FINITE PRESENTABILITY OF ARITHMETIC GROUPS OVER GLOBAL FUNCTION FIELDS

by HELMUT BEHR*

(Received 10th August 1985)

1. Introduction and survey

Arithmetic subgroups of reductive algebraic groups over number fields are finitely presentable, but over global function fields this is not always true. All known exceptions are "small" groups, which means that either the rank of the algebraic group or the set S of the underlying S-arithmetic ring has to be small. There exists now a complete list of all such groups which are not finitely generated, whereas we only have a conjecture which groups are finitely generated but not finitely presented. The present situation is as follows:

Let F denote a global function field, $S=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ a finite non-empty set of primes of F; furthermore G is a linear algebraic group defined over F, which we can assume to be absolutely almost-simple (the reductive case can be reduced to this oneon the other hand the results become much easier) and which has rank r over F and r_{i} over the completion $F_{v_{i}}$ of $F\left(v_{i} \in S\right)$; finally let Γ be a S-arithmetic subgroup of $G(F)$.

Theorem. Γ is not finitely generated if and only if

$$
s=r=r_{1}=1
$$

The positive part (that means finite generation) is old (cf. [6]); the counter-examples for classical groups are due to Keller (cf. [14]), whose proof is modelled after Serre's for $S L_{2}$ ([18]), so only one group of exceptional Lie-type was left, which was settled in ([14a]). According to Tits' classification in [21] there exist S-arithmetic subgroups Γ, which are not finitely generated if G is equivalent up to central isogeny to exactly one of the following groups, where all forms are non-degenerate and of Witt-index (=rank) 1 over F and $F_{v}:=F_{v_{1}}$:
(a) Special linear group $S L_{2}(D)$, where D is a central division algebra over F and $D \otimes F_{v}$ is also a division algebra.
(b) Special unitary group $S U_{n}\left(F^{\prime}, h\right)$ for $n=3$ or 4 , where F^{\prime} is a quadratic extension of F and h a hermitian form with respect to F^{\prime} / F.

[^0](c) Special unitary group $S U_{2}(D, h)$, where D is a central division algebra over a quadratic extension F^{\prime} of F with an involution of the second kind, such that F^{\prime} splits over F_{v} (which implies $S U_{2} \otimes F_{v} \simeq S L_{2}$).
(d) Special unitary group $S U_{n}(D, h)$ for $n=2,3$, where D is a quaternion skew-field and h a hermitian form with respect to the standard-involution of D; provided char $F \neq 2$.
(e) Special unitary group $S U_{n}(D, s)$ for $n=4,5$, where D is a quaternion skew-field and s an antihermitian form with respect to the standard-involution of D, provided char $F \neq 2$.
(f) $\quad G$ is of type ${ }^{6} D_{4.1}^{9}$ and $G \otimes F_{v}$ of type ${ }^{2} D_{4}$.

Remarks.

(1) In case (d) and (e) there is another description for char $F=2$ (cf. [21]).
(2) Special orthogonal groups in 3, 5 or 6 variables are isogenous to groups in (a), (d) or (e) respectively, for 4 variables they are not absolutely almost simple.

Conjecture. Γ is not finitely presentable if and only if

$$
\sum_{i=1}^{s} r_{i} \leqq 2 \quad \text { and } \quad r>0
$$

This conjecture has been proved in the following cases:
(a) $G=S L_{2}$ (Stuhler [20]);
(b) G split with constant root-length, $s \geqq 1, r=r_{1} \geqq 3$ (Rehmann-Soulé [17], Splitthoff [19]);
(c) G split, not of type $G_{2}, \Gamma=G\left(\mathbb{F}_{q}\left[t, t^{-1}\right]\right.$), $r=r_{1}=r_{2} \geqq 2$ (Hurrelbrink [13]) or $G=S L_{n}, n \geqq 3, s \geqq 2$ (Splitthoff, loc. cit.);
(d) G arbitrary, $s=1, r=r_{1}=2$ (Behr [7], [16a]; McHardy [16]);
(e) G arbitrary, $r=1, \sum_{i=1}^{s} r_{i} \geqq 3$ (see main theorem below).

Remarks.

(1) These are "positive results" (i.e. proving finite presentability) in case (a) for $s \geqq 3$, case (b), (c) and (e) and "negative results" (i.e. giving counter-examples) in case (a) for $s=2$ and case (d).
(2) A positive result remains positive (for the same group) if one enlarges the set S : This can be shown in the same way as Kneser did (in [15]) in the number fieldcase.
(3) Γ is finitely presented if $r=0$: For an anisotropic group G the quotient $G\left(F_{v}\right) / \Gamma$ is compact by Godement's criterion (cf. Section 2) and since $G\left(F_{v}\right)$ is compactly presented (look at the Bruhat-Tits-building), the assertion for $s=1$ follows by Reidemeister-Schreier.
(4) The result (d) can be translated into an explicit list of groups: As above-in the case of nonfinitely generated groups-one obtains classical groups in low dimensions and some exceptional types.
(5) If the conjecture is true there should be further counterexamples with
(i) $s=1, r=1, r_{1}=2$: this is known only for some very special examples with the same proof as in (d),
(ii) $s=2, r=r_{1}=r_{2}=1$: Stuhler's proof for $S L_{2}$ can be generalized for these groups.
These are the only remaining cases for the negative part of the conjecture. For the positive part it would be enough-according to (b), (c) and Remark 2-to settle the cases
(iii) $s=1, r \geqq 2, r_{1} \geqq 3$;
(v) $s=2, r \geqq 2$
for non-split groups-or split groups excluded above.
(6) The proofs use very different methods: For (b) and (c) one applies pure grouptheory and algebraic K-theory, for (a) and (d) also topological methods come in via the operation on Bruhat-Tits-buildings.

