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Abstract. We summarise the results of recent optical and near-infrared
imaging studies of the binary fraction among young low-mass stars in the
dense Orion Trapezium Cluster. Over the separation range ('.J 30-500 AU
and within the observational errors, there appears to be no excess of
binary systems in the cluster relative to the main sequence field star
population. Over the separation range ('.J 1000-5000 AU, the cluster is
deficient in binaries relative to the field. Both results are in contrast to
those found for the more distributed population of young stars in the
Taurus-Auriga dark clouds, which is overabundant in binaries by roughly
a factor of two. We briefly discuss possible origins for this difference and
observational tests which may distinguish between them, and the implica-
tions these results have for our understanding of the typical environment
where most young stars are born.

1. Introduction

The discovery of an overabundance of young low-mass binary systems in low-
mass dark cloud star-forming regions, most notably Taurus-Auriga (see, e.g.,
Leinert et ale 1993; Ghez, Matthews, & Neugebauer 1993; Kohler & Leinert
1998; Duchene 1999; and many papers in these proceedings) relative to those
found on the main sequence in the field (e.g., Duquennoy & Mayor 1991 [DM91]
for field G-dwarfs) poses a thorny dilemma for our understanding of the star
formation process. If almost every star in Taurus-Auriga forms in a binary or
higher-order multiple system, how can this fraction be reduced to only ('.J 50%
by the time these stars reach the field?

There are two possible solutions in the context of Taurus-Auriga itself.
First, the distribution of binary semi-major axes in Taurus-Auriga may be much
narrower than for the field and peaked within the ry 15-1500 AU range typically
observable with infrared speckle, adaptive optics, and direct imaging techniques
at the ('.J 140 pc distance to Taurus-Auriga. The overall frequency of binary sys-
tems might then still be consistent with the field if there were a dearth of binaries
outside the 15-1500 AU range, with subsequent evolution of the orbital param-
eters broadening the distribution as the stars diffuse into the field. However,
lunar occultation observations in Taurus-Auriga show binaries to be overabun-
dant even at ('.J 1-3 AU (Richichi et ale 1994; Simon et ale 1995) and spectroscopic
binary systems are not abnormally rare (Mathieu 1994), thus this solution seems
unlikely. Second, perhaps dynamical interactions between young stars disrupt
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the binaries and lower the fraction of such systems. However, this hypothesis is
unviable in Taurus-Auriga. At typical volume densities of 10 stars pc-3 (Gomez
etal. 1993) and a 3D velocity dispersion of rv1.5-3.5kms-1 (Jones & Herbig
1979), the timescale for interactions between pairs of binaries with a separation
on the order of 1000 AU is rv 5 X 108 yrs, too long to be effective before the stars
dissolve into the field.

Fortunately, there is a more global hypothesis, namely that Taurus-Auriga
is a cosmic red herring. Most star-forming material in the galaxy is found in gi-
ant molecular clouds (GMCs; rv104-106 M0 ) and not low-mass dark clouds like
the Taurus-Auriga complex (rv 103 M0 ) (Combes 1991). In the GMes, most
stars form in dense clusters (103-105 stars pc-3) rather than in isolation or rela-
tively small groups (rv 1-10 stars pc-3) (Lada, Strom, & Myers 1993; Zinnecker,
McCaughrean, & Wilking 1993; Meyer et al. 2000; Clarke et al. 2000). Thus, the
birth and early evolution environment for most stars may be very different to
that found in Taurus-Auriga, and we need to examine the binary population in
those more typical regions, to see if it is more like that of the field.

2. The Orion Trapezium Cluster

Taurus-Auriga provides much of the basis of our present paradigm for star for-
mation simply because it is one of the nearest star-forming regions to the Sun,
and thus the most readily studied. The nearest young clusters are two to three
times further away (IC 348 at 300 pc and the Orion clusters at 450 pc), thus
making it harder to detect and resolve stars, binaries, and disks in them.

The nearest (and thus prototypical) GMCs with ongoing vigorous star for-
mation are Orion A and B (L 1641 and L 1630) at 400-500 pc (Tatematsu &
Wilson 2001; Launhardt & Lada 2001). Within these clouds there are dense
clusters associated with NGC 2024, NGC 2023, NGC 2071, L 1641-N, and OMC-
2/3, for example (Meyer & Lada 2001; Allen & Hillenbrand 2001), all crowned
by the Orion Nebula or Trapezium Cluster (Herbig & Terndrup 1986; Zinnecker
et al. 1993; Hillenbrand 1997) in L 1641. The cluster contains rv 2000 members
within a radius of rv 15 arcmin or rv2 pc (Hillenbrand & Hartmann 1998), with
masses spanning the IMF from OB stars to brown dwarfs (McCaughrean et al.
1996; Hillenbrand & Carpenter 2000; Luhman et al. 2000). In the core, rv50 stars
lie within a radius of rv0.1 pc of the eponymous Trapezium OB stars, yielding
a density of rv 5 X 104 stars pc-3 (McCaughrean & Stauffer 1994). The cluster
is also a rich hunting ground for associated phenomena such as ionised and sil-
houette circumstellar disks, microjets, and large-scale outflows (see, e.g., Bally,
O'Dell, & McCaughrean 2000; McCaughrean 2001).

