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Abstract
Asthma is one of the most common and prevalent problems worldwide affecting over 300 million individuals. There is some evidence from
observational and intervention studies to suggest a beneficial effect of n-3 PUFA in inflammatory diseases, specifically asthma. Marine-based
n-3 PUFA have therefore been proposed as a possible complementary/alternative therapy for asthma. The proposed anti-inflammatory
effects of n-3 fatty acids may be linked to a change in cell membrane composition. This altered membrane composition following n-3 fatty
acid supplementation (primarily EPA and DHA) can modify lipid mediator generation via the production of eicosanoids with a reduced
inflammatory potential/impact. A recently identified group of lipid mediators derived from EPA including E-series resolvins are proposed
to be important in the resolution of inflammation. Reduced inflammation attenuates the severity of asthma including symptoms (dyspnoea)
and exerts a bronchodilatory effect. There have been no major health side effects reported with the dietary supplementation of n-3 fatty acids
or their mediators; consequently supplementing with n-3 fatty acids is an attractive non-pharmacological intervention which may benefit
asthma.
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Asthma pathophysiology

Asthma is one of the most common and prevalent health problems
worldwide affecting over 300 million individuals. Globally asthma
affects 1 to 18 % of the population and it is evident that in both
developing and developed countries prevalence of asthma
increases as communities adopt modern or ‘Western’ lifestyles,
becoming urbanised(1). It has been projected that with urbanisation
continuing to increase worldwide, there is likely to be a marked
increase in the number of individuals with asthma living within the
next two decades(2) and it has been estimated that an additional
100 million individuals worldwide could be potentially affected
with asthma by 2025(3,4). Asthma is partly characterised by transient
narrowing of the airways(5,6). Occasionally this transient narrowing
of airways can occur during exercise, resulting in the identification
of exercise-induced bronchoconstriction (EIB)(7,8). For patients
with EIB a brief period of exercise or increase in ventilation triggers
airflow obstruction which typically lasts for 30–90 min in the
absence of treatment(9,10). Clinical focus for asthma therapy has
understandably been on the severe disease state; however, a large
number of asthmatics have mild to moderate symptoms(10).
Asthma is a heterogeneous disease with respect to immuno-

pathology, clinical phenotype, response to therapy and

natural history. Symptoms can be triggered by a variety of
environmental factors and are further exacerbated by the poor
adherence to prescribed medication schedules and suboptimal
treatment regimens(11,12). Thus, the clinical spectrum of asthma is
highly variable with airway inflammation being a consistent fea-
ture. The pattern of inflammation in asthma is associated with
airway hyper-responsiveness (AHR) (clinically measured by his-
tamine or methacholine challenge) which leads to recurrent
episodes of wheezing, breathlessness, chest tightness and
coughing particularly at night or early morning. These episodes
are generally associated with airflow obstruction (bronchocon-
striction) within the lungs that is often reversible either sponta-
neously or with treatment. In most asthmatics, inflammation is
largely restricted to the conducting airways but with an increase
in disease severity, the inflammatory infiltrate spreads to the small
airways and in some cases adjacent alveoli(13).

Another feature of asthma is the response to triggers such as
exercise and allergic sensitisation; the airways recognise
common triggers and in turn generate a Th2-type cytokine
response to them. Asthma is also found to involve local
epithelial, mesenchymal, vascular and neurological events,
which direct the Th2 lymphocytes to the lung. Repeated bouts
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of increased inflammation in asthma may lead to damage to the
airway epithelium and subsequent abnormal repair leads to
structural changes in the airway walls of asthmatic subjects
(collectively referred to as airway remodelling)(14,15). Fig. 1
illustrates the role of different cells and mediators involved in
the asthmatic inflammatory response to a trigger. There is
recruitment and activation of leucocytes in response to the
trigger. Following activation, the cells work actively to neu-
tralise the antigens, subsequently they repair any damage;
finally, the cells are removed with resolution of the inflamma-
tory process(16,17).
In asthmatics, there is an increased production of a series of

cytokines and chemokines such as TNF, IL-4, IL-5, IL-6, IL-8,
IL-12 and IL-13(18–20). There is also a release of arachidonic acid
(AA)-derived eicosanoids including prostaglandins and leuko-
trienes (LT; such as LTC4, LTD4 and LTE4) that are found to be
potent vasoconstrictors of human airways; these mediators
affect microvascular and bronchial dilation, increase AHR, and
have been implicated in the pathogenesis of asthma(21,22).
Furthermore the prostaglandins exert strong effects on airway
function and there is increased expression of the inducible form
of cyclo-oxygenase (COX-2) in asthmatic airways; however, the
inhibition of their synthesis with COX inhibitors, such as aspirin
or ibuprofen, may demonstrate some effect in reducing symp-
toms in some but not all asthmatics(23). PGD2 is a broncho-
constrictor produced predominantly by mast cells. Deletion of
the PGD2 receptors in mice significantly inhibits inflammatory
responses to allergens and inhibits AHR, suggesting that this
mediator may be important in asthma(24,25).
NO is an endogenous regulatory molecule involved in the

pathogenesis of asthma. The synthesis of NO in the airways is
mediated by a family of enzymes that are collectively called NO

synthases (NOS)(26,27). The NOS can exist as constitutive
isoforms (cNOSs) including endothelial NOS (eNOS) and neural
NOS (nNOS) or as an inducible isoform (iNOS)(28,29). The
inducible isoform (iNOS) is found in the epithelium of the
bronchial wall, which is the key source for elevated levels of
fractional exhaled NO (FeNO) seen in asthmatics. Alveolar
concentration of FeNO is usually low except in diseases such as
alveolititis(30). During an exhalation process, the air from
alveolar compartments moves to the bronchial compartment;
thus, the NO from the bronchial wall diffuses inside the airway
lumen leading to an increase in NO levels in the expired air.
Increased concentration of NO is observed when exhalation is
slow, as this allows a longer time for the NO to diffuse in the
airways(26,31). Patients with asthma usually exhibit 2- to 3-fold
higher levels of NO in expired air compared with healthy
adults(32). Healthy adults can exhibit values between 5–35 parts
per billion at the standard flow rate of 50 ml/s(32,33). The
elevated levels of NO in expired air in asthmatics are indicative
of eisonophilic inflammation; however, a direct pathogenic role
of this gas in asthma is yet to be fully established(34–36).

