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TWO-GENERATOR GROUPS II

J.L. BRENNER AND JAMES WIEGOLD

Let n be an odd integer greater than 9 • It is proved that

the alternating group A has spread 3 in the sense that for

any non-trivial elements x , x^, x of A , there is an

element y in A such that (x., y) = A for i = 1, 2, 3 .

1. Introduction

This art icle is a continuation of [2], to which the reader is referred

for motivation and background material. We recall the principal

definition.

DEFINITION 1.1. A finite group G is said to have spread r if for

every set {x , . . . , x} of non-trivial elements of G there is an

element y such that <x., y) = G for i = 1, 2, . . . , r . The set of all

finite groups having spread r is denoted by T

Thus each Tp is a set of two-generator groups, and T D T . for

al l T 5 1 . In [2] (see also Binder [J] for an independent proof), we

showed that A € ^lA^s *"or n ~ ** ' a n d v a r i o u s analogous results for

the groups PSL(2, q) . On the other hand, i t turned out that A _ has

enormous spread, more than 6,000,000,000 or so. This is due to the

scarcity of transitive subgroups of A „ , and we indicate here (in §U) a

similar result for alternating groups A , whenever p is a prime for
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which A displays the same scarcity of transitive subgroups. This

result, and general considerations, lead us to believe that A has spread

that tends to infinity with n , for odd n . We are unable to prove

anything like this. Combinatorial methods like those in [2] are used to

prove (in §2) that A 6 F if n is odd and at least 11 . There is no

doubt that similar arguments would prove that A € I\ for sufficiently

large n , or even A 6 T and so on, but the extra combinatorial

complication is hardly worth indulging in, given our belief that the spread

of A is unbounded for large odd n .

For odd composite n , we give a very simple proof in §3 that A

does not have spread C , .. , where d is the smallest prime divisor of

n . This is very easy. Quite possibly the following problem will have an

affirmative answer, but it will be exceedingly difficult to prove.

PROBLEM 1 .2. For n odd and composite, with d the smallest prime

factor, does A have spread close to C,~ - 1 ?

We have been unable to resolve this even in the simplest case, namely

for 4g . Finally, in §3, we sketch a proof of the (special but new)

result that PSL(3, h) cannot be generated by an element of order 2 and

one of order 3 . The context is the following. In [2] we defined I\

to consist of those groups G in T such that every non-trivial element

a belongs to a generating pair {a, b) such that one of a, b has order

k . Thus PSL(3, h) £ H . In an interesting doctoral dissertation [4],

Langer filled more of the gaps in ill by establishing that, for q + 2, 9 ,

(k)the group PSL(2, q) belongs to T whenever it has an element of order

k .

2. Alternating groups of odd degree

We mentioned in [2] that 4 ( ̂  ̂  •* ' ^ ^s easy t o prove that A7
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Two-generator groups I I 5

and A l i e in T , and we shall omit the proof. The reader will see how

to do i t by examining the methods employed in this section.

Wherever possible we shall use "standard elements" as supplementary

generators.

DEFINITION 2.1 . Let n = 2k + 1 , k > 2 . A standard type is the

type ^(igik+l))2 if k is odd; (k+l)1{%k)Z if k is even. The

elements in A of standard type are called standard elements.

Thus for odd k , a standard element is a product of a k-cycle and

two %(k+l)-cycles, and similarly for even k . This is the vital property

of standard elements:

THEOREM 2.2. For odd n > 5 , the only transitive subgroup of A

containing a standard element is A itself.

Proof. Any subgroup H containing a standard element contains a
fe-cycle if k is odd and a (k+l)-cycle if k is even. Since k and
k+l are prime to 2k + 1 , this means that H is primitive if i t is
transitive. Now use a theorem of WilI iamson ([7]; see also [2]): if a
primitive group G of degree n contains a t-cycle, 1 < t < n , then
G => A unless t > (n-t) ! .

To prove that every three elements of A have a common "mate", we

may assume at the outset that they are of prime order. In the proof of the
theorem that follows, we do not go into every detail , to save space and to
spare the reader. In a l l cases where this is possible, we use a standard
element as common mate: when i t is not possible, an w-cycle always works.
Indeed, one of the things that makes the odd-degree case so difficult to
contend with is that sometimes we are forced to use an n-cycle as common
mate; for example, only an n-cycle will mate each of ( l , 2) (3, It) ,
(1, 3)(2, h), (1 , lt)(2, 3) simultaneously.

