
LOCAL SPECTRAL THEORY AND SPECTRAL INCLUSIONS
by KJELD B. LAURSEN and MICHAEL M. NEUMANN

(Received 16 February, 1993; revised 23 June, 1993)

Introduction. Suppose that T and 5 are continuous linear operators on complex
Banach spaces X and Y, respectively, and that A is a non-zero continuous linear mapping
from X to Y. If A intertwines T and 5 in the sense that SA = A T, then a classical result
due to Rosenblum implies that the spectra cr(T) and cr(S) must overlap, see [12].
Actually, Davis and Rosenthal [5] have shown that the surjectivity spectrum crsu(r) will
meet the approximate point spectrum o"ap(S) in this case (terms to be denned below).
Further information about the relations between the two spectra and their finer structure
becomes available when the intertwiner A is injective or has dense range, see [9], [12],
[13].

Local spectral theory is very well suited to deal with issues of this sort, as witnessed
by many results in [4] and [21]. To mention but one sample, Theorem 2.4.4 of [4] shows
that (r(T) = a(S) if both T and 5 are decomposable in the sense of Foias, and the
intertwiner A is injective and has dense range. Local spectral theory also yields the tools
to handle the more general, but still very natural asymptotic intertwining condition
rc(A) = 0, where C stands for the commutator of 5 and T given by C(A): = SA - , 4 7 and

rc04):=limsup||C"04)ir
n—»<=

denotes the local spectral radius of the commutator C at A.
In a previous paper [16], we have explored the role of asymptotic intertwining in

connection with spectral inclusions for quotients and restrictions of decomposable
operators. A further step has recently been taken in [18], where the asymptotic
intertwining condition was abandoned and instead the closed disc V(0, r) with center 0
and radius r:= rc(A) > 0 was used to obtain perturbed spectral inclusions of the following
type: if A is injective and T is the quotient of a decomposable operator, then
a(T)<=(r(S) + V(0, r), and dually, if A has dense range and 5 is the restriction of a
decomposable operator, then cr(S) ^ a(T) + V(0, r).

In Section 2 of the present paper, we shall obtain considerably more general versions
of these spectral inclusions, which are of definitive form in the case of quotients and
restrictions of decomposable operators. In our main results, Theorems 2.4 and 2.5, we are
able to replace the disc V(0, r) by a much smaller set, namely a suitable local spectrum of
the commutator. This is done by means of Proposition 2.1, which replaces the power
series approach from [16] and [18] by a more flexible argument involving contour integrals
of convolution type.

We are also able to sharpen the spectral inclusions in question to cover the
surjectivity and approximate point spectrum. This requires a number of new results and
techniques in local spectral theory, which will be developed in Section 1 and should be of
independent interest. In particular, we shall show in Theorem 1.1 that the boundary of the
local spectrum crT(x) is always contained in <xap(r). It is somewhat surprising that this
result holds in general, not just for restrictions of decomposable operators where it
follows easily by localization of the spectrum. For the proof, we introduce the concept of
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the Kato resolvent set as a powerful new tool in this context. Compared to the classical
development of local spectral theory in [4] and [21], the emphasis is here on a new type of
spectral subspaces, the £T(F)-spaces; this allows us to handle operators without the single
valued extension property. Further important tools are the recent results on restrictions
and quotients of decomposable operators due to Albrecht and Eschmeier [1]. The authors
are indebted to Jorg Eschmeier for several helpful comments on an earlier version of this
paper and for providing them with the reference [17].

1. Local spectral theory. For a given continuous linear operator T e L(X) on a
non-trivial complex Banach space X, recall the following classical subsets of the spectrum
a{T): the point spectrum o-p(T):={A e C : T - A is not injective}, the approximate point
spectrum aap(T) := {A e C: there exist unit vectors xn e X such that (T-A)jtn-»0 as
n—>°°}, and the dual objects, the compression spectrum crcom(7):={A e C: (T — k)X is
not dense in X} and the surjectivity spectrum o-su(T) := {A e C: (7" - \)X # X}. The term
'dual' refers to the well-known facts that, if T* e L(X*) denotes the adjoint of T on the
dual space X*, then ap{T) s= <rcom(r*), <rcom(T) = ap(T*), aap(T) = trm(T*), vsu(T) =
<rap(T*); see section 57 of [2] for details.

Recall also the notion of local spectrum from [4]: if x e X, then the local spectrum
aT(x) of T at x is defined to be the complement of the set of all A e C for which there is
an analytic function f:U—>X on some open neighborhood U of A such that (T-
/I)/(/A) = JC for all p. e U. The local analytic spectral subspace XT(F), where F is an
arbitrary subset of C, is defined to consist of all x e X for which crT(x) £ F. We shall
frequently use the identity asu(T) = U o>(*) for all T e L(X), which is an easy

consequence of the open mapping principle; see Lemma 2 of [15]. The following general
result will play a key role in locating local spectra.

THEOREM 1.1. For any T e L(X) and x e X, we have daT(x) £ crap(7).