Diagnosis and classification

Diagnosis of asthma is predominantly determined by measuring
symptoms (episodic breathlessness, wheezing, cough and chest
tightness), peak expiratory flow (PEF) and other parameters of
spirometry(37,38). Episodic symptoms after allergen exposures,
seasonal variability and a positive family history and atopy are
useful diagnostic guidelines(39). The presentation of asthma can
vary from person to person and asthma may be intermittent
with mild to severe episodes requiring treatment(40,41).
Asthmatics may experience intermittent symptoms for a period
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Fig. 1. Cells and mediators involved in the asthmatic inflammatory response. APC, antigen-presenting cells; LT, leukotriene.

2 A. Kumar et al.

https://doi.org/10.1017/S0954422415000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422415000116


of a few minutes and in some cases this may be life threatening.
Asthma subgroups have been characterised to address the
complexities of the disease and for better understanding of the
symptoms. A phenotype or subgroup identifies the clinically
relevant properties of the disease, but does not show the direct
relationship with disease aetiology and pathophysiology(42,43).
Table 1 shows a classification of asthma into main subgroups
including early-onset allergic, eosinophilic, aspirin triggered,
exercise induced, obesity related and asthma related to airflow
obstruction.
The main diagnostic technique for asthma is an assessment of

pulmonary function to identify airflow limitation; this method
has been used to demonstrate the reversibility of lung function
abnormalities. The measurement of pulmonary function is
combined with an assessment of symptoms such as dyspnoea
and wheezing; together they provide reliable information about
the different aspects of asthma control(37,38,44). Spirometry is the
primary method for pulmonary function testing. The most
important aspects of spirometry include forced vital capacity
(FVC), which is the maximum volume of air an individual can
expel from the lungs, during expiration made as forcefully and
completely starting from full inspiration. The forced expiratory
volume in 1 s (FEV1) is the maximum volume of expired air
volume in the first 1 s of a FVC manoeuvre. PEF is the maximum
expiratory flow achieved from a maximum forced expiration,
starting from the point of maximal lung inflation, and is recor-
ded using a PEF meter.
EIB is a subgroup of asthma that affects up to 90 % of

individuals with asthma(7,9,45). EIB has also been reported in
non-asthmatics including schoolchildren, armed force recruits,
and athletes and approximately 10 % of the healthy population
show symptoms of EIB at some point during their lives(45).
Based on the wide prevalence of EIB in both asthmatic and
healthy populations, EIB is considered a limiting factor for
physical activity for a large number of individuals. The observed
symptoms of EIB include coughing, wheezing, chest tightness,
shortness of breath or excess mucus production following
exercise. However; self-reported symptoms are neither reliable
nor specific for EIB. Approximately 50 % of elite athletes report
symptoms related to EIB with exercise. However, they do not
have EIB, while 50 % of those who report no symptoms for EIB
will test positive on the exercise challenge test for EIB(46,47).
Thus, it is essential to support the diagnosis of EIB by
performing a relevant exercise challenge test(48). An exercise
challenge test involves exercising at increasing intensities until a
heart rate response of 85–90 % of estimated maximal is
achieved. The exercise challenge test primarily involves
recording a post-exercise reduction in FEV1 of 10 to 15 % of the
pre-exercise value. The value for FEV1 may start falling during
exercise, however; the lowest value will usually be measured
5–12 min after the end of the exercise challenge test. The
reduction in FEV1, if severe, is linked to a decrease in oxygen
saturation with hyperinflation of the lungs(9). In adults, a ≥10 %
decline in FEV1 at any time point within 30 min of ceasing
exercise is considered a diagnostic of EIB. The decline in FEV1

is usually maintained over two time points and any unsustained
decline may be due to respiratory muscle fatigue and does not
indicate EIB(49,50).
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Current asthma therapies: challenges and scope for
non-pharmacological interventions

Despite effective treatments for asthma, there remain high
mortality and morbidity which have implications for public
health services. Current asthma treatments target inflammation
in one of two ways (acute rescue remedies v. long-term
preventatives). The existing pharmacological therapies together
with long- and short-acting β-agonists and corticosteroids have
proved effective in asthma management in the majority of
patients, but still have issues associated with their use. Tachy-
phylaxis has complicated the use of β-adrenoreceptor agonists
while the known systemic and local side effects of inhaled
corticosteroids include osteoporosis and glaucoma(2,51). LT
modifiers block bronchoconstrictor and pro-inflammatory
activity of cysteinyl LT within the asthmatic airway, and IgE
monoclonal therapy for reduction in IgE have been found to be
effective in asthma treatment(52,53). There is a current focus on
identifying specific therapies that target a single inflammatory
mediator and are less likely to have major health side effects(51).
These specific therapies have been suggested to be effective for
various subgroups of asthma including those with mild–
moderate symptoms including EIB. For particularly EIB, inhaled
corticosteroids have been identified as the most effective anti-
inflammatory treatment available, aiming at reducing AHR and
reducing the severity of symptoms. However, inhaled corti-
costeroids demonstrate both systemic and local health side
effects, which affect the sports/physical activity of individuals.
Adrenal suppression at high doses, growth retardation in
children and adolescents and reduction in bone density are
observed with usage of some inhaled corticosteroids(54,55). The
other anti-inflammatory treatments for EIB include LT antago-
nists, disodium cromoglycate, nedocromile sodium, β2-agonists,
and ipratropium bromide which have well-established, long-
term negative heath side effects providing an impetus for non-
pharmacological therapies among researchers and clinical
experts(56–58).
In the UK, the National Health Service and Asthma UK have

suggested the use of complementary therapies alongside
conventional medication in asthma(59,60). Consequently, there
are both therapeutic and consumer-derived interests in identi-
fying potential complementary therapies for asthma. The
recognition of the role of complementary therapy in asthma is
limited because these approaches have been insufficiently
researched and their effectiveness is largely unproven(2).
A range of non-pharmacological treatments including physical
activity (incorporating a warm-up before and a cool-down
period following exercise), performing nasal breathing, avoid-
ing cold weather or environmental allergens, using a face mask
or other aid to warm and humidify inhaled air, and modifying
dietary intake of n-3 fatty acids, salt and antioxidants have been
identified(61). However, to date the efficacies of each of these
therapies have not been well established and further investi-
gations are required to validate these therapies with conven-
tional standards(61).
Exploring the potential of non-pharmacological treatments is

important due to the comparatively low risk associated with
their use. Since physical activity is a limiting factor for EIB-prone

individuals, a change in lifestyle and diet could improve the
quality of life of these individuals and help them meet the
physical activity requirements proposed by the Department of
Health. The present review will discuss the mechanisms
underlying the effects of n-3 fatty acids and the relationship
between n-3 fatty acids, their derived mediators and respiratory
health in asthmatics.

n-3 Fatty acids: structure and metabolism

Fatty acids, both non-esterified and as part of complex lipids,
play an important role in metabolism, storage and transport of
energy, gene regulation(62) and as necessary components of all
cell membranes and have been found to be linked to various
diseases(63–66). The characteristics of a fatty acid are dependent
on the length of carbon chain and the presence, absence and
placement of double bonds between carbon atoms. PUFA have
more than one double bond present. PUFA are also known by
their shorthand nomenclature, which represents the number of
carbon atoms in their chain. The n-3 fatty acids are so called
because their first carbon double bond is present at carbon
number 3 counting the methyl carbon as carbon number 1
while n-6 are so called as their first carbon double bond is
present at carbon number 6(67,68).