As it is the largest of the Orion clusters, it is tempting to think of the
Trapezium Cluster as an extreme, and that most stars probably form in lower-
density regions. However, precisely because it is the largest cluster, it accounts
for a large fraction (rv 50%) of all stars that have formed in the Orion A GMC
within the last rv 1 Myr. Also, much more extreme (larger, denser) clusters are
found elsewhere in the galaxy (e.g., NGC 3603 in Carina at 6.5 kpc; Brandl et al.
1999), but are less well-studied simply because they are further away. Thus,
at least qualitatively, it is reasonable to consider the Trapezium Cluster as a
typical star-forming environment for the present purposes.
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3. Observational Constraints
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Surveys for binary systems in the Trapezium Cluster are harder than in Taurus-
Auriga. First, its 450 pc distance means that similar age and mass stars will
be ten times fainter in the Trapezium Cluster than in Taurus-Auriga, thus re-
quiring deeper observations in order to make a direct comparison: in particular,
the speckle technique used to great effect in Taurus-Auriga (Leinert et al. 1993;
Ghez et al. 1993) runs out of sensitivity in the Trapezium Cluster and is much
less useful at least for low-mass stars. Second, equal angular resolution obser-
vations yield only one third of the linear resolution in the Trapezium compared
to Taurus-Auriga. Thus, for diffraction-limited observations with a 4-m class
telescope at Zusu, a resolution of 17 AU is achievable in Taurus-Auriga, but only
55 AU in the Trapezium Cluster. This difference is crucial, since the typical sep-
aration for low-mass field binaries lies in between, at f'.J 30 AU (DM91). Third,
the much greater stellar density in the Trapezium Cluster makes it very hard
to identify wide binaries. This outer limit is generally set by the separation at
which confusion sets in, i.e., when the chance projection of another unrelated
young or background field star comes becomes appreciable. In Taurus-Auriga
this occurs at f'.J 30 arcsec or 4200 AU (see, e.g., Reipurth & Zinnecker 1993),
while in the core of the Trapezium Cluster it is at f'.J 1 arcsec or 450 AU only.
Fourth, the lunar occultation technique that has been used to search for small
separation binaries in Taurus-Auriga is not applicable to the Trapezium Cluster,
simply because it is never occulted by the Moon.

Thus overall, it is hard to obtain observations of the binary population in
the Trapezium Cluster that are directly comparable to those made for Taurus-
Auriga, and in general the range of projected separations that can be probed is
narrower. There is, however, one major compensation: the Trapezium Cluster
contains so many members within a relatively small field that good statistics are
in principle relatively easy to come by.

4. Observational Techniques

Despite the difficulties described above, the binary population of the Trapezium
Cluster was studied extensively in the 1990s using a number of observational
techniques. In this section, we outline these techniques and their various advan-
tages and disadvantages, before reviewing and analysing the results.

• Direct imaging: The WF fPC and WFPC-2 cameras on the Hubble Space
Telescope have been used to make near-diffraction-limited surveys of large ar-
eas of the cluster at optical wavelengths (Prosser et al. 1994; Padgett, Strom,
& Ghez 1995; Patten et al. 1999), with linear resolutions of f'.J 40 AU at longer
wavelengths (f'.J 0.8j.Lm) where many members of the partially embedded pop-
ulation can be detected against the bright background nebula. Some limited
regions of the cluster, including more embedded stars, have also been imaged
with NICMOS at f'.J 2j.Lm, with a resolution of f'.J 90 AU (Stolovy et al. 1998).

• Speckle imaging: The bispectrum speckle masking technique has been used
to observe the bright OB stars in the Trapezium Cluster at near-infrared
wavelengths on the Russian 6 m telescope, with linear resolutions of f'.J 40 AU
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(Weigelt et ale 1999; Preibisch et ale 1999; Preibisch, Weigelt, & Zinnecker,
these proceedings). However, this technique cannot probe to much lower
masses at this distance due to sensitivity limitations.