THEOREM 2.3. Let x., , xo , x_, be elements of prime order in A , n1 2 3 c n
odd and greater than 9 , with the order of x. greater than or equal to the

order of x. if i 5 j . Then there is a standard element y such that3
(x., y) = A for i = 1, 2, 3 , except in the following cases:
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(1) x , x are 3-cycles moving exactly 2 symbols in common,

say x = ( l , 2, 3) > x = ( l , 2, h) , and x is of the

form ( 3 , h, y) or ( 3 , i » ) ( a , B) ;

( 2 ) x , x are 3-cycles moving exactly one symbol in common,

say x^ = ( 1 , 2, 3) , x^ = ( l , k, 5) , and x is of the

f o r m ( 2 , 3 ) ( U , 5 ) , ( 2 , U ) ( 3 , 5 ) o r ( 2 , 5 ) ( 3 , h ) ;

( 3 ) x , x , x are all of order 2 , and move exactly the same

four symbols, say x± = ( l , 2 ) ( 3 , it) , x^= ( l , 3 ) ( 2 , k) ,

x3 = (1 , M(2, 3) .

In each of the exceptional cases, there is an n-cycle that is a

common mate for x , x , x_ .

Proof. We sp l i t the proof up into several cases. Recall that each

cycle in every standard element moves at leas t 3 symbols, since n > 11 .

CASE 1. x , , Xp have odd order.

Case 1A. Suppose that there is an orbit £L of <x.> and an orbit

fi2 of < x2> with subsets 2^ c n , y c Q such that T n T„ = 0 and

12^ | = \T2\ = 3 . For simplicity write T± = {l , 2, 3} , ? 2 = {k, 5, 6} .

Thus 1, 2, 3 occur in the same cycle of x.. , and h, 5, 6 in the same

cycle of x2 , and by Theorem 2.2 any standard element

y = ( l , o l f . . . ) ( 2 ' a 2 , . . . ) ( 3 , a3 , . . . ) ,

where a , a., ct_ are k, 5, 6 in some order, will be a common mate for

x and x , since <x , j/> and <x?, y) are transitive. Clearly, if

x has odd order, then three symbols from the same cycle of x_ can be

disposed, one in each of the three cycles in one of the six choices of y ;

and this choice will be a common mate for all three elements however the

remaining symbols are distributed. The same sort of reasoning applies if

x is of order 2 .
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Case IB. If the condition imposed on the orbits in Case 1A does not

hold, then for every orbit Q of <x) and every orbit £2 of < a; > ,

every three-element subset of £2 intersects every three-element subset of

£2 . This imposes severe restrictions on £2 , £2 . A moment's thought

shows that one of three things must happen:

(i) | f i j = |J22| = 3 and ^ n n2 jf 0 ;

( i i ) |£2 | = 5 , |£2 | = 3 and Q c fi , or symmetrically

IftJ = 3 , |n2l = 5 , \ E % ;

(iii) ^ = a2 and 1^1 = 5 •

Since these conditions hold for every pair of orbits , a; and x

must have very restricted forms. If x has order more than 3 , then

i t follows that x is a 5-cycle and x is a 5-cycle or a 3-cycle

with support contained in that of x . In other words, x is of the

form ( l , 2, 3, h, 5) say, and x is either a 5-cycle on the same

let ters or a 3-cycle on three of them, say on 1, 2, 3 with no loss of

generality. In this case a standard element

y = (1 , . . . ) ( 2 , . . . ) ( 3 , . . . )

will be a mate for x and x . Clearly, whatever x i s , y can be

fleshed out to be a mate for x too.

Thus we may now suppose that x and x have order 3 , and that

every cycle in x intersects every cycle in x . This can happen in

very few ways. Neither element can move more than 9 symbols, and we may

assume that 9 - |supp(x ) | > |supp(xj | .

If x moves 9 symbols, the situation is typified by

x i = (1 , 2, 3)(!*, 5, 6)(7, 8, 9) ,

x2 = ( l , U, 7) . . . ,
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in which case any standard element

y = ( l , ...)(k, . . . ) ( T , . . . )

i s a common mate for x and x , and i t can be fleshed out to be a mate

for x , whatever x may be other than ( l , U, 7)~ . If a:, i s

( l , h, 7) , we can assume tha t x has a further 3-cycle in i t s

decomposition, say (2 , 5, 8) or i t s l i k e , and argue from there .

If x moves 6 symbols, one has cases l i k e

x1 = ( 1 , 2, 3)(U, 5, 6) , x2 = ( i , U, a ) ( 2 , 5, B) ,

x x = ( 1 , 2 , 3)(U, 5, 6) , x2 = ( 1 , 4 , a) .

I n t h e s e ca se s a s t a n d a r d element

( 1 , . . . ) ( U , . . . ) ( a , . . . ) i f a € {2, 3 , 5, 6} ,

( 1 , ...)(k, . . . ) ( a , y , . . . ) i f a f {2 , 3 , 5, 6} ,

for any Y € {2, 3, 5, 6} , is a common mate for x , x . Clearly,

whatever x may be, there is room to accommodate x as well.

