NORM OF A LINEAR COMBINATION OF TWO OPERATORS ON A HILBERT SPACE

Takahiko Nakazi and Takanori Yamamoto

Let $\alpha, \beta, \gamma, \delta$ be complex numbers such that $\gamma \delta \neq 0$. If A and B are bounded linear operators on the Hilbert space H such that $\gamma A+\delta B$ is right invertible then we study the operator norm of $(\alpha A+\beta B)(\gamma A+\delta B)^{-1}$ using the angle ϕ between two subspaces ran A and ran B or the angle $\psi=\psi(A, B)$ between two operators A and B where

$$
\cos \psi(A, B)=\sup \{|\langle A f, B f\rangle| /(\|A f\| \cdot\|B f\|) ; f \in H, A f \neq 0, B f \neq 0\} .
$$

1. Introduction

Let $B(H)$ be the set of all bounded linear operators on the Hilbert space H. Let $P \in B(H)$ satisfy $P^{2}=P$ and let $Q=I-P$ where I denotes the identity operator on H. Denote by $\phi\left(H_{1}, H_{2}\right)$ the minimal angle between two subspaces H_{1} and H_{2} of H :

$$
\cos \phi\left(H_{1}, H_{2}\right)=\sup _{0 \neq f \in H_{1}, 0 \neq g \in H_{2}} \frac{|\langle f, g\rangle|}{\|f\| \cdot\|g\|} .
$$

Then $0 \leqslant \phi\left(H_{1}, H_{2}\right) \leqslant \pi / 2$. Let $\operatorname{ran} P$ denote the range of P. If $\phi=\phi(\operatorname{ran} P, \operatorname{ran} Q)>0$ then

$$
\|P\|=\|Q\|=\csc \phi=\frac{1}{\sin \phi}
$$

(see $[2$, p.339]). Let $J=P-Q$. Then

$$
\|P\|=\|Q\|=\frac{1}{2}\left(\|J\|+\frac{1}{\|J\|}\right)
$$

(see [6, Lemma 2], [1]). Hence

$$
\|J\|=\|P\|+\sqrt{\|P\|^{2}-1}=(\csc +\cot) \phi=\cot \frac{\phi}{2} .
$$

Received 31st January, 2001
This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education of Japan.

Let α and β be complex numbers, and let t be a nonnegative number. Then we define a function $F(\alpha, \beta, t)$ which is the generalisation of $\max (|\alpha|,|\beta|)=F(\alpha, \beta, 0)$.

Definition 1. Let

$$
F(\alpha, \beta, t)=\sqrt{\left|\frac{\alpha-\beta}{2}\right|^{2} t+\left(\frac{|\alpha|+|\beta|}{2}\right)^{2}}+\sqrt{\left|\frac{\alpha-\beta}{2}\right|^{2} t+\left(\frac{|\alpha|-|\beta|}{2}\right)^{2}}
$$

Then $F(\alpha, \beta, t)$ is a nondecreasing function of $t, t \geqslant 0$ and satisfies

$$
\max (|\alpha|,|\beta|)=F(\alpha, \beta, 0) \leqslant F(\alpha, \beta, t)<\infty, \quad(t \geqslant 0) .
$$

Feldman, Krupnik and Markus [1] established the following formula.
Feldman, Krupnik and Markus formula. Let $P \in B(H)$ satisfy $P \neq 0, I$ and $P^{2}=P$. Let $Q=I-P$. Let $\alpha, \beta \in \mathbf{C}$. Then

$$
\|\alpha P+\beta Q\|=F\left(\alpha, \beta,\|P\|^{2}-1\right)
$$

Let $\phi=\phi(\operatorname{ran} P, \operatorname{ran} Q)$. Since $\|P\|=\csc \phi$, it follows that $\|P\|^{2}-1=\cot ^{2} \phi$. Hence $\|\alpha P+\beta Q\|=F\left(\alpha, \beta, \cot ^{2} \phi\right)$.

Definition 2. For two nonzero operators A, B on H, let $\psi(A, B)$ satisfy $0 \leqslant$ $\psi(A, B) \leqslant \pi / 2$ and

$$
\cos \psi(A, B)=\sup _{A f \neq 0, B f \neq 0} \frac{|\langle A f, B f\rangle|}{\|A f\| \cdot\|B f\|}
$$

Since $\cos \psi(A, B) \leqslant \cos \phi(\operatorname{ran} A, \operatorname{ran} B)$, it follows that $\psi(A, B) \geqslant \phi(\operatorname{ran} A, \operatorname{ran} B)$. We call $\psi(A, B)$ as the angle between two operators A and B. If $P^{2}=P(\neq 0, I)$ and $Q=I-P$ then $\phi(\operatorname{ran} P, \operatorname{ran} Q)=\psi(P, Q)$, because if $h=P f+Q g$ then

$$
\frac{|\langle P f, Q g\rangle|}{\|P f\| \cdot\|Q g\|}=\frac{|\langle P h, Q h\rangle|}{\|P h\| \cdot\|Q h\|}
$$

In this paper, we shall study the operator norm of $(\alpha A+\beta B)(\gamma A+\delta B)^{-1}$. We use $\phi(\operatorname{ran} A, \operatorname{ran} B)$ in Section 2, and we use $\psi(A, B)$ in Section 4. Let $K=\overline{\operatorname{ran} A} \cap \overline{\operatorname{ran} B}$. In Section 2, we shall study in the case when $K \neq \overline{\operatorname{ran} A}$ and $K \neq \overline{\operatorname{ran} B}$. In Theorem 1, we shall use the Feldman, Krupnik and Markus formula [1] and Lemma 1 to establish the formula of the operator norm of $(\alpha A+\beta B)(\gamma A+\delta B)^{-1}$ using the angle $\phi(\operatorname{ran} A, \operatorname{ran} B)$ in the case when $K=\{0\}$ and $\gamma A+\delta B$ is right invertible. In Theorem 2, we shall use Theorem 1 to estimate the norm from below using the angle $\phi(\overline{\operatorname{ran} A} \ominus K, \overline{\operatorname{ran} B} \ominus K)$ in the case when K is a nonzero invariant subspace of $A(\gamma A+\delta B)^{-1}$. In Section 3, we shall study in the case when $K=\overline{\operatorname{ran} B}$. We shall consider the nilpotent operator B on H. The results in Sections 2 and 3 follow from the Feldman, Krupnik and Markus formula. In Section 4, if $\psi(A, B)>0$ and $\gamma A+\delta B$ is right invertible or left invertible then we shall estimate $\left\|(\alpha A+\beta B)(\gamma A+\delta B)^{-1}\right\|$ from above. In Theorem 3, we do not assume the boundedness of two operators A and B. As a corollary of Theorem 3, we shall show that if $\|A+B\|<\infty$ and $\psi(A, B)>0$ then $\|A\|<\infty$ and $\|B\|<\infty$. The results in Section 4 do not follow from the Feldman, Krupnik and Markus formula.