Not all fatty acids can be synthesised de novo in mammals, as
they cannot insert double bonds before carbon 9 in oleic acid
(18 : 1n-9). Specifically, mammals cannot convert oleic acid into
linoleic acid (LA; 18 : 2n-6) or LA into α-linolenic acid (ALA; 18 :
3n-3). Since ALA and LA cannot be synthesised de novo, their
intake from food sources is important and they are classified as
essential fatty acids (EFA). Although mammalian cells do not have
the ability to synthesise LA and ALA, once these EFA are obtained
from the diet they can be metabolised into physiologically active
compounds via the introduction of extra double bonds and
chain elongation through the processes of desaturation and
elongation(69,70) (Fig. 2). Furthermore, LA appears to be an EFA
not only because of an immediate cellular function, but because it
is the precursor of AA (20 : 4n-6) that has numerous essential
functions. Similarly, the importance of dietary ALA is that it is the
precursor of EPA and DHA which are found in the phospholipids
of cell membranes (Fig. 2). EPA/DHA have a range of biological
functions, with EPA demonstrating anti-inflammatory effects
while DHA is recognised to be important for visual and neuro-
logical functions and vital for the growth and development of
premature and newborn infants(68). Additionally, both EPA and
DHA have been found to have roles in the resolution of
inflammation(68). Subsequently, AA, EPA and DHA have been
suggested to be termed as ‘conditionally essential’(71,72).

Fatty acids are important constituents of the phospholipids of
all cell membranes and the characteristic fatty acid composition
of different cells and tissues is dependent on the availability of
different fatty acids as well as the metabolic properties of the
cells and tissues(68,73). Once PUFA are incorporated in cell
membrane phospholipids they are proposed to be involved in
the inflammatory cell response (Fig. 2)(74). Since tissue and
blood fatty acid profiles have been shown to be modified by
dietary intake, they have been used as compliance markers for
dietary supplementation studies(75–77). However, it has yet not

N
ut

ri
tio

n 
R

es
ea

rc
h 

R
ev

ie
w

s
4 A. Kumar et al.

https://doi.org/10.1017/S0954422415000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422415000116


explicitly been demonstrated that phospholipid or total lipid
content of cells can be used as a marker of dietary intake whilst
the differences between different cell populations are con-
founding variables in the literature. In adults, there are a
number of epidemiological and supplementation studies
evaluating the effects of dietary n-3 PUFA intake on asthma. In a
population-based study (n 13 820; ages 42.2 (SD 11·2) years),
individual fatty acid intakes (estimated by FFQ) were analysed
and related to symptoms of asthma(78). The results demonstrate
that a high intake of n-3 fatty acids did not protect against
asthma; however, higher consumption of several n-6 fatty acids
including LA and AA were found to be associated with a
significant reduction in FEV1, particularly in smokers(78). In
another population-based study of Respiratory Health in
Northern Europe, 16 187 subjects aged 23–54 years completed a
postal FFQ and it was reported that a minimum level of weekly
fish intake (>1 serving per week) in adulthood was associated
with protection against asthma(79). Participants who never had
fish were found to have an increased risk for asthma(79). It
should be highlighted that the inconsistencies from the
population-based studies are possibly due to the methods used.
Most studies that have found associations between fatty acid
intake and asthma have used indirect measurements of fatty
acid intake including FFQ or other dietary recall methods(80).

The presence of n-3 fatty acids in the phospholipids of plasma,
erythrocytes and even whole blood has been used as a marker
for compliance in various supplementation studies. In addition,
incorporation of fatty acids in inflammatory cells/membranes has
been studied in inflammatory disease states(80–83). Thus, it can be
argued that studies using a direct marker of fat intake may
provide a reliable method for evaluating the relationship between
asthma and dietary n-3 PUFA. Some but not all studies show a
possible agreement between dietary FFQ and plasma fatty acid
levels; in a study by Woods et al., it was demonstrated that
n-3 PUFA and the n-6:n-3 ratio in plasma phospholipids were not
consistently associated with asthma or atopy(84). The only
positive association with current asthma was found with dihomo-
γ-linolenic acid in plasma phospholipids. In this study, there was
a good agreement between the dietary FFQ estimated fatty acid
intake and the plasma fatty acid levels(84). The Global Allergy and
Asthma European Network of Excellence (GA2LEN) has shown
that a reasonable association exists between estimates of dietary
n-3 PUFA and total plasma phospholipid composition using the
GA2LEN FFQ within the European countries that took part in the
study(75). In supplementation studies, while dietary estimates
provide information about the dietary behaviour of individuals,
the total cell or phospholipid content of fatty acids can be used as
a reliable marker of incorporation.
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Linoleic acid
(18 : 2n-6)

MUFA

n-9 FA

Oleic acid
(18 : 1n-9)
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Arachidonic acid
(20 : 4n-6)

Eicosatrienoic acid
(20 : 3n-9)

Cyclo-oxygenase
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Phospholipid membrane

Fig. 2. Proposed pathway for the metabolism of n-6 and n-3 fatty acids, showing the production of n-3 and n-6 fatty acid-derived eicosanoids via the cylo-oxygenase
and 5-lipoxygenase enzymes. The n-9 fatty acids do not follow the same pathway, and subsequently are hypothesised to not play a role in inflammation.
TX, thromboxane; LT, leukotriene.
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n-3 Fatty acids and their lipid derivatives in the
inflammatory process

n-3 Fatty acid and arachidonic acid derivatives produced by
cyclo-oxygenase and lipoxygenase pathways

