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Lie Derivations
in Prime Rings With Involution
Gordon A. Swain and Philip S. Blau

Abstract. Let R be a non-GPI prime ring with involution and characteristic 6= 2, 3. Let K denote the skew
elements of R, and C denote the extended centroid of R. Let δ be a Lie derivation of K into itself. Then
δ = ρ + ε where ε is an additive map into the skew elements of the extended centroid of R which is zero on
[K,K], and ρ can be extended to an ordinary derivation of 〈K〉 into RC, the central closure.

1 Introduction

Let R be a prime ring with involution ∗. The skew elements are the subset K = {x ∈ R |
x∗ = −x}. A Lie derivation is an additive mapping δ which satisfies [x, y]δ = [xδ, y] +
[x, yδ]. For W any subset of R, we write 〈W 〉 for the associative subring of R generated
by W . Let C be the extended centroid of R, then ∗ can be extended to an involution of C ,
which we also denote by ∗. Let C∗ be the symmetric elements in C , then for any nonzero
skew β ∈ C , βC∗ are the skew elements of C . A subset W of R is said to satisfy a GPI (or
is GPI) over C if there exists a nonzero generalized polynomial f (x1, x2, . . . , xm) in the free
product RC〈x1, x2, . . . 〉 such that f (w1,w2, . . . ,wm) = 0 for all wi ∈W .

In a recent paper of Swain [6] it was shown that in prime rings with involution of the
first kind (identity on the extended centroid) a Lie derivation of K can be extended to an
ordinary derivation of 〈K〉. The key ingredient in the proof when the ring is non-GPI was a
result on the nature of trilinear mappings of the skew elements. A recent result of Blau [2]
on triadditive mappings of the skew elements will allow the authors to extend those results
to non-GPI prime rings with involutions of the second kind. Indeed, we show:

Theorem 1.1 Let R be a non-GPI prime ring with involution and characteristic 6= 2, 3. Let
K denote the skew elements of R, and C denote the extended centroid of R. Let δ be a Lie
derivation of K into itself. Then δ = ρ + ε where ε is an additive map into the skew elements
of the extended centroid of R which is zero on [K,K], and ρ is a Lie derivation which can be
extended to an ordinary derivation of 〈K〉 into RC.

The authors believe that the proof in the case when R is GPI and the involution of the
second kind is tractable, using the socle to take advantage of results on prime rings without
involution.

We include at this point several remarks which will be useful later.

Remark 1.2 (See [3, proof of Theorem 2.3]) 〈K〉 = K⊕K◦K, where K◦K is the additive
C-span of elements of the form xy + yx, x, y ∈ K, or, equivalently, of all squares x2, x ∈ K.
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Remark 1.3 (See [3, proofs of Theorems 2.2, 2.13, 1.6]) Each of 〈K〉, 〈[K,K]〉, and 〈S〉
(S is the set of symmetric elements of R) contains a nonzero ideal of R.

Remark 1.4 (Follows from [4, Theorem 4.9]) K is GPI over C if and only if R is GPI over
C .

Remark 1.5 ([1, Lemma 1]) Suppose R is not GPI, and X is an indeterminate. Let
{ fi j (X) ∈ RC〈X〉 | j = 1, . . . , ni} for i = 1, . . . , n be n sets of C-independent generalized
monomials. Then there exists x ∈ K such that { fi j(x) | j = 1, . . . , ni} for i = 1, . . . , n are
C-independent subsets of R.

The proof of Theorem 1.1 will be accomplished in several steps. We will first describe
a sufficient condition for extending a Lie derivation of K to an ordinary derivation of 〈K〉.
Then we will show that any Lie derivation of K can be written as the sum of a Lie derivation
satisfying this condition and an additive map from K into the extended centroid of R.