All examples dealt with in (a)-(d) are either split (or Chevalley) groups or at least the global and local ranks of the group G coincide. For better support of the conjecture it is therefore important to look at a situation, in which these ranks are different, this may happen in case (e).

Main theorem. If the absolutely almost simple algebraic group G has rank 1 over F, a S-arithmetic subgroup Γ of G is finitely presentable in each of the following three cases:
(a) $s=3, r_{1}=r_{2}=r_{3}=1$;
(b) $s=2, r_{1} \geqq 2$ or $r_{2} \geqq 2$;
(c) $s=1, r_{1} \geqq 3$.

The proof uses old and new tools. In the next two sections we have to describe reduction theory and the operation on products of Bruhat-Tits-buildings: In this way we can pass from Γ to $\Gamma \cap P(F)$ for a parabolic subgroup P (defined over F). If and only if the global rank of G equals 1 we can translate the question of finite presentability of $\Gamma \cap P(F)$ to the problem of compact presentability of $P^{0}\left(F_{v_{i}}\right)$ (for an appropriate subgroup P^{0} of P) and for the latter one we can dispose of Abels' new techniques like contracting automorphisms and amalgamation of subgroups (cf. [4]), but unfortunately we cannot apply his explicit criterion, because its proof is only valid for characteristic 0 . Then it is easy to show part (a) (which includes the positive part of Stuhler's result for $S L_{2}$), a little bit harder for (b), but part (c) can be settled only by a tedious and lengthy case-by-case proof. Therefore we shall merely give the list of groups and carry out the details for some example. But all these examples suggest that Abels' criterion remains true in arbitrary characteristics.

We freely use the theory of reductive groups, especially over local fields and of their corresponding buildings as it is given in [8], [10] and [22], only special results will be cited precisely. To make things simpler we will assume that G is simply-connected: we can do this because the image of an arithmetic subgroup $\tilde{\Gamma}$ of the simply-connected covering \tilde{G} of G has finite index in Γ (cf. [5], Satz 1).

2. Reduction theory of arithmetic groups

We describe the main results of reduction theory over global function fields in the formulation of Harder in [12] together with some supplements due to [6]. For this purpose we need the following list of notation:

Let be
F a global function field;
V the set of all primes of F;
A the ring of adeles over F;
G a connected reductive algebraic group, defined over F;
$T \quad$ a maximal F-split torus of G;
$\Delta \quad=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ a system of simple roots of G with respect to T;
$P \quad$ a minimal parabolic subgroup of G, defined over F, which contains T and corresponds to Δ;
$P_{\boldsymbol{\Theta}} \quad$ a F-parabolic subgroup of G of type $\Theta \subseteq \Delta$, which contains P, i.e. Θ is a system of simple roots of the semi-simple part of P_{Θ}, in particular:
$Q_{i} \quad$ the maximal parabolic subgroup of type $\Delta-\left\{\alpha_{i}\right\}$ above P;
$Z \quad$ the centre of G;
K the product $\prod_{v \in V} K_{v}$ with open and compact subgroups K_{v} of $G\left(F_{v}\right)$ for all completions F_{v} of F;
$H^{\circ}(A)=\{h \in H(A) \| \chi(h) \mid=1$ for all $\chi \in \hat{H}(F)\}$ for a subgroup H of G and its group \hat{H} of characters, where || denotes the idele-norm;
$H^{g}=g^{-1} H g$ for $H \subseteq G(A), g \in G(A)$;
$S \quad$ a finite non-empty set of primes of F;
$G_{S}=\prod_{v \in S} G\left(F_{v}\right)\left(\right.$ for $H \subseteq G(A)$ denote by H_{S} the projection of H on G_{S});
$\Gamma \quad$ a S-arithmetic subgroup of G.
Remark. The roots α_{i} are in general not contained in P, but it is possible to extend the idele-norm of α_{i} to a function on $P(A)$ (cf. [12], page 47).

The numerical invariants $v_{i}(P, K)(i=1, \ldots, r)$, defined by Harder, have the following properties:

$$
\begin{align*}
& v_{i}\left(P^{\gamma}, K^{\gamma}\right)=v_{i}(P, K) \text { for } \gamma \in \Gamma ; \tag{1}\\
& v_{i}\left(P, K^{p}\right)=v_{i}(P, K)\left|\alpha_{i}(p)\right|^{-1} \text { for } p \in P(A) ;
\end{align*}
$$

(3) For two compact-open subgroups $K=\prod_{v} K_{v}$ and $K^{\prime}=\prod_{v} K_{v}^{\prime}$ there exist real constants d and d^{\prime} with $d v_{i}(P, K) \leqq v_{i}\left(P, K^{\prime}\right) \leqq d^{\prime} v_{i}(P, K)$.

Theorem A. There exists a constant $C_{1}>0$, depending on K, such that for each $g \in G(A)$ there is a minimal parabolic F-subgroup of G with

$$
v_{i}\left(P, K^{g}\right) \geqq C_{1} \quad \text { for all } \quad i=1, \ldots, r
$$

We can reformulate Theorem A with respect to the action of Γ and sharpen it by choosing a particular K : For each $v \in V$ we take K_{v} to be the stabilizer of a "special point" in the Bruhat-Tits-building, then we have the Iwasawa-decomposition $G\left(F_{v}\right)=$ $K_{v} P_{v}^{\prime}\left(F_{v}\right)$ with a minimal parabolic F_{v}-subgroup P_{v}^{\prime} (cf. [22], 3.2 and 3.3.2), which
implies that there is only one conjugacy class of $P \supseteq P_{v}^{\prime}$ relative to $K=\prod_{v} K_{v}$; thus we have the

Corollary A^{\prime}. There exists a maximal compact subgroup K of $G(A)$, such that for a fixed parabolic F-subgroup P_{0} of G and each $g \in G(A)$ there is a $\gamma \in G(F)$ with $v_{i}\left(P_{0}, K^{g \gamma}\right) \geqq C_{1}$ for all $i=1, \ldots, r\left(\right.$ where C_{1} is the constant of Theorem A).

