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STABILITY OF BARRELLEDNESS AND RELATED CONCEPTS
IN TOPOLOGICAL VECTOR SPACES

(Received 9th March 1984)

by J. O. POPOOLA and I. TWEDDLE

1. Introduction

Let £ be a separated locally convex barrelled space with continuous dual E' and
algebraic dual £* and let M be a subspace of £* with M n £ ' = {0} and dimM^K0.
Robertson, Tweddle and Yeomans have recently considered the question of barrelled-
ness under the Mackey topology i(E,E' + M) when E is given to be barrelled under its
original topology T(£ ,£ ' ) [5], [6], [7].

Perhaps the simplest way of refining the topology of any topological vector space on
which there are discontinuous linear functionals is by adding enough "weak neighbour-
hoods" to make some such functionals continuous. It therefore seems reasonable to
consider related questions and procedures in topological vector spaces which are not
necessarily locally convex or separated. We are able to extend the main stability results
of [5] and [7] to barrelled topological vector spaces and we have some partial results
on the preservation of ultrabarrelledness and hyperbarrelledness, which are rather more
important concepts in the non-locally convex cases.

The first author gratefully acknowledges the award of a Senior Fellowship by the
British Council.

2. Preliminaries

Let £(<!;) be a topological vector space and let M be a subspace of its algebraic dual
£*. If % is a base of neighbourhoods of the origin for £,, then the sets

where U e °U, neM and the x\ e M, form a base of neighbourhoods of the origin for a
vector topology £[M] on £. In fact {[M] is the coarsest vector topology on E which is
finer than Z, and which makes the elements of M continuous. We first characterise the

] -continuous linear functionals.

Lemma 1. A linear functional on E is £[M]-continuous if and only if it is of the form
g + h where g is an ^-continuous linear functional and heM.

Proof. Suppose that / is an <i;[M]-continuous linear functional. Then there are
Ue^ and x\,x'2,...,x'neM such that / is bounded on
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Let F = {xe£:<x,xJ> = 0, i= l ,2 , ...,n} and let G be an algebraic supplement of F in E.
Note that G is finite dimensional.

Since Wr\F=UnF it follows that f\F is £|F-continuous. We can extend f\F by
continuity to a linear functional / i on the ^-closure Fl of F. Then, since £(£) is the
topological direct sum of F ^ ^ ) and a finite dimensional supplement, any linear
extension g of ft to the whole of E is ^-continuous. Choose such a g and put h=f—g.
We have /i|F = 0, which implies that Ziespan {x'1,x'2,...,xj,} since otherwise we would be
able to find aeF with <a,/i>^0. Thus f=g + h where g is ^-continuous and
hes^>a.n{x\,x'2,...,x'n}

t^M. Conversely, it is clear that any linear functional of this form
is £[M]-continuous.

Lemma 2. Let M=(J"= 1Mf c where for each k, Mk^Mk + 1 and M* is a finite
dimensional subspace of E*. For any subset X of E, let Xo be its £[M]-closure and Xk its

e. Then X0=f)?=1Xk.

Proof. Clearly X0^XkVkeN so that Xo s f]f= 1 xk. On the other hand if z$Xo, we
can find Ue°U and x\,x'2,...,x'neM for some neM such that

Now there must exist koeM such that x j eM^ (i=l,2,...,n), which implies that
|<x,x;>|^l , i=l,2, . . . ,n} is a neighbourhood of the origin for ^[MtJ. Thus

ko, which shows that f)k
x
=1Xk^X0.

If M is finite dimensional we shall say that £[M] is a finite extension of £. We shall
use E' to denote the space of ^-continuous linear functionals. If E' has countably infinite
codimension in E' + M we shall say that £,\_M\ is a countable extension of £,. The term
countable will always mean countably infinite.

In a non-locally convex topological vector space the bipolar property may fail, i.e. for
a closed absolutely convex set A we may not have A — A°°. A closed absolutely convex
neighbourhood of the origin always satisfies the bipolar property. We will also require
the following elementary result in this connection.

Lemma 3. Let B= n{Bx:Xe A}, where each Bx is a closed absolutely convex set which
satisfies the bipolar property in a topological vector space E{E). Then B satisfies the
bipolar property.

Proof. Taking polars in £' we have B°^{B"x:^eA} and so B^B°°s n{B°x°:leA}

We shall use c to denote the cardinal number of IR. A subset of a vector space is said
to be c-dimensional if its linear span has dimension c.

3. Some stability results

We begin by recalling some definitions (see [1], [2], [4], [8] for further details). The
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first four refer to subsets of a topological vector space £(£) which need not be separated
or locally convex.

(i) A barrel is a closed absolutely convex absorbent set.
(ii) A set A is semiconvex if there is 2>0 such that A + A^XA.
(iii) A hyperbarrel is a closed balanced absorbent semiconvex set.
(iv) An ultrabarrel is a sequence (l/J of closed balanced absorbent sets such that

[/„ +! + Vn +! c [/„ for each n e N.
(v) £(£) is barrelled, resp. hyperbarrelled if each barrel, resp. hyperbarrel is an £-

neighbourhood of the origin; it is ultrabarrelled if the elements of each ultrabarrel
are ^-neighbourhoods of the origin. It is well-known and easy to see that
ultrabarrelled =>hyperbarrelled=>barrelled.

For simplicity we state Theorems 1 and 2 for ultrabarrelled spaces but it will be clear
that they hold also for hyperbarrelled or barrelled spaces.

Theorem 1. Let <̂ [M] be any finite extension of £. If E(£) is ultrabarrelled then so
also is £(<J[Af]).