Proof. Our main tool will be what we call the Kato resolvent set of T, namely the set

PK(T):= {A e C:(T - \)X is closed and ker(7 - A) £ f ] (T - \)nx).
I n = l J

In a slightly more general context, this set has been thoroughly investigated by Kato in
[14]; further properties of pK{T) may be found in [19]. The Kato resolvent set contains
the ordinary resolvent set p(T) and is open by Theorem 3 of [14]. For our purposes, the
crucial point is that every A e pK(T) satisfies the identity .*V(C\{A}) = ZT(\) where

Zr(A):= P | (T - \)nX. Here the inclusion c j s clear from the elementary fact that
n=l

(7-A)AV(C\{A}) = AV(C\{A}), which follows from Proposition IV.3.4 of [21]. To prove
the reverse inclusion, we consider an arbitrary x E Zr(A) and choose xn E X such that
x = (T- \)"xn for all neN. Then we have

x, - (T - \)"xn+l E ker(7 - A) £ z r (A) s ( r - A)"*

and therefore x, E (T - \)"X for all n E N. This observation shows that x E(T - A)Zr(A)
and hence that (T - A)Zr(A) = Z7(A). Moreover, the space Zr(A) is closed, since it is
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easily seen that all the powers of T - A have closed range whenever A e PK(T); cf. Satz 4
of [19]. With the notation S := T|Z7-(A), we conclude that A £ o-su(5). On the other hand,
we infer from Lemma 2 of [15] that o-s(x) is contained in o"su(5) for all x e ZT(\).
Consequently, if x e Zr(A), then crr(x)^ CT5(JC)S CTSU(5) S C\{A} and so * e X,-(C\{A}).
Hence the subspaces AV(C\{A}) and ZT(\) do indeed coincide. Now, as noted in Satz 1 of
[19], Forster has shown that the spaces Zr(A) are constant on each connected component
of pK(T). It follows that, for each component G of pK(T) and every A e G, we have

xr(c\{\}) = n (r - \yx = n f)(T- ti)nx = *r(c\G).

From this the proof of Theorem 1.1 can now be easily completed. Suppose that there
exists a Ao e do-r(jc)\crap(r). Then T - A,, is bounded below and consequently Ao belongs
to PK(T). NOW, if we let G denote the connected component of pK(T) which contains A(),
then we have G £ crT(x). In fact, if there were a A e G\aT(x), then x e AY(C\{A}) =
XT(C\G) and therefore crT(x) D G = 0 , which is impossible because of Ao e a,{x) D G.
Thus A o e G c crT{x). Since G is open, this contradicts our assumption that Ao e daT(x).

Note that the preceding proof shows that actually daT(x)<=:C\pK(T). However, not
too much is gained by this stronger inclusion, since we shall see in Remark 1.6 that the
identity C\pK(T) = crap(T) holds under a mild assumption on T.

The following corollary applies, for instance, to any non-invertible isometry
T e L(X), since in this case a{T) is the unit disc, while a-ap(T) is the unit circle.

COROLLARY 1.2. Suppose that the operator T e L(X) has a spectrum with connected
interior G for which a(T) = G~. If (rap(T) = da(T), then for every x e X we have either
aT(x) = a(T) or aT(x) £ da(T).

Proof. If aT(x)^o-(T) and aT(x)£da(T), then there exist A, e G\aT(x) and
A2 e <rT(x) fl G. By the connectedness of G, there must be a point A3 e dcrT(x) C\ G. By
Theorem 1.1, it follows that A3 e crap(T)nG, which contradicts our assumption that G
and o-ap(T) are disjoint.

We now discuss another class of analytic spectral subspaces [1]: for any closed F £ C,
let XT(F) consist of all x e X for which there exists an analytic function / : C\F -»X such
that ( r -A)/(A) = jc for all A e C\F. The spaces 1T(F) may be called glocal analytic
spectral subspaces because the analytic functions in their definition are globally defined,
but depend on xeX; in fact /(A) = (T - A)~'JC for all A e p(T)n(C\F). Evidently,
XT(F) = XT(F) for all closed F s C , if T has the single valued extension property
(SVEP); i.e. if, for every open £/£<C, the only analytic solution of the equation
(T - A)/(A) = 0 for all A e U is the constant / = 0, see [4]. On the other hand, Liouville's
theorem implies that XT(0) = {0} for any T, and since, by Proposition IV.3.6 of [21],
XT(0) = {0} if and only if T has SVEP, we see that the two classes of spectral subspaces
are identical precisely when T has SVEP. As witnessed by the recent development of local
spectral theory in [1], [7], [16], [18], for operators without SVEP the spaces IT(F) are
often more appropriate than their classical counterparts XT(F). We collect some basic
properties.

PROPOSITION 1.3. For all T E L(X) and closed F 9 C , the following properties hold.
(a) * r ( 0 ) = {0}, $T(F) = XT(a(T) D F), XT(F) £XT(F), and ker T c .*r({0}).
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(b) 3tr(F) = Xif and only if asu(T) c F.
(c) / / T has SVEP, then £ r (F) = X if and only if <T(T) £ F.

(d) 36r( P | Fa ) = P | XT(Fa) for any collection of closed convex sets Fa, (a e A).