2 A Sufficient Condition for δ to be Extended

Lemma 2.1 Let R be a prime, non-GPI ring with involution and characteristic 6= 2, 3. A Lie
derivation δ : K → RC can be extended to an ordinary derivation µ : 〈K〉 → RC if and only
if (x3)δ = xδx2 + xxδx + x2xδ for all x ∈ K.

Proof Clearly, if µ is a derivation which extends δ then

(x3)δ = (x3)µ = xµx2 + xxµx + x2xµ = xδx2 + xxδx + x2xδ.

Conversely, assume that for each x ∈ K

(x3)δ = xδx2 + xxδx + x2xδ.(1)

By replacing x in (1) successively with x + y, and x − y, and adding, we get

2(xy2 + yxy + y2x)δ

= 2(xδ y2 + xyδ y + xy yδ + yδxy + yxδ y + yxyδ + yδ yx + y yδx + y2xδ).
(2)

On the other hand

(xy2 − 2yxy + y2x)δ =
[
[x, y], y

]δ

= xδ y2 + xyδ y + xy yδ + yδ yx + y yδx + y2xδ

− 2yδxy − 2yxδ y − 2yxyδ.

(3)

Adding equations (2) and (3) and dividing by 3 we get

(xy2 + y2x)δ = xδ y2 + xyδ y + xy yδ + yδ yx + y yδx + y2xδ(4)
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for all x, y ∈ K.
By Remark 1.2, 〈K〉 = K ⊕ K ◦ K and K ◦ K is spanned additively by the x2, x ∈ K.

Define a map µ : 〈K〉 → RC by x +
∑

y2
i 7→ xδ +

∑
(yi yδi + yδi yi). To show that µ is well

defined, it suffices to show that
∑

y2
i = 0 implies

∑
(yi yδi + yδi yi) = 0. Assume

∑
y2

i = 0
and let s =

∑
(yδi yi + yi yδi ). Then for each x ∈ K, 0 =

∑
(xy2

i + y2
i x) and by equation (4)

0 =
∑

(xy2
i + y2

i x)δ =
∑

(xδ y2
i + xyδi yi + xyi yδi + yδi yix + yi yδi x + y2

i xδ)

= xδ
∑

y2
i + x

∑
(yδi yi + yi yδi ) +

∑
(yδi yi + yi yδi )x +

∑
y2

i xδ = xs + sx.

Thus, if s 6= 0, xs + sx is a GPI on K which, by Remark 1.4, contradicts the assumption that
R is not GPI. Thus µ is well defined and it is left to show that µ is a derivation on 〈K〉.

Using the identity 2xy = {(x + y)2 − x2 − y2 + [x, y]} for all x, y ∈ K

(xy)µ =
1

2
{(x + y)δ(x + y) + (x + y)(x + y)δ − xδx − xxδ − yδ y − y yδ + [x, y]δ}

=
1

2
{2xδ y + 2xyδ} = xδ y + xyδ.

(5)

Using the identity 2x2 y = {x ◦ [x, y] + x2 ◦ y} and equations (4) and (5), for all x, y ∈ K

(x2 y)µ =
1

2

{(
x[x, y]

)µ
+
(
[x, y]x

)µ
+ (x2 y + yx2)µ

}

=
1

2
{xδ[x, y] + x[x, y]δ + [x, y]δx + [x, y]xδ + xδxy + xxδ y + x2 yδ

+ yδx2 + yxδx + yxxδ}

= xδxy + xxδ y + x2 yδ.

(6)

For u = x +
∑

y2
i ∈ 〈K〉 and y ∈ K, by (5) and (6)

(uy)µ =
(

xy +
∑

y2
i y
)µ
= xδ y + xyδ +

∑
(yδi yi y + yi yδi y + y2

i yδ)

=
[

xδ +
∑

(yδi yi + yi yδi )
]

y + (x +
∑

y2
i )yδ = uµy + uyδ.

