Bull. Aust. Math. Soc. **108** (2023), 125–132 doi:10.1017/S0004972722001022

RECOGNISING REE GROUPS ${}^{2}G_{2}(q)$ USING THE CODEGREE SET

HAIYAN GUAN[®], XUNING ZHANG[®] and YONG YANG[®]

(Received 15 July 2022; accepted 12 August 2022; first published online 28 September 2022)

Abstract

The codegree of an irreducible character χ of a finite group *G* is $|G : \ker \chi|/\chi(1)$. We show that the Ree group ${}^{2}G_{2}(q)$, where $q = 3^{2f+1}$, is determined up to isomorphism by its set of codegrees.

2020 Mathematics subject classification: primary 20C15; secondary 20D05.

Keywords and phrases: codegree, Ree group, simple group.

1. Introduction

Let *G* be a finite group and Irr(*G*) be the set of all irreducible complex characters of *G*. The concept of codegrees was introduced by Chillag and Herzog in [6], where the codegree of χ was defined as $|G|/\chi(1)$ for a character $\chi \in \text{Irr}(G)$. The definition was modified to $\operatorname{cod}(\chi) = |G : \ker(\chi)|/\chi(1)$ by Qian *et al.* in [18] so that there is no different meaning for $\operatorname{cod}(\chi)$ when χ is considered as a character in some quotient group of *G*. Because the relationship between codegrees and degrees is very close, we may expect to characterise the structure of groups by codegrees. During the past few years, the study of character codegrees has been very active and many results have been obtained, including the relationship between codegrees and element orders, codegrees of *p*-groups and groups with few codegrees (see, for example, [2, 8, 11, 14, 15, 17]).

Let $cd(G) = \{\chi(1) | \chi \in Irr(G)\}$. Huppert made the following conjecture (which has been verified for sporadic simple groups, alternating groups and some simple groups of Lie type with low rank).

HUPPERT'S CONJECTURE: Let *H* be any finite nonabelian simple group and *G* a finite group such that cd(G) = cd(H). Then $G \cong H \times A$, where *A* is abelian.

We denote $cod(G) = \{cod(\chi) \mid \chi \in Irr(G)\}$. Qian made the following conjecture (Question 20.79 in the Kourovka Notebook [12]).

The project was supported by grants from the Simons Foundation (#499532, #918096) to the third author. © The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

CODEGREE VERSION OF HUPPERT'S CONJECTURE: Let *H* be any finite nonabelian simple group and *G* a finite group such that cod(G) = cod(H). Then $G \cong H$.

This conjecture was shown to hold for PSL(2, q) in [4]. In [1], the conjecture was proven for ${}^{2}B_{2}(2^{2f+1})$, where $f \ge 1$, PSL(3, 4), Alt₇ and J_{1} . The conjecture also holds in the cases where H is $M_{11}, M_{12}, M_{22}, M_{23}$ or PSL(3, 3) by [9]. For PSL(3, q) and PSU(3, q), the conjecture was confirmed in [16]. In this paper, we continue the study of the conjecture and establish the following result.

THEOREM 1.1. If *H* is isomorphic to a simple Ree group ${}^{2}G_{2}(3^{2f+1})$, $f \ge 1$ and *G* is a finite group such that cod(G) = cod(H), then $G \cong H$.

2. Preliminary results

First, we give a list of simple groups with few codegrees. The cases for finite groups G with $|cod(G)| \le 3$ are studied in [2]. In particular, those groups are all solvable.

LEMMA 2.1. Let G be a nonabelian finite simple group. If $|cod(G)| \le 11$, then one of the following holds:

(a) |cod(G)| = 4 and $G = PSL(2, 2^{f})$ for $f \ge 2$;

- (b) |cod(G)| = 5 and $G = PSL(2, p^f), p \neq 2, p^f > 5;$
- (c) |cod(G)| = 6 and $G = {}^{2}B_{2}(2^{2f+1}), f \ge 1$, or G = PSL(3, 4);
- (d) |cod(G)| = 7 and G = PSL(3, 3), Alt₇, M_{11} or J_1 ;
- (e) |cod(G)| = 8 and G = PSL(3, q), where $4 < q \neq 1 \pmod{3}$, or G = PSU(3, q), where $4 < q \neq -1 \pmod{3}$, or $G = G_2(2)'$;
- (f) |cod(G)| = 9 and G = PSL(3, q), where $4 < q \equiv 1 \pmod{3}$, or G = PSU(3, q), where $4 < q \equiv -1 \pmod{3}$;
- (g) |cod(G)| = 10 and $G = M_{22}$;

(h) $|cod(G)| = 11 \text{ and } G = PSL(4, 2), M_{12}, M_{23} \text{ or } {}^2G_2(3^{2f+1}), f \ge 1.$

PROOF. For a simple group *G*, each nontrivial irreducible character is faithful. Then |cod(G)| = |cd(G)| and the result follows from [3, Theorem 1.1].