Eicosanoids are oxidised derivatives of twenty-carbon fatty
acids and include prostaglandins, thromboxanes, LT and
lipoxins (LX). The membrane phospholipids are the initial
substrates for eicosanoid synthesis and due to the abundance of
AA in phospholipids of inflammatory cells, AA is considered the
major substrate for eicosanoid synthesis(85–87). One of the
mechanisms for the action of n-3 PUFA is the altered pattern of
lipid mediator synthesis(88). The metabolites from EPA and AA
form the basis for regulatory signals and the eicosanoid synthesis
involves PUFA mobilisation from the cell membrane by various
phospholipase enzymes, most notably phospholipase A2.
Following mobilisation; the free AA or EPA/DHA acts as a
substrate for eicosanoid production via the COX and lipoxy-
genase (LOX) pathways. Prostaglandins, prostacylins and
thromboxanes are formed by the action of COX while LT and
hydroxy fatty acids are formed by the action of LOX enzymes.
The eicosanoids produced from the two families of fatty acids
vary in biological activity. AA is one of the most tightly
regulated fatty acids in cell membrane phospholipids as it
affects the way cells behave, and its actions have far-ranging
effects(85,89). Diets high in LA or AA could potentially result in
overactivity of AA-derived eicosanoids which could lead to an
overactive immune system which has been hypothesised to
cause damage to host tissues, lead to the formation of thrombi,
and facilitate inflammatory disorders(90–93). Despite the pro-
inflammatory effects of AA-derived eicosanoids, it is now
recognised that not all the metabolites from AA act in the same
manner and some metabolites are shown to promote bronch-
odilation in normal subjects(94) but may cause constriction in
patients with asthma because of activation of reflex cholinergic
bronchoconstriction(95,96).

EPA-derived eicosanoids produced via cyclo-oxygenase
and lipoxygenase pathways

EPA is a competing substrate for COX and LOX enzymes and
this competition with AA leads to decreased expression of
COX-2 and 5-LOX(74,92). This has been suggested as a potential
mechanism for the proposed anti-inflammatory benefits of
n-3 PUFA. Ordinarily, AA is metabolised by COX into biologically
active 2-series prostanoids; however, when EPA is utilised as a
COX substrate the resultant prostanoids are of the alternative
3-series which are known to be less pro-inflammatory(93,97,98). In
an in vitro study by Wada et al.(99) specificities of prostanoid
enzymes and receptors towards EPA-derived and AA-derived
prostaglandins were compared. There was a significant decrease
in the formation of 2-series prostaglandins via PGHS-2
(prostaglandin endoperoxide H synthase-2) and this was
demonstrated to occur only to the extent that AA levels in
phospholipids were decreased by EPA replacing AA(99).
Approximately two- to three-fold higher activities were observed
for AA-derived mediators compared with EPA-derived ones with
the different receptors studied. For example, lower potencies

were observed for PGE3 compared with PGE2 towards the EP1,
EP2, EP3 and EP4 receptors(99). In a separate in vitro study it has
been demonstrated that EPA-derived PGD3 antagonises the effect
of PGD2-mediated migration of neutrophils across endothelial
cells(100). These studies directly comparing the effect of EPA- and
AA-derived lipid mediators provide some evidence to confirm the
competition between n-6 and n-3 fatty acids for the production of
eicosanoids and go some way towards identifying the possible
mechanisms involved. It has also been shown that 5-series LT can
be produced in the macrophages of n-3 fatty acid-fed mice(70)

and in the neutrophils of human subjects supplemented with n-3
fatty acids for several weeks(101–103). LTB5 derived from EPA has
been shown to be 10- to 100-fold less potent as a neutrophil
chemotactic agent than AA-derived LTB4; thus LTB5 is a much
weaker inducer of inflammation(70,102). In an n-3 fatty acid
supplementation study using EIB participants, it was found that
there was a significant reduction in LTB4 and significant increase
in LTB5 level in activated polymorphonulcear cells by the end of
3 weeks of supplementation and this reduced inflammatory effect
was accompanied by an improvement in post-exercise EIB
symptoms(57).

The modified cell membrane phospholipid fatty acid content
with n-3 PUFA supplementation facilitates the formation of
‘lipid rafts’ which have been studied in T cells. These rafts are
formed by the movement of receptors, accessory proteins, and
enzymes within the plane of the cell membrane to co-localise
into signalling platforms(104,105). These rafts in turn influence the
activity of membrane proteins including receptors, transporters,
ion channels and cell signalling enzymes; these result in the
transfer of intracellular signals into the cytosol(106). Based on the
evidence from cell-culture and animal-feeding studies it has
been shown that n-3 PUFA supplementation modifies raft
formation in T cells, which in turn impairs the signalling
mechanism of these cells(107,108). Thus, the exposure of T cells
to n-3 fatty acid supplementation can alter the chemical struc-
ture of rafts which can consequently affect their function(109,110).
Additionally, the supplementation of n-3 PUFA has been
reported to affect cell signalling pathways either by altering the
expression and activity of membrane receptors or by modifying
the expression of genes by the activation of transcription factors
such as NF-κB and PPAR-α(111–113).

Evidence from n-3 intervention trials in asthma

The adult n-3 fatty acid intervention trials in the last two
decades have provided a contradictory picture of efficacy with
respect to FEV1 or PEF. Table 2 summarises the main
intervention trials with primary outcomes. Kirsch et al.(114)

compared a high-dose n-3 PUFA supplementation (4 g EPA/d;
n 6) with a low dose (0·1 g/d; n 6) for 8 weeks on asthmatics in
a small study (n 12; aged 42–73 years) and found there was no
difference in FEV1 or symptom scores between the two
groups(114). There was also no difference in the lung function
determined by PEF between the two groups before the start of
supplementation(114). Hodge et al. reported no change in lung
function values in asthmatic children (n 45; aged 8–12 years);
however, there was a reduction in TNFα production (by
cultured peripheral blood mononuclear cells) compared with
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Table 2. Relevant trials of n-3 fatty acid supplementation in asthma

Author Study design Intervention Participants Outcomes

Studies reporting benefits of n-3 supplementation

Arm et al.
(1988)(121)

RCT, double-blind, placebo-controlled, parallel
design

n-3: 3·2 g EPA and 2·2 g
DHA/d

22 atopic, non-smoking asthmatic volunteers
entered and 17 completed the trial

No changes for lung function outcomes, medication
usage, dyspnoea

Comparison of n-3 capsules with placebo
supplementation

2-week run-in period followed by 10-week
treatment period

Placebo: Matched capsules
with olive oil

Age 18–42 years
Asthma severity determined from asthma
symptoms and PEF measurements

No participants were using oral steroids or
theophylline or gave history of aspirin sensitivity

10-fold increase in neutrophil phospholipid EPA
50 % inhibition of total LTB (LTB4 and LTB5)
generation by stimulated neutrophils

Suppression of neutrophil chemotaxis

Stenius-
Aarniala et al.
(1989)(83)

RCT cross-over design
Three-arm comparison of fish oil v. evening
primrose oil (n-6 group) v. olive oil using liquid
oil supplementation

2-week run-in period followed by 30-week
intervention (10 weeks per treatment arm)
period

No washout period

n-3: 3·6 g EPA and 2·2 g DHA
Evening primrose oil: 72 %
cis-linoleic acid, 9 %
γ-linoleic acid

