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SUMS OF DEFICIENCIES OF ALGEBROID FUNCTIONS

LIAN-ZHONG YANG

Let f(z) be an n-valued algebroid function of finite lower order. In the present
paper, we give a spread relation of f(z) and some applications of the spread
relation.

1. INTRODUCTION

Let f(z) be an n-valued algebroid function of finite lower order u, defined by an
irreducible equation

(1.1) Aff+ A f '+t An1f + An =0

where Ag, A;, ---, A, are entire functions without common zeros.
Fix a sequence (r;) of Pélya peaks of order u of f(2) (or T(r, f)). Let f;(z) be
the jth determination of f(z) and A(r) a positive function with

(1.2) A(r) =o(T(r, f)), r — oo.
Define the sets of arguments E}(r, a) C (-, 7] by

Ej(r,a)={6: min |fj(re’) —a| < A o # o},

1€jsn
i A(r
E)(r, 00) = {8: 112f‘én|fj(re ) >e ™3,
and let o' (a) = liminf meas E}(r;, a)
j—oo

o'(a) = irxf o (a)

where the infimum is taken over all functions A(r) satisfying (1.2). Niino ([5]) proved
the following spread relation

(1.3) o'(a) 2 min {21r, %arcsin ﬁaz’—f)} .
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Now we assume that
1/
AN = (140 + [As]* + -+ + 4a]?)

n n— 1/2
"a”={(|a|’ +lal™ 44l 4+1)", ot
1,

a = 00,

0) @ = 00,
1
m(r,a, A) = o log

PP

Aga™ + Aja" ' + ...+ A, ja+ A, a# oo
F(z,a)=

Al llall | 4
“F(z,a) a)

= re‘a,

Set
T(r, a, A) = m(r, a, A) + N(r, 0, F(z, a));

by Jensen’s formula, we have

2x
T(r, 0, 4) = 5 [ g4l el + O)

i . 1/2 .
Since 255 145 < IAG < (n 4177 e (451,
we have |T(r, a, A) — nu(r, A)| = O(1).

By using Valiron’s result ([8]), we get

|T(r, a, A) —nT(r, )| = O(1),

so that 8(a, f) =1 - limsup N(;(g: f(:a)a))

With these notations, we define the sets of arguments Ej(r, a) C (-, 7] by -

. AL-lall _ ar) ;oo
EA(: ) {0 IF( z, )I ’ }

and let oa(a) = liminf meas E,(r;, a)
j—eo

o(a) = igf oa(a)

where the infimum is taken over all functions satisfying (1.2).

[2)

In the present paper, we prove a spread relation analogous to (1.3) with the spread

o'(a) replaced by o(a) and give some applications of the spread relation.
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2. SPREAD RELATIONS

In the following statements the notations of the introduction are taken for granted.
For a complex number a, we set

1 / Al - llall -
m*(z,a) =sup — [ log T dw, =re",
&8 =P ar Jo B \FE oy  ¢
(z =re‘o,0<r<oo,0<0$1r)
where the supremum is taken over all measurable sets E C (—, ] of Lebesgue measure

26, and
T*(z) = T*(z, a) = m*(z, a) + N(r, 0, F(z, a)).

The function T*(z) is defined on the set
Hy={z2:Imz >0, z#0}.

It follows from the definition of this function that for arbitrary r such that 0 < » < 0
and a complex number a we have

(2.1) sup T (rew) = T(r, a, A),
(2.2) T*(r) = N(r, 0, F(z, a)).

LEMMA 2.1. T*(z) is subharmonic in the half plane Im 2z > 0 and is continuous
in H] .

PROOF: By a result of Goldberg ([3]), we know that log || A|| is subharmonic so that
log (J|A|| - ||la]]) is subharmonic. Since F(z, a) is an entire function, we have log |F(z, a)|
is a subharmonic function. By the Theorem A’ in [2], Lemma 2.1 follows.

THEOREM 2.1. Let f(z) be an mn-valued algebroid function of lower order
# (0 < p < ©), defined by the equation (1.1); then

. 4 . [4a f)
(2.3) o(a) > min {27r, p arcsin —2—} ,

where a is a deficient value of f(z).