The character degree sets for the relevant simple groups have been worked out. Using the definition of codegrees and the fact that the kernel of a nontrivial character is trivial, it is easy to calculate the codegrees. We list the relevant codegree sets in Table 1 for easy reference. Please see [1, 4, 7, 19-21] for the details.

LEMMA 2.2. If a simple group G is isomorphic to PSL(2, k), ${}^{2}B_{2}(q^{2})$, PSL(3, 4), Alt_{7} , J_{1} , M_{11} , PSL(3, 3), $G_{2}(2)'$, M_{22} , PSL(4, 2), M_{12} , M_{23} , PSL(3, q), PSU(3, q) or ${}^{2}G_{2}(q)$, then cod(G) can be found in Table 1.

To end this section, we state a result about the maximal subgroups of ${}^{2}G_{2}(3^{2f+1})$, $f \ge 1$. This is obtained from [13, Theorem C].

LEMMA 2.3. Let K be a maximal subgroup of ${}^{2}G_{2}(q)$, where $q = 3^{2f+1}$, $f \ge 1$. Then K is isomorphic to one of the groups in Table 2.

TABLE 1. Codegree sets for some simple groups.

Group G	$\operatorname{cod}(G)$
$\overline{\text{PSL}(2,k) \ (k=2^f \ge 4)}$	$\{1, k(k-1), k(k+1), k^2 - 1\}$
PSL(2, k) (k > 5)	$\{1, k(k-1)/2, k(k+1)/2, (k^2-1)/2, k(k-\epsilon(k))\}, \epsilon(k) = (-1)^{(k-1)/2}$
$^{2}B_{2}(q), q = 2r^{2} = 2^{2f+1}$	{1, $(q-1)(q^2+1)$, $q^2(q-1)$, $2^{3f+2}(q^2+1)$, $q^2(q-2r+1)$, $q^2(q+2r+1)$ }
PSL(3, 4)	$\{1, 2^4 \cdot 3^2 \cdot 7, 2^6 \cdot 3^2, 2^6 \cdot 5, 2^6 \cdot 7, 3^2 \cdot 5 \cdot 7\}$
Alt ₇	$\{1, 2^2 \cdot 3 \cdot 5 \cdot 7, 2^2 \cdot 3^2 \cdot 7, 2^2 \cdot 3^2 \cdot 5, 2^3 \cdot 3 \cdot 7, 2^3 \cdot 3 \cdot 5, 2^3 \cdot 3^2\}$
J_1	$\{1, 3.5.11.19, 2.3.5.7.11, 2^3.3.5.19, 7.11.19, 2^3.3.5.11, 2^3.3.5.7\}$
M_{11}	$\{1, 2^3 \cdot 3^2 \cdot 11, 2^4 \cdot 3^2 \cdot 5, 3^2 \cdot 5 \cdot 11, 2^2 \cdot 3^2 \cdot 5, 2^4 \cdot 11, 2^4 \cdot 3^2\}$
PSL(3,3)	$\{1, 2^2 \cdot 3^2 \cdot 13, 2^4 \cdot 3^3, 3^3 \cdot 13, 2^3 \cdot 3^3, 2^4 \cdot 13, 2^4 \cdot 3^2\}$
$G_2(2)'$	$\{1, 2^4 \cdot 3^2 \cdot 7, 2^5 \cdot 3^3, 2^4 \cdot 3^3, 2^5 \cdot 3^2, 2^5 \cdot 7, 2^3 \cdot 3^3, 3^3 \cdot 7\}$
M_{22}	$\{1, 2^7 \cdot 3 \cdot 5 \cdot 11, 2^7 \cdot 7 \cdot 11, 2^7 \cdot 3^2 \cdot 7, 2^7 \cdot 5 \cdot 7, 2^6 \cdot 3^2 \cdot 5, 2^6 \cdot 3 \cdot 11, 2^7 \cdot 3 \cdot 5, 2^4 \cdot 3^2 \cdot 11, 2^7 \cdot 3^2\}$
PSL(4, 2)	$\{1, 2^{6} \cdot 3^{2} \cdot 5, 2^{5} \cdot 3^{2} \cdot 5, 2^{4} \cdot 3^{2} \cdot 7, 2^{6} \cdot 3 \cdot 5, 2^{4} \cdot 3^{2} \cdot 5, 2^{6} \cdot 3^{2}, 2^{6} \cdot 7, 2^{3} \cdot 3^{2} \cdot 5, 3^{2} \cdot 5 \cdot 7, 2^{5} \cdot 3^{2}\}$