(7)

Finally, for u ∈ 〈K〉, v = z +
∑

w2
i ∈ 〈K〉, using (7)

(uv)µ = (uz)µ +
∑

(uw2
i )µ = uµz + uzδ +

∑[
(uwi)

µwi + (uwi)wδi
]

= uµz + uzδ +
∑

(uµw2
i + uwδi wi + uwiw

δ
i )

= uµ
(

z +
∑

w2
i

)
+ u
[

zδ +
∑

(wδi wi + wiw
δ
i )
]
= uµv + uvµ.

Thus µ is a derivation of 〈K〉.
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3 The Triadditive Mapping B

Define a mapping B : K3 → K by

B(x, y, z) =
1

6
(xyz + xzy + yxz + yzx + zxy + zyx)δ

−
1

6
(xδ yz + xyδz + xyzδ + xδzy + xzδ y + xzyδ + yδxz

+ yxδz + yxzδ + yδzx + yzδx + yzxδ + zδxy + zxδ y + zxyδ

+ zδ yx + zyδx + zyxδ).

We note that B is additive in each component (i.e., B(x + w, y, z) = B(x, y, z) + B(w, y, z),
etc.) and invariant under any permutation of x, y, z. We call any mapping with these
properties triadditive.

Define the trace of B by T(x) = B(x, x, x) = (x3)δ − (xδx2 + xxδx + x2xδ) and note that
B has commuting trace. That is,

[
T(x), x

]
= (x3)δx − xδx3 − xxδx2 − x2xδx − x(x3)δ + xxδx2 + x2xδx + x3xδ

=
[
(x3)δ, x

]
+ [x3, xδ] = [x3, x]δ = 0.

The following critical result of Blau [2, Theorem 5.3] applies to B.

Theorem 3.1 Suppose R is a prime ring with involution, characteristic 6= 2, 3, and R is not
GPI. Let K denote the skew elements of R, C the extended centroid of R, and C∗ the symmetric
elements of C. If B : K3 → K is a triadditive mapping with commuting trace, then there exist
β skew in C, λ ∈ C∗, an additive map γ : K → βC∗, a biadditive map µ : K2 → C∗, and a
triadditive map ν : K3 → βC∗ such that for all x, y, z ∈ K,

6B(x, y, z) = λ(xyz + xzy + yxz + yzx + zxy + zyx)

+ γ(z)(xy + yx) + γ(y)(xz + zx) + γ(x)(yz + zy)

+ µ(y, z)x + µ(x, z)y + µ(x, y)z + ν(x, y, z).

Applying Theorem 3.1 to the map defined previously, we have

(xyz + · · · + zyx)δ − (xδ yz + · · · + zyxδ)

= λ(xyz + · · · + zyx) + γ(z)(xy + yx) + γ(y)(xz + zx)

+ γ(x)(yz + zy) + µ(y, z)x + µ(x, z)y + µ(x, y)z + ν(x, y, z)

(8)

for all x, y, z ∈ K.
We proceed to investigate the natures of the constant λ and the maps γ, µ, and ν.

Lemma 3.2 For all x, y ∈ K,

(xyx)δ = xδ yx + xyδx + xyxδ +
λ

3
(x2 y + xyx + yx2) +

1

3
γ(x)(xy + yx)

+
1

3
γ(y)x2 +

1

3
µ(x, y)x +

1

6
µ(x, x)y +

1

6
ν(x, y, x).
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Proof Setting z = x in (8), rearranging terms, and dividing by 2 yields

(x2 y + xyx + yx2)δ

= xδxy + xxδ y + x2 yδ + xδ yx + xyδx + xyxδ + yδx2

+ yxδx + yxxδ + λ(x2 y + xyx + yx2) + γ(x)(xy + yx)

+ γ(y)x2 + µ(x, y)x +
1

2
µ(x, x)y +

1

2
ν(x, y, x).