(e) ?Hf(T)(F)<=:3lT(o-(T) C\f~\F)) for every analytic function f:U—>C on an open
neighborhood U of cr(T).

Proof. Assertion (a) and one of the implications of assertion (b) are straightforward.
The other one follows from the identity X = £T(<Tsu(T)), which, as pointed out to the
authors by Jbrg Eschmeier, is contained in a deep result due to Leiterer; see Theorem 5.1
of [17]. Since Lemma 3 of [15] shows that a~su(T) = a(T) when T has SVEP, assertion (c)
is, of course, a special case of (b), but actually this result can also be easily verified
directly. To prove assertion (d), we may assume, after intersection with a compact disc
containing a(T) if necessary, that each of the convex sets Fa is compact. Now, let
x e p | X.T(Fa), and choose, for each a e A, an analytic function fa:C\Fa—>X such that

aeA

(T-A)fa(\) = x for all A e C\Fa. For arbitrary a, P e A, we obtain that /a(A) =
(T-\)-1x=fp(\) for all A e p (7 )n (C\Fa) n (C\/>). Since the latter set is both
non-empty and open and since the convexity of Fa and Fp implies that (C\Fa) D (C\Fp) is
connected, the identity theorem for analytic functions yields that fa=fp on (C\Fa)n
(C\FP) for all a , j 3 e A Therefore, if F:= p | Fa, then the function / :C \F->X given by

OE/4

/(A) : = /a(A) for all A e C\Fa and a e A is a well-defined analytic solution of the equation
(T - A)/(A) = x on C\F. This shows that x e 3£r(F), which establishes the non-trivial part
of the desired identity in (d). Finally, assertion (e) can be verified like Theorem 1.1.6 of
[4]-

REMARK 1.4. In connection with assertion (d), it is interesting to note that, in contrast
to the case of the AV(F)-spaces, intersections of arbitrary closed sets need not be
preserved by the ^(F^spaces. More precisely, if T does not have SVEP, then there exist
disjoint closed sets F, G g C for which Xr(F)n3Ef(G)^{0}, while of course £T{Fn
G) = £T(0) - {0}. In fact, because of the lack of SVEP, there exists a non-trivial analytic
function f:U^X on an open set {/gC such that (7-A)/(A) = 0 for all A e U. Let
G := C\U and F:= {fi} for some fi e U with /(/i) ^ 0. Then fi/x) belongs to ker(7 - /A)
and consequently to diT(F). On the other hand, with the analytic function g.U^X
given by g(/i) : = /'(/*) and g(A):= (A - n)-\f(\) - /( /*)) for all A e U\{fi}, we have
(T - A)g(A) =f(fi) for all A e U and therefore /(/*) e £T(G). Thus 0*f(ji) e £ r (F) n
3£T-(G), which establishes the claim. Note that this shows in full generality what Sun has
recently illustrated by a class of examples of bilateral weighted shifts on Hilbert spaces;
see Proposition 1 of [20]. On the other hand, it would be interesting to know if the
intersection property in part (d) of Proposition 1.3 holds for an arbitrary collection of
polynomially convex compact sets. Here, the obstacle is, of course, that the union of two
polynomially convex sets need not be polynomially convex.

It should be noted that, in general, the identity £ r (F) = £T(<rap(T) C\ F) will not be
true for arbitrary closed F ^ C . In fact, if this identity holds for F = <r(T), then
Proposition 1.3 shows that necessarily crsu(T)<=o-ap(T), which rules out, for instance, all
non-invertible isometries. On the other hand, we have the following positive result.
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THEOREM 1.5. If T & L(X) and F is a closed subset of C such that F D o-ap(T) = 0 ,
then £T(F) = {0}.

Proof. Choose an open neighborhood U of F with U D crap(r) = 0 , and consider an
arbitrary x E £ r(F). Theorem 1.1 implies that d<rT(x)^F r\aap(T) = 0 and therefore
crT(x) = 0. Hence, for every A e U, there exist an open neighborhood Ux of A contained
in U and an analytic function /A: Ux—»X such that (T - yu.)/A(/i.) = x for all / ie [ / A . Also,
since x e £T(F), there is an A'-valued analytic function f^ on Um:=C\F such that
(T - fjb)fm(ij,) = x for all /i, e [/„. Now, for every A e £/, we have fx=U on i/A D £/«*,.
Indeed, for each ^ E (/A D (/„, we obtain (7 - /j,)(/A(/i) - /» ( / J . ) ) = 0 and therefore
/A(AO ~/°°(A0

 = 0, since û, belongs to (/ and f/ is disjoint from (Tap(T) and hence contains
no eigenvalue of 7. A similar argument shows that/K =/A on {/* n f/A for all K, A E U. We
conclude that there exists an analytic function / defined on the entire complex plane C for
which (T - ix)f(/Ji) =x for all ix e C. Thus x e 3cT(0) and therefore, by Liouville's
theorem, x = 0.