M_{12}	$\{1, 2^{6} \cdot 3^{3} \cdot 5, 2^{2} \cdot 3^{3} \cdot 5 \cdot 11, 2^{6} \cdot 3 \cdot 11, 2^{5} \cdot 5 \cdot 11, 2^{6} \cdot 3^{3}, 2^{5} \cdot 3^{2} \cdot 5, 2^{6} \cdot 3 \cdot 5, 2^{3} \cdot 3^{2} \cdot 11, 2^{2} \cdot 3 \cdot 5 \cdot 11, 2^{2} \cdot 3^{3} \cdot 5\}$
M_{23}	$\{1, 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23, 2^{7} \cdot 7 \cdot 11 \cdot 23, 2^{6} \cdot 3^{2} \cdot 7 \cdot 11, 2^{7} \cdot 3 \cdot 5 \cdot 23, 2^{7} \cdot 3^{2} \cdot 5 \cdot 7, 2^{6} \cdot 3^{2} \cdot 5 \cdot 7, 2^{6} \cdot 3^{2} \cdot 5 \cdot 7, 2^{6} \cdot 3^{2} \cdot 23, 2^{7} \cdot 3^{2} \cdot 5 \cdot 7, 2^{6} \cdot 5 \cdot 7, 2^{6$
	$3^2 \cdot 5 \cdot 11 \cdot 23, \ 2^6 \cdot 7 \cdot 23, \ 2^7 \cdot 7 \cdot 11, \ 2^4 \cdot 3^2 \cdot 5 \cdot 7$
PSL(3,q),	$\{1, (q^2 + q + 1)(q^2 - 1)(q - 1), q^2(q^2 + q + 1)(q - 1)^2, q^3(q^2 + q + 1), q^$
$4 < q \not\equiv 1 \pmod{3}$	$q^{2}(q^{2}-1)(q-1), q^{3}(q^{2}-1), q^{3}(q^{2}-1)(q-1), q^{3}(q-1)^{2}$
PSL(3,q),	$\{1, \frac{1}{3}(q^2+q+1)(q+1)(q-1)^2, \frac{1}{3}q^2(q^2+q+1)(q-1)^2, \frac{1}{3}q^3(q^2+q+1), $
$4 < q \equiv 1 \pmod{3}$	$\frac{1}{3}q^{2}(q+1)(q-1)^{2}, \ \frac{1}{3}q^{3}(q-1)(q+1), \ \frac{1}{3}q^{3}(q+1)(q-1)^{2}, \ \frac{1}{3}q^{3}(q-1)^{2}, \ q^{3}(q-1)^{2}\}$
PSU(3, <i>q</i>),	$\{1, (q^2 - q + 1)(q + 1)^2(q - 1), q^3(q^2 - q + 1), q^2(q^2 - q + 1)(q + 1)^2, q^2(q^2 - q + 1)(q^2 - $
$4 < q \not\equiv -1 \pmod{3}$	$q^{3}(q+1)^{2}(q-1), q^{3}(q+1)^{2}, q^{2}(q+1)^{2}(q-1), q^{3}(q-1)(q+1)\}$
PSU(3, <i>q</i>),	$\{1, \frac{1}{3}(q^2 - q + 1)(q + 1)^2(q - 1), \frac{1}{3}q^3(q^2 - q + 1), \frac{1}{3}q^2(q^2 - q + 1)(q + 1)^2, $
$4 < q \equiv -1 \pmod{3}$	$\frac{1}{3}q^{3}(q+1)^{2}(q-1), \ \frac{1}{3}q^{3}(q+1)^{2}, \ \frac{1}{3}q^{2}(q+1)^{2}(q-1), \ \frac{1}{3}q^{3}(q-1)(q+1), \ q^{3}(q+1)^{2}\}$
${}^{2}G_{2}(q), q = 3^{2f+1}$	$\{1, q^3(q^2-1), (q^2-1)(q^2-q+1), q^2(q^2-1), q^3(q-1), q^3(q-1)$
$m = 3^f, f \ge 1$	$2 \cdot 3^{5f+3}(q+1)(q+1-3m), \ 2 \cdot 3^{5f+3}(q+1)(q+1+3m), \ 3^{5f+3}(q^2-q+1),$
	$q^{3}(q+1), q^{3}(q+1-3m), q^{3}(q+1+3m)\}$

Maximal subgroup	Structure	Remark
P	$[q^3]: Z_{q-1}$	
$C_{R_0(i)}$	$2 \times L_2(q)$	
$N_{R_0\langle i,j angle} \ M^+W^+$	$(2^2 \times D_{(1/2)(q+1)}): 3$	
M^+W^+	$Z_{q+\sqrt{3q+1}}: Z_6$	
M^-W^-	$Z_{q-\sqrt{3q+1}} : Z_6$ ${}^2G_2(q_0)$	
$C_{R_0(\Psi_{lpha})}$	$^{2}G_{2}(q_{0})$	$q = q_0^{\alpha}, \alpha$ is a prime

3. Main result for ${}^{2}G_{2}(3^{2f+1})$

Sometimes it is convenient to consider the ratio of a set. Let *A* be a set of nonzero integers. We define ratio(*A*) = $\{a/b \mid a, b \in A, a \neq b \text{ and } b \neq 1\}$.