Lastly, if |supp(a; J | = 3 , then both x and x are 3-cycles,

and problematical cases are typified by

x± = (1, 2, 3) , x2 = (1, 2, 1») ,

x± = (1, 2, 3) , a;2 = (l, h, 5) ,

±1
the case x = x being trivial.

In the first case, a standard common mate for x , x has to be of a

form like

(1, ...)(2, ...)(3, ..., k, ...) .

This wi l l not mate any elements (a, 3 ) (3 , h) nor (3 , h, y)~ , but i t

can be fleshed-out to mate anything e lse . We have thus come to our f i r s t

exceptions, and we must provide our M-cycle common mate. Evidently, the
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e s s e n t i a l l y d i f f e r e n t p o s s i b i l i t i e s for x = ( a , &)(3, k) a r e

( 1 , 2 ) ( 3 , k) , ( 1 , 5 ) ( 3 , !*) , ( 5 , 6 ) ( 3 , h) ; i n a l l cases

(1, 2, ..., n) is a common mate for (l, 2, 3), (l, 2, U), (a, 8)(3, M •

Similarly, the essentially different cases for x~ = (3, k, y) are

(2, 3, ** ) " and (3, k, 5)~ ; and again (l, 2, ..., n) is a common

mate. The necessary calculations are routine, and we omit them.

In the second case, a standard common mate for x , x? must take one

of these forms

g = (1, ...)(2, ..., k, ...)(3, ..., 5, ...) ,

h = (1, ...)(2, ..., 5, ...)(3, ..., h, ...) ,

and only (2, 3H1*, 5), (2, 5)(3, U), (2, U)(3, 5) cannot be mated by one

of g, h . But yet again, (l, 2, ..., n) is a common mate in all

problematical cases.

We have now finished the case in which x , x? have odd order.

CASE 2. a; has odd order, x , x have order 2 .

Case 2A. Suppose that there are 3 entries in a cycle of x , say

1, 2, 3 , different from the entries in two cycles of x , say

h, 5, 6, 7 ; so

x1 = (1, ..., 2, ..., 3, ...) ... ,

x2 = (U5)(67) ... .

There are essentially four distributions of 1, 2, 3, h, 5, 6, 7

among the three cycles of a standard element y that ensures that it mates

x and x . Here are the four with 1, 2, 3 in a given order:

(1, « t , 6, ...)(2, 5, ...)(3, 7, ...) ,

(1, I t , 7, ...)(2, 5, ...)(3, 6, ...) ,

(1, k, ...)(2, 5, 6, ...)(3, 7, ...) ,

(1, h, ...)(2, 5, 7, ...)(3, 6, ...) .
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Clearly, whatever element of order two x might tie, one of the 2U

possibilities for y can be fleshed out so as to mate i t .

Case 2B. Suppose that the condition assumed in Case 2A is false. As

in Case IB, we get strong restrictions on the possibilities for x , x~ .

For a s tar t , x has order less than or equal to 5 ; if i t has order 5

i t is a 5-cycle and both x^, x have support of order h intersecting

every three-element subset of supp(x ) . In other words, a: is

something like ( l , 2, 3, ^ , 5) , and each of x^, x something like

(1, 2)(3, k) or (1, 2)(3, 6) . This case is easy; just start with a

tentative common mate for x , x and flesh i t out to accommodate x .

Suppose finally that x has order 3 , say

x± = (1, 2, 3) . . . .

Obviously, x \X-Ji (being even) cannot move more than 8 symbols; for

if i t did, i t would have > 6 transpositions, and some pair of them would

fail to involve any of 1, 2, 3 . It is possible for x [x_] to have

support of cardinal 8 , but then x has support of cardinal less than or

equal to 6 ; and the usual sort of argument can be pushed through to find

a standard common mate.

CASE 3. x x , x are all of order 2 .

By now the plot should be clear. One first considers the case where

x , x have forms like

xx = (1, 2)(3, h) . . . ,

x 2 = ( 5 , 6 ) ( 7 , 8 ) . . . .

The symbols 1, 2, 3, k, 5, 6, 7, 8 can then be disposed in 32

essentially different ways in a "standard shape", so that any fleshing-out

is a common mate for a; , i . In all cases there is enough flexibility to

accommodate a;.- as well.
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If x , x~ do not have shapes as indicated, there are clearly strong

restrictions, and the whole argument goes through to provide a standard

common mate except when a;. , x~, x have forms like (l, 2)(3, *0 ,

(1, 3)(2, h), (1, l+)(2, 3) respectively. In that case (l, 2, ..., n) is

a common mate, as is easy to check.

We can thus state:

COROLLARY 2.4. A has spread 3 for n > 11 .

3. The case of odd composite n

Here is the simple result mentioned in the introduction.