The authors have been informed by Jbrg Eschmeier that an alternative short proof of
Theorem 1.5 can also be obtained from part (b) of Proposition 1.3 via duality theory.
Indeed, by a general annihilator result due to FrunzS, which is contained in the proof of
Lemma 2 of [11], the assumption F D o-ap(T) = 0 implies that

3ET(F) <= 3^(^(70)^ = ZftvUT*))1 = {0},
since we know from Propositions 1.3 that X*.(crsu(r)) = X*. Since this argument depends
on the techniques developed in [17], its brevity is, of course, somewhat deceptive.

REMARK 1.6. Since the proof of Theorem 1.1 shows that actually dcrT(x)<=C\pK(T)
for all T s L(X) and x e X, one might suspect that the conclusion of Theorem 1.5 also
extends to the case of the Kato resolvent set. However, it is not true in general that
IT(F) = {0} for all closed F s C with FcpK(T). Indeed, let T e L(X) be any surjective,
but not injective operator, for instance the left shift on the Hilbert space ^(N). Then
£r({0}) is non-trivial since {0}^ker T^£T({0}), but 0 E pK{T) since TX = X. Note that
such examples can only occur for operators without SVEP, since the identity pK(T) =
C\<rap(T) holds whenever T has SVEP. In fact, the inclusion 2 is standard, and to show
the converse, let A e pK{T) be arbitrarily given. As noted in the proof of Theorem 1.1,
the space Zr(A) is closed and satisfies (T - A)Zr(A) = Zr(A). Since the restriction
S := r|Zr(A) has SVEP, we also know from Lemma 3 of [15] that asu(S) = a(S). Thus
5 - A is invertible on Zr(A). Because \spK(T), we have k e r ( 7 - A)9Zr(A) and
therefore ker(T - A) = {0}. Consequently T - A is bounded below on X, which shows that
A £ cap(7) and hence completes the proof of the identity PK{T) = C\o-ap(r). By duality, if
the adjoint T* has SVEP, then pK{T) = C\asu(T), since pK{T) = pK(T*) = C\o-ap(T*) =
C\o-SU(T). In particular, it follows that pK(T) = p(T) if both T and T* have SVEP.

Recall that an operator T e L(X) is said to be decomposable if, for every open
covering {U, V} of C, there exist 7-invariant closed linear subspaces Y and Z of X such
that <r(T\Y) £ U, a(T\Z) c V, and Y + Z = A"; see [4] and [21]. In the following, we shall
be concerned with certain weaker notions, which have been fundamental to recent
progress in local spectral theory [1]. The operator T is said to have Bishop's property (/3)
if, for every open subset U of C and for every sequence of analytic functions /„: U —»X for
which (T - A)/n(A)->0 locally uniformly on U, it follows that /n(A)-»0 locally uniformly
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on U; see [3]. By Lemma IV.4.16 of [21], every decomposable operator has Bishop's
property (/3), and it is easily seen that this latter property implies that T has Dunford's
property (C); i.e. that XT(F) is closed for every closed F s C . Note that (C) implies SVEP
by Proposition 1.2 of [16]. Moreover, it follows from Remark 1.6 and the duality theory
for decomposable operators [21] that pK(T) = p(T) whenever T is decomposable. Finally
recall from [1] that T is said to have the decomposition property (8) if X = £T(U~) +
£T(V~) holds for every open covering {U, V) of C.

It is not difficult to see that an operator T E L(X) is decomposable if and only if it
has both properties (/3) and (8). Much deeper are the recent results due to Albrecht and
Eschmeier [1]: they establish the complete duality between (/3) and (8) and show that (/3)
characterizes, up to similarity, the restrictions of decomposable operators onto closed
invariant subspaces, while (8) characterizes, up to similarity, the quotients of decom-
posable operators. For related results and applications, for instance to the invariant
subspace problem, we refer to [7], [8], [16], [18].

Theorem 1.5 allows a simple direct proof of the following fact, which generalizes a
classical result on decomposable operators; cf. Corollary 2.1.4 of [4]. Note that Corollary
1.7 also follows from the duality between the properties (/3) and (8), but the argument
given here avoids this heavy machinery.

COROLLARY 1.7. / / T e L(X) has property (8), then aap(T) = a(T).

Proof. Given any A e C\o-ap(r), we choose closed sets F, G <= C with F fl crap(7) =
0 and A £ G such that C is covered by the interiors of F and G. By property (8), we have
X = ZT(F) + IT(G). Since Theorem 1.5 shows that £T(F) = {0}, we see that X = IT(G)
and therefore o-su(7)£G. Since A is not an eigenvalue and does not belong to G, it
follows that A e p(T). Thus aap(T) = cr(T).

There are two general obstacles in the local spectral theory for an operator without
SVEP, namely: the local spectrum aT{x) will be empty for certain non-zero x e X, and
there need not exist a globally defined analytic solution of the equation (T - \)f(\) = x
outside aT{x). To overcome the difficulties which arise from these problems, we permit
ourselves to introduce the term glocal spectrum TT(X) for an arbitrary operator T e L(X)
at the point x e X as the set rT(x):= o-(T) D nT(x), where nT(x) denotes the intersection
of all closed convex sets F e C for which x E £r(F); for instance, F may be taken as any
closed disc which contains cr(T). The next theorem collects some basic properties of the
glocal spectrum TT(X). In the following, let V(\, 8) and V(A, 8) denote the open
(respectively closed) disc in C with center A E C and radius 5 > 0. Also, for a not
necessarily convex set F ^ C , let ex(F) denote the extreme points of F, i.e. the set of all
elements \ e F which cannot be represented as a non-trivial convex combination of
finitely many elements of F.