LEMMA 3.1. Let G be a finite group with $cod(G) = cod({}^{2}G_{2}(3^{2f+1}))$, where $f \ge 1$. If N is a maximal normal subgroup of G, then $G/N \cong {}^{2}G_{2}(3^{2f+1})$.

PROOF. Let *N* be a maximal normal subgroup of *G*. We set $q = 3^{2f+1}$. Since $cod(G) = cod(^2G_2(q))$, we see that *G* is perfect. Then G/N is a nonabelian simple group. Since $cod(G/N) \subseteq cod(G)$, we see that |cod(G/N)| is either 4, 5, 6, 7, 8, 9, 10 or 11.

Suppose |cod(G/N)| = 4. Then $G/N \cong PSL(2, k)$, where $k = 2^t \ge 4$, and $cod(G/N) = \{1, k(k-1), k(k+1), k^2 - 1\}$. Since $k^2 - 1$ is the only nontrivial odd codegree, it must be the same as either $3^{5f+3}(q^2 - q + 1)$ or $q^3(q + 1 - 3m)$ or $q^3(q + 1 + 3m)$. Note that (k + 1, k - 1) = 1. Suppose that $k^2 - 1 = 3^{5f+3}(q^2 - q + 1)$. If $3^{5f+3}|k - 1$, then $k + 1|q^2 - q + 1$. Clearly $q^2 - q + 1 < 3^{5f+3}$, which implies that k + 1 < k - 1, which is a contradiction. If $3^{5f+3}|k + 1$, then $k - 1|q^2 - q + 1$. Clearly $3^{5f+3} - (q^2 - q + 1) = 3^{5f+3} - 3^{4f+2} + 3^{2f+1} - 1 > 2$, which implies that (k + 1) - (k - 1) > 2, which is a contradiction. Suppose $k^2 - 1 = q^3(q + 1 - 3m)$. If $q^3|k - 1$, then k + 1|(q + 1 - 3m). Obviously, we have $q^3 > q + 1 - 3m$, which implies that k - 1 > k + 1, which is a contradiction. If $q^3|k + 1$, then k - 1|(q + 1 - 3m). Clearly $q^3 - (q + 1 - 3m) = (3^{6f+3} - 3^{2f+1} - 1) + 3^{f+1} > 2$, which implies that k + 1 - (k - 1) > 2, which is a contradiction. Suppose $k^2 - 1 = q^3(q + 1 + 3m)$. If $q^3|k - 1$, then $k + 1|(q + 1 + 3m) = (3^{6f+3} - 3^{2f+1} - 1) + 3^{f+1} > 2$, which implies that k + 1 - (k - 1) > 2, which is a contradiction. Suppose $k^2 - 1 = q^3(q + 1 + 3m)$. If $q^3|k - 1$, then k + 1|(q + 1 + 3m). Since $q^3 > q + 1 + 3m$, we have k - 1 > k + 1, which is a contradiction. If $q^3|k + 1$, then k - 1|k + 1 + 3m. If $q^3|k - 1$, then k + 1|(q + 1 + 3m). Since $q^3 > q + 1 + 3m$, we have k - 1 > k + 1, which is a contradiction. If $q^3|k + 1$, then k - 1|k + 1 + 3m. Clearly $q^3 - (q + 1 + 3m)$. Since $q^3 > q + 1 + 3m$. Clearly $q^3 - (q + 1 + 3m) = 3^{6f+3} - (3^{2f+1} + 1 + 3^{f+1}) > 2$, which implies that k + 1 - (k - 1) > 2, which is a contradiction. If $q^3|k + 1$, then k - 1|(q + 1 + 3m). Clearly $q^3 - (q + 1 + 3m) = 3^{6f+3} - (3^{2f+1} + 1 + 3^{f+1}) > 2$, which implies that k + 1 - (k - 1) > 2, which is a contradiction.

Suppose |cod(G/N)| = 5. Then $G/N \cong PSL(2, k)$, where k > 5 is an odd prime power. We note that $2 \in ratio(cod(G/N))$. This is a contradiction since the smallest nontrivial integer in ratio(cod(G)) is q - 1, where $q \ge 27$.

Suppose |cod(G/N)| = 6. Then $G/N \cong {}^{2}B_{2}(2^{2t+1})$ or PSL(3, 4).