Theorem B. Let $C_{1}>0$ be a constant for which Theorem A holds: There is a second constant $C_{2}>0$ (depending on C_{1}) with the following property:

If $v_{i}\left(P, K^{g}\right) \geqq C_{1}$ for all i and some minimal parabolic F-subgroup P and even $v_{i}\left(P, K^{g}\right) \geqq C_{2}$ for all i with $\alpha_{i} \in \Theta \subseteq \Delta$, then each minimal parabolic F-subgroup P^{\prime} is contained in $P_{\Delta-\theta}$ if $v_{i}\left(P^{\prime}, K^{g}\right) \geqq C_{1}$ for all i.

Corollary B'. If $v_{i}\left(P, K^{g}\right) \geqq C_{1}$ and $v_{i}\left(P, K^{g \gamma}\right) \geqq C_{1}$ for all i and $\gamma \in G(F)$ and even $v_{i}\left(P, K^{g}\right) \geqq C_{2}$ for all i with $\alpha_{i} \in \Theta$, then γ is an element of $P_{\Delta-\Theta}$.

Proof. According to Theorem B and property (1) we have $P^{\prime}=\underline{P^{\nu-1}} \subseteq P_{\Delta-\Theta}$ which implies $\gamma \in P_{\Delta-\Theta}$ (cf. [9], 2.6).

Theorem C.

(a) $\quad M \subseteq G(A)$ is relatively compact modulo $Z(A) G(F)$ if and only if for each $g \in M$ there exists a minimal parabolic F-subgroup P with $C_{1} \leqq v_{i}\left(P, K^{g}\right) \leqq C^{\prime}$ for all i, constant C_{1} from Theorem A and some constant C^{\prime}.
(b) "Godement's compactness criterion": $G(A)^{0} / G(F)$ is compact if and only if G is anisotropic, i.e. there exists no proper parabolic subgroup defined over F.
(c) For a unipotent subgroup U of G the quotient $U(A) / U(F)$ is compact.

For assertion (c) compare [6], Satz 3; it is valid for all groups, which can be trigonalized over the separable closure of F.

We have to transfer these results on adelized groups to finite products $G_{S}=$ $\prod_{\nu \in S} G\left(F_{v}\right)$, which we consider as subgroups of $G(A)$ (taking all components outside S to be 1) and which contain S-arithmetic groups as discrete subgroups. We assume that G is concretely given as a matrix group defined over O_{S}, the ring of S-integers in F. Thus we have $\Gamma=\left\{g \in G(F) \mid g \in G\left(O_{v}\right)\right.$ for all $\left.v \notin S\right\}$, where O_{v} denotes the ring of integers in F_{v}. Moreover we fix K_{v} for $v \notin S$ to be $G\left(O_{v}\right)$ and suppose that it is the stabilizer of a special point-changing to a commensurable group Γ^{\prime} if necessary.

The Theorems A, B, C and Corollary B' remain true for the pair (G_{S}, Γ) instead of $\left(G(A), G(F)\right.$); the constants C_{1} and C_{2} depend on the choice of the groups K_{v}, but only for $v \in S$. The Corollary A^{\prime} has to be weakened; we use

Theorem D. $P(F) \backslash G(F) / \Gamma$ is a finite set and therefore the number of Γ-conjugacy classes of P is also finite.

Corollary D'. Let P_{1}, \ldots, P_{h} be a complete set of representatives for the Γ-conjugacy classes of minimal parabolic F-subgroups. For suitably chosen K_{s} there exist for each $g \in G_{S}$ an element $\gamma \in \Gamma$ and an index $j \in\{1, \ldots, h\}$ such that $v_{i}\left(P_{j}, K^{g \gamma}\right) \geqq C_{1}^{\prime}$ for all $i=1, \ldots, r$ and an appropriate constant $C_{1}^{\prime} \leqq C_{1}$.

For the proof compare [11], no. 12 and [6] nos. 8 and 9 ; for $v \in S$ one has to choose again K_{v} as stabilizer of a special point, because one needs Iwasawa's decomposition.

3. Action on products of Bruhat-Tits-buildings

For each $v \in S$ denote by X_{v} the Bruhat-Tits-building of the group $G\left(F_{v}\right)$ and define $X:=\prod_{\nu \in S} X_{v}$. Henceforth we make the following

Assumption. G is semi-simple and simply-connected.
This implies that all X_{v} and also X are polysimplicial complexes with the following properties (cf. [22], 3.1-3.2):
$G\left(F_{v}\right)$ is a group with $B N$-pair (or Tits-system), B being the stabilizer of an open chamber C_{v} of X_{v} and N the normalizer of a maximal F_{v}-split torus. The maximal compact subgroups of $G\left(F_{v}\right)$ are precisely the stabilizers of the vertices of X_{v}, which are uniquely determined by their stabilizers. There are finitely many conjugacy-classes with respect to $G\left(F_{v}\right)$ and as a set of representatives we can choose the stabilizers of the vertices of a fixed chamber C, we call it $\mathfrak{R}_{v, C}$, such that $\mathfrak{R}:=\left\{\prod_{\nu \in S} K_{\nu} \mid K_{v} \in \mathfrak{R}_{\nu, C}\right\}$ is a finite set of representatives for the conjugacy-classes of maximal compact groups in G_{s}. In this way we can identify all vertices of X with the groups K^{g} for $K \in \Re$ and $g \in G_{S}$. Using property (3) of no. 2 we obtain a version of Theorem A which yields for all $K \in \mathfrak{R}$ the same parabolic subgroup P-of course for a smaller constant c_{1}. We denote a polysimplex by $\left\{K^{g}\right\}, K$ running through all K in \mathfrak{R}.
(A) For each polysimplex $\left\{K^{g}\right\}$ there exists a minimal parabolic F-subgroup P of G with $v_{i}\left(P, K^{\dot{g}}\right) \geqq c_{1}$ for $i=1, \ldots, r$ and all $K \in \mathfrak{R}$.