THEOREM 3.1.' Let n be an odd composite integer, and d its

smallest proper divisor. Then A does not have spread z = C,~ .

For each choice of d - 1 symbols out of the n - 1 symbols

2, 3, ..., n , we construct a d-cycle moving 1 and these d - 1 chosen

symbols. There are z such d-cycles, and we claim that no common mate

exists. Firstly, a common mate must be an n-cycle, since any element with

more than one cycle in its canonical decomposition generates an

intransitive subgroup with one of our d-cycles. However, every n-cycle

generates an imprimitive group with one of them.

This is an inadequate sort of result, but it is the best we can do.

For the remainder of the section we sketch a proof that PSL(3, *0 cannot

be generated by an element of order 2 and one of order 3 .

The following argument has been kindly supplied by Professor A.

Sinkov; it replaces our original argument, which was longer. Since

PSL(3, h) has no element of order greater than 7 , two elements of orders

2, 3 in PSL(3, U) must generate (2, 3, n; p) with n < 7 and p 5 7

[7]. All these groups are known. In fact (2, 3, 7; 7) has order 1092 ;

see [3]. This shows that PSL(3, h) cannot in fact be generated by

elements of orders 2, 3 .

4. The spread of A , p prime

In this section we show that for certain primes p , the spread of A
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is huge. We call p a good prime if the only insoluble transitive groups

of degree p are A and 5 . Neumann and Ligler [5] listed 19 such

primes, and reported the existence of many others. (19 is one of the good

primes.) Undoubtedly the consensus now is that the good primes are in the

majority.

Let p be a good prime, and q a prime dividing %(p-l) . The group

A contains (p-l)! p-cycles that l i e in (p-2)! cyclic groups

< v > = T of order p , the Sylow p-subgroups of A . In the symmetric

group S , there is a (p-l)-cycle W that transforms V into i t s gth

power, where g is a primitive root mod p . Thus the normalizer N of

T in A is an extension of T by a cyclic group < u > of order

%(p-l) . This normalizer contains elements of order q . Each such

element x is the product of {p-l)/q ^-cycles, and we need to know the

number r = r[p, q) of Sylow p-normalizers N that contains a

particular element x of this shape q .

The total number of elements in A that have the same cycle-

structure as x is pl/s(p, q) , where s(p, q) = q ? ^((p-l)/q) !

these, p(q-l) l ie in each of the (p-2)! Sylow p-normalizers N

Of

This establishes the relation

(U.I) p(<?-l)(p-2)! = r(p, q)'pi/s(p, q) ,

from which the value of r(p, q) is determined. It is easily checked that

for fixed p , r(p, q) is maximal when q is the smallest prime divisor

of %(p-l) .

THEOREM 4.2. If p is a good prime, then A has spread t - 1 ,

where

t = (p-l)!/(s(p, q)(q-l)) ,

and q is the smallest prime divisor of i(q-l) .

Proof. We use the same sort of argument as was used in [2] for the

case p = 19 . Let t - 1 non-trivial elements x. be given. We shall
p i
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find a common mate y for them, and indeed y will be a p-cycle. For

any x. that lies in no normalizer N , there is considerable freedom.

In fact (a;., y) is insoluble and transitive in such a case, whatever

p-cycle y is chosen to be; and thus (x., y) = A since p is a good
^ p

prime. For the other elements x. the reasoning i s more de l i ca t e . If x.

i s a p-cycle i t l i e s in jus t one p-normalizer. If x. has type

I x . . . x I , where I i s a prime divisor of %(p-l) , then x. l i e s in

r{p, I) normalizers N . For fixed p , the la rges t value of r(p, I)

i s taken when I = q , the smallest prime divisor of %(p-l) . By (U . l ) ,

the number of N involved does not exceed

HP, ,)(VD < rfp. p
= (p-2)! .

Hence there is a p-cycle left over to play the role of y .

COROLLARY 4.3. If there are infinitely many good primes, then the

alternating groups of prime degree have unbounded spread.

In the opposite direction, we have the following result:

THEOREM 4.4. If p > 5 , then A does not have spread t + 3 •

Proof. As above, let q be the smallest prime factor of %(p-l) ;

let 3. be a collection of t elements of type q x q * ... x q (that

is, (p-l)/q ^-cycles), chosen so that each one lies in exactly r(p, q)

normalizers N , and so every normalizer N contains one of the z . .

Further, set

a +n = (1, 2)(3, U) , a = (l, k)(2, 3) , a = (l, 3)(2, h) .
V V2 P

If y mates z, , z and s , then y is a p-cycle. But then

P P P
one of the groups <s., z/> is soluble (t f [l, ..., t }) , and so is not

A .
P

It is'quite possible that A has spread as much as t + 2 for good

P P
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primes p , but this seems to tie a very difficult result to establish.
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