Proof. Let F = {x:<x,x'> = OVx'eM}. Then F is an £[M]-closed, finite codimen-
sional subspace of E. Further £ and £[M] induce the same topology on F and £(^[M])
is the topological direct sum of F(£|F) and any supplement. The result now follows since
ultrabarrelledness is inherited by finite codimensional vector subspaces [1, Proposition
3.1].

We now consider countable extensions. For the locally convex case it is shown in [5,
Theorem 3] that if E' ̂  £* it is always possible to find a countable extension which does
not preserve barrelledness (see also [6, Theorem 2]). Since an ultrabarrelled space is
barrelled in its associated locally convex topology [4, Proposition 19], we may deduce a
corresponding result for ultrabarrelled spaces and likewise for hyperbarrelled spaces. In
the positive direction an application of Theorem 1 allows us to identify a simple class of
spaces for which countable extensions, which preserve the given property, do exist.

Theorem 2. Let E(£) be the topological product of the ultrabarrelled spaces £„(£„)
(MEI^J) and suppose that for each nsN, E'n^E*. (*) Then there is a countable extension

under which E is ultrabarrelled.

Proof. For each meN choose fmeEZ\E'm and define gm on E by gm((xj)=/m(xm).
Let Ln be the span of/n in E* and let M = span {gm:meN}. Then it is easy to see that

(i) M n £ ' = {0},
(ii) M has countable dimension,
(iii) £[M] is the product topology defined by the topologies <!;„[£„].

The result follows since by Theorem 1, £n(«Jn[Ln]) is ultrabarrelled and any product of
ultrabarrelled space is ultrabarrelled.
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Remark. Theorem 2 may be extended to any infinite product of ultrabarrelled spaces
as long as (*) applies to some countable subset of the factors.

In the case of barrelledness we are able to remove the assumptions of separatedness
and local convexity in Theorem 5 of [5] and Theorem 1 of [7]. The duality arguments
of [5] and [7] are reformulated in terms of the results of Section 2.

Theorem 3. Let £(£) be a barrelled space with a dense c-codimensional barrelled
subspace. Then there is a countable extension £[Af] under which E is barrelled.

Proof. Let L be a dense c-codimensional barrelled subspace of E and let G be an
algebraic supplement of L in E. Exactly as in [5] we identify G algebraically with
a>( = [RN or CN) and extend each element of the dual 0( = R(N) or C(N)) of co to a linear
functional on E by putting it equal to zero on L. The set M of all these extensions is a
countable dimensional subspace of E* with £ ' n M = {0}. Let elte2,e3,... be a basis in
M and for each keN put Mk = span {e1,e2,...,ek}.

Let B be a barrel in £(£[M]) and let Bk be the £[MJ-cIosure of B(keN). Then by
Lemma 2 we have B = f)^°=1Bfc. By Theorem 1 £(£[Mk]) is barrelled and so Bk is a
neighbourhood of the origin under £\_Mk~] and therefore also under the finer topology
£[M]. Since all the Bk are therefore £[M]-closed absolutely convex neighbourhoods of
the origin in £(<i;[M]), we obtain from Lemma 3 that B satisfies the bipolar property.
Let C, D be respectively the projections of B° in E' and M.

Since <J[M] and £ induce the same topology on L we deduce that BnL is a closed
absolutely convex neighbourhood of the origin in L(^|L) and by denseness its closure A
in £(£) is an ^-neighbourhood of the origin. Then by the bipolar property and the fact
that M annihilates L, we have on taking polars in £' that C^(BnL)° = A°. Conseq-
uently C is pointwise bounded on E. Since the same is true of B°, it follows that D is
also pointwise bounded on E and so from the construction of M, we deduce that D
must be contained in Mk for some keN. For this k we then have B ° s C + D c £ ' + Mk.
It now follows that B is a neighbourhood of the origin under ^[MJ and therefore also
under

Theorem 4. Let E(£) be a barrelled space in which there is a c-dimensional semiconvex
bounded set. Then there is a countable extension £ [M] under which E is barrelled.

Proof. Let A be a semiconvex bounded subset of £ which spans a c-dimensional
subspace G of £. Since the balanced hull of A is bounded, semiconvex and has the same
span as A, we may assume that A is balanced. The set of positive multiples of A then
forms a base of neighbourhoods of the origin for a locally bounded topology n on G
which is finer than £,
G' is normed by ||x'|
has countable codimension in f (</>). Let N be an algebraic supplement of t'((j))nG' in
t'(<(>). We extend each element of N to a linear functional on £ by putting it equal to
zero on some fixed algebraic supplement of G in E. The set M of these extensions is
then a countable dimensional subspace of £* with £ ' n M = {0}.

Let B be a barrel in £(^[M]). It follows that C = BnG is a barrel in G(̂ [AT|) and so,

G. As in [7] we consider an algebraic isomorphism t:G-*co. Since
= sup{|<x,x'>|:xe/l}, we deduce in the same way that £'(</>) nG'
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taking the polar in G' + N, we have that C° is pointwise bounded on G. Using the same
normalisation technique as in [7], we see that C°zG' + Q where Q is a finite
dimensional subspace of N. Let P be the subspace of M obtained by extending the
elements of Q in the prescribed manner.

Suppose/ e E' + M and/ is bounded on B. Then/|G is an element of G' + JV which is
bounded on C, so that f\GeG' + Q. It follows that feE' + P and consequently that
B°^E' + P. The result now follows as in Theorem 3 since B again satisfies the bipolar
property.

Remarks.

(i) An infinite dimensional complete metrizable topological vector space always has
c-dimensional bounded absolutely convex sets [8, II.5; 3, proof].

(ii) It would be of interest to know if barrelledness can be replaced by hyper-
barrelledness or even ultrabarrelledness in Theorems 3 and 4.
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