• Speckle holography: This modified speckle technique relies on the presence
of one or more bright stars within the field-of-view which can be used as a
post-detection wavefront-correction or deconvolution key, which enables an
enhanced sensitivity limit over the normal technique. Speckle holography
has been used at near-infrared wavelengths in the core of the cluster where
one of the bright Trapezium OB stars can be used as the reference source,
with linear resolutions on the Calar Alto 3.5 m telescope of I'.J 65 AU at 2.2J.Lm
(Petr et ale 1998; Petr 1998).

• Adaptive optics: This technique relies on bright stars within the field-of-
view to allow real-time wavefront error correction and thus near-diffraction-
limited spatial resolution combined with long, high-sensitivity imaging ob-
servations. Simon, Close, & Beck (1998) made adaptive optics observations
at near-infrared wavelengths on the University of Hawaii 2.2 m telescope to
provide linear resolutions of I'.J 100 AU over a substantial area in the cluster,
while similar observations by Petr, McCaughrean, & Zinnecker (2001; see
also Petr 1998) using the ADONIS system on the larger ESO 3.6 m telescope
yielded a better resolution of I'.J 65 AU albeit over a more limited area sur-
rounding a number of bright cluster members. Figure 1 shows a section of
these data centred on the Trapezium OB stars for illustration purposes: more
detail can be found in Petr (1998).

5. Observational Results

In this paper, we concentrate on the key results for the lower-mass stars, in
order to make the most appropriate comparison with the field G-dwarf survey
of DM91 and the various Taurus-Auriga surveys. The multiplicity of massive
OB stars in the Trapezium Cluster is discussed in the paper by Preibisch et ale
in these proceedings, where the surprising result is found that the multiplicity is
extremely high, with each OB star having more than one companion on average.
At face value, when compared with the results for the low-mass stars discussed
here, it appears as though the binary systems with massive primaries must have
formed via a different mechanism compared to their lower-mass cousins.

5.1. Close Visual Binaries

Table 1 summarises the results from the majority of the observational surveys
listed in Section 4. In each case, the derived binary fraction over the given
separation range is shown next to the corresponding fraction for the field star
population over the same range from DM91, as described in the table caption.
At first sight, the comparisons with the field are rather scattered, but a pattern
emerges under somewhat closer scrutiny. In the surveys of Padgett et ale (1997)
and Stolovy et ale (1998), the Trapezium Cluster binary frequency is higher than
that .of the field, but only by I'.J 1a. This result may be real, insofar as the
Padgett et ale survey covered the outer reaches of the cluster where (for example)
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Figure 1. A section of the K-band adaptive optics survey of the
Trapezium Cluster by Petr, McCaughrean, & Zinnecker (2001; see also
Petr 1998), made with the ADONIS AO system on the ESO 3.6-m tele-
scope. The field covered is roughly 65 x 75 arcsec with an image scale
of 0.05 arcsec/pixel, and a diffraction-limited resolution of 0.15 arcsec
FWHM. This field represents roughly half of the survey area covered,
but the majority of the stars detected. Considerable structure in the
PSF can be seen due to the AO system, serving to illustrate that great
care must be taken when identifying faint companions to bright stars.
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interactions would be less frequent and/or where stars ejected from binaries
nearer the cluster core might be expected to lie. Similarly, the Stolovy et ale
survey covers a region centred on the very young embedded BN-KL region, and
primordial binaries may not yet have been disrupted. However, in both cases, it
is worth re-emphasising that they are only 1a above the field. In contrast, the
results of the Prosser et ale (1994), Petr et ale (1998), Petr (1998), Simon et ale
(1999), and Patten et ale (1999) all lie below the field, and in all but the Petr
et ale (1998) survey, they lie below the field by 2-3.5a. Thus, if anything, the
Trapezium Cluster binary frequency appears to be lower than that found in the
field, and there is no evidence for the overabundance seen in Taurus-Auriga.

It would be premature to state definitively that the binary frequency of
the Trapezium Cluster is lower than that of the field, given the differences in
observational selection effects and completeness corrections that exist between
the various surveys. Nevertheless, a tempting preliminary conclusion to draw is
that some suitable admixture of regions like the Trapezium Cluster with its low
binary frequency, and regions like Taurus-Auriga with its higher frequency, could
be assembled to yield something like the field population. A very crude estimate
suggests that this could be achieved by mixing one third Taurus-Auriga with
two-thirds Trapezium Cluster. However, we should not forget that the surveys
summarised thus far cover only a factor of twenty in binary separation and a
corresponding two orders of magnitude in orbital period: by contrast, the DM91
field binaries cover eleven orders of magnitude. Therefore, it is clear that broader
coverage is needed before such a wide-sweeping conclusion can be made.

