theorem [4].

(c) Finally, one would like to know to what extent the hypotheses that the
R-rank be at least 2 are needed. A start in this direction appears in [26].
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Foundation, and the National Academy of Sciences, USA. The author is a Sloan
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