The Corollary A^{\prime} is only valid for a special K (in general there exist finitely many K-conjugacy-classes of minimal parabolic subgroups), but if we use once more property (3) of no. 2, we may assume this corollary for all $K \in \Re$, provided we take a smaller constant. Again we pass from $G(A)$ to G_{S} and obtain the following generalization of the Corollary D^{\prime}, observing that the representative P_{j} does not depend on K :
(D) Let P_{1}, \ldots, P_{h} denote a complete system of minimal parabolic F-subgroups of G. There exists a constant $c_{1}^{\prime}>0$ such that for each polysimplex $\left\{K^{g}\right\}$ there is a Γ-equivalent polysimplex $\left\{K^{g \gamma}\right\}$ and an index $j \in\{1, \ldots, h\}$ with the following property: $v_{i}\left(P_{j}, K^{g \gamma}\right) \geqq c_{1}^{\prime}$ for all $i=1, \ldots, r$ and all $K \in \mathfrak{R}$.

Theorem B and its Corollary B^{\prime} are true simultaneously for all $K \in \mathfrak{R}$ with a constant c_{2} or c_{2}^{\prime} corresponding to c_{1} or c_{1}^{\prime} respectively.

We are going to construct a covering of X by subcomplexes.
Definition. (a) Let Q be a parabolic F-subgroup of type Θ (i.e. $Q=P_{\Theta}$) and $X_{Q}\left(c_{2}\right)$ a subcomplex of X, defined by the following condition:

A polysimplex $\left\{K^{g}\right\}$ of X belongs to $X_{Q}\left(c_{2}\right)$ if and only if there is a minimal parabolic F-subgroup P of Q such that $v_{i}\left(P, K^{g}\right) \geqq c_{1}$ for all i and even $v_{i}\left(P, K^{g}\right) \geqq c_{2}$ for all i with $\alpha_{i} \in \Theta$ and for all $K \in \mathfrak{R}$ in both cases.
(b) The subcomplex X_{0} of X is given as follows:

A polysimplex $\left\{K^{g}\right\}$ of X belongs to X_{0}, if and only if for each minimal parabolic F-subgroup P with $v_{i}\left(P, K^{g}\right) \geqq c_{1}$ for all $K \in \Re$ and all $i \in\{1, \ldots, r\}$ there is no index i such that $v_{i}\left(P, K^{g}\right) \geqq c_{2}$ for all $K \in \mathfrak{R}$.

From the results of reduction theory and the definition above we deduce immediately the following

Proposition 1. (a) $X=X_{0} \cup X^{\prime}$ with $X^{\prime}=\bigcup_{Q} X_{Q}\left(c_{2}\right), Q$ running over all proper parabolic F-subgroups of G.
(b) X_{0} and X^{\prime} are Γ-invariant, $X_{0} \bmod \Gamma$ is finite.

In statement (b) we consider the action of Γ on X, the invariance of X_{0} and X^{\prime} follows from property (1) in no. 2. For the second assertion we make use of Theorem C, part (a), observing that the centre Z of a semi-simple group G is finite: If $\left\{K^{g}\right\}$ belongs to X_{0}, we have $v_{i}\left(P, K^{g}\right)<c_{2}$ for each index i and some $K \in \mathfrak{R}$; by property (3) of no. 2 this implies $v_{i}\left(P, K^{g}\right) \leqq \bar{c}_{2}$ for some constant $\bar{c}_{2} \geqq c_{2}$ and all $K \in \mathfrak{R}$. On the other hand $v_{i}\left(P, K^{g}\right) \geqq c_{1}$ and Theorem $C(a)$ shows that the set of all $g \in G_{S}$ with $\left\{K^{g}\right\} \in X_{0}$ is relatively compact modulo Γ, which means that $X_{0} \bmod \Gamma$ is finite, because all K are also open subgroups.

For the special case of a group G with F-rank 1 we may specialize these results: all proper parabolic F-subgroups are minimal and there is only one invariant v. We construct a subcomplex Y of X, which contains representatives modulo Γ. We have to use statement (D) with constant c_{1}^{\prime} and choose a constant $c_{2}^{\prime}>c_{1}^{\prime}$ such that Theorem B and its Corollary B^{\prime} are valid simultaneously for all $K \in \mathfrak{R}$. With the system $\left\{P_{1}, \ldots, P_{h}\right\}$ from (D) we define for $j=1, \ldots, h$:

$$
\begin{gathered}
Y_{j}:=Y_{j}\left(c_{2}^{\prime}\right):=\left\{\left\{K^{g}\right\} \mid v\left(P_{j}, K^{g}\right) \geqq c_{2}^{\prime} \text { for } K \in \Re\right\} \quad \text { and } \\
Y_{0}:=\left\{\left\{K^{g}\right\} \left\lvert\, \begin{array}{ll}
c_{1}^{\prime} \leqq v\left(P_{j}, K^{g}\right) & \text { for some } j \text { and all } K \in \Re \text { but } \\
v\left(P_{j}, K^{g}\right) \leqq c_{2}^{\prime} & \text { for at least one } K \in \Re
\end{array}\right.\right\} .
\end{gathered}
$$

Proposition 2. (a) For each polysimplex in X there exists a Γ-equivalent polysimplex in

$$
Y:=Y_{0} \cup \bigcup_{j=1}^{h} Y_{j}
$$

(b) Y_{0} is a finite complex and the complexes Y_{j} are mutually disjoint.
(c) If there exists for given $y_{j} \in Y_{j}$ and $y_{k} \in Y_{k}$ with $j>0, k \geqq 0$ an element $\gamma \in \Gamma$ with $y_{j}^{\prime}=y_{k}$, then we have $j=k$ and $\gamma \in P_{j}(F) \cap \Gamma$.