THEOREM 1.8. For every T E L(X) and x e X, the following properties hold.
(a) x E IT(?T(X)) and aT(x) £ TT(X).

(b) rT(x) = 0 if and only if x = 0.
(c) ex(TT(x)) = ex(nT(x)) S aap(T).

Proof. From part (d) of Proposition 1.3 we see that nT{x) is the smallest closed
convex set F c C which satisfies x e IT(F). We conclude that x e XT(nT(x)) =
£T(nT(x) (~) a(T)) = £r(tT(x)) and therefore aT(x)^xT{x). Assertion (b) follows from
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(a) and the fact that £ r ( 0 ) = {0}. Finally, to prove assertion (c), let A e ex(nT(x)) be
arbitrarily given. Then A e dnT(x) and, since aT(x) ^ nT(x), A does not belong to the
interior of aT{x). Since we know from Theorem 1.1 that daT(x)^aap(T), it remains to
consider the case that A £ o-T(x). In this case, there exists a 5 >0 and an analytic function
f:V(\,8)—>X such that (7 - /J,)/(/A) = x for all (JL eV(\,8). Moreover, from xe
£T(nT(x)) we obtain an A'-valued analytic function g on U:=C\nT(x) such that
(T - fx)g(fi) = x for all /n e U. Now, for e > 0 , the convex hull G€ of the compact set
nT(x)\V(\, e) is both compact and convex. Also, since A e ex(^r(;c)), we have A £ Ge so
that G€ is strictly contained in nT{x). By the minimality of nT(x), we conclude that
x £ ?iT{Ge). Consequently, for every 0 < e ^ 8, the analytic functions / and g cannot be
identical on the non-empty open set U D V(\, e). Hence there exists a sequence of points
A,, e U such that /(An)^g(An) for all neN and A,,—»A as n—>• °°. Since *„: =
/ (A n )-g(A n )^0 and ( r - A n ) x n = 0 , we obtain that \n e ap(T) for all n s N and
therefore A e o-ap(7). In particular, it follows that ex(jtT(x)) ^ a(T) and therefore
ex(^/-(jc))sex(T7-(x)). Conversely, given any A e ex(Tr(;c)), we have A e nT{x) so that A
can be written as a convex combination with non-zero coefficients of at most three
extreme points of nT(x). Since we have shown that ex(nT(x))^a(T), these extreme
points belong to TT(X) and hence have to be identical with A. This shows that
A e ex(7Tr(jc)). The assertion follows.

If the operator T e L(X) does not have SVEP, then there exist non-zero x e X with
empty local spectrum and hence with crT{x) # TT-(X). But even for decomposable
operators, the local spectrum can be strictly contained in the glocal spectrum, as witnessed
by simple examples of multiplication operators on the space of continuous functions
defined on an annulus in the plane. The reason is, of course, that the construction of TT(X)
reflects only roughly the holes of (TT(X). For the applications to spectral inclusions in
Section 2, these holes appear not to be a major issue. Actually, in some cases, it will be
sufficient to replace the glocal spectrum by a suitable disc. The following theorem shows
how to determine this disc in terms of the Ipcal spectral radius given by

rT{x) : = lim sup || T"x ||"" for all T e L(X) and x e X.
n—•*

Recall from [18] that rT(x) - max{|A|:A e aT(x)} whenever T has SVEP and O / x e l .
The following result contains a glocal version of this formula which does not require
SVEP.

THEOREM 1.9. For every T e L(X) and non-zero XEX, we have the following
properties.

(a) The glocal spectral radius formula rT(x) = max{|A|: A e tr(x)} holds.
(b) rT(x) c V(A, r(A)) for all A e C, where r(A) := rT.x(x).
(c) There exists precisely one point Ao e C such that r(A0) s r(A) for all A e C.
(d) The disc V(A0, r(A0)) has the smallest radius among all closed discs containing

TT(x).

Proof. The main ingredient of the proof is the identity 3Er(V(0, /•)) = {x e X: rT(x) ^ r}
for all r >0 from Proposition 2.1 of [18]. To show assertion (a), we first apply this identity
with the choice r := max{|A|:A e TT(X)}. Then Theorem 1.8 implies that x e £T(TT(X))^