(9)

Using the identity 3(xyx) = x2 y + xyx + yx2 −
[
[y, x], x

]
and (9)

(xyx)δ =
1

3

[
xδxy + xxδ y + x2 yδ + xδ yx + xyδx + xyxδ + yδx2 + yxδx + yxxδ

+ λ(x2 y + xyx + yx2) + γ(x)(xy + yx) + γ(y)x2 + µ(x, y)x

+
1

2
µ(x, x)y +

1

2
ν(x, y, x)− yδx2 + 2xyδx − x2 yδ

− yxδx + xyxδ + xδ yx − xxδ y − yxxδ + xyxδ + xδ yx− xδxy
]

= xδ yx + xyδx + xyxδ +
λ

3
(x2 y + xyx + yx2) +

1

3
γ(x)(xy + yx) +

1

3
γ(y)x2

+
1

3
µ(x, y)x +

1

6
µ(x, x)y +

1

6
ν(x, y, x).

Lemma 3.3 In (8), λ = 0.

Proof Replacing y with x in Lemma 3.2 yields

(x3)δ = xδx2 + xxδx + x2xδ + λx3 + γ(x)x2 +
1

2
µ(x, x)x +

1

6
ν(x, x, x).(10)

Replacing x with x3 in Lemma 3.2 and using (10) yields

(x3 yx3)δ =
[

right-hand side of (10)
]

yx3 + x3 yδx3 + x3 y
[

rhs. (10)
]

+
λ

3
(x6 y + x3 yx3 + yx6) +

1

3
γ(x3)(x3 y + yx3) +

1

3
γ(y)x6

+
1

3
µ(x3, y)x3 +

1

6
µ(x3, x3)y +

1

6
ν(x3, y, x3)

= xδx2 yx3 + xxδxyx3 + x2xδ yx3 + x3 yδx3 + x3 yxδx2 + x3 yxxδx

+ x3 yx2xδ +
λ

3
(x6 y + 7x3 yx3 + yx6) + γ(x)(x3 yx2 + x2 yx3)

+
1

3
γ(x3)(x3 y + yx3) +

1

3
γ(y)x6 +

1

2
µ(x, x)(x3 yx + xyx3)

+
1

3
µ(x3, y)x3 +

1

6
µ(x3, x3)y +

1

6
ν(x, x, x)(x3 y + yx3)

+
1

6
ν(x3, y, x3).

(11)
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Replacing y with xyx in Lemma 3.2 yields

(x2 yx2)δ = xδxyx2 + x
[

xδ yx + xyδx + xyxδ +
λ

3
(x2 y + xyx + yx2)

+
1

3
γ(x)(xy + yx) +

1

3
γ(y)x2 +

1

3
µ(x, y)x +

1

6
µ(x, x)y

+
1

6
ν(x, y, x)

]
x + x2 yxxδ +

λ

3
(x3 yx + x2 yx2 + xyx3)

+
1

3
γ(x)(x2 yx + xyx2) +

1

3
γ(xyx)x2 +

1

3
µ(x, xyx)x

+
1

6
µ(x, x)xyx +

1

6
ν(x, xyx, x)

= xδxyx2 + xxδ yx2 + x2 yδx2 + x2 yxδx + x2 yxxδ

+
2λ

3
(x3 yx + x2 yx2 + xyx3) +

2

3
γ(x)(x2 yx + xyx2)

+
1

3
γ(y)x4 +

1

3
γ(xyx)x2 +

1

3
µ(x, y)x3 +

1

3
µ(x, x)xyx

+
1

3
µ(x, xyx)x +

1

6
ν(x, y, x)x2 +

1

6
ν(x, xyx, x).