PROOF: We consider the following two cases.
(1) 4arcsin /(6(a, £)/2)/p < 2x.
To deduce inequality (2.3) we should use Lemma 2.1 and the proof of (1.4) in [1];

let us outline the method of the proof of inequality (2.3) (for details see the proof of
relation (1.4) in [1, p.429-434).
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We set
6(a, f)

2
2.4 = — i —_,
(2.4) v — arcsin 2

The following inequality is fulfilled for the function
0, z=0
v(z) = )
T*(z7), z=re,0<r<o00,0<0<n

which is subharmonic in the half plane Imz > 0 (see Lemma 2.1):

v(re'?) < /R v(t)A(L, r, 8 R)dt+‘/*v(Re‘.“’)B(<p r, 8, R)dyp
= -R 2 T ¥ 0 y Ty ¥y

where A and B are kernels (see [1, p.430]).
We use the estimates B(p, 7, 8, R) < 32(r/R),(0<80<7,0<p <7, 0<r<R/2)
and A(t,r, 0, R) < P(t,r,w—0), A(-t,r, 0, R) < P(t, r, 8), where
1 rsinf

P(t,r, 6) = Tie + 2rtcosO + 12

Taking into account properties (2.1) and (2.2) of the function T*(z), we get
R

(2.5) o(re®®) < / N(t", 0, F(z, a))P(t, r, 7 — 6)dt
0

R
+ / T(t", a, A)P(t, r, 8)dt + 32(r/R)T(R", a, A)
0
(0<8<m, O0<r<R/2).

Let (r;) be a sequence of Pélya peaks of order 4 of T(r, a, A) (or T(r, f)) and
(r;.,) be the sequence occuring in the definition of Pélya peaks (see [1, p.418]) such
that r}, /r; — 0o (j — 00).

Let us set ;

1
8; = (r;)"/" and 8y = (r;-,) .

The following relations are valid:

(2.6) /;ﬂ N(t",0, F)P(t, 85, 7 —0)dt < (1-6&(a, f))T(r;, a, A)
8 {sin (m —0)vp + 0(1)} ,

sin Typ
!

(2.7) /o'jl T(t", a, A)P(¢, 85, 0)dt < T(r;,a, A){

(200, 0<O<),

sin Oy

+on)},

sin wpy
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where o(1) does not depend on 6,

8; v .
(2.8) -;,f—T((a;;) y Gy A) = o(T(rj, a, A)), 5 — oo.

Jl

Setting r = s; and R = s}, in (2.5) and taking the relations (2.6), (2.7), (2.8) into
account, we get (j — 00,0< 8 <)

(29) v(s;6) < T@hm@{mMW+u‘$:3“m“_nw+4n}

From the definition of ¥ we have
1 - 6§(a, f) = cosmyp.

We write the inequality (2.9) in the form

v(a,-ew) < T('J" a, A){cos(w — 0)vpu + a_.;},
(i=12---,0<80<m)

where a; — 0 as j — oco. Further, following {1, p.433-434], we arrive at the relation

(2.3).
(2) 4/parcsin /(6(a, £)/2) 2 2.

In this case, we choose a number d such that

0<d<éa, f)

and i arcsin \/-f_ < 27
n 2

Set _2 arcsin \/g

€ 7= T ) 2’

by similar reasoning, we arrive at

o(a) 2 % arcsin \/g
Letting d T dop = 2sin? (un/2), we obtain the desired result

o(a) = 2.

Theorem 2.1 is proved. 0

https://doi.org/10.1017/50004972700028367 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700028367

196 Lian-Zhong Yang (6]

THEOREM 2.2. Let f(z) be an n-valued algebroid function of lower order
# (0 < p < 0), defined by the equation (1.1), and q > 2y be an integer. If

(2.10) 6(a, f) > 1 — cos “—:,
then

2w
(2.11) o(a) > R

PROOF: The proof of this theorem is similar to the proof of case (1) in Theorem
2.1. Let us only observe that we must choose ¥ = 1/q and apply inequality (2.10) to
relation (2.9). Relation (4.16) from [1, p.433] reduces to the desired inequality (2.11). [I

3. APPLICATIONS

LEMMA 3.1. Let f(z) be an n-valued algebroid function of lower order
p(0<p<oo) andlet a; (i=0,1,---,n) be any n + 1 distinct complex numbers.
Choose A(r) = (T(r, ‘f))I/z and define the sets Ex(r, a;) in (—m, 7] by

~_ S o HAG - llasll & Ay . a0 s
(3'1) EA(T) a’J)— {9’ |F(z, a'j)l >e y2=e€'T (J—Oa 1""1")1

Then there exists a positive number rq > 0 such that r > rg
n
n EA(T, a,-) = 0
=0

PROOF: We assume that a; # oo (j =0, 1, ---, n) without loss of generality. Sup-
pose that

E(r) = () Ea(r, a;) # 0.

j=0

We choose 8, € E(r) and consider the following system of nn + 1 equations.

n
F(re'%, a;) = EA);(TG%)G;-'—k (7=0,1,---,n).
k=0

Since the determinant of the coefficients

det (a;-‘, a;-'_l, ey a5, 1) £0,
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we can solve this system for the unknowns 4;(re*®) (0 < j < n) and obtain (for some
constants bj; ):

Ab(‘re"oo) = Eb,-,,F(re'.%, Gj), (k=0,1,.--,n)

=0

so that |4g(rei®)| = max |Ax(re*)|

O<h<n

S o Z (bl - [F (re™®, a5)|
< C|F(re"’°, a,)|, (0<s<n)
where C is a constant and

|F(re®®, a.)| = max |F(re™, aj)].