.£r(V(0, r)) and therefore rT(x) < r. Conversely, we conclude from the same identity that
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x e £r(V(0, rT(x))); hence Tr(jt)c V(0, rT(x)) by the definition of rT(x), and conse-
quently r < rT{x). This completes the proof of (a). Similarly, for every A e C, we obtain
that x e £r_A(V(0, /-(A))) = £r(V(A, r(A))) and hence, by the definition of the glocal
spectrum, that Tr(jc)£ V(A,r(A)), which establishes (b). To prove assertion (c), let
ro:= inf{r(A): A e C} and choose a sequence of points \n e C such that r(An)—>r0 as
rc^oo. Because of 0 # T7-(JC)CO-(7') D V(An,r(An)), we have |An| <r(An) + v(7) for all
n e N , where v(T) denotes the spectral radius of T. Thus, without loss of generality, we
may assume that (An) converges to some Ao e C. Then clearly ro<r(Ao). Now, if we
suppose that ro< r(A0), we can find an n e M such that V(An, r(\n)) is strictly contained in
V(A0, r(A0)). Hence Tr(x)£V(An,r(An))eV(A0,r) for some r<r(\0). We conclude that
x e 3Er(T7-(x))c3£7.(V(Ao,/-)) = X7-_Ao(V(0,r)) and therefore r(A0)<r by the identity
noted at the beginning of the proof. This contradiction shows that r(\0) = r0. Now suppose
that r(A0) = r0 = r(fi0) holds for two different points Ao, /x0 e C. From part (b) we obtain
that Tr(j:)gV(A0,r0)nV(fi0,r0) and consequently rT(x)^ V(A,r)c V(A0,r0) D V(fio,ro)
for a suitable disc V(A,r) of radius 0<r<ro. As before, we conclude that x e
j£r(Tr(A:)) ^.X7-(V(A,r)) = ^Er_A(V(O, /•)) and therefore /-0</-(A) <r , which is the desired
contradiction. Thus r0 = r(A0) for exactly one Ao e C. Finally, the same kind of argument
can be used to establish assertion (d). In fact, consider an arbitrary closed disc V(A, r)
which contains xT{x). It follows that x E I r ( r r ( j : ) ) c I r ( V ( A / ) ) = Ir_A(V(0, /•)) and
hence that r0 < r(A) < r, which completes the proof.

2. Commutators and spectral inclusions. Throughout this section, let T e L(X) and
5 E L{Y) be a given pair of operators on non-trivial complex Banach spaces X and Y,
respectively, and let C(S, T): L(X, Y)-*L{X, Y) denote the corresponding commutator
given by C(S, T)(A) := SA - AT for all A E L(X, Y), where L(X, Y) is the Banach space
of all continuous linear mappings from X into Y. For brevity, we write C:= C(S, T) and
L:=L(X, Y). One of our principal tools will be the following generalization of a result
due to Foais, and Vasilescu; cf. Theorem 2.4 of [10].

PROPOSITION 2.1. IfF,K^C are dosed and A e 2C(K), then A1T{F)c$)S(F + K).

Proof. Because of £T(F) = £T(a(T)n T) and 2C(K) = 2c(a(C) D K), we may
assume, without loss of generality, that both F and K are compact, in which case
F + K = (F + K)~. Let x e £T(F), and consider an analytic function /:CYF-»Ar such
that (T - /i)f(fji) = x for all fieC\F and an analytic function B:C\K-*L such
that {C-%)B{g) = A for all f eC\X. Now, fix an arbitrary e > 0 , and then put
Ue:=C\(F + K + V(0, e)). Choose an admissible contour V in /C + V(0,e) which sur-
rounds K. Since A - £ E C\F for all A E f/e and £ E T, we may define

(A E Ue).

From the analyticity of /and fl it is easy to see that this definition does not depend on the
choice of the admissible contour T and that the resulting function gE: Ue —* Y is analytic. It
also follows that gs\Ue = ge whenever 0 < S < e . Hence the definition g(A): = ge(A) for
arbitrary e > 0 and A e Ue yields an analytic function g: C\(F + K) -» Y. To show that Ax
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belongs to g)5(F + K), it remains to verify that (5 - A)g(A) = Ax for all A e C\(F + K). To
this end, let e > 0 and A e Ue be arbitrarily given. Then, for all £ e T, we obtain

(5 -

= Af{\ - f) + S(^)(7 - (A -

and consequently

(S - A)g(A) = ̂  J,4/(A ~ f) rff + ^

Here, the first integral on the right hand side vanishes because of the analyticity of / on
C\F. In the second integral, the analyticity of B on C\K allows us to replace F by the
circle A centered at 0 with radius ||C|| +1 . Since fi(£) = ( C - f ) ~ U for all £ e A, we
conclude from the Riesz functional calculus that

(5 - A)g(A) = -^ f B(Ox di = ̂ -.f B(£)x d£ = -^ f (C -

The assertion follows.
In the particular case that all of the operators S, T and C have SVEP, the preceding

result applies directly to local spectra and shows that (TS(AX) £ aT(x) + crc{A) for all
x e X. This leads easily to certain spectral inclusions for 5 and T. In general, Proposition
2.1 will have to be applied to more subtle choices of the sets F and K, for instance to
suitable glocal spectra. The following results contrast with the spectral inclusions
(TSU(C) 2 o-su(S) - crap(T) and (rap(C) = o-ap(5) - <rsu(T), which have been proved in [5]:
while Davis and Rosenthal obtain information about the entire spectrum of the
commutator C = C(S, T), we aim to reach conclusions about the extent to which o-(T)
and cr(S) are perturbed when passing from T to 5, which will involve the local spectral
theory for C at suitable A. The strongest results will be available in the intertwining case
SA = AT and the slightly more general case of asymptotic intertwining rc(A) = 0. By the
glocal spectral radius formula of Theorem 1.9, the latter condition means precisely that
rc(A) = {0}, whenever A is non-zero.