Olive oil: Matched capsules
with olive oil

40 asthmatics selected, 36 entered study and 29
completed the study

Age 19–61 years
Asthma severity determined from asthma
symptoms and PEF measurements

No differences in PEF, symptoms or medication
usage

Increases in plasma PGE2 levels, no changes in
other TxB2, PGF2 α and 6-keto-PGF1-α in plasma
or urine

Significant increase in plasma fatty acid for EPA and
DHA

Schubert et al.
(2009)(119)

RCT, double-blind, parallel study
5-week supplementation; after 3 weeks,
participants were challenged daily with low-
dose house dust mite allergen (2 weeks)

n-3: 450 mg EPA and 180 mg
DHA/d

Placebo: Unsaturated fatty
acids and MUFA

23 house dust mite-allergic asthmatics
(13 females and 10 males)

Age 22–29 years
Asthma severity determined from asthma
symptom, skin prick, lung function and
methacholine challenge

No improvement in PFT, AHR and number of serum
neutrophils

Reduction in FeNO n-3 fatty acid group compared
with placebo after 3 weeks

Significant reduction in eosinophilic cation protein
and in vitro CystLT release

Significant increase in erythrocyte and plasma
membrane for EPA levels

Emelyanov
et al.
(2002)(116)

RCT, double-blind, parallel study, placebo-
controlled

2-week run-in period, 8-week supplementation
Two trials were reported:
Trial 1: Randomised, prospective, double-blind,
placebo-controlled, parallel-group trial

Supplementation for 4 weeks
Subjects were questioned about their asthma
management using a non-validated
questionnaire after 2 and 4 weeks

Trial 2: Supplementation for 4 weeks

n-3: New Zealand green-
lipped mussel extract
(50 mg EPA and DHA/d)

Placebo: 150 mg olive oil/d
n-3: Low-dose medical food
emulsion containing 0·75 g
GLA+0·5 g EPA, or 1·13 g
GLA+0·75 g EPA

Placebo: Olive oil
Low-dose medical food
emulsion (same as trial 1),
daily

Quality of life and asthma
management were
measured using validated
questionnaires

46 mild–moderate atopic asthmatics
Age 18–56 years
Asthma diagnosis based on ATS guidelines
(clinical history, reversibility of (FEV1 of 15 % and
diurnal variability of PEF of >20 %, skin prick
test to common inhalant allergens

35 atopic subjects with mild–moderate asthma
65 mild–moderate asthma subjects

Significant reduction in mean daytime wheeze in
n-3 fatty acid group

Improvement in mean morning PEF
No change in mean FEV1 and evening PEF
LT biosynthesis blocked with a dose of 1·13 g
GLA+0·75 g EPA

Fasting plasma GLA and EPA levels plateaued
within 7 d of daily consumption at all levels of
intake

Significant increase in plasma for EPA in 4 weeks
Improved self-reported asthma status and
medication use in participants consuming low-
and high-dose emulsion between week 2 and
week 4

Reduction in medication use with high dose
Significantly improved quality-of-life and asthma
management scores

Mickleborough
et al.
(2006)(57)

RCT, double-blind, cross-over, placebo-
controlled trial

3-week supplementation period in each arm
2-week washout phase

n-3: 3·2 g EPA and 2·0 g DHA
Placebo: Matched capsules
with olive oil

16 subjects
Age 23±1·6 years
Participants with clinically treated mild–moderate
asthma with a FEV1 >70 % predicted

Improved pulmonary function to below the
diagnostic EIB threshold

Reduction in medication usage
Reduction in induced sputum differential cell count
percentage and concentrations of LTC4–LTE4,
PGD2, IL-1β and TNF-α before and following
exercise on the n-3 fatty acid diet

Significant reduction in LTB4 and a significant
increase in LTB5 generation from activated
polymorphonuclear cells on the n-3 fatty acid diet
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Table 2 Continued

Author Study design Intervention Participants Outcomes

Mickleborough
et al.
(2003)(126)

RCT, double-blind, cross-over study
Subjects entered the study on their normal diet,
and then received either fish oil capsules or
placebo

n-3: 3·2 g EPA and 2·0 g of
DHA

Placebo: Matched capsules
with olive oil

10 athletes and 10 controls
Age (asthmatics 23·2 ± 1·9 years; controls 22·4 ±
1·7 years)

Participants with clinically diagnosed EIB

No effect on pre-exercise pulmonary function in
either group

Improved post-exercise pulmonary function
Reduction in LTE4, 9α, 11β-PG F2, LTB4, TNF-α,
and IL-1β, on the n-3 PUFA diet compared with
baseline and placebo diets and after exercise
challenge

Studies reporting benefits of n-3 supplementation (in children)

Hodge et al.
(1998)(115)

RCT, double-blind, parallel design
Comparison of diet high in n-6 fatty acids and
diet high in n-3 fatty acids

2-week run-in period followed by 6-month
intervention period

n-3: 1·2 g n-3/d
n-6: Safflowerseed/palm/
olive oil

45 asthmatic children
Age 8–12 years
Asthma defined as reported episodic wheeze in
past 12 months and AHR, PFT, day and night
symptoms and medication usage

No change in lung function values
Reduction in TNF-α production (cell culture for
peripheral blood mononuclear cells) compared
with baseline

Increase in plasma phospholipid n-3 fatty acid
levels at 3 months compared with the n-6 groupDietary control: n-3 diet participants advised to

eat fish at least once per month, n-6 group to
avoid fish

Studies reporting no benefits of n-3 supplementation

McDonald
et al.
(1990)(118)

RCT, cross-over design, double-blind, placebo-
controlled

Comparison of n-3 fatty acid supplementation
with placebo supplementation 10-week
intervention period, 6-week washout and then
10-week cross-over intervention

n-3: 2·7 g EPA and 1·8 g
DHA/d

Placebo: 15 g olive oil/d
Subjects asked to keep their
dietary fish intake
unchanged throughout the
study

15 non-smoking asthmatics
Subjects aged 28 to 72 years completed the study
7 subjects were ex-smokers

Asthma severity determined from asthma
symptoms and PEF measurements

No change in PEF, medication usage or asthma
symptoms after n-3 supplementation

Kirsch et al.
(1988)(114)

RCT, double-blind, parallel design
Compared high dose of EPA v. low dose of EPA
supplementation

6-week run-in period, 8-week treatment period
2-week washout

High dose of EPA: 4 g EPA/d
Low dose of EPA: 0·1 g EPA/d

12 patients, aged 42–73 years
Asthma severity determined from symptom index
and physical evaluation

No change in clinical status (symptoms, hospital
admissions) or pulmonary function throughout
the study