2. Norm formula using the angle ϕ between ran A and ran B

Let $A, B \in B(H), A \neq 0, B \neq 0$ and let $K=\overline{\operatorname{ran} A} \cap \overline{\operatorname{ran} B}$. In this section we shall study in the case when $K \neq \overline{\operatorname{ran} A}$ and $K \neq \overline{\operatorname{ran} B}$. In Theorem 1, if $K=\{0\}$ and $\operatorname{ran}(\gamma A+\delta B)=H$ then we shall use the Feldman, Krupnik and Markus formula [1], and establish the norm formula of $\left\|(\alpha A+\beta B)(\gamma A+\delta B)^{-1}\right\|$ using the angle $\phi(\operatorname{ran} A, \operatorname{ran} B)$. In Theorem 2, if K is an invariant subspace of $A(\gamma A+\delta B)^{-1}$ then we shall estimate the norm from below using $\phi(\overline{\operatorname{ran} A} \ominus K, \overline{\operatorname{ran} B} \ominus K)$.

The operator $X \in B(H)$ is said to be right invertible if there exists an operator $Y \in B(H)$ such that $X Y=I$. The operator Y is called the right inverse to X and is denoted by X^{-1}. Then $X^{-1} \in B(H)$ is not uniquely defined (see [3, Volume I, p.63]). If $\gamma A+\delta B$ is right invertible then

$$
\left\|(\alpha A+\beta B)(\gamma A+\delta B)^{-1}\right\|=\sup _{(\gamma A+\delta B) f \neq 0} \frac{\|(\alpha A+\beta B) f\|}{\|(\gamma A+\delta B) f\|},
$$

where $(\gamma A+\delta B)^{-1}$ denotes one of the right inverses to $\gamma A+\delta B$.
Lemma 1. Let $A, B \in B(H)$ satisfy $A \neq 0, B \neq 0$ and $\operatorname{ran}(A+B)=H$. The following assertions are equivalent:
(1) $\operatorname{ran} A \cap \operatorname{ran} B=\{0\}$.
(2) $\overline{\operatorname{ran} A} \cap \overline{\operatorname{ran} B}=\{0\}$.
(3) $\phi(\operatorname{ran} A, \operatorname{ran} B)>0$.

Suppose (1) to (3) hold. Let $(A+B)^{-1}$ denote one of the right inverses to $A+B$. Let $P=A(A+B)^{-1}$ and let $Q=B(A+B)^{-1}$. Then P and Q do not depend on the choice of $(A+B)^{-1}$. Then $P^{2}=P \neq 0, I, P+Q=I, \operatorname{ran} P=\operatorname{ran} A$ and $\operatorname{ran} Q=\operatorname{ran} B$.

Proof: $\quad(2) \Rightarrow(1)$ is trivial.
(1) \Rightarrow (3): Let $H_{1}=\operatorname{ker}(A+B)$, and let $H_{2}=H_{1}^{\perp}$. Then $H=H_{1} \oplus H_{2}$. Since $\left.(A+B)\right|_{H_{1}}=0$, it follows that $\left.A\right|_{H_{1}}=-\left.B\right|_{H_{1}}$. By (1), $\left.A\right|_{H_{1}}=\left.B\right|_{H_{1}}=0$. Let $T=$ $\left.(A+B)\right|_{H_{2}}$. Then $T \in B\left(H_{2}, H\right)$ and $\operatorname{ker} T=\{0\}$. Since $\operatorname{ran}(A+B)=H$, it follows that $\operatorname{ran} T=H$. By the open mapping theorem, there exists $S \in B\left(H, H_{2}\right)$ such that $S T=I_{H_{2}}$ and $T S=I_{H}$. Hence $(A+B) S=T S=I_{H}=I$. Hence S is a right inverse to $A+B$. Let C be one of the right inverses to $A+B$. Then $P+Q=(A+B) C=I$. Hence $A(C-S)=-B(C-S)$. By (1), $A(C-S)=-B(C-S)=0$. Hence $P=A C=A S$ and $Q=B C=B S$. Hence P and Q do not depend on the choice of $(A+B)^{-1}$. By (1),

$$
\operatorname{ran} P \cap \operatorname{ran}(I-P)=\operatorname{ran} P \cap \operatorname{ran} Q \subset \operatorname{ran} A \cap \operatorname{ran} B=\{0\}
$$

Since $P(I-P)=(I-P) P$, this implies that $P^{2}=P$. Suppose $P=0$. Then $A S=$ 0 and hence $\left.A\right|_{H_{2}}=A S T=0$. Since $\left.A\right|_{H_{1}}=0$, it follows that $A=0$. This is a contradiction. Hence $P \neq 0$. Suppose $P=I$. Then $B S=Q=I-P=0$ and hence
$\left.B\right|_{H_{2}}=B S T=0$. Since $\left.B\right|_{H_{1}}=0$, it follows that $B=0$. This is a contradiction. Hence $P \neq I$. Since $P \neq 0, I$ and $Q=I-P$, it follows from Gohberg and Krein [2, p.339] that $\|P\|=\csc \phi(\operatorname{ran} P, \operatorname{ran} Q)$. Hence

$$
\cos \phi(\operatorname{ran} P, \operatorname{ran} Q)=\frac{\sqrt{\|P\|^{2}-1}}{\|P\|}<1
$$

Hence $\phi(\operatorname{ran} P, \operatorname{ran} Q)>0$. Since $\left.A\right|_{H_{1}}=\left.B\right|_{H_{1}}=0$, it follows that

$$
\begin{aligned}
& \operatorname{ran} P=\operatorname{ran} A S=\left.\operatorname{ran} A\right|_{H_{2}}=\operatorname{ran} A \\
& \operatorname{ran} Q=\operatorname{ran} B S=\left.\operatorname{ran} B\right|_{H_{2}}=\operatorname{ran} B .
\end{aligned}
$$

Hence

$$
\phi(\operatorname{ran} A, \operatorname{ran} B)=\phi(\operatorname{ran} P, \operatorname{ran} Q)>0
$$

(3) \Rightarrow (2): Suppose $\overline{\operatorname{ran} A} \cap \overline{\operatorname{ran} B} \neq\{0\}$. Then there exists an $h \in H$ and sequences $\left\{f_{n}\right\},\left\{g_{n}\right\} \subset H$ such that $h \neq 0,\left\|A f_{n}-h\right\| \rightarrow 0,\left\|B g_{n}-h\right\| \rightarrow 0$ as $n \rightarrow \infty$. Hence

$$
\cos \phi(\operatorname{ran} A, \operatorname{ran} B)=\sup _{f, g \in H} \frac{|\langle A f, B g\rangle|}{\|A f\| \cdot\|B g\|} \geqslant \lim _{n \rightarrow \infty} \frac{\left|\left\langle A f_{n}, B g_{n}\right\rangle\right|}{\left\|A f_{n}\right\| \cdot\left\|B g_{n}\right\|}=\frac{|\langle h, h\rangle|}{\|h\| \cdot\|h\|}=1
$$