In addition we can assume that Y is connected by blowing up the finite complex Y_{0} in such a way that it becomes connected and meets all $Y_{j}(j=1, \ldots, h)$, which are themselves connected.

4. Reduction to parabolic subgroups

From the action of Γ on the complex X we deduce now a presentation of Γ using the subcomplex Y of representatives $\bmod \Gamma$ given in Proposition 2. This presentation contains-besides some finite set of generators and relations-the free product of the groups $\Gamma_{j}:=P_{j}(F) \cap \Gamma$ with amalgamation of their mutual intersections. We use the following principle:

Theorem E. The group Γ acts (on the right) on the poly-simplicial complex X with simplicial operation on each factor of X. We suppose X to be connected and simplyconnected. Let Y be a subcomplex of X such that for each polysimplex $x \in X$ there exists a polysimplex $y \in Y$ and $\gamma \in \Gamma$ with $y \gamma=x$. Then $E:=\{\gamma \in \Gamma \mid Y \gamma \cap Y \neq \varnothing\}$ is a set of generators for the group Γ and $R:=\left\{\gamma_{1} \cdot \gamma_{2}^{-1} \cdot\left(\gamma_{2} \gamma_{1}^{-1}\right) \mid Y_{\gamma_{1}} \cap Y \gamma_{2} \cap Y \neq \varnothing\right\}$ is a system of defining relations in E.

Theorem E is proved in [2], Example 4.6 for simplicial complexes.
We apply this theorem to Γ, X and Y from Section 3 (denoted in the same way):
A Bruhat-Tits-building and therefore X is contractible and we can assume that Y is connected. The operation of Γ on X is simplicial on each factor of X : if S contains more than one prime, the operation is defined on each factor $X_{v}(v \in S)$ separately; if G is semi-simple the simple factors of G are acting only on one simplicial factor of the building.

Corresponding to the decomposition of Y we divide E and R into the following parts:

$$
E_{0}:=\left\{\gamma \in \Gamma \mid Y_{0} \gamma \cap Y_{0} \neq \varnothing\right\}
$$

is a finite set, because Y_{0} is a finite complex and all stabilizers of vertices are finite as intersections of a compact and a discrete group;

$$
E_{j}:=\left\{\gamma \in \Gamma \mid Y_{j} \gamma \cap Y_{j} \neq \varnothing\right\}
$$

is contained in $\Gamma_{j}=P_{j}(F) \cap \Gamma$ (cf. Proposition 2(c));

$$
R_{0}:=\left\{\gamma_{1} \cdot \gamma_{2}^{-1} \cdot\left(\gamma_{2} \gamma_{1}^{-1}\right) \mid Y_{0} \gamma_{1} \cap Y_{0} \gamma_{2} \cap Y_{0} \neq \varnothing\right\}
$$

is finite;

$$
R_{j}:=\left\{\gamma_{1} \cdot \gamma_{2}^{-1} \cdot\left(\gamma_{2} \gamma_{1}^{-1}\right) \mid y_{1} \gamma_{1}=y_{2} \gamma_{2}=y_{3} \text { with } y_{\lambda} \in Y_{j} \text { for some } \lambda \in 1,2,3\right\}
$$

R_{j} consists only of relations in the group Γ_{j}, because we have the following implications from Proposition 2(c):

$$
\begin{aligned}
& y_{1} \in Y_{j} \Rightarrow \gamma_{1}, \gamma_{1} \gamma_{2}^{-1} \in \Gamma_{j} \\
& y_{2} \in Y_{j} \Rightarrow \gamma_{2}, \gamma_{2} \gamma_{1}^{-1} \in \Gamma_{j} \\
& y_{3} \in Y_{j} \Rightarrow \gamma_{1}^{-1}, \gamma_{2}^{-1} \in \Gamma_{j}
\end{aligned}
$$

Moreover we have to take into consideration that the same generator may belong to different sets E_{0} or E_{j} whereas our relations are products in a fixed set; therefore we must add identifying relations:

$$
R_{0 j}:=\left\{\gamma_{1} \cdot \gamma_{2}^{-1} \mid \gamma_{1} \in E_{0}, \gamma_{2} \in E_{j}\right\}
$$

is finite for all j;

$$
R_{j k}:=\left\{\gamma_{1} \gamma_{2}^{-1} \mid \gamma_{1} \in E_{j}, \gamma_{2} \in E_{k}\right\}
$$

identifies the intersection $\Gamma_{j} \cap \Gamma_{k}$ with subgroups of Γ_{j} and Γ_{k} respectively.
We sum up these considerations in
Proposition 3. Γ is finitely presentable if all subgroups $\Gamma_{j}=\Gamma \cap P_{j}(F)$ are finitely presented and all intersections $\Gamma_{j} \cap \Gamma_{k}$ are finitely generated.

5. Compact presentability

We start with the observation that Γ_{j} is not contained in $\left(P_{j}\right)_{S}=\prod_{v \in S} P_{j}\left(F_{v}\right)$ but even in $\left(P_{j}\right)^{0}$, since $|\chi(\gamma)|_{v}=1$ for $v \notin S$ and we have the product formula $\prod_{v \in V}|\chi(\gamma)|_{v}=1$.