Thien et al.
(1993)(123)

RCT, double-blind, placebo-controlled, parallel
design

Comparison of n-3 supplementation with
placebo supplementation

6-month supplementation

n-3: 3·2 g EPA+2·2 g DHA/d
Placebo: Olive oil (volume not
specified)

37, non-smoking, pollen-sensitive adults
Age 19–42 years
Asthma severity determined by symptom,
medication usage, PEF measurements and AHR

No changes in PFT, medication usage or other
parameters including symptoms, airway
conductance and AHR

RCT, randomized controlled trial; PEF, peak expiratory flow; LT, leukotriene; Tx, thromboxane; PFT, pulmonary function test; AHR, airway hyper-responsiveness; FeNO, fractional exhaled NO; CystLT, cysteinyl LT; ATS, American Thoracic
Society; FEV1, forced expiratory volume in 1 s; GLA, γ-linolenic acid; EIB, exercise-induced bronchoconstriction.
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baseline; however, the magnitude of change between groups
was not significant(115). PEF has been reported in some studies
as a marker for lung function. Emelynov et al. showed a
significant increase in morning PEF with 8 weeks of supple-
mentation with a low dose of n-3 fatty acids (50 mg EPA+DHA
per d) in mild–moderate atopic asthmatics (n 46; aged 18–56
years)(116). In addition, Surette et al. reported a significant
improvement in quality of life and asthma management scores
(including symptoms) assessed by questionnaires after 3 weeks
of supplementation (0·5 g EPA+ 0·75 g DHA per d; n 65,
mild–moderate asthmatics)(117). Conversely, in two cross-over
trials there was no significant change in PEF after 10 weeks
of n-3 fatty acid supplementation with >2 g EPA+DHA
per d(83,118). Overall, some studies and our knowledge of the
physiological action of n-3 fatty acids suggest that we should
potentially see effects of supplementation on lung function; the
lack of consistent effect of n-3 fatty acid supplementation on
FEV1 or PEF could be attributed to the heterogeneity between
the studies. These studies have used a range of doses, as low as
50 mg to > 3 g of EPA/DHA per d and have studied different
subgroups of asthmatics such as mild–moderate, severe and
atopic populations.
In a study by Schubert et al. (n 23; atopic asthma) dietary

supplementation with either an n-3 PUFA-enriched fat blend
(0·69 g/d, comprising 450 mg EPA and 180 mg DHA per d;
twelve participants) or placebo (thirteen participants) for
5 weeks was provided(119). After 3 weeks of supplementation,
the participants underwent two allergen challenge tests in the
remaining 2 weeks of supplementation. FeNO was significantly
lower in the n-3 PUFA group (P= 0·01); though the levels of
FeNO increased during allergen exposure in both groups, the
mean values were 5-fold lower in the n-3 PUFA group. No
differences were observed between the asthmatic and control
groups with regards to asthma symptoms, FEV1 or the allergen
dose required to induce deterioration of lung function chal-
lenge. Furthermore, compliance was monitored by plasma and
erythrocyte cell membrane fatty acid composition and it was
found that 2 weeks of supplementation led to a 3-fold higher
value of EPA in the n-3 PUFA group compared with placebo
and these levels were maintained till the end of supplementa-
tion in plasma and erythrocyte cell membranes(119).
In a double-blind, placebo-controlled pilot study, a 2-week

supplementation with n-3 fatty acids (dose: 0·9 g EPA and 0·65 g
DHA/d; n 20) showed no changes in FeNO levels, FEV1 or
asthma quality-of-life questionnaires(120). However, this study
was not well controlled as the participants were on their regular
medication of inhaled corticosteroids, which confounds the effect
of n-3 PUFA supplementation on pulmonary function and other
outcomes. Furthermore, the low dose and duration of supple-
mentation may be a reason why no effect of n-3 fatty acid
supplementation was observed. In addition, the participants in
this study had stable asthma following their corticosteroid usage
and their FeNO levels were not significantly elevated (28 parts
per billion) compared with healthy individuals (25 parts per
billion)(120). Due to these reasons, the exact relationship of n-3
PUFA supplementation and FeNO was difficult to evaluate.
Asthmatics have a reliance on pharmacological medication

and despite the significant advancement in asthma medication

during the last two decades the treatments are still far from
ideal(2,61). Some of the earlier intervention trials have not shown
any significant changes to reliance on medication(118,121). Hodge
et al.(115) have shown a significant reduction in medication use in
asthmatic children after 9-month supplementation with 1·2 g
EPA+DHA per d(115), while Mickleborough et al. have reported
that bronchodilator use was significantly reduced during the last
2 weeks of n-3 fatty acid supplementation (3·2 g EPA+2·2 g DHA
per d) in EIB-prone adults(57). Furthermore, it has been reported
that there are improvements in self-reported asthma status and
bronchodilator use in subjects consuming an n-3 emulsion (1 g
EPA+1·5 g γ-linolenic acid per d) for 4 weeks compared with a
placebo(117). The authors have also reported results from another
trial showing an improvement in the asthma quality of life and
asthma control based on non-validated questionnaires (primarily
based on bronchodilator usage)(117).

Chronic inflammation is associated with AHR, which is
responsible for recurrent episodes of wheezing, breathlessness,
chest tightness and coughing among asthmatics. The majority of
intervention studies in children show inconsistencies when
reporting effects of n-3 fatty acids on AHR(122). There is a need
for further studies in children to understand the effect of n-3
fatty acid supplementation in asthma. Studies(121,123) have
reported AHR in terms of the provocation dose of histamine
required to produce a 35 % fall in specific conductance and
showed no effect of n-3 fatty acid supplementation on AHR. In
children, Nagakura et al.(124) reported AHR as the provocative
concentration of acetylcholine causing a 20 % fall in FEV1 for
each subject and saw a reduction in acetylcholine responsive-
ness in the n-3 fatty acid group but not in the control group(124).
Schubert et al.(119) reported a reduction in AHR after an allergen
challenge with n-3 fatty acid supplementation; however, this
change failed to reach significance(119).

Overall the evidence from in vitro and in vivo studies shows
that n-3 PUFA supplementation has the potential for inhibiting
T cell proliferation and production of cytokines. Inhibition of
T cell responses has been observed with higher dosage of n-3
fatty acids while this effect is not observed at low n-3 fatty acid
levels. These inconsistencies may be related to differences in
subject characteristics including age, sex, heath, diet, differ-
ences in study design (dose and duration) as well as experi-
mental methods (cell preparation, cell culture, cytokine assays).
In conclusion, there is evidence to suggest that n-3 fatty acids
may modulate T cell response and functions independently
of eicosanoid production(125,126). Furthermore, increasing
phospholipid EPA:AA ratios in inflammatory cells with dietary
n-3 fatty acid supplementation is likely to be one of the
mechanisms that can potentially facilitate the production of
weaker eicosanoids that may exhibit anti-inflammatory effects.
Thus, there are different mechanisms for the immunomodula-
tory action of n-3 PUFA, which require further verification in
in vivo human studies.