(12)

Finally, replacing y with x2 yx2 in Lemma 3.2 and using (12) yields

(x3 yx3)δ = xδx2 yx3 + x
[

rhs. (12)
]
x + x3 yx2xδ

+
λ

3
(x4 yx2 + x3 yx3 + x2 yx4) +

1

3
γ(x)(x3 yx2 + x2 yx3)

+
1

3
γ(x2 yx2)x2 +

1

3
µ(x, x2 yx2)x +

1

6
µ(x, x)x2 yx2

+
1

6
ν(x, x2 yx2, x)

= xδx2 yx3 + xxδxyx3 + · · · + x3 yx2xδ

+ λ(x4 yx2 + x3 yx3 + x2 yx4) + γ(x)(x3 yx2 + x2 yx3)

+
1

3
γ(y)x6 +

1

3
γ(xyx)x4 +

1

3
γ(x2 yx2)x2

+
1

3
µ(x, y)x5 +

1

2
µ(x, x)x2 yx2 +

1

3
µ(x, xyx)x3 +

1

3
µ(x, x2 yx2)x

+
1

6
ν(x, y, x)x4 +

1

6
ν(x, xyx, x)x2 +

1

6
ν(x, x2 yx2, x).

(13)
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Subtracting (13) from (11) yields

0 =
λ

3
x6 y − λx4 yx2 +

4λ

3
x3 yx3 − λx2 yx4 +

λ

3
yx6 −

1

3
µ(x, y)x5

+
1

2
µ(x, x)x3 yx −

1

2
µ(x, x)x2 yx2 +

1

2
µ(x, x)xyx3

+
1

6

[
2γ(x3) + ν(x, x, x)

]
x3 y +

1

6

[
2γ(x3) + ν(x, x, x)

]
yx3

−
1

6

[
2γ(xyx) + ν(x, y, x)

]
x4 +

1

3

[
µ(x3, y)− µ(x, xyx)

]
x3

−
1

6

[
2γ(x2 yx2) + ν(x, xyx, x)

]
x2 +

1

6
µ(x3, x3)y −

1

3
µ(x, x2 yx2)x

+
1

6
ν(x3, y, x3)−

1

6
ν(x, x2 yx2, x)

(14)

for all x, y ∈ K.

Since R is not GPI, then K is also not GPI (Remark 1.4) and hence not PI. Then there
exists an x ∈ K which is not algebraic of degree ≤ 6 over C (otherwise K would satisfy
the symmetric polynomial S6). Fix such an x; then the generalized monomials in (14) are
C-independent in RC〈Y 〉. By Remark 1.5, there exists y ∈ K which makes (14) a linear
combination of C-independent elements of R. Hence, each coefficient of (14) must be
zero, in particular λ = 0. This completes the proof of the lemma.

The conclusion of Lemma 3.2 can now be rewritten as

(xyx)δ = xδ yx + xyδx + xyxδ +
1

3
γ(x)(xy + yx) +

1

3
γ(y)x2

+
1

3
µ(x, y)x +

1

6
µ(x, x)y +

1

6
ν(x, y, x).

(15)

Lemma 3.4 In (8), µ is identically 0.
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Proof Replacing x with xyx in (15) yields

(xyxyxyx)δ =
[

rhs. (15)
]

yxyx + xyxyδxyx + xyxy
[

rhs. (15)
]

+
1

3
γ(xyx)(xyxy + yxyx) +

1

3
γ(y)xyx2 yx +

1

3
µ(xyx, y)xyx

+
1

6
µ(xyx, xyx)y +

1

6
ν(xyx, y, xyx)

= xδ yxyxyx + · · · + xyxyxyxδ

+
1

3
γ(x)(xy2xyx + xyxyxy + yxyxyx + xyxy2x)

+
1

3
γ(y)(x2 yxyx + xyx2 yx + xyxyx2)

+
1

3
γ(xyx)(xyxy + yxyx) +

2

3
µ(x, y)xyxyx +

1

6
µ(x, x)y2xyx

+
1

6
µ(x, x)xyxy2 +

1

3
µ(xyx, y)xyx +

1

6
µ(xyx, xyx)y

+
1

6
ν(x, y, x)(xyxy + yxyx) +

1

6
ν(xyx, y, xyx).