Hence $\phi(\operatorname{ran} A, \operatorname{ran} B)=0$. Lemma 1 is proved.
The assertions in Lemma 1 are equivalent to the formula:

$$
\left\|A(A+B)^{-1}\right\|=\csc \phi(\operatorname{ran} A, \operatorname{ran} B)
$$

If $\alpha=\gamma=\delta=1$ and $\beta=0$ then the following Theorem 1 implies this formula. Let $P_{H_{1}}$ (respectively $P_{H_{2}}$) denote the orthogonal projection from H onto H_{1} (respectively H_{2}). By Lemma 1, if $H_{1} \cap H_{2}=\{0\}$ and $\operatorname{ran}\left(P_{H_{1}}+P_{H_{2}}\right)=H$ then $\phi\left(H_{1}, H_{2}\right)>0$.

Theorem 1. Let $\alpha, \beta, \gamma, \delta$ be complex numbers such that $\gamma \delta \neq 0$. Let $A, B \in$ $B(H)$ satisfy $A \neq 0, B \neq 0, \operatorname{ran}(\gamma A+\delta B)=H$ and $\operatorname{ran} A \cap \operatorname{ran} B=\{0\}$. Then

$$
\left\|(\alpha A+\beta B)(\gamma A+\delta B)^{-1}\right\|=F\left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot ^{2} \phi\right)
$$

where $\phi=\phi(\operatorname{ran} A, \operatorname{ran} B)>0$ and $(\gamma A+\delta B)^{-1}$ denotes one of the right inverses to $\gamma A+\delta B$.

Proof: It is sufficient to prove when $\gamma=\delta=1$. Let $P=A(A+B)^{-1}$ and let $Q=B(A+B)^{-1}$, where $(A+B)^{-1}$ denote one of the right inverses to $A+B$. Then $P+Q=I$. By Lemma 1, if $A \neq 0$ and $B \neq 0$ then $P^{2}=P \neq 0, I$, $\operatorname{ran} P=\operatorname{ran} A$ and $\operatorname{ran} Q=\operatorname{ran} B$. Since $\|P\|=\csc \phi(\operatorname{ran} P, \operatorname{ran} Q)$, it follows from the Feldman, Krupnik and Markus formula [1] that

$$
\begin{aligned}
\left\|(\alpha A+\beta B)(A+B)^{-1}\right\| & =\|\alpha P+\beta Q\| \\
& =F\left(\alpha, \beta,\|P\|^{2}-1\right) \\
& =F\left(\alpha, \beta, \cot ^{2} \phi(\operatorname{ran} P, \operatorname{ran} Q)\right) \\
& =F\left(\alpha, \beta, \cot ^{2} \phi(\operatorname{ran} A, \operatorname{ran} B)\right)
\end{aligned}
$$

Theorem 1 is proved.
[
In Theorem 1, if $A B=B A$ then

$$
\left\|(\alpha A+\beta B)(\gamma A+\delta B)^{-1}\right\|=\left\|(\gamma A+\delta B)(\alpha A+\beta B)^{-1}\right\|=F\left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot ^{2} \phi\right)
$$

We have assumed that $\operatorname{ran} A \cap \operatorname{ran} B=\{0\}$. This is equivalent to the assertions in Lemma 1. If $(\alpha \delta-\beta \gamma) \gamma \delta \neq 0$ then $\alpha / \gamma-\beta / \delta \neq 0$ and hence the norm formula in Theorem 1 is equivalent to the assertions in Lemma 1. By Theorem 1, if $P \in B(H)$ satisfy $P^{2}=P \neq I, 0$ and $Q=I-P$ then

$$
\|P\|=\|Q\|=\csc \phi(\operatorname{ran} P, \operatorname{ran} Q)
$$

which is in the book of Gohberg and Krein [2, p.339]. If $A=P$ and $B=Q$ then Theorem 1 becomes the Feldman, Krupnik and Markus formula ([1]).

In Theorem 1, if $A=P$ and $B=Q^{*}$ then $A+B$ becomes invertible and we can compute the norm $\left\|(\alpha A+\beta B)(A+B)^{-1}\right\|$ as the following. For all $f \in H$,

$$
\begin{aligned}
\left\langle\left(A^{*} A+B^{*} B\right) f, f\right\rangle & =\|A f\|^{2}+\|B f\|^{2} \\
& =\|A f\|^{2}+\left\|f-A^{*} f\right\|^{2} \\
& =\|f\|^{2}+\left\|A f-A^{*} f\right\|^{2} \\
& \geqslant\|f\|^{2} .
\end{aligned}
$$

Hence $A^{*} A+B^{*} B$ is invertible. Similarly, $A A^{*}+B B^{*}$ is invertible. Since

$$
(A+B)\left(A^{*}+B^{*}\right)=A A^{*}+B B^{*}
$$

and

$$
\left(A^{*}+B^{*}\right)(A+B)=A^{*} A+B^{*} B
$$

it follows that $A+B$ is invertible. Since $\operatorname{ran} A \perp \operatorname{ran} B$, it follows that $\phi(\operatorname{ran} A, \operatorname{ran} B)=$ $\pi / 2$. By Theorem 1,

$$
\left\|(\alpha A+\beta B)(A+B)^{-1}\right\|=F(\alpha, \beta, 0)=\max (|\alpha|,|\beta|)
$$

Let $P_{0}=A(A+B)^{-1}$ and $Q_{0}=B(A+B)^{-1}$. Since $(A+B)^{*} A=A^{*}(A+B)$, it follows that P_{0} and Q_{0} are selfadjoint. By Lemma $1, P_{0}$ and Q_{0} are selfadjoint idempotent.

Corollary 1. Let $A, B \in B(H)$ satisfy $\operatorname{ran}(A+B)=H$. Let α and β be complex numbers. Let p, q, r, s be complex numbers satisfying $p+r=q+s=1, p s-q r \neq$ $0, \operatorname{ran}(p A+q B) \neq H, \operatorname{ran}(r A+s B) \neq H$ and $\operatorname{ran}(p A+q B) \cap \operatorname{ran}(r A+s B)=\{0\}$. Then

$$
\left\|(\alpha A+\beta B)(A+B)^{-1}\right\|=F\left(\frac{\alpha s-\beta r}{p s-q r}, \frac{p \beta-q \alpha}{p s-q r}, \cot ^{2} \phi\right)
$$

where $\phi=\phi(\operatorname{ran}(p A+q B), \operatorname{ran}(r A+s B))$, and $(A+B)^{-1}$ denote one of the right inverses to $A+B$.