This means that for fixed r

||A(re‘9°)|| lla.ll (n + 1)1/z |A,,(re“’°)| -lasll
|F(re®, a,)| < |F(rei, a,)|

< (n+1)"2C|ja,|| = constant,

which for sufficiently large r contradicts the assumption that 8y belongs to Ex(r, a,).
Lemma 3.1 is thus proved.

LEMMA 3.2. Let f(z) be an n-valued algebroid function of lower order
# (0 < p < 00), defined by the equation (1.1) and

A(r) = (T(r, £))/>.

Then, on summing all the deficient values a of f(z), we have
Za(a) < ZUA(G) < 2nm.
a a

PROOF: Let aj ( =1,2,---, N) be any N deficient values of f(z). The sets
Ej(r, aj) (1 <j < N) are defined by (3.1). Since for each 8 € (—m, 7], 8y can belong
to at most n of the sets E5(r, a;) (1 < j < N) for sufficiently large r,

N N

N
Ea(ak) < Z oa(ar) = zjlin;measEA(rj, ai) € 2nm.
k=1

k=1 k=1
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Since N can be arbitrarily large, Lemma 3.2 is thus proved. 0

THEOREM 3.1. Let f(z) be an n-valued algebroid function of lower order
p (0 < p < o©), defined by the equation (1.1) and q (> 2p) be an integer. If f(z)
has more than nq deficient values, then there are at most nqg — 1 deficient values
ar(k=1,2,-..,ng—1) such that

5 = 8(ag, f)?l—cos%, (k=1,2,.--- ,ng—1).

PROOF: Assume that the assertion is false; we choose ng + 1 distinct deficient
values a; (k=1,2,---,ng+1) of f(z) such that

(3.2) 5,;6,;---6,.q>1—cos"—:,
(3.3) Sngt1 >0, (g 2> 2u, 8 =6(ax, f),1 < k< ng+1).
Choosing the integer s (> nq) large enough, (3.3) implies

(3.4) Spng+1 21— cos ET
s

Now let (r;) be a sequence of Pélya peaks of T(r, f) and let

A(r) = (T(r, £))'/%

by Theorem 2.2, (3.2) and (3.4) imply

27 27
o(ak) 2 Ta ”(aﬂq-ﬁ'l) 2 T’ k=1,2,..--,nq
ng+1 ng+1 o
So z oa(ar) 2 Z o(ax) 2 2nmw + -
k=1 k=1
This contradicts Lemma 3.2, so Theorem 3.1 is proved. 1]

THEOREM 3.2. Let f(z) be an n-valued algebroid function of lower order
# (0 € p < o0), defined by the equation (1.1). Then on summing over all the defi-
cient values a of f(z), we have

E\/5(_G,-T)< n(\/i;nr+2p+1).

PROOF: We consider the following two cases.

(1) If p =0, by a result of Gu ({4]), f(z) has at most n deficient values, so
that Theorem 3.2 holds.
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(2) I 0 < p < oo, we assume that
(3'5) Q15 G2,y CQny "~

are all the deficient values of f(z) and assume that (3.5) has been ordered
so that
51262 28,2---,

where §; = §(ax, f), k=1,2,---,m,---.
Let ¢ = [2u] + 1 and m be an integer. If m < ngq, it is trivial that
> V(@i f) <ng<n(2p+1).
i=1

If m > nq, by Theorem 3.1 we have

bng <1 -—cosﬂ.
q

Hence, with each §n44: > 0 (1 <1 < m — ng), we may associate a positive integer ¢;
such that

(3.6) 1 — cos ’”’1 < bngsi<l—cosEZ, i> 1.

g+ qi
By Lemma 3.2 and Theorem 2.2, we get

Z < o(a;) € 2nw,
= utl o
so that
m-—ng 1 m—ng 9
3.7 — K —_— K 2n.
1 ;q‘\.’ﬁ g+l

From the second inequality in (3.6), we deduce

87 < v2sinEZ < T2

2¢;  qiV2

m m-—ng
and hence Z Vé(ai, f) E Lkl < V2npun.
i=ng+1 =1 v2q;

Therefore
(3.8) z Vé(a;, f) < V2nur +ng < n(\/ip'rr +2u+ 1).
i=1

Since m can be arbitrarily large, Theorem 3.2 follows from (3.8). 1
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