By application of the Reidemeister-Schreier-principle we are now able to translate our problem of finite presentability into a question of compact presentability-several definitions of this notion are given in [1]-using the following

Theorem F. Let Γ be a S-arithmetic subgroup of the algebraic group H and suppose that $H_{\mathrm{s}}^{0} / \Gamma$ is compact; then we have:
Γ is finitely generated or finitely presented if and only if H_{S}^{0} is compactly generated or respectively finitely presented.

Theorem F is proved in [15] in the more difficult situation of number fields where one has to reduce the problem to the finite generation (presentation) of an ordinary
arithmetic group (defined for $S=S_{\infty}$, the set of archimedean primes); we can replace this group by the finite group $H(\bar{F})$, where \bar{F} denotes the field of constants in F. Furthermore we have to use H_{S}^{0} instead of the product $\prod_{\nu \in S \backslash S_{\infty}} H_{v}$, according to the fact that the quotient $\prod_{v \in S \backslash S_{\infty}} H_{v}\left(k_{v}\right) / \Gamma$ is always compact for a number field k and a S-arithmetic group Γ.

In our case we have to show that P_{S}^{0} / Γ_{P} for $\Gamma_{P}=\Gamma \cap P(F)$ is compact, if P denotes a minimal parabolic F-subgroup. But P is a semi-direct product of a reductive group Z_{P} and its unipotent radical U_{P} and we have the decomposition $P_{S}^{0}=\left(Z_{P}\right)_{S}^{0}\left(U_{P}\right)_{S}$. For the second factor we have part (c) of Theorem C and for the first one we can apply part (b) of the same theorem since a minimal parabolic group has "semi-simple rank 0 ", which means that P^{0} is anisotropic. Thus we obtain the following consequence of Proposition 3:

Proposition 4. Γ is finitely presentable if for minimal parabolic F-subgroups P and P^{\prime} of G the group $P_{S}^{0}\left(\right.$ and also $\left.\left(P^{\prime}\right)_{S}^{0}\right)$ is compactly presentable and the intersection $P_{S}^{0} \cap\left(P^{\prime}\right)_{S}^{0}$ is compactly generated.

For the proof of compact presentability we dispose of the following results due to Abels:

Theorem G. (a) Let $1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1$ be an exact sequence of locally compact topological groups.
(i) If B has a compact presentation and A contains a compact subset K, such that A is the smallest closed normal subgroup of B containing K, then C has a compact presentation too.
(ii) If A and C are compactly presentable, the same is true for B.
(b) Let H be the semi-direct product of a torus T and a unipotent subgroup U, both defined over the local field F_{v}. If $T\left(F_{v}\right)$ contains an element, which acts on $U\left(F_{v}\right)$ as a contracting automorphism, then $H\left(F_{v}\right)$ has a compact presentation.

Remark. An automorphism α of a locally compact topological group N is called contracting if the sequence $\alpha^{n}, n \in \mathbb{N}$ converges to the map $N \rightarrow\{e\}$ uniformly on compact subsets.

Statement (a) is part of the "diagram-lemma" of [1]. Assertion (b) is proved in [4], for the case of a semi-direct product $\langle t\rangle \bowtie N$ with $\langle t\rangle \simeq \mathbb{Z}$ and N locally compact, but this is enough in view of (a) and the fact that $T\left(F_{v}\right)$ is compactly presentable. We shall use part (a) of this theorem in the following way: We assume for simplicity that G is absolutely almost-simple and simply connected of F-rank 1 and we consider P_{S}^{0} for a minimal parabolic F-subgroup P of G. P is the semi-direct product of $Z(T)$ and U, where $Z(T)$ is the centralizer of a maximal F-split torus T of G, which has dimension 1 and U denotes the unipotent radical of P. Moreover $Z(T)$ is an almost-direct product of T and an anisotropic group M; it follows that $M_{S} \cdot T_{S}$ has finite index in $Z(T)_{S}$ since there is an isogeny of reductive groups from $M \times T$ on $M T$. Furthermore T_{S}^{0} is contained in P_{S}^{0}, because the character group $\hat{P}(F)$ has finite index in $\widehat{T}(F)$ and of course U_{S} and M_{S} are subgroups of P_{S}^{0}. According to Reidemeister-Schreier it is enough to
prove compact presentability for the product $M_{S} T_{S}^{0} U_{S}$ in order to prove it for P_{S}^{0}.
Before doing this in three different situations we can make two general remarks:
(1) The intersections $P_{S}^{0} \cap\left(P^{\prime}\right)_{S}^{0}$ (for parabolic subgroups P and P^{\prime}) are always compactly generated: From the properties of a BN-pair ([9], 2.6) we have that $P \cap P^{\prime}=Z\left(T^{\prime}\right)$, the centralizer of a suitable maximal F-split torus T^{\prime}; now $T^{\prime}\left(F_{v}\right)$ is compactly presented and the anisotropic part of $Z\left(T^{\prime}\right)$ is a reductive groupbut we have
(2) For a reductive group H, defined over $F, H\left(F_{v}\right)$ and H_{S} are compactly presentable: Considering the action on the Bruhat-Tits-building we see, that $H\left(F_{v}\right)$ is the amalgamated sum of the stabilizers of the vertices of a fundamental chamber (by an amalgamated sum of a family of groups $\left\{G_{i}\right\}_{i \in I}$-where all G_{i} are contained in some group $G-$ we understand the direct limit of these groups and their intersections $G_{i j}=G_{i} \cap G_{j}$ with respect to the injections $G_{i j} \hookrightarrow G_{i}$ for all $i, j \in I$).