Proof: Let $A^{\prime}=p A+q B$ and let $B^{\prime}=r A+s B$. Then Then $A+B=A^{\prime}+B^{\prime}$. Define α^{\prime} and β^{\prime} by

$$
\alpha^{\prime}=\frac{\alpha s-\beta r}{p s-q r} \quad \text { and } \quad \beta^{\prime}=\frac{p \beta-q \alpha}{p s-q r}
$$

Then $\alpha A+\beta B=\alpha^{\prime} A^{\prime}+\beta^{\prime} B^{\prime}$. Since $\operatorname{ran} A^{\prime} \neq H, \operatorname{ran} B^{\prime} \neq H$ and $\operatorname{ran} A^{\prime}+\operatorname{ran} B^{\prime}=$ $\operatorname{ran}(A+B)=H$, it follows from Theorem 1 that

$$
\left\|(\alpha A+\beta B)(A+B)^{-1}\right\|=\left\|\left(\alpha^{\prime} A^{\prime}+\beta^{\prime} B^{\prime}\right)\left(A^{\prime}+B^{\prime}\right)^{-1}\right\|=F\left(\alpha^{\prime}, \beta^{\prime}, \cot ^{2} \phi\left(A^{\prime}, B^{\prime}\right)\right)
$$

Corollary 1 is proved.
There are many operators $A, B \in B(H)$ such that $\rho(A, B)=1$ and $\rho(p A+q B$, $r A+s B)<1$. If $p=s=1$ and $q=r=0$ then Corollary 1 implies Theorem 1. Let $K=\overline{\operatorname{ran} A} \cap \overline{\operatorname{ran} B}$. In Theorem 1, we have established the norm formula in the case when $K=\{0\}$. Next we shall consider the case when $K \neq\{0\}$. Then $\phi(\operatorname{ran} A, \operatorname{ran} B)=0$. In the following Theorem 2, we shall estimate the norm $\left\|(\alpha A+\beta B)(A+B)^{-1}\right\|$ from below in the case when $K \neq \overline{\operatorname{ran} A}$ and $K \neq \overline{\operatorname{ran} B}$.

Theorem 2. Let $\alpha, \beta, \gamma, \delta$ be complex numbers such that $\gamma \delta \neq 0$. Let $A, B \in$ $B(H)$. Let $\gamma A+\delta B$ be invertible. Let $K=\overline{\operatorname{ran} A} \cap \overline{\operatorname{ran} B}$ be an invariant subspace of $A(\gamma A+\delta B)^{-1}$ such that $K \neq \overline{\operatorname{ran} A}$ and $K \neq \overline{\operatorname{ran} B}$. Then

$$
\left\|(\alpha A+\beta B)(\gamma A+\delta B)^{-1}\right\| \geqslant F\left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot ^{2} \phi\right)
$$

where $\phi=\phi(\overline{\operatorname{ran} A} \ominus K, \overline{\operatorname{ran} B} \ominus K)>0$.
Proof: It is sufficient to prove that when $\gamma=\delta=1$

$$
\left\|(\alpha A+\beta B)(A+B)^{-1}\right\| \geqslant F\left(\alpha, \beta, \cot ^{2} \phi\right)
$$

Let $X=A(A+B)^{-1}$ and let $Y=B(A+B)^{-1}$. Then $X+Y=I$. Let P_{K} denote the orthogonal projection from H onto K and let $P_{K^{\perp}}$ denote the orthogonal projection from H onto K^{\perp}. Let $X_{1}=\left.P_{K^{\perp}} X\right|_{K^{\perp}}$ and let $Y_{1}=\left.P_{K^{\perp}} Y\right|_{K^{\perp}}$. We shall show that $\operatorname{ran} X_{1} \cap \operatorname{ran} Y_{1}=\{0\}$. Let $h \in \operatorname{ran} X_{1} \cap \operatorname{ran} Y_{1}$. Then $h \in K^{\perp}$. There exist $f, g \in K^{\perp}$ such that $h=P_{K^{\perp}} X f=P_{K^{\perp}} Y g$. Then $X f=h+P_{K} X f$ and $Y g=h+P_{K} Y g$. Hence $X f-Y g \in K$. Since $Y g \in \operatorname{ran} B$, it follows that $X f \in \operatorname{ran} A \cap \overline{\operatorname{ran} B} \subset K$. Hence $h \in K \cap K^{\perp}=\{0\}$. Therefore $\operatorname{ran} X_{1} \cap \operatorname{ran} Y_{1}=\{0\}$ and $X_{1}+Y_{1}=\left.I\right|_{K^{\perp}}$. By Lemma 1, this implies that X_{1} and Y_{1} are idempotent operators on K^{\perp}, and $\phi\left(\operatorname{ran} X_{1}, \operatorname{ran} Y_{1}\right)>0$. Then $\operatorname{ran} X_{1}$ and $\operatorname{ran} Y_{1}$ are closed subspaces of H. By Theorem 1,

$$
\begin{aligned}
\left\|(\alpha A+\beta B)(A+B)^{-1}\right\| & =\|\alpha X+\beta Y\| \\
& \geqslant \sup _{f \in K^{\perp}} \frac{\left\|P_{K^{\perp}}(\alpha X+\beta Y) f\right\|}{\|f\|}=\sup _{f \in K^{\perp}} \frac{\left\|\left(\alpha X_{1}+\beta Y_{1}\right) f\right\|}{\|f\|} \\
& =\left\|\alpha X_{1}+\beta Y_{1}\right\|_{K^{\perp}} . \\
& =F\left(\alpha, \beta, \cot ^{2} \phi\left(\operatorname{ran} X_{1}, \operatorname{ran} Y_{1}\right)\right) .
\end{aligned}
$$

If $f \in \overline{\operatorname{ran} X} \ominus K$ then there exists $g_{n}+h_{n} \in K \oplus K^{\perp}$ such that $\left\|f-X\left(g_{n}+h_{n}\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$. Since K is an invariant subspaces of X, it follows that $X g_{n} \in K$. Since $f \in K^{\perp}$, $X_{1} h_{n}=P_{K^{\perp}} X h_{n}, P_{K^{\perp}} X g_{n}=0$ and $\left\|P_{K^{\perp}}\right\|=1$, it follows that

$$
\left\|f-X_{1} h_{n}\right\|=\left\|P_{K^{\perp}}\left(f-X\left(g_{n}+h_{n}\right)\right)\right\| \leqslant\left\|f-X\left(g_{n}+h_{n}\right)\right\| .
$$