Suppose $G/N \cong {}^{2}B_{2}(s)$ with $s = 2^{2t+1}$ and $r = 2^{t}$, $t \ge 1$. The only nontrivial odd codegree in $\operatorname{cod}({}^{2}B_{2}(s))$ is $(s-1)(s^{2}+1)$. Thus, $(s-1)(s^{2}+1)$ could be equal to either

 $3^{5f+3}(q^2 - q + 1)$, $q^3(q + 1 - 3m)$ or $q^3(q + 1 + 3m)$. Note that $(s - 1, s^2 + 1) = 1$. Suppose $(s - 1)(s^2 + 1) = 3^{5f+3}(q^2 - q + 1)$. If $3^{5f+3}|s - 1$, then $s^2 + 1|q^2 - q + 1$. Clearly $3^{5f+3} > q^2 - q + 1$, which implies that $s - 1 > s^2 + 1$, which is a contradiction. If $3^{5f+3}|s^2 + 1$, we have a contradiction since $s^2 - 1$ is divisible by 3. Suppose $(s - 1)(s^2 + 1) = q^3(q + 1 - 3m)$. If $q^3|s - 1$, then $s^2 + 1|q + 1 - 3m$. Clearly $q^3 > q + 1 - 3m$, which implies that $s - 1 > s^2 + 1$, which is a contradiction. If $q^3|s^2 + 1$, then s - 1|q + 1 - 3m. This implies that $q^3 \le (q + 2 - 3m)^2 + 1$, which is a contradiction. Suppose $(s - 1)(s^2 + 1) = q^3(q + 1 + 3m)$. If $q^3|s - 1$, then $s^2 + 1|q + 1 + 3m$. Clearly $q^3 > q + 1 + 3m$, which implies that $s - 1 > s^2 + 1$, which is a contradiction. If $q^3|s^2 + 1$, then s - 1|q + 1 + 3m. This implies that $q^3 \le (q + 2 - 3m)^2 + 1$, which is a contradiction. If $q^3|s^2 + 1$, then s - 1|q + 1 + 3m. This implies that $q^3 \le (q + 2 - 3m)^2 + 1$, which is a contradiction.

Suppose $G/N \cong PSL(3, 4)$. Note that $3^2 \cdot 5 \cdot 7$ is the only nontrivial odd codegree in cod(G/N). Thus, $3^2 \cdot 5 \cdot 7$ could be equal to either $3^{5f+3}(q^2 - q + 1)$, $q^3(q + 1 - 3m)$ or $q^3(q + 1 + 3m)$. By considering the power of 3 in those numbers, we see that each is impossible.

Suppose |cod(G/N)| = 7. Then $G/N \cong PSL(3,3)$, Alt₇, M_{11} or J_1 .

Suppose $G/N \cong PSL(3,3)$. Note that $3 \in ratio(cod(G/N))$. This is a contradiction since the smallest nontrivial integer in ratio(cod(G)) is q - 1, where $q \ge 27$.

Suppose $G/N \cong \text{Alt}_7$. Then $2^3 \cdot 3^2 \in \text{cod}(G/N)$. Since the powers of 3 of all the terms that are divisible by 3 in cod(G) are greater than 2, this is a contradiction.

Suppose $G/N \cong M_{11}$. Note that $5 \in \text{ratio}(\text{cod}(G/N))$. This is a contradiction since the smallest nontrivial integer in ratio(cod(G)) is q - 1, where $q \ge 27$.

Suppose $G/N \cong J_1$. Note that $\operatorname{cod}(J_1)$ has two nontrivial odd codegrees $7 \cdot 11 \cdot 19$ and $3 \cdot 5 \cdot 11 \cdot 19$. The odd codegrees in $\operatorname{cod}(G)$ are $3^{5f+3}(q^2 - q + 1)$, $q^3(q + 1 - 3m)$ and $q^3(q + 1 + 3m)$. By considering the power of 3 in those numbers, we see that each is impossible.

Suppose |cod(G/N)| = 8. Then $G/N \cong PSL(3, s)$, where $4 < s \not\equiv 1 \pmod{3}$, PSU(3, *s*), where $4 < s \not\equiv -1 \pmod{3}$, or $G_2(2)'$.

Suppose cod(G/N) = cod(PSU(3, s)) with $4 < s \neq -1 \pmod{3}$. Note that $3 \in ratio(cod(G/N))$. This is a contradiction since the smallest nontrivial integer in ratio(cod(G)) is q - 1, where $q \ge 27$.

Suppose $G/N \cong G_2(2)'$. Note that $3 \in \text{ratio}(\text{cod}(G/N))$. This is a contradiction since the smallest nontrivial integer in ratio(cod(G)) is q - 1, where $q \ge 27$.