(16)

Replacing x and y with y and xyx respectively in (15) yields

(yxyxy)δ = yδxyxy + y
[

rhs. (15)
]

y + yxyxyδ +
1

3
γ(y)(yxyx + xyxy)

+
1

3
γ(xyx)y2 +

1

3
µ(y, xyx)y +

1

6
µ(y, y)xyx +

1

6
ν(y, xyx, y)

= yδxyxy + · · · + yxyxyδ +
1

3
γ(x)(y2xy + yxy2)

+
1

3
γ(y)(yxyx + yx2 y + xyxy) +

1

3
γ(xyx)y2 +

1

3
µ(x, y)yxy

+
1

6
µ(x, x)y3 +

1

6
µ(y, y)xyx +

1

3
µ(y, xyx)y

+
1

6
ν(x, y, x)y2 +

1

6
ν(y, xyx, y).

(17)
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Finally, replacing y with yxyxy in (15) and using (17) yields

(xyxyxyx)δ = xδ yxyxyx + x
[

rhs. (17)
]
x + xyxyxyxδ

+
1

3
γ(x)(xyxyxy + yxyxyx) +

1

3
γ(yxyxy)x2

+
1

3
µ(x, yxyxy)x +

1

6
µ(x, x)yxyxy +

1

6
ν(x, yxyxy, x)

= xδ yxyxyx + · · · + xyxyxyxδ

+
1

3
γ(x)(yxyxyx + xy2xyx + xyxy2x + xyxyxy)

+
1

3
γ(y)(x2 yxyx + xyx2 yx + xyxyx2) +

1

3
γ(xyx)xy2x

+
1

6
µ(x, x)xy3x +

1

6
µ(y, y)x2 yx2 +

1

6
µ(x, x)yxyxy

+
1

3
µ(x, y)xyxyx +

1

3
µ(y, xyx)xyx

+
1

3
µ(x, yxyxy)x +

1

6
ν(x, y, x)xy2x +

1

6
ν(x, xyx, x)x2

+
1

6
ν(x, yxyxy, x).

(18)

Subtracting (18) from (16) yields

0 =
1

3
µ(x, y)xyxyx +

1

6
µ(x, x)y2xyx +

1

6
µ(x, x)xyxy2 −

1

6
µ(x, x)xy3x

−
1

6
µ(y, y)x2 yx2 −

1

6
µ(x, x)yxyxy +

1

6

[
2γ(xyx) + ν(x, y, x)

]
xyxy

+
1

6

[
2γ(xyx) + ν(x, y, x)

]
yxyx −

1

6

[
2γ(xyx) + ν(x, y, x)

]
xy2x

−
1

6

[
2γ(yxyxy) + ν(y, xyx, y)

]
x2 −

1

3
µ(x, yxyxy)x +

1

6
µ(xyx, xyx)y

+
1

6
ν(xyx, y, xyx)−

1

6
ν(x, yxyxy, x)

(19)

for all x, y ∈ K.
Now, fix an arbitrary y ∈ K. If y is not algebraic of degree ≤ 2 over C , then by Re-

mark 1.5 there is an x ∈ K such that the monomials in (19) are linearly independent over
C . Thus, each coefficient must be zero and, in particular, µ(y, y) = 0. If y is algebraic of
degree ≤ 2 over C , then some of the monomials in (19) will change and combine, but the
x2 yx2 monomial is the only one with total degree in x of 4. Thus, for the same reason as
before, µ(y, y) = 0.

We have shown that µ(y, y) = 0 for all y ∈ K. For x, y arbitrary in K, we have µ(x, y) =
1
2 [µ(x + y, x + y)− µ(x, x)− µ(y, y)] = 0 by the result just shown. Thus µ is identically 0.
This completes the proof of the lemma.
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In equation (19), after eliminating all terms involving µ, fixing x ∈ K, looking at mono-
mials with total degree 2 in y, and reasoning similar to the proof of Lemma 3.4, we have:

Lemma 3.5 −2γ(xyx) = ν(x, y, x) for all x, y ∈ K.