Hence $\overline{\operatorname{ran} X} \ominus K \subset \overline{\operatorname{ran} X_{1}}=\operatorname{ran} X_{1}$. Since K is an invariant subspace of X and $X+Y=I$, it follows that K is an invariant subspace of Y. By the similar proof, $\overline{\operatorname{ran} Y} \Theta K \subset \operatorname{ran} Y_{1}$. Since $A+B$ is invertible, it follows that $\operatorname{ran} X=\operatorname{ran} A$ and $\operatorname{ran} Y=\operatorname{ran} B$. Hence

$$
\begin{aligned}
1 & >\cos \phi\left(\operatorname{ran} X_{1}, \operatorname{ran} Y_{1}\right) \\
& \geqslant \cos \phi(\overline{\operatorname{ran} X} \ominus K, \overline{\operatorname{ran} Y} \ominus K) \\
& =\cos \phi(\overline{\operatorname{ran} A} \ominus K, \overline{\operatorname{ran} B} \ominus K) .
\end{aligned}
$$

Hence

$$
0<\phi\left(\operatorname{ran} X_{1}, \operatorname{ran} Y_{1}\right) \leqslant \phi(\overline{\operatorname{ran} A} \ominus K, \overline{\operatorname{ran} B} \ominus K)
$$

and thus

$$
\infty>\cot \phi\left(\operatorname{ran} X_{1}, \operatorname{ran} Y_{1}\right) \geqslant \cot \phi(\overline{\operatorname{ran} A} \ominus K, \overline{\operatorname{ran} B} \ominus K) .
$$

Since $F(\alpha, \beta, t)$ is a nondecreasing function of $t,(t \geqslant 0)$, it follows that

$$
\begin{aligned}
\left\|(\alpha A+\beta B)(A+B)^{-1}\right\| & \geqslant F\left(\alpha, \beta, \cot ^{2} \phi\left(\operatorname{ran} X_{1}, \operatorname{ran} Y_{1}\right)\right) \\
& \geqslant \dot{F}\left(\alpha, \beta, \cot ^{2} \phi(\overline{\operatorname{ran} A} \ominus K, \overline{\operatorname{ran} B} \ominus K)\right)
\end{aligned}
$$

Theorem 2 is proved. \square
By Theorem 1, if $K=\{0\}$ then the equality holds in the inequality in Theorem 2. There are many operators $A, B \in B(H)$ such that $\phi(\operatorname{ran} A, \operatorname{ran} B)=0$ and

$$
\phi(\overline{\operatorname{ran} A} \ominus K, \overline{\operatorname{ran} B} \ominus K)>0
$$

If $A B=B A$ then $A(\gamma A+\delta B)^{-1} B=B A(\gamma A+\delta B)^{-1}$ and hence $K=\overline{\operatorname{ran} A} \cap \overline{\operatorname{ran} B}$ is an invariant subspace of $A(\gamma A+\delta B)^{-1}$. Even when the conditions in Theorem 2 do not
hold, the similar result holds as the followings. If $A, B \in B(H)$ satisfy $A \neq 0, B \neq 0$, $A+B$ is right invertible, and M is the closed subspace of H satisfying

$$
\operatorname{ran} A \cap \overline{\operatorname{ran} B} \subset M \subset \overline{\operatorname{ran} B}
$$

then

$$
\left\|(\alpha A+\beta B)(A+B)^{-1}\right\| \geqslant F\left(\alpha, \beta, \cot ^{2} \phi\right)
$$

where $\phi=\phi\left(\left.P_{M^{\perp}} A(A+B)^{-1}\right|_{M^{\perp}},\left.P_{M^{\perp}} B(A+B)^{-1}\right|_{M^{\perp}}\right)>0$.

3. NORM FORMULA WHEN $A=I$ AND $B^{n}=0$

Let $K=\overline{\operatorname{ran} A} \cap \overline{\operatorname{ran} B}$. In Section 2, we have considered two operators $A, B \in B(H)$ satisfying $K \neq \overline{\operatorname{ran} A}$ and $K \neq \overline{\operatorname{ran} B}$. In this section we shall consider two operators A and B satisfying $K=\overline{\operatorname{ran} B}$. In general, suppose $A_{0}, B_{0} \in B(H), \operatorname{ran} B_{0} \subset \operatorname{ran} A_{0}$ and $\operatorname{ker} B_{0} \neq\{0\}$. Then there are many $C_{0} \in B(H)$ such that $C_{0}\left(\operatorname{ran} B_{0}\right) \subset$ ker B_{0}. Let $A=C_{0} A_{0}$ and $B=C_{0} B_{0}$. Then

$$
C_{0}\left(\alpha A_{0}+\beta B_{0}\right)=\alpha A+\beta B
$$

Since $\operatorname{ran} B_{0} \subset \operatorname{ran} A_{0}$, it follows that $\operatorname{ran} B \subset \operatorname{ran} A$ and hence $K=\overline{\operatorname{ran} B}$. Since $C_{0}\left(\operatorname{ran} B_{0}\right) \subset \operatorname{ker} B_{0}$, it follows that $B^{2}=0$. Hence, in many cases, the linear combination $\alpha A+\beta B$ for $A, B \in B(H)$ satisfying $B^{2}=0$ appears. We shall prove the following Proposition 1 using the Feldman, Krupnik and Markus formula [1]. The first author ([5]) proved it in the different way.

Proposition 1. Let $B \in B(H)$ satisfy $B^{2}=0$. Let α and β be complex numbers. Then

$$
\left.\|\alpha I+\beta B\|=\sqrt{\left|\frac{\beta}{2}\right|^{2}\|B\|^{2}+|\alpha|^{2}}+\left|\frac{\beta}{2}\right| \right\rvert\,\|B\|
$$

Proof: It is sufficient to prove that when $\alpha=-1$ and $\beta=2$:

$$
\|2 B-I\|=\sqrt{\|B\|^{2}+1}+\|B\|
$$

Let P_{B} denote the orthogonal projection from H onto $\overline{\operatorname{ran} B}$. For $\varepsilon>0$ let

$$
P_{\varepsilon}=P_{B}-\frac{B}{\varepsilon}
$$

Then

$$
P_{\varepsilon}^{2}=P_{B}-\frac{P_{B} B}{\varepsilon}-\frac{B P_{B}}{\varepsilon}=P_{B}-\frac{B}{\varepsilon}=P_{\varepsilon}
$$

Let $Q_{\varepsilon}=I-P_{\varepsilon}$. Then

$$
2 B-I=2 \varepsilon\left(P_{B}-P_{\varepsilon}\right)-\left(P_{\varepsilon}+Q_{\varepsilon}\right)=2 \varepsilon P_{B}-(1+2 \varepsilon) P_{\varepsilon}-Q_{\varepsilon}
$$