Suppose $G/N \cong \text{PSL}(3, s)$ for some $4 < s \not\equiv 1 \pmod{3}$. Note that $s - 1, s + 1 \in \text{ratio}(\text{cod}(G/N))$, and the only nontrivial integers in ratio(cod(G)) are q - 1, q, q + 1, where q is a power of 3 and $q \ge 27$. This will force s = q, which is a contradiction since $q^3(q - 1)^2 \notin \text{cod}(G)$.

Suppose |cod(G/N)| = 9. Then $G/N \cong PSL(3, s)$, where $4 < s \equiv 1 \pmod{3}$, or PSU(3, s), where $4 < s \equiv -1 \pmod{3}$.

Suppose $G/N \cong PSL(3, s)$ with $4 < s \equiv 1 \pmod{3}$. Note that $3 \in ratio(cod(G/N))$. This is a contradiction since the smallest nontrivial integer in ratio(cod(G)) is q - 1, where $q \ge 27$.

Suppose $G/N \cong \text{PSU}(3, s)$ with $4 < s \equiv -1 \pmod{3}$. Note that $s - 1, s + 1 \in \text{ratio}(\text{cod}(G/N))$, and the only nontrivial integers in ratio(cod(G)) are q - 1, q, q + 1, where q is a power of 3 and $q \ge 27$. This will force s = q, which is a contradiction since $q^3(q + 1)^2 \notin \text{cod}(G)$.

Suppose |cod(G/N)| = 10. Then $G/N \cong M_{22}$. Note that $11 \in ratio(cod(G/N))$. This is a contradiction since the only nontrivial integer in ratio(cod(G)) is q, where $q \ge 27$.

Suppose |cod(G/N)| = 11. Then $G/N \cong PSL(4, 2), M_{12}, M_{23}$ or ${}^{2}G_{2}(3^{2s+1})$, where $s \ge 1$.

Suppose $G/N \cong PSL(4, 2)$. Note that $2 \in ratio(cod(G/N))$. This is a contradiction since the smallest nontrivial integer in ratio(cod(G)) is q - 1, where $q \ge 27$.

Suppose $G/N \cong M_{12}$. Note that $5 \in ratio(cod(G/N))$. This is a contradiction since the smallest nontrivial integer in ratio(cod(G)) is q - 1, where $q \ge 27$.

Suppose $G/N \cong M_{23}$. Note that $8 \in \text{ratio}(\text{cod}(G/N))$. This is a contradiction since the smallest nontrivial integer in ratio(cod(G)) is q - 1, where $q \ge 27$.

Suppose $G/N \cong {}^2G_2(3^{2s+1})$, $s \ge 1$. Comparing the smallest nontrival odd codegree of each set, we see that $q = 3^{2s+1}$. Thus, $G/N \cong {}^2G_2(3^{2f+1})$.

We now prove the main result of this paper.

THEOREM 3.2. Let G be a group such that $cod(G) = cod(^2G_2(q))$, where $q = 3^{2f+1}$, $f \ge 1$. Then $G \cong {}^2G_2(q)$.

PROOF. Let *G* be a group with $cod(G) = cod(^2G_2(q))$. Let *N* be a maximal normal subgroup of *G*. Then, $G/N \cong {}^2G_2(q)$ by Lemma 3.1. Assume to the contrary that *G* is a minimal counterexample. By the choice of *G*, *N* is a minimal normal subgroup of *G*. Otherwise there exists a nontrivial normal subgroup *L* of *G* such that *L* is included in *N*. Then cod(G/L) = cod(G) for $cod(G) = cod(G/N) \subseteq cod(G/L) \subseteq cod(G)$ and $G/L \cong {}^2G_2(q)$ because *G* is a minimal counterexample, which is a contradiction.

Step 1: *N* is the unique minimal normal subgroup of *G*. Otherwise, assume *M* is another minimal normal subgroup of *G*. Then $G = N \times M$ because G/N is simple and $N \cong$ $M \cong {}^2G_2(q)$ because *M* is also a maximal normal subgroup of *G*. Choose $\psi_1 \in \operatorname{Irr}(N)$ and $\psi_2 \in \operatorname{Irr}(M)$ such that $\operatorname{cod}(\psi_1) = \operatorname{cod}(\psi_2) = \max(\operatorname{cod}({}^2G_2(q)))$. Set $\chi = \psi_1 \cdot \psi_2 \in$ $\operatorname{Irr}(G)$. Then $\operatorname{cod}(\chi) = (\max(\operatorname{cod}({}^2G_2(q))))^2 \notin \operatorname{cod}(G)$, which is a contradiction.

Set $Irr(G|N) = \{\chi \in Irr(G) | N \text{ is not contained in the kernel of } \chi\}.$

Step 2: χ is faithful for each $\chi \in Irr(G|N)$. Since N is not contained in the kernel of χ for each $\chi \in Irr(G|N)$, the kernel of χ is trivial by Step 1.