Using the previous lemmas with equation (15) we have

(xyx)δ = xδ yx + xyδx + xyxδ +
1

3
γ(x)(xy + yx) +

1

3
γ(y)x2 −

1

3
γ(xyx).(20)

4 A New Derivation

Define ε : K → βC∗ (β as defined in Theorem 3.1) by ε(x) = xε = − 1
3γ(x).

Lemma 4.1 [x, y]ε = 0 for all x, y ∈ K.

Proof Let x, y ∈ K. We need only show that γ([x, y]) = 0. Using (20)

(
x[x, y]x

)δ
= xδ[x, y]x + x[x, y]δx + x[x, y]xδ +

1

3
γ(x)
(

x[x, y] + [x, y]x
)

+
1

3
γ
(
[x, y]

)
x2 −

1

3
γ
(
x[x, y]x

)

= xδxyx − xδ yx2 + xxδ yx − xyxδx + x2 yδx − xyδx2 + x2 yxδ

− xyxxδ +
1

3
γ(x)(x2 y − yx2) +

1

3
γ
(
[x, y]

)
x2 −

1

3
γ
(

x[x, y]x
)
.

(21)

On the other hand, using (20)

(
x[x, y]x

)δ
= [x, xyx]δ = xδxyx − xyxxδ + x(xyx)δ − (xyx)δx

= xδxyx − xyxxδ + xxδ yx + x2 yδx + x2 yxδ − xδ yx2 − xyδx2

− xyxδx +
1

3
γ(x)(x2 y − yx2).

(22)

Subtracting (22) from (21), and multiplying by 3 gives

0 = γ
(
[x, y]

)
x2 − γ

(
x[x, y]x

)
.(23)

Fix x ∈ K. If x is not algebraic of degree≤ 2 over C , then by Remark 1.5, γ([x, y]) = 0.
If x is algebraic of degree ≤ 2, then there exists z ∈ K such that both z and z + x are
not algebraic of degree ≤ 2 (use Remark 1.5 with the C-independent sets {Z2,Z, 1} and
{(Z + x)2,Z + x, 1}). Then, as before, γ([z, y]) = γ([z + x, y]) = 0. So γ([x, y]) =
γ([z + x, y])− γ([z, y]) = 0. This completes the proof of the lemma.
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Define ρ = δ − ε. ρ is a Lie derivation of K since it agrees with δ on [K,K]. Also,
replacing y with x in (20),

xρx2 + xxρx + x2xρ = xδ−εx2 + xxδ−εx + x2xδ−ε

= xδx2 + xxδx + x2xδ − 3ε(x)x2

= xδx2 + xxδx + x2xδ + γ(x)x2

= (x3)δ +
1

3
γ(x3) = (x3)δ−ε = (x3)ρ.

Thus ρ satisfies the criteria for Lemma 2.1 and can be extended to an ordinary derivation
of 〈K〉 into RC . This completes the proof of Theorem 1.1.

If in Theorem 1.1, the involution is of the first kind, then C∗ = C and the map ε is
identically 0. Thus δ itself can be extended to an ordinary derivation of 〈K〉. This result
was previously shown by Swain in [6].

Corollary 4.2 Let R be a simple non-GPI ring with involution and characteristic 6= 2, 3. Let
δ be a Lie derivation of K. Then δ = ρ + ε where ε is an additive map of K into the skew
elements of the extended centroid of R which is zero on [K,K], and ρ is a Lie derivation which
can be extended to an ordinary derivation of R into RC.

Proof By Remark 1.3, 〈K〉 contains a nonzero ideal of R; thus 〈K〉 = R. Applying Theo-
rem 1.1 completes the proof.
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