New class of lipid mediators in resolution of inflammation

In the last decade, several lipid mediators have been identified
that have a potential role in the resolution of inflammation.
Towards the end of an inflammatory process, there is
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neutralisation and elimination of pathogens, followed by
removal of cellular components to prevent excessive tissue
damage(92,127). The mechanism of resolution is continuous with
a decrease in the number of inflammatory cells, there is a
reduction in the levels of pro-inflammatory cytokines and
eicosanoids ‘switch’ from being inflammatory in nature (LT, PG,
etc.) to anti-inflammatory or specialised pro-resolving mediators
such as LX, resolvins (Rv), protectins (PD) and maresins(128)

(Fig. 3). These mediators have the potential to control the
duration and magnitude of inflammation(128,129). These Rv, PD
and maresin mediators are produced from n-3 PUFA (EPA and
DHA). The accessibility, affordability and lack of health side
effects related to n-3 fatty acid supplementation have generated
interest in these potent mediators for research studies in human
subjects with or without inflammatory diseases(130). Serhan
et al.(131–133) identified, characterised and explained families of
pro-resolving lipid metabolites from EPA and DHA using a
lipidomics approach(131–133). There are two classes of Rv, the
E-series derived from EPA and D-series derived from DHA
(Fig. 3). It has been suggested that once the inflammatory
process reaches initial resolution phases, there is a ‘switch’ from
the inflammatory nature of AA-derived metabolites (LT, PG,
etc.) to anti-inflammatory or specialised pro-resolving LX which
stop leucocyte recruitment and help promote generation of
lipid mediators such as Rv and PD(134,135).
Resolution of inflammation in airway diseases involves the

removal of inflammatory cells from injured tissues, which is
driven by apoptosis of leucocytes and elimination from the
tissues(136,137). The LX demonstrate their anti-inflammatory
effects by reducing the formation of reactive oxygen species
by leucocytes, decreasing transendothelial migration of leuco-
cytes, and promoting non-phlogistic phagocytosis(138). LX also
stop neutrophil infiltration and hence stop local inflammatory
signals(132,139,140). In asthmatics, there is decreased generation
of LX and this is particularly explained by the deregulated
expression of LX biosynthetic genes which vary by disease
severity and anatomic compartment(141). The only study asses-
sing the relationship between LX and EIB has been conducted
in children (aged 6–17 years; n 12) and it was reported that
children with EIB have lower levels of circulating LXA4 than
healthy controls(142). Overall, it has been suggested that LX are
generated in airways during airway inflammation and any
reduction in the generation of LX could lead to persistent
inflammation and contribute to the pathogenesis of
asthma(142,143).
The DHA-derived D-series Rv are involved in resolution by

preventing TNF-α from making pro-inflammatory cytokines
which would be responsible for cascading neutrophil infiltra-
tion(131,144). A group of D-series Rv are aspirin triggered after
acetylation of the COX-2 enzyme by aspirin and its interaction
with DHA. It has been hypothesised that Rv and PD are a part of
molecular mechanisms that highlight the role of aspirin in
enhancing the conversion of EPA and DHA to Rv of the E- and
D-series(133,145). The E-series Rv are found in two major forms –
RvE1 and RvE2. RvE1 has been found to exhibit its activity by
responding to neutrophils. RvE1 impedes the migration of
polymorphonuclear cells (PMN) to the site of inflammation,
stops the PMN response to inflammatory cytokines and

promotes the clearance of inflammatory cells via phagocytosis
by macrophages(135). Furthermore, RvE1 has been found to
block the synthesis of pro-inflammatory cytokines and induce
apoptosis and phagocytosis by up-regulation of chemokine
receptor type 5(146). RvE1 has been shown to be involved in the
suppression of the production of cytokines such as IL-1, IL-2,
IL-6 and TNF-α(147,148), as well as facilitating wound healing(149).
Recent animal models have shown that RvE1 regulates IL-23
and LXA4 to promote resolution of allergic airway inflammation
in a mouse model of asthma(150–152). RvE1 can act along with LX
as resolution-phase mediators to regulate IL-17 while only RV
have the ability to regulate IL-23 and IFN-γ levels(151). In other
animal models, it has been shown that RvE1 is highly potent
when supplied intraperitoneally before and during sensitisation
and aeroallergen challenge phases(153). This concept has been
further investigated to confirm that administration with RvE1 in
allergic asthma (murine models) can prevent the development
of AHR, mucous metaplasia, eosinophil accumulation, and Th2
cytokine generation, for example, IL-13(145). Haworth et al.
have reported in murine models that NK cells express CMKLR1
(chemokine-like receptor 1; a receptor for RvE1), and depletion
of NK cells leads to a reduction in RvE1-mediated resolution of
allergic inflammation(150). Subsequently these findings signify
novel functions of NK cells in facilitating resolution of adaptive
immune responses and emphasise that NK cells are possible
targets for specialised resolution-phase lipid mediators for
clearance of activated T cells from injured or inflamed
lungs(150). While the functions of RvE1 have been investigated
thoroughly, there is less information available about the
specific activity of RvE2. This mediator has been reported to be
produced by neutrophils and acts in a similar manner as
RvE1(130,131). The two forms of E-series Rv have been hypo-
thesised to have separate receptors as there is an additive effect
when the two types of Rv are administered together(143).

PD, maresins and D-series Rv are DHA-derived lipid media-
tors and they function as anti-inflammatory molecules by
blocking the activation and migration of neutrophils to sites of
inflammation and reduce the production of pro-inflammatory
cytokines(129–133,154). In healthy individuals, airways and other
mucosal surfaces have been found to be enriched with DHA
while those individuals with asthma/cystic fibrosis have low
levels of DHA(155). There is little evidence related to the effects
of D-series Rv, maresins, and other DHA-derived mediators in
asthma and only PD1 has been investigated. To date no
receptors for PD have been found, although like RvE2 there is a
combined effect with RvE1, suggesting distinct receptors for the
two mediators(135,155). PD1 has been reported to facilitate the
expression of CCR5 ligands on neutrophils and to inhibit NF-κβ
induction, which prevents the migration of neutrophils(156).