Step 3: *N* is elementary abelian. Assume to the contrary that *N* is not abelian. Then $N = S^n$, where *S* is a nonabelian simple group and $n \in \mathbb{N}$. By Theorems 2, 3 and 4 and Lemma 5 in [5], we see that there exists a nonprincipal character $\psi \in \text{Irr}(N)$ that extends to some $\chi \in \text{Irr}(G)$. Then $\text{ker}(\chi) = 1$ by Step 2 and $\text{cod}(\chi) = |G|/\chi(1) = |G/N| \cdot |N|/\psi(1)$. This is a contradiction since |G/N| is divisible by $\text{cod}(\chi)$.

Step 4: It is enough to assume that $C_G(N) = N$. We note that $C_G(N) \leq G$. As N is abelian by Step 3, either $C_G(N) = G$ or $C_G(N) = N$.

We now prove the result in the case $C_G(N) = G$. Assume so. Then *N* is contained in the centre Z(G) of *G*. Since *G* is perfect, Z(G) = N and *N* is isomorphic to a subgroup of the Schur multiplier of G/N [10, Corollary 11.20]. This forces *N* to be trivial as ${}^2G_2(q)$ has trivial Schur multiplier, and we are done.

Step 5: Let λ be a nonprincipal character in Irr(N) and $\theta \in \text{Irr}(I_G(\lambda)|\lambda)$. We show that $|I_G(\lambda)|/\theta(1) \in \text{cod}(G)$. Also, $\theta(1)$ divides $|I_G(\lambda)/N|$ and |N| divides |G/N|. Let λ be a nonprincipal character in Irr(N). Given $\theta \in \text{Irr}(I_G(\lambda)|\lambda)$. Note that $\chi = \theta^G \in \text{Irr}(G)$ and $\chi(1) = |G : I_G(\lambda)| \cdot \theta(1)$ by Clifford theory (see [10, Ch. 6]). Then ker(χ) = 1 by Step 2 and $\text{cod}(\chi) = |I_G(\lambda)|/\theta(1)$. In particular, $\theta(1)$ divides $|I_G(\lambda)/N|$, and then |N|divides $|I_G(\lambda)|/\theta(1)$. Since cod(G) = cod(G/N) and |G/N| is divisible by every element in cod(G/N), we have $|N| \mid |G/N|$.

Step 6: Final contradiction. By Step 3, N is an elementary abelian r-subgroup for some prime r and we assume $|N| = r^n$, $n \in \mathbb{N}$. By the normaliser–centraliser theorem, n > 1.

Let $\lambda \in Irr(N)$ be a nonprincipal character and $T := I_G(\lambda)$. By Step 5, $|T|/\theta(1) \in cod(G)$ for all $\theta \in Irr(T|\lambda)$.

Since *N* is abelian by Step 1, |Irr(N)| = |N|. Therefore, |N| = |Irr(N)| > |G : T| since |G : T| is the number of conjugates of λ in *G* which are all contained in Irr(N).

We now show that q^3 is the largest power of a prime that divides the order of ${}^2G_2(q)$. Note that the order of ${}^2G_2(q)$ is $q^3(q^3 + 1)(q - 1)$. We first observe that $q^3 + 1 = 2^k$ has no integer solution, and thus $q^3 + 1$ is divisible by a prime greater than or equal to 5. We also note that either $q^3 + 1$ or q - 1 is divisible by 4 but not both, and thus the largest power of 2 that divides $(q^3 + 1)(q - 1)$ is less than q^3 . Suppose that *r* is an odd prime that divides $(q^3 + 1)(q - 1)$. Since gcd(q + 1, q - 1) = 2, the largest power of *r* that divides $(q^3 + 1)(q - 1)$ is also less than q^3 . Thus, q^3 is the largest power of a prime that divides the order of ${}^2G_2(q)$. Thus, $|N| \le q^3$.

Let *K* be a maximal subgroup of ${}^{2}G_{2}(q)$ such that $T/N \leq K$. If *K* is of type *P* in Lemma 2.3, then $|G:T| \geq q^{3} + 1$, and it is clear that $q^{3} + 1 > q^{3}$, which is a contradiction. If *K* is of type $C_{R_{0}(i)}$, then $|G:T| \geq q^{2}(q^{2} - q + 1) > q^{3}$, which is a contradiction. If *K* is of type $N_{R_{0}(i,j)}$, then $|G:T| \geq q^{3}(q^{2} - q + 1)(q - 1)/12(q + 1)$, thus $|G:T| > q^{3}$, which is a contradiction. If *K* is of type $N_{R_{0}(i,j)}$, then $|G:T| \geq q^{3}(q^{2} - q + 1)(q - 1)/12(q + 1)$, thus $|G:T| > q^{3}$, which is a contradiction. If *K* is of type $M^{+}W^{+}$, then $|G:T| \geq q^{3}(q^{2} - q + 1)(q - 1)/6(q + \sqrt{3q} + 1)$, and thus $|G:T| > q^{3}$, which is a contradiction. If *K* is of type $M^{-}W^{-}$, then $|G:T| \geq q^{3}(q^{2} - q + 1)(q - 1)/6(q - \sqrt{3q} + 1)$, and thus $|G:T| > q^{3}$, which is a contradiction. If *K* is of type $C_{R_{0}}(\Psi_{\alpha})$, then $|G:T| \geq q^{3}(q^{3} + 1)(q - 1)/q_{0}^{3}(q_{0}^{3} + 1)(q - 1)$, where $q = q_{0}^{\alpha}$, α a prime. Thus, $|G:T| > q^{3}$, which is a contradiction.