6. The case $r=1$ and $s>1$

Now we have all the tools to prove the main theorem; in this section we shall settle the first two cases.
(a) $s=3, r=r_{1}=r_{2}=r_{3}=1$

From the last section we know that it is enough to show the compact presentability of $T_{S}^{0} U_{S}$ (in this case M_{S} is even compact, since M remains anisotropic over $F_{i}:=F_{v_{i}}$ for $i=1,2,3$).

We define three subgroups

$$
H_{i}:=T_{s}^{0} \prod_{j \neq i} U\left(F_{j}\right) \subset T_{s}^{0} U_{S} \quad \text { for } \quad i, j \in\{1,2,3\}
$$

to which we shall apply Theorem $G(b)$.
U is the semi-direct product $U_{\alpha} U_{2 \alpha}$, where $\{\alpha\}$ or $\{\alpha, 2 \alpha\}$ denotes the set of positive roots with respect to $T\left(U_{2 \alpha}=\{1\}\right.$ in the first case). Then T acts on U by inner automorphisms, which means by multiplication with $\alpha\left(t_{i}\right)$ or $\alpha^{2}\left(t_{i}\right)$ respectively on the F_{i} vector space $U\left(F_{i}\right)$ for $t_{i} \in T\left(F_{i}\right)$. Therefore we can find an element $t=\prod_{i=1}^{3} t_{i} \in T_{S}$, which induces contracting automorphisms on $U\left(F_{1}\right)$ and $U\left(F_{2}\right)$, if we choose $\left|\alpha\left(t_{1}\right)\right|_{1}<1$ and $\left|\alpha\left(t_{2}\right)\right|_{2}<1$ and we have even $t \in T_{S}^{0}$ by defining t_{3} in such a way that $\left|\alpha\left(t_{3}\right)\right|_{3}=$ $\left(\left|\alpha\left(t_{1}\right)\right|_{1}\left|\alpha\left(t_{2}\right)\right|_{2}\right)^{-1}$. So we have a contracting element for the group $H_{3}=$ $T_{s}^{0} U\left(F_{1}\right) U\left(F_{2}\right)$ and we can do the same for the groups H_{1} and H_{2}. Observe that the third component, where the automorphism would be expanding, is trivial! By Theorem $G(b)$ we conclude that all three groups H_{i} are compactly presented and also that their intersections are compactly generated. Thus the amalgamated sum of H_{1}, H_{2} and H_{3} is compactly presented, but this product is nothing else than the whole group $T_{S}^{0} U_{S}$, since all relations, which define this group as a semidirect product or give the commutability of the three factors $U\left(F_{i}\right)$ are relations in one of the three groups H_{i}.
(b) $s=2, r=1, r_{1}>1$ (without loss of generality)

In analogy with case (a) we define the following groups:

$$
H_{1}:=M_{S} \cdot T_{S}^{0} \cdot U\left(F_{1}\right) \quad \text { and } \quad H_{2}:=M_{S} \cdot T_{S}^{0} \cdot U\left(F_{2}\right) .
$$

In the same way we obtain that $T_{S}^{0} \cdot U\left(F_{1}\right)$ and $T_{S}^{0} \cdot U\left(F_{2}\right)$ are compactly presentable; on account of the last remark of Section 5 this is also true for M_{S} and therefore by Theorem G-(a) for H_{1} and H_{2}. But this time the amalgamated sum of H_{1} and H_{2} gives not P_{S}^{0}, since $U\left(F_{1}\right)$ and $U\left(F_{2}\right)$ do not commute in this sum. So we need further factors:

We take a maximal F_{1}-split torus T^{\prime} in M, which is not trivial by the assumption $r_{1}>1$. T^{\prime} normalizes U and therefore we can split up U into root-subgroups with respect to T^{\prime} and the intersection of U with the centralizer of T^{\prime} (cf. [8], 3.11). Let $R=R_{+} \cup R_{-}$be the system of all roots with respect to T^{\prime}, then we have the following decomposition (defined over F_{1}): $U=U_{+} \cdot U_{0} \cdot U_{-}$, where U_{+}is the product of all unipotent subgroups U_{α} with $\alpha \in R_{+}, U_{-}$the same for $\alpha \in R_{-}$and $U_{0}=U \cap Z\left(T^{\prime}\right)$.

Now we consider the groups $H_{+}:=T^{\prime}\left(F_{1}\right) \cdot U_{+}\left(F_{1}\right)$ and $H_{-}:=T^{\prime}\left(F_{1}\right) \cdot U_{-}\left(F_{1}\right)$, which are compactly presentable, because we find contracting elements $t^{\prime} \in T^{\prime}\left(F_{1}\right)$, choosing $\left|\alpha\left(t^{\prime}\right)\right|_{1}<1$ for all $\alpha \in R_{+}$or $\alpha \in R_{-}$respectively-and are able to apply again Theorem $G(b)$.

As a next step we define semi-direct products L_{+}of H_{+}and $T_{S}^{0} \cdot U\left(F_{2}\right)$ and L_{-}of H_{-} and $T_{S}^{0} \cdot U\left(F_{2}\right), H_{+}$and H_{-}being normal. According to Theorem $G(a)$ these groups L_{+}and L_{-}have compact presentations; inside L_{+}the commutability of $U_{+}\left(F_{1}\right)$ and $U\left(F_{2}\right)$ is defined and the same is true for $U_{-}\left(F_{1}\right)$ and $U\left(F_{2}\right)$ within L_{-}. If we can show that this implies that even $U_{0}\left(F_{1}\right)$ commutes with $U\left(F_{2}\right)$, we are finished, because $M_{S} \cdot T_{S}^{0} \cdot U_{S}$ is the amalgamated sum of H_{1}, H_{2}, L_{+}and L_{-}, which are all compactly presentable and it is easy to see that all their intersections are at least compactly generated.