The first result below makes no particular assumptions on 5 or T, but covers only
certain subsets of the spectra. In the following remark we shall include some coun-
terexamples to show that Proposition 2.2 cannot be improved in general, even if one
insists on the strong intertwining condition SA = AT which implies that rc(A) = {0}. Note
that part (d) of Proposition 2.2 generalizes a corresponding result of Grabiner [12] in the
intertwining case.

PROPOSITION 2.2. For arbitrary operators S and T, the following properties hold.
(a) If A is injective, then crp(T)^ o-ap(S) - TC(T4).

(b) If A is surjective, then asu(S) c crsu(7) + tc(A).
(c) If A has dense range, then acom(S) S asu(T) + TC{A).

(d) If A is injective and F is a component of a(T), then F D [aap(S) - tc(A)] # 0.

Proof, (a) By an obvious translation argument, it suffices to prove that 0 belongs to
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0"aP(S) ~ ?C{A) whenever 0 is an eigenvalue of T. Since we know from Theorem 1.8 that
A e 2c(tc(A)), we conclude from Proposition 2.1 and basic facts on glocal subspaces that
A ker T <=AXT({0})<=$S(TC(A)). By the injectivity of A, we obtain that ?) S (T C ( /1) )#{0}
and therefore tc(A) fl aap(S) ¥= 0 by Theorem 1.5. Thus 0 e aap(S) - TC(A), as desired.

(b) Now assume that A is surjective. Again from Proposition 1.3, Proposition 2.1 and
Theorem 1.8, we conclude that

Y = AX = AXT{*JT)) £ g)s(«rsu(r) + TC(A))

and thus asu(S) £ 0"su(r) + TC(/1).
(c) If both X and Y are reflexive, then clearly -TC(r.iS*)(j4*) = TC(5ir)(/4) so that the

desired inclusion follows easily from part (a) by duality. However, the general case seems
to require a somewhat different argument. With F := asu(T) + tc(A) we obtain exactly as
before that AX = AlT(aiU(T)) £ $)S(F). Since A has dense range, it follows that $)S(F) is
dense in Y and hence has a trivial annihilator in Y*. Now, if A e C\F, then
ker(5* - A) £ g)*»({A}) c ^ ( F ) 1 = {0} by the result of Frunz5 mentioned before; cf.
Lemma 2 of [11]. It follows that A is not an eigenvalue of 5* and therefore o-p(S*)£/\
Since crcom(S) = crp(S*), this yields the desired inclusion.

(d) Since a(T) is compact, we know from general topology that every component of
a(T) is the intersection of a family of clopen subsets of a(T); cf. Theorem 6.1.23 of [6].
Hence, again by compactness, it suffices to show that every non-empty clopen subset F of
cr(T) meets (rap(S) - TC(/4). This follows as in the proof of part (a). Indeed, again by
Theorem 1.8 and Proposition 2.1 we have A£r(F) <= $)S(F + TC(A)). Since £T(F) contains
the range of the non-zero projection associated with the spectral set F through the Riesz
functional calculus, the injectivity of A implies that g)s(F + rc(A)) ^{0} and consequently
[F + rc(A)] PI aap(S) ¥^0 by Theorem 1.5. Hence F n [crap(S) - rc(A)] # 0 , which com-
pletes the proof.

REMARK 2.3. Even in the Hilbert space setting, it is easy to construct an example of a
bijective operator T e L(X) and a surjective operator A e L(X, Y) such that T(ker A) is
strictly contained in ker A. In this situation, let Sy := ATx for all y e V and x e X with
y = Ax. This yields a well-defined operator S e L(Y), which satisfies SA = AT and is
surjective, but not injective. Thus 0 belongs both to p(T) and to ap(S)\asu(S), which
shows that a(S)^a-(T). By considering the dual operators in this situation, we obtain
immediately an example of operators A, S, T where A is injective, SA-AT, and
a(T) £ a(S). Finally observe that there are examples of bounded linear operators A, S,
T on a Hilbert space such that A and A* are injective, SA = AT, S is quasi-nilpotent, and
the spectrum of T is the unit disc, see for instance [9] or [13]. Obviously, in this case, none
of the sets 0-^(7), asu(T), (rap(T*), asu(T*) is contained in cr(S) = cr(S*). This shows
that, even in the case xc{A) = {0}, the spectral inclusions of Proposition 2.2 cannot be
improved in general.

To obtain inclusions for the entire spectrum, we now impose assumptions from local
spectral theory on the operators T and S. It should be noted that, by the characterization
of the properties (j3) and (5) provided in [1], the following results apply to restrictions
and quotients of decomposable operators.