5.2. Extending to Wide Binaries

Scally et ale (1999; SCM99) have taken the first steps in this direction, employing
a novel technique to overcome the chance projection problem that makes it
impossible to search for wide binaries in the cluster through imaging alone. By
searching for common proper motion pairs in the optical proper motion study
of Jones & Walker (1988; JW88), they have been able to probe the separation
range "'-11000-5000 AU. This paper is worth discussing in some detail here both
for the interesting technique and because it yields an important new result.

At wide enough separations, the orbital velocity of one star around its com-
panion is very low compared to the motion of the pair through the cluster, and
thus in principle the pair should stand out in velocity space regardless of how
confused the cluster is in spatial projection. SCM99 found three such common
proper motion pairs within the separation range 1000-5000 AU in the JW88
data, but had then to assess how many of these could be due to chance align-
ments in velocity space and/or due to measurement uncertainties in the proper
motions. SCM99 took a statistical approach to this, making model clusters
using the Trapezium Cluster parameters (number of stars, core density, radial
profile, velocity dispersion) as input to Monte Carlo simulations of the x, y, z
positions and X, fJ, i velocities for the stars. A distribution of errors matching
that found by JW88 in their observations was imposed on the projected proper
motions. Finally, a key component of the model clusters was the distribution of
binary systems. The cluster was taken either to be binary-free or to follow the
DM91 field star distribution. SCM99 then searched the artificial proper motion
database for wide common proper motion binaries as they did for the actual
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o 5 10 15
Apparent binaries

20 25

Figure 2. Simulations of the apparent frequency of wide common
proper motion binaries in clusters from SCM99. In each case, 2000
model clusters with parameters similar to the Orion Nebula Cluster
were created. Each was 'observed' with parameters appropriate to the
real observations of JW88, counting the number of apparent wide com-
mon proper motion binaries. The empty histogram corresponds to clus-
ters with no true binaries in the underlying model; the two hatched his-
tograms correspond to model clusters with a binary population match-
ing that found in the solar neighbourhood. The heavy-hatched his-
togram is for model clusters corrected for a brighter detection limit in
the cluster centre than in the outer region; the light-hatched histogram
is for clusters where the fainter detection limit is assumed throughout.
The dashed line indicates the observational result of three apparent
wide binaries found in the Orion Nebula Cluster, which corresponds
well to the model with no true underlying binaries.

observational data. By repeating this procedure for many model clusters, they
were then able to ascertain the mean number of wide common proper motion
binaries that would be detected in both the binary-free and DM91 scenarios,
and the standard deviations on those numbers.

The result is shown in Figure 2. The models that are binary-free neverthe-
less predict that three common proper motion pairs will appear through chance
alignments in velocity space, i.e., exactly the number found in the JW88 data.
On the other hand, a model with a DM91 distribution predicts that ten common
proper motion pairs should be found, with just three being excluded at the 2.30-
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confidence level. Thus, although only marginally significant, the SCM99 result
suggests that the Trapezium Cluster is deficient in wide binaries with respect
to the field. Why this may be so is discussed in the next section. Regardless
of the mechanism however, it would appear as though the wide field binaries
must come from somewhere else. However, simply adding a Taurus-Auriga-like
distribution (with its wide binaries) to a Trapezium Cluster-like one (with none
apparently) in some linear mixture would not necessarily work, since filling in
the wide binaries would once again raise the medium- to small-separation binary
fraction relative to the field. This alludes to the important process of inverse
population synthesis, in which the parameters of the present-day field binary
population are used to deduce the fractions of stars that are born in the various
kinds of star-forming regions. A more detailed discussion of this issue is beyond
the scope of the present paper however.

6. Theoretical Considerations

This paper is primarily a review of observational studies of the binarity in the
Trapezium Cluster, but it is nevertheless useful to glance at the relevant theoret-
ical studies, most of which are discussed in detail elsewhere in these proceedings.
The core problem is to understand why the present-day binary frequency of the
Trapezium Cluster is lower than that of Taurus-Auriga. Essentially there are
two possibilities: either fewer binaries formed to begin with in the Trapezium,
or an initially high binary fraction was reduced to its present-day field-like value
through some dynamical process.