The biological characteristics of these new anti-inflammatory
and pro-resolving mediators and the pathways that drive the
formation and actions of these molecules have provided a new
concept for treating inflammatory diseases. The majority of
studies conducted have been in animal models including mice,
rats and rabbits, with limited studies on human subjects. Most
recently, in a clinical trial designed by Resolvyx, the phase 2
results show that when RX-10045 (a Rv) is administered as a
tropic eye drop for the treatment of patients with chronic dry
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eye syndrome there was a dose-dependent improvement in
both the signs and symptoms of dry eye, and the intervention
did not show any health side effects(157). This first clinical study
of the effect of Rv in human subjects will help improve the
understanding of the agents that can stimulate the resolution
mechanisms and resolve acute inflammation along with chronic
inflammation to reduce human diseases where uncontrolled
inflammation forms the basis of their pathophysiology(131).
Early-phase trials are currently on going using natural and
synthetic Rv in various disease conditions such as asthma,
inflammatory bowel disease, and other related inflammatory
diseases; however, no information about the appropriate
dosage of these compounds has been publicised. Based on a
renal reperfusion study with 23–28 g mice, intravenous Rv
dosage ranged from 0·01 to 0·1 mg/kg(158), while in another
study investigating the effect of RvE1 in the asthma mouse
model, a reduction in airway mucous, AHR and leucocyte
bronchoalevolar lavage was achieved with intravenous dosages
of 50–200 ng/mouse(151). Furthermore, Xu et al. have recently
shown that a dose of only 10 ng/mouse of RvE1 and RvD1 is
sufficient to reduce inflammation and pain via regulation of the
central and peripheral nervous system(159).
A recent study investigated the protective effect of a different

form of marine oil (PCSO-524TM; lyprinol®/omega XL®), a
stabilised lipid extract from New Zealand green-lipped mussel,
Perna canaliculus, in treating airway inflammation and
hyperpnoea-induced bronchoconstriction in asthmatic
patients(160). A moderate dose of this lipid extract (containing
400 mg n-3 PUFA; 72 mg EPA and 48 mg DHA) over 3 weeks
was shown to significantly reduce airway inflammation
and bronchoconstriction after a dry gas airway challenge.
Additionally there was reduced bronchodilator usage and

improved symptom scores. The levels of EPA/DHA in this
recent study are comparable with the dose studied by
Emelyanov et al.(116), using PCSO-524TM; however, the
mechanisms underlying the reduction in airway inflammation
and improvement in lung function are not well established. The
strong anti-inflammatory effect of PCSO-524TM has been sug-
gested to be due to the nature of this extract comprising of up to
ninety-one fatty acid components, including furan acid that is
being argued to exhibit more potent anti-inflammatory activity
than EPA(61).

To summarise, LX, Rv, PD and maresins have been identified
to have potent action (in the nanomolar and picomolar range)
in a variety of cell types in vitro, as well as in many in vivo
models of inflammatory diseases. Human supplementation
studies are required to evaluate the action of these novel lipid
mediators in other diseases including asthma. Furthermore,
dose–response studies are required to elucidate the most
appropriate dose for the anti-inflammatory effects. Since Rv, PD
and maresins are biological molecules derived from n-3 PUFA
which are integral components of cell membrane phospholi-
pids, these molecules are suggested to regulate pleotrophic
effects via cell signalling. Furthermore, these characteristics
distinguish the lipid mediators from industrially produced drugs
and what have been conventionally regarded as primary
biological therapeutic agents, which have been shown to
exhibit more limited and specific effects(132). However, the
major challenges that have limited the application of these new
mediators are the standardisation of appropriate methods for
measurement of these in a laboratory setting. Other areas of
interest in recent years have been a comparison of the health
benefits of EPA and DHA supplementation v. treatment with Rv
or PD. The differences, similarity and acceptance of health
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benefits of dietary n-3 PUFA and/or their mediators will be
dependent on factors such as costs, safety and public health
implications that are affected as a result of adopting a particular
treatment approach(130). Thus, well-designed trials are required
to understand the efficacy of these novel mediators in
inflammation.

Summary

Though the currently available pharmacological therapies for
asthma and EIB are effective, long-term usage of these therapies
is associated with issues of tachyphylaxis and health side
effects. Complementary therapies are becoming gradually more
popular among individuals with asthma for management of
their symptoms. Increasing evidence from observational and
intervention studies has suggested the possible anti-
inflammatory effects of n-3 fatty acids on various chronic
inflammatory diseases, including asthma and there is, therefore,
an impetus towards using n-3 fatty acids as a complementary
therapy. There are no major health side effects associated with
the dietary supplementation of n-3 fatty acids, thereby making
n-3 supplementation an attractive non-pharmacological inter-
vention which may assist with the management of symptoms.
The anti-inflammatory effect of n-3 fatty acids has been linked
to a change in cell membrane composition, with n-3 fatty acid
supplementation (primarily EPA and DHA) modifying lipid
mediator generation by producing a less inflammatory series of
eicosanoids. A newly identified group of lipid mediators pro-
duced from the oxidation of n-3 fatty acids (EPA and DHA)
include Rv and PD, which have also been suggested as key
players in the resolution of inflammation. Reduced inflamma-
tion attenuates the severity of asthma including symptoms
(dyspnoea) and thereby exerts a bronchodilatory effect.
The n-3 fatty acid intervention studies on asthmatics have

shown that there is a possible beneficial role of n-3 on asthma
as well as EIB. There is a consensus within the literature that n-3
PUFA exert a range of anti-inflammatory effects and that they
do not demonstrate any major negative side effects. The
advantages of using n-3 PUFA supplementation in asthma have
been widely reviewed and their effectiveness as a com-
plementary therapy is acknowledged. However, there are some
studies which show that there may be subgroups of asthmatics
(EIB and allergic asthma) who benefit greatly and others who
do not benefit from long-chain n-3 PUFA. Inconsistencies in
study outcomes may be as a direct result of different dosages
and durations of supplementation whilst the impact of investi-
gating different subclassifications of asthma (each having its
own characteristic inflammatory pattern) cannot be under-
estimated. Further studies differentiating asthma subgroups with
specific phenotype/genotype profiles are required where
specific physiological and biochemical characteristics of these
groups are monitored with n-3 fatty acid supplementation. In
addition, a number of studies on inflammation have suggested a
threshold for an anti-inflammatory effect exhibited by n-3 fatty
acids to be exerted in the range of 1·3–2·7 g EPA per d in both
adults and children. Thus, appropriate dose should be con-
sidered when designing the studies. Finally, there is paucity of
data relating to n-3 fatty acid supplementation and EIB with

studies that have been conducted focusing primarily on ath-
letes. There is a need for structured studies in both adults and
children to respond to identified gaps in the current literature to
move forward the field of asthma research.
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