Since $\left\|\varepsilon P_{\varepsilon}\right\|=\left\|\varepsilon P_{B}-B\right\| \rightarrow\|B\|$ as $\varepsilon \rightarrow 0$, it follows from the Feldman, Krupnik and Markus formula [1] that

$$
\begin{aligned}
\|2 B-I\| & =\lim _{\varepsilon \rightarrow 0}\left\|(1+2 \varepsilon) P_{\varepsilon}+Q_{\varepsilon}\right\| \\
& =\lim _{\varepsilon \rightarrow 0} F\left(1+2 \varepsilon, 1,\left\|P_{\varepsilon}\right\|^{2}-1\right) \\
& =\lim _{\varepsilon \rightarrow 0}\left(\sqrt{\varepsilon^{2}\left(\left\|P_{\varepsilon}\right\|^{2}-1\right)+(1+\varepsilon)^{2}}+\sqrt{\varepsilon^{2}\left(\left\|P_{\varepsilon}\right\|^{2}-1\right)+\varepsilon^{2}}\right) \\
& =\sqrt{\|B\|^{2}+1}+\|B\| .
\end{aligned}
$$

Proposition 1 is proved.
Suppose A is invertible. Let $C=A^{-1} B$. If $A^{-1}(\operatorname{ran} B) \subset$ ker B then $C^{2}=0$. In Proposition 1, we have considered $\|\alpha I+\beta C\|$. Then

$$
\frac{\|\alpha I+\beta C\|}{\left\|A^{-1}\right\|} \leqslant\|\alpha A+\beta B\| \leqslant\|A\| \cdot\|\alpha I+\beta C\|
$$

For example, if A is invertible, $B^{2}=0$ and $A B=B A$ then $A^{-1}(\operatorname{ran} B) \subset$ ker B. If $\|A\|=\left\|A^{-1}\right\|$ then inequalities become equalities. Then A is a unitary operator.

Proposition 2. Let n be an integer satisfying $n \geqslant 2$. Let $B \in B(H)$ satisfy $B^{n}=0$. Let α and β be complex numbers. Then

$$
\|\alpha I+\beta B\| \geqslant \sqrt{\left|\frac{\beta}{2}\right|^{2}\left\|\left.B\right|_{\mathrm{ran} B^{n-2}}\right\|+|\alpha|^{2}}+\left|\frac{\beta}{2}\right|\left\|\left.B\right|_{\overline{\mathrm{ran} B^{n-2}}}\right\| .
$$

4. Norm formula using the angle ψ between A and B

In this section, we shall estimate the operator norm of $(\alpha A+\beta B)(\gamma A+\delta B)^{-1}$ from above in the case when $\psi(A, B)>0$ where ψ is defined in Introduction. We do not assume the boundedness of two operators A and B on H. In the proof of Theorem 3 (1), we do not use the linearity of A and B. We do not use the Feldman, Krupnik and Markus formula [1] in this section.

Definition 3. For $f, g \in H$, let

$$
\rho(f, g)=\left\{\begin{array}{cl}
\frac{|\langle f, g\rangle|}{\|f\| \cdot\|g\|} & \text { if } f \neq 0 \text { and } g \neq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Then

$$
\cos \phi(\operatorname{ran} A, \operatorname{ran} B)=\sup _{f, g \in H} \rho(A f, B g) \geqslant \sup _{f \in H} \rho(A f, B f)=\cos \psi(A, B) .
$$

Lemma 2. Let α and β be distinct complex numbers. Let x and ρ be real numbers satisfying $x \geqslant \max (|\alpha|,|\beta|)$ and $0 \leqslant \rho<1$. The following assertions are equivalent:

$$
\begin{gather*}
x \geqslant F\left(\alpha, \beta, \frac{\rho^{2}}{1-\rho^{2}}\right) . \tag{1}\\
x^{4}-\left(\frac{\rho^{2}}{1-\rho^{2}}|\alpha-\beta|^{2}+|\alpha|^{2}+|\beta|^{2}\right) x^{2}+|\alpha \beta|^{2} \geqslant 0 . \tag{2}\\
\frac{\left|x^{2}-\alpha \bar{\beta}\right|}{|\alpha-\beta| x} \geqslant \frac{1}{\sqrt{1-\rho^{2}}} . \tag{3}\\
\left(x^{2}-|\alpha|^{2}\right)\left(x^{2}-|\beta|^{2}\right) \geqslant \rho^{2}\left|x^{2}-\alpha \bar{\beta}\right|^{2} . \tag{4}
\end{gather*}
$$

The equivalence holds for not only inequalities but also equalities.
Proof: (1) $\Leftrightarrow(2)$: Since $x \geqslant 0,(1)$ is equivalent to

$$
x^{2} \geqslant \frac{|\alpha-\beta|^{2}}{2} \frac{\rho^{2}}{1-\rho^{2}}+\frac{|\alpha|^{2}+|\beta|^{2}}{2}+\sqrt{\left(\frac{|\alpha-\beta|^{2}}{2} \frac{\rho^{2}}{1-\rho^{2}}+\frac{|\alpha|^{2}+|\beta|^{2}}{2}\right)^{2}-|\alpha \beta|^{2}}
$$

Since $x \geqslant \max (|\alpha|,|\beta|)$, this is equivalent to (2).
$(2) \Rightarrow(3): B y(2)$,

$$
\left(x^{2}-|\alpha|^{2}\right)\left(x^{2}-|\beta|^{2}\right) \geqslant \frac{\rho^{2}}{1-\rho^{2}}|\alpha-\beta|^{2} x^{2}
$$

Hence

$$
\left|x^{2}-\alpha \bar{\beta}\right|^{2}-|\alpha-\beta|^{2} x^{2} \geqslant \frac{\rho^{2}}{1-\rho^{2}}|\alpha-\beta|^{2} x^{2} .
$$

This implies (3).
$(3) \Rightarrow(4): \mathrm{By}(3)$,

$$
\left|x^{2}-\alpha \bar{\beta}\right|^{2}-|\alpha-\beta|^{2} x^{2} \geqslant \rho^{2}\left|x^{2}-\alpha \bar{\beta}\right|^{2}
$$

This implies (4).
$(4) \Rightarrow(2): B y(4)$,

$$
\left(1-\rho^{2}\right)\left(x^{2}-|\alpha|^{2}\right)\left(x^{2}-|\beta|^{2}\right) \geqslant \rho^{2}|\alpha-\beta|^{2} x^{2}
$$

This implies (2). Lemma 2 is proved.
Lemma 3. Let $\alpha, \beta, \gamma, \delta$ be complex numbers satisfying $\gamma \delta \neq 0$, and let f, g be nonzero elements in the Hilbert space H satisfying $\rho=\rho(f, g)<1$. Then

$$
\frac{\|\alpha f+\beta g\|}{\|\gamma f+\delta g\|} \leqslant F\left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \frac{\rho^{2}}{1-\rho^{2}}\right) .
$$