The case for a lower binary fraction at formation was made by Durisen
& Sterzik (1994), who noted that models of binary formation predict that the
number of binaries formed in a molecular cloud is inversely correlated with the
cloud temperature. Since GMCs generally have core temperatures of 15-40 K,
as opposed to the 10-15 K found in low-mass dark clouds, they argued that a
lower binary frequency was indeed expected for stars born in clusters in GMCs.
However, no definitive test has yet been made of this hypothesis. The other
possibility has been studied in great detail by Kroupa (see his paper in these
proceedings and references therein), namely that interactions between stars in a
dense cluster will destroy a substantial fraction of the primordial binary systems.
Detailed N-body simulations of clusters have revealed the important effects that
interactions can have on the period, eccentricity, and mass-ratio distributions,
effects that space constraints preclude describing here.

However, a few words can be said on the binary frequency, which is most
readily measured in the surveys described earlier in this paper. In particular,
it is worth looking at the N-body calculations specifically tailored to simulating
the Trapezium Cluster by Kroupa, Petr, & McCaughrean (1999). The more
successful Trapezium Cluster N-body models start either in virial equilibrium
or in expansion. In these cases, there is a very high central density (f"..I 106

stars pc-3) initially, such that subsequent expansion of the cluster (due either
to three and four-body interactions or sudden expulsion of gas as OB stars turn
on, respectively) lowers the density to that observed (f"..I 5 X 104 stars pc-3) after
f"..I 1 Myr. This implies that many of the wider primordial binary systems, with
separations greater than the typical intersystem separation of f"..I 2000 AU, overlap
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each other at the start of the simulation and are thus immediately disrupted
before any dynamical evolution takes place. This effect instantaneously lowers
the binary frequency by roughly 20% in the models, and yet in reality, such
binaries would never have formed in the first place if the parent cloud cores were
that closely packed together. This also suggests that if the cluster was indeed
initially that dense, the lack of wide (1000-5000 AU) binaries in the cluster may
actually be due to the initial conditions, not subsequent dynamical evolution.

Of course, once the cluster is allowed to expand, destructive encounters
will affect systems, predominantly the wide binaries which have both a large
cross-section for interaction and a low orbital binding energy compared to the
average specific kinetic energy in the cluster. The hard/soft binary limit (i.e.,
the boundary below which binaries are relatively hard to disrupt) is a function of
the cluster velocity dispersion, which changes as the cluster evolves. However, it
is worth noting that for the present-day Trapezium Cluster with its 3D velocity
dispersion of r'w/4.5 kms-1 (JW88), the hard/soft binary limit lies at r'w/45 AU for
a 1 M0 system mass, i.e., right at the resolution limit of most extant surveys.

7. Summary and Outlook

Direct imaging surveys show that the binary frequency of young low-mass stars
in the Orion Trapezium Cluster is broadly consistent with (or just below) that
seen for field population over the separation range r'w/ 50-100DAU. However, a
statistical analysis of proper motion data shows a deficit of wider binaries with
separations of 1000-5000 AU.

Theoretical studies show that an initially high, Taurus-Auriga-like binary
frequency can have been reduced to the present-day, field-like frequency seen
in the Trapezium Cluster. However, since alternate theories predict that they
may never have formed, the non-existence of these wider visual binaries is a
poor discriminant between the models. The acid test is to look at the binary
population at small separations, small enough that they cannot have been de-
stroyed via interactions within the cluster lifetime. If there are fewer of these
short-period binaries than seen in Taurus-Auriga, then we will know that the
birth environment has just as much an influence on the formation of binaries as
on their subsequent evolution.

The present observational studies on 2-4-m telescopes have been limited to
separations of r'w/ 50 AU or greater, at or above the present-day hard/soft binary
limit, and by going to 8-10-m telescopes, we can improve this down to r'w/20AU.
However, real breakthroughs will come with the application of interferometry,
as then we will be able to probe below the equivalent hard/soft limit for the
cluster when it was younger and denser. For example, getting to 10 AU in Orion
requires a 22-m telescope at 2.2J.tm, which is just the maximum interferometric
baseline of the Large Binocular Telescope. Combined with its wide-field imag-
ing interferometric capabilities, the LBT should be a perfect instrument for this
next step. Beyond that, the Keck and VLT interferometers will yield maximum
resolutions of 2 and 1 AU at 2.2J.tm respectively. Since the binary frequency for
the DM91 field star sample is r'w/10% for separations of 1-10 AU (i. e., log P r'w/ 2.6-
4.1 for a 1 M0 system) and in Taurus-Auriga roughly double that, a survey of
~ 100 members of the Trapezium Cluster would be needed to establish which
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population it more closely resembles. Finally, related to the issue of the dynam-
ical disruption of binaries, a detailed star-by-star proper-motion survey will be
needed to map the dynamical state of the cluster: this should be possible using
the two-beam interferometric astrometer PRIMA on the VLTI, and the stable
high spatial resolution, wide-field imaging capability of the NGST.
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