THEOREM 2.4. If A is injective and T has property (8), then a(T) c aap(S) - rc(A). If
A has dense range and S has property (C), then a(S) £ crsu(T) + rc(A).
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Proof. First assume that A is injective and that T has property (8). By Proposition
2.2, we know that <rp(T) is contained in F := aap(S) - TC(A). Since o-p(T) U asu(T) =
cr(T), it remains to show that o-su(T) £ F. To this end, fix an arbitrary open neighborhood
U of F and choose an open set K £ C such that t /UV = C and F DV~ = 0. Then
K~ + Tc(/4) and crap(5) are disjoint. Hence we conclude from Theorem 1.5, Theorem 1.8,
and Proposition 2.1 that AIT(V~) <= f)s(V~ + rc(A)) = {0} and therefore £T(V~) = {0} by
the injectivity of A. Since T has property (5), we also have X = Xr(U~) + £T(V~).
Consequently X = .£r(£/~) and therefore crsu(7) £ U~ for every open neighborhood U of
F. Thus asu(T)^F, which completes the proof of the first assertion. Next assume that A
has dense range and that 5 has property (C) and hence SVEP by Proposition 1.2 of [16].
Again, it follows from Lemma 3 of [15] that a(S) = asu(S). Hence we may proceed as in
the proof of part (b) of Proposition 2.2. In fact, Theorem 1.8 and Proposition 2.1, together
with some basic properties of spectral subspaces, imply that

Y = (AX)- = (AXT(asu(TW £ M^su(T) + TC(A))

and therefore a(S) = crsu(5) £ crsu(r) + rc(A).

THEOREM 2.5. Assume that S has property (C) and T has property (5). / / A is
injective, then a(T) £ aap(S) — ac(A). If A has dense range, then a(S) £ crsu(T) + ac(A).

Indeed, since it has been shown in Theorem 2.4 of [16] that, under the present
assumptions on S and T, their commutator C has SVEP, the proof of the preceding result
carries over verbatim with TC(/4) replaced by (TC(A). Here the effect of the added
assumption on S and T is the replacement of the glocal spectrum of C at A by a smaller
and perhaps more familiar object, the local spectrum. This principle of substituting for
TC(/4) other, possibly less nebulous, but not necessarily smaller, sets may be applied in
general: thanks to Theorem 1.9 we may always replace TC(A) by suitable larger closed
discs.

As indicated earlier, both Theorems 2.4 and 2.5 apply whenever T is similar to the
quotient of a decomposable operator and S is similar to the restriction of a decomposable
operator onto one of its closed invariant subspaces. In this case, the two assertions in each
of these results are closely connected, since we know from [1] that the properties (/3) and
(8) are dual to each other. In fact, if T has (8) and if the assumption on S is strengthened
to (j3) instead of (C), then the second inclusion in Theorem 2.5 follows immediately
from the first by a straightforward duality argument, since it is easily seen that
— (TC(T*J*)(A*) £ O-C(S,T)(A). Moreover, the two assertions are equivalent, if both X and Y
are reflexive. A similar remark holds for Theorem 2.4. In this connection, it should be
noted that it remains an intriguing open problem whether Bishop's property (/3) and
Dunford's property (C) are actually equivalent.

We conclude with some remarks on special cases and applications of the preceding
results. First, recall that the operators T and 5 are said to be quasi-similar if there exist
injective operators A e L(X, Y) and B e L(Y,X) with dense range such that SA = AT
and TB = BS. Evidently, Theorem 2.4 implies, in particular, that quasi-similarity
preserves the spectrum for quotients and restrictions of decomposable operators. This
improves a number of previous results in this direction and covers, for instance, the case
of hyponormal and cohyponormal operators, see [9], [13], [16] for further information.
Moreover, it follows that the same kind of spectral invariance holds for the weaker
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notion of asymptotic quasi-similarity, where the intertwining condition is relaxed to
rc(s,T){A)= rc(T,s)(B) - 0- This shows, in particular, that quasi-nilpotent equivalent
quotients and restrictions of decomposable operators have the same spectrum [4]. Again,
see [16] for a discussion of these and related results and a list of suitable references.

Another natural example arises in harmonic analysis, where the Fourier transform
acts as an injective intertwiner for a given convolution operator and the corresponding
multiplication operator. Indeed, given any regular Borel measure fi on a locally compact
abelian group G, Theorem 2.4 implies that o~(n) equals the closure of the range /2(F) of
the Fourier-Stieltjes transform /2 on the dual group V provided that the operator of
convolution by fi on the group algebra LX(G) has property (5). We refer to [16] and [18]
for details and applications to the spectral theory of convolution operators.

Finally, Theorem 1.9 and Proposition 2.1 immediately imply the following result from
[18]: if r:=rC(SS)(A), then A£T(F)£g)s(F + V(0,r)) for all closed F^C. Inclusions of
this type are very useful in the theory of spectral decompositions; cf. [4], [21]. As shown in
[18], it follows, for instance, that the properties (/3) and (8) are preserved under limits in
the spectral distance of operators [21] and that, for a wide class of Banach algebras, the
multipliers with property (5) form a closed subalgebra of the multiplier algebra.
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