Acknowledgement

The authors are grateful to the referee for the valuable suggestions which improved the manuscript.

References

- N. Ahanjideh, 'Nondivisibility among irreducible character co-degrees', Bull. Aust. Math. Soc. 105 (2022), 68–74.
- [2] F. Alizadeh, H. Behravesh, M. Ghaffarzadeh, M. Ghasemi and S. Hekmatarah, 'Groups with few codegrees of irreducible characters', *Comm. Algebra* 47 (2019), 1147–1152.
- [3] K. Aziziheris, F. Shafiei and F. Shirjian, 'Simple groups with few irreducible character degrees', J. Algebra Appl. 20 (2021), Article no. 2150139.
- [4] A. Bahri, Z. Akhlaghi and B. Khosravi, 'An analogue of Huppert's conjecture for character codegrees', *Bull. Aust. Math. Soc.* 104 (2021), 278–286.
- [5] M. Bianchi, D. Chillag, M. L. Lewis and E. Pacifici, 'Character degree graphs that are complete graphs', *Proc. Amer. Math. Soc.* 135 (2007), 671–676.
- [6] D. Chillag and M. Herzog, 'On character degrees quotients', Arch. Math. 55 (1990), 25–29.
- [7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *Atlas of Finite Groups* (Oxford University Press, London 1984).
- [8] N. Du and M. Lewis, 'Codegrees and nilpotence class of *p*-groups', *J. Group Theory* **19** (2016), 561–567.
- [9] M. Gintz, M. Kortje, M. Laurence, Y. Liu, Z. Wang and Y. Yang, 'On the characterization of some non-abelian simple groups with few codegrees', *Comm. Algebra* 50 (2022), 3932–3939.
- [10] I. M. Isaacs, Character Theory of Finite Groups (Academic Press, New York, 1976).
- [11] I. M. Isaacs, 'Element orders and character codegrees', Arch. Math. 97 (2011), 499–501.
- [12] E. Khukhro, Unsolved Problems in Group Theory. The Kourovka Notebook, No. 20. Available online at https://kourovka-notebook.org.
- [13] P. B. Kleidman, 'The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, the Ree groups ${}^2G_2(q)$, and their automorphism groups', J. Algebra **117** (1988), 30–71.
- [14] Y. Liu and Y. Yang, 'Nonsolvable groups with four character codegrees', J. Algebra Appl. 11 (2021), Article no. 2150196, 5 pages.
- [15] Y. Liu and Y. Yang, 'Nonsolvable groups with five character codegrees', *Comm. Algebra* 49 (2021), 1274–1279.
- [16] Y. Liu and Y. Yang, 'Huppert's analogue conjecture for PSL(3, q) and PSU(3, q)', Preprint, arXiv:2209.02660.
- [17] G. Qian, 'Element orders and character codegrees', Bull. Lond. Math. Soc. 53 (2021), 820-824.
- [18] G. Qian, Y. Wang and H. Wei, 'Co-degrees of irreducible characters in finite groups', J. Algebra 312 (2007), 946–955.
- [19] W. A. Simpson and J. S. Frame, 'The character tables of SL(3, q), SU(3, q²), PSL(3, q), PSU(3, q²)', *Canad. J. Math.* 25 (1973), 486–494.
- [20] M. Suzuki, 'On a class of doubly transitive groups', Ann. of Math. (2) 75 (1962), 105–145.
- [21] H. N. Ward, 'On Ree's series of simple groups', Trans. Amer. Math. Soc. 121 (1966), 62-89.

HAIYAN GUAN, Three Gorges Mathematical Research Center, China Three Gorges University, Yichang, Hubei 443002, PR China e-mail: ghyan928@ctgu.edu.cn

XUNING ZHANG, College of Science,

China Three Gorges University, Yichang, Hubei 443002, PR China e-mail: zhxn2021@hotmail.com

YONG YANG, Department of Mathematics,

Texas State University, 601 University Drive, San Marcos, TX 78666, USA e-mail: yang@txstate.edu