Proof: It is sufficient to prove when $\alpha \neq \beta$ and $\gamma=\delta=1$. Let $\rho=\rho(f, g)$, and let $x=F\left(\alpha, \beta,\left(\rho^{2} / 1-\rho^{2}\right)\right)$. By Lemma 2, $\left(x^{2}-|\alpha|^{2}\right)\left(x^{2}-|\beta|^{2}\right)=\rho^{2}\left|x^{2}-\alpha \bar{\beta}\right|^{2}$. Hence

$$
\left(x^{2}-|\alpha|^{2}\right)\left(x^{2}-|\beta|^{2}\right)\|f\|^{2}\|g\|^{2}=\left|x^{2}-\alpha \bar{\beta}\right|^{2}|\langle f, g\rangle|^{2}
$$

Hence

$$
\begin{aligned}
& \left(x^{2}-|\alpha|^{2}\right)\|f\|^{2}+\left(x^{2}-|\beta|^{2}\right)\|g\|^{2}+2 \operatorname{Re}\left(\left(x^{2}-\alpha \bar{\beta}\right)\langle f, g\rangle\right) \\
& \quad \geqslant 2 \sqrt{x^{2}-|\alpha|^{2}} \sqrt{x^{2}-|\beta|^{2}}\|f\| \cdot\|g\|-2\left|x^{2}-\alpha \bar{\beta}\right| \cdot|\langle f, g\rangle|=0 .
\end{aligned}
$$

Therefore

$$
\|\alpha f+\beta g\|^{2} \leqslant x^{2}\|f+g\|^{2}
$$

Lemma 3 is proved.
Theorem 3. Let A and B be nonzero linear operators on H satisfying $\psi(A, B)$ >0. Let $\alpha, \beta, \gamma, \delta$ be complex numbers such that $\gamma \delta \neq 0$. Then
(1) $\gamma A+\delta B \neq 0$ and

$$
\sup _{(\gamma A+\delta B) f \neq 0} \frac{\|(\alpha A+\beta B) f\|}{\|(\gamma A+\delta B) f\|} \leqslant F\left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot ^{2} \psi(A, B)\right) .
$$

(2) If $\gamma A+\delta B$ is right invertible then

$$
\left\|(\alpha A+\beta B)(\gamma A+\delta B)^{-1}\right\| \leqslant F\left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot ^{2} \psi(A, B)\right)
$$

where $(\gamma A+\delta B)^{-1}$ denotes one of the right inverses to $\gamma A+\delta B$.
(3) If $\gamma A+\delta B$ is left invertible then

$$
\left\|(\alpha A+\beta B)(\gamma A+\delta B)^{-1}\right\| \leqslant\left\|(\gamma A+\delta B)(\gamma A+\delta B)^{-1}\right\| F\left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot ^{2} \psi(A, B)\right)
$$

where $(\gamma A+\delta B)^{-1}$ denotes one of the left inverses to $\gamma A+\delta B$.
Proof: It is sufficient to prove when $\gamma=\delta=1$. We shall prove (1). Suppose $f \in H$ satisfies $A f \neq 0, B f \neq 0$ and $\rho(A f, B f)<1$. By Lemma 3,

$$
\frac{\|(\alpha A+\beta B) f\|}{\|(A+B) f\|} \leqslant F\left(\alpha, \beta, \frac{\rho(A f, B f)^{2}}{1-\rho(A f, B f)^{2}}\right) .
$$

Since $y=F\left(\alpha, \beta,\left(x^{2} / 1-x^{2}\right)\right)$ is a nondecreasing function of $x, 0 \leqslant x<1$, and $y \geqslant \max (|\alpha|,|\beta|)$.

$$
\begin{aligned}
\sup _{(A+B) f \neq 0} \frac{\|(\alpha A+\beta B) f\|}{\|(A+B) f\|} & \leqslant \sup _{f \in H} F\left(\alpha, \beta, \frac{\rho(A f, B f)^{2}}{1-\rho(A f, B f)^{2}}\right) \\
& =F\left(\alpha, \beta, \frac{\cos ^{2} \psi(A, B)}{1-\cos ^{2} \psi(A, B)}\right) \\
& =F\left(\alpha, \beta, \cot ^{2} \psi(A, B)\right) .
\end{aligned}
$$

Secondly we prove (2). For every $g \in H$, let $f=(A+B)^{-1} g$. Since $(A+B)^{-1}$ is the right inverse to $A+B$, it follows that

$$
\sup _{g \neq 0} \frac{\left\|(\alpha A+\beta B)(A+B)^{-1} g\right\|}{\|g\|} \leqslant \sup _{(A+B) f \neq 0} \frac{\|(\alpha A+\beta B) f\|}{\|(A+B) f\|}
$$

By (1), this implies (2).
Finally we prove (3). Let $c=\left\|(A+B)(A+B)^{-1}\right\|$ and let $f=(A+B)^{-1} g$. Since $(A+B)^{-1}$ is the left inverse to $A+B$, it follows that

$$
\begin{aligned}
\sup _{g \neq 0} \frac{\left\|(\alpha A+\beta B)(A+B)^{-1} g\right\|}{\|g\|} & \leqslant c \sup _{(A+B)(A+B)^{-1} g \neq 0} \frac{\left\|(\alpha A+\beta B)(A+B)^{-1} g\right\|}{\left\|(A+B)(A+B)^{-1} g\right\|} \\
& \leqslant c \sup _{(A+B) f \neq 0} \frac{\|(\alpha A+\beta B) f\|}{\|(A+B) f\|} .
\end{aligned}
$$

By (1), this implies (3). Theorem 3 is proved.
By Theorem 1 , if $\psi(A, B)=\phi(\operatorname{ran} A, \operatorname{ran} B)$ then the equality holds in Theorem 3 (2). In many cases $\psi(A, B)=\phi(\operatorname{ran} A, \operatorname{ran} B)$. Let P be an analytic projection on the weighted L^{2} space. Helson and Szegö [4] used the equivalence of $\psi(P, I-P)>0$ and $\|P\|<\infty$.

Corollary 2. Let A and B be linear operators on H. If $\|A+B\|<\infty$ and $\psi(A, B)>0$ then $\|A\|<\infty$ and $\|B\|<\infty$.

Proof: By Theorem 3 (1), if $\psi(A, B)>0$ and $\|A+B\|<\infty$ then $\|(\alpha A+\beta B) f\| \leqslant F\left(\alpha, \beta, \cot ^{2} \psi(A, B)\right)\|(A+B) f\| \leqslant F\left(\alpha, \beta, \cot ^{2} \psi(A, B)\right)\|A+B\| \cdot\|f\|$, for all $f \in H$. Hence

$$
\|\alpha A+\beta B\| \leqslant F\left(\alpha, \beta, \cot ^{2} \psi(A, B)\right)\|A+B\|<\infty
$$

for every complex numbers α and β. Corollary 2 is proved.
Lemma 4. Let A and B be nonzero operators on H satisfying $\psi(A, B)>0$. Let $\alpha, \beta, \gamma, \delta$ be complex numbers such that $\gamma \delta \neq 0$. Then

$$
\begin{aligned}
\sup _{t \in \mathbf{C}} \sup _{(\gamma t A+\delta B) f \neq 0} \frac{\|(\alpha t A+\beta B) f\|}{\|(\gamma t A+\delta B) f\|} & =\sup _{t \in \mathbf{C}} \sup _{(\gamma A+\delta t B) f \neq 0} \frac{\|(\alpha A+\beta t B) f\|}{\|(\gamma A+\delta t B) f\|} \\
& =F\left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot ^{2} \psi(A, B)\right)
\end{aligned}
$$

Proof: It is sufficient to prove that

$$
\sup _{t \in \mathbf{C}} \sup _{(t A+B) f \neq 0} \frac{\|(\alpha t A+\beta B) f\|}{\|(t A+B) f\|}=F\left(\alpha, \beta, \cot ^{2} \psi(A, B)\right)
$$

Let

$$
c=\sup _{t \in \mathbf{C}} \sup _{(t A+B) f \neq 0} \frac{\|(\alpha t A+\beta B) f\|}{\|(t A+B) f\|} .
$$

We shall prove that $c=F\left(\alpha, \beta, \cot ^{2} \psi(A, B)\right)$. By Theorem $3(1), c \leqslant F(\alpha, \beta$, $\left.\cot ^{2} \psi(A, B)\right)$. Hence it is sufficient to prove that $c \geqslant F\left(\alpha, \beta, \cot ^{2} \psi(A, B)\right)$. Since

$$
c \geqslant \frac{\|\alpha t A f+\beta B f\|}{\|t A f+B f\|}, \quad(t \in \mathbf{C})
$$

it follows that

$$
|t|^{2}\left(c^{2}-|\alpha|^{2}\right)\|A f\|^{2}+\left(c^{2}-|\beta|^{2}\right)\|B f\|^{2}+2 \operatorname{Re}\left(t\left(c^{2}-\alpha \bar{\beta}\right)\langle A f, B f\rangle\right) \geqslant 0
$$

for all $t \in \mathbf{C}$. Hence

$$
\left|c^{2}-\alpha \bar{\beta}\right|^{2}|\langle A f, B f\rangle|^{2} \leqslant\left(c^{2}-|\alpha|^{2}\right)\left(c^{2}-|\beta|^{2}\right)\|A f\|^{2}\|B f\|^{2} .
$$

Hence

$$
\rho(A f, B f)^{2}\left|c^{2}-\alpha \bar{\beta}\right|^{2} \leqslant\left(c^{2}-|\alpha|^{2}\right)\left(c^{2}-|\beta|^{2}\right) .
$$

By Lemma 2,

$$
c \geqslant F\left(\alpha, \beta, \frac{\rho(A f, B f)^{2}}{1-\rho(A f, B f)^{2}}\right)
$$

for all $f \in H$. Hence

$$
c \geqslant \sup _{f \in H} F\left(\alpha, \beta, \frac{\rho(A f, B f)^{2}}{1-\rho(A f, B f)^{2}}\right) .
$$

Since $y=F\left(\alpha, \beta,\left(x^{2} / 1-x^{2}\right)\right)$ is a nondecreasing function of $x, 0 \leqslant x<1$, it follows that

$$
c \geqslant F\left(\alpha, \beta, \frac{\cos ^{2} \psi(A, B)}{1-\cos ^{2} \psi(A, B)}\right)=F\left(\alpha, \beta, \cot ^{2} \psi(A, B)\right)
$$

Lemma 4 is proved.
Corollary 3. Let A and B be nonzero linear operators on H satisfying $\psi(A, B)$ $>0, A B=B A=0$ and $\gamma A+\delta B$ is right invertible. Let $\alpha, \beta, \gamma, \delta$ be complex numbers such that $\gamma \delta \neq 0$. Then

$$
\left\|(\alpha A+\beta B)(\gamma A+\delta B)^{-1}\right\|=F\left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot ^{2} \psi(A, B)\right)
$$

Proof: It is sufficient to prove when $\gamma=\delta=1$. Suppose $A+B$ is right invertible. By Lemma 4, it is sufficient to prove the equality:

$$
\sup _{(A+B) f \neq 0} \frac{\|(\alpha A+\beta B) f\|}{\|(A+B) f\|}=\sup _{t \in \mathbb{C}} \sup _{(t A+B) f \neq 0} \frac{\|(\alpha t A+\beta B) f\|}{\|(t A+B) f\|} .
$$

Since $A+B$ is right invertible, it follows that $\operatorname{ran} A+\operatorname{ran} B=\operatorname{ran}(A+B)=H$. Since A and B are linear operators satisfying $A B=B A=0$, it follows that

$$
\begin{aligned}
\sup _{(A+B) f \neq 0} \frac{\|(\alpha A+\beta B) f\|}{\|(A+B) f\|} & \leqslant \sup _{t \in \mathbf{C}} \sup _{(t A+B) f \neq 0} \frac{\|(\alpha t A+\beta B) f\|}{\|(t A+B) f\|} \\
& \leqslant \sup _{A g+B h \neq 0} \frac{\|\alpha A g+\beta B h\|}{\|A g+B h\|} \\
& =\sup _{A g+B h \neq 0, g \in \operatorname{ran} A, h \in \operatorname{ran} B} \frac{\|\alpha A g+\beta B h\|}{\|A g+B h\|} \\
& =\sup _{(A+B)(g+h) \neq 0, g \in \operatorname{ran} A, h \in \operatorname{ran} B} \frac{\|(\alpha A+\beta B)(g+h)\|}{\|(A+B)(g+h)\|} \\
& =\sup _{(A+B) f \neq 0} \frac{\|(\alpha A+\beta B) f\|}{\|(A+B) f\|} .
\end{aligned}
$$

Corollary 3 is proved.

References

[1] I.A. Feldman, N.Ja. Krupnik and A.S. Markus, 'On the norm of two adjoint projections', Integral Equations Operator Theory 14 (1991), 69-90.
[2] I.C. Gohberg and M.G. Krein, Introduction to the theory of linear nonselfadjoint operators (Amer. Math. Soc., Providence, R.I., 1969).
[3] I.C. Gohberg and N.Ja. Krupnik, One-dimensional linear singular integral equations I, II (Birkhäuser Verlag, Basel, 1992).
[4] H. Helson and G. Szegő, 'A problem in prediction theory', Ann. Mat. Pura Appl. 51 (1960), 107-138.
[5] T. Nakazi, 'Two dimensional Q-algebras', Linear Algebra Appl. 315 (2000), 197-205.
[6] I.M. Spitkovsky, 'Some estimates for the partial indices of measurable matrix-valued functions', Math. USSR-Sb. 39 (1981), 207-226.

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810
Japan
e-mail: nakazi@math.sci.hokudai.ac.jp

Department of Mathematics
Hokkai-Gakuen University Sapporo 062-8605

Japan

e-mail: yamatk@hucc.hokudai.ac.jp