For this purpose we choose a maximal F_{1}-split torus \bar{T} in G, that contains T and T^{\prime}-which is possible since $T \cap T^{\prime}$ is finite; on the other hand $T \cdot T^{\prime}$ is of finite index in $\bar{T} . U_{0}$ can be given as the product of groups U_{a} with roots a corresponding to \bar{T} and obviously we have $a \mid T=\alpha$ or $a \mid T=2 \alpha$ and $a \mid T^{\prime}=0$. If there exists a root b (with respect to \bar{T} and defined over F_{1}) with $b \mid T=0$, it is possible to select b in such a way that $a+b$ is also a root (here we have to suppose that G is absolutely almost-simple: for this statement and the following conclusions see [6], no. 15-18). Since [$\bar{T}: T \cdot T^{\prime}$] is finite we must have $b \mid T^{\prime} \neq 0$, which implies either $U_{a+b}\left(F_{1}\right) \subseteq L_{+}$and $U_{-b}\left(F_{1}\right) \subseteq L_{-}$or the converse, the same is true for all groups $U_{r(a+b)+s(-b)}\left(F_{1}\right)$ with $r, s \in \mathbb{N}$. Now we have to use Chevalley's commutator formula in order to compute [U_{a+b}, U_{-b}], which shows that each element in $U_{a}\left(F_{1}\right)$ is a product of elements contained either in $U_{+}\left(F_{1}\right)$ or $U_{-}\left(F_{1}\right)$; this is valid for all a and therefore also for $U_{0}\left(F_{1}\right)$. We know already that all these factors commute with $U\left(F_{2}\right)$ and conclude that $U_{0}\left(F_{1}\right)$ and $U\left(F_{2}\right)$ are commutable too.

But it may happen that there is no root b with $b \mid T=0$; looking at the classification tables in [21] we see that there is only one such case, namely the type ${ }^{2} A_{n}$. This means that we have $G=S U_{3}(D, h)$ with a skew-field D and a hermitian from h with respect to an involution of the second kind of D. For this group we have the following
decomposition (defined over F_{1}): $U=U_{a} \cdot U_{b} \cdot U_{a+b}$ with $a|T=b| T$ and $a\left|T^{\prime}=(-b)\right| T^{\prime}$, which implies $U_{0}=U_{a+b}=\left[U_{a}, U_{b}\right]$; since $U_{a} \subseteq U_{+}$and $U_{b} \subseteq U_{-}$we have the same argument as before.

7. The case $r=1$ and $s=1$

(a) For that case I am not able to give a unified proof; so we have to consider all groups G with global rank 1 and local rank at least 3 (i.e. $r k_{F} G=1$ and $r k_{F_{v}} G \geqq 3$ with $S=\{v\}$)-as before we assume G to be absolutely almost simple but not necessarily simply connected. In order to classify these groups we have to use the diagrams given in [21], but there is no specification for global fields of finite characteristic, but Professor Tits has communicated to me the following supplement:

The set of diagrams for global function fields is contained in the set for number fields, but the anisotropic part has to be of inner or outer type A_{n}. Thus we have the following list of types with global rank 1 and local rank $\geqq 3$ (written "global \rightarrow local"):

$$
\begin{array}{llrl}
{ }^{1} A_{n} \rightarrow{ }^{1} A_{n} & (n \geqq 3) & { }^{2} D_{n} \rightarrow{ }^{1} D_{n} & (n=3,4,5) \\
{ }^{2} A_{n} \rightarrow{ }^{1} A_{n} & (n \geqq 3) & { }^{2} D_{n} \rightarrow{ }^{2} D_{n} & (n=4,5) \\
{ }^{2} A_{n} \rightarrow{ }^{2} A_{n} & (n \geqq 3) & { }^{3(6)} D_{4,1}^{9} \rightarrow{ }^{1} D_{4} & \text { or } \quad{ }^{2} D_{4} \\
C_{3} \rightarrow C_{3} & & { }^{2} E_{6,1}^{35} \rightarrow{ }^{2} E_{6,4}^{2} & \text { or } \quad{ }^{1} E_{6,6}^{0} \\
{ }^{1} D_{n} \rightarrow{ }^{1} D_{n} & (n=4,5) & &
\end{array}
$$

Since we have to prove the compact presentability of a group over F_{v}, we should start with $\bar{G}=G \otimes F_{v}$ and identify in such a group the proper parabolic subgroup P of G, defined over F, as well as the character χ which defines P^{0}. For this purpose we imbed the maximal F-split torus T of G into a maximal F_{v}-split torus \bar{T} of \bar{G} and extend χ to a character on \bar{T}, which gives us \bar{T}^{0}. Moreover let \bar{P} be a minimal F_{v}-parabolic subgroup, which is contained in P and has the decomposition $\bar{P}=Z(\bar{T}) \cdot \bar{U}$ (\bar{U} the unipotent radical of $\bar{P})$. Since the quotient $\bar{G}\left(F_{v}\right) / \bar{P}\left(F_{v}\right)$ is compact, the same is true for $P^{0}\left(F_{v}\right) / \bar{P}^{0}\left(F_{v}\right)$ and we can restrict ourselves to $\bar{P}^{0} . Z(\bar{T})$ contains an anisotropic group \bar{M}, such that $\bar{M}\left(F_{v}\right)$ is compact, and the torus $\bar{T} \supseteq \bar{T}^{0}$. Thus it remains to prove that $\bar{T}^{0}\left(F_{v}\right) \cdot \bar{U}\left(F_{v}\right)$ has a compact presentation-using again Theorem $\mathrm{G}(\mathrm{a})$.

We decompose \bar{U} into root groups with respect to \bar{T} and look for elements in $\bar{T}^{0}\left(F_{v}\right)$ which provide us with contracting homomorphisms for appropriate subgroups of $\bar{U}\left(F_{v}\right)$, given as products of root groups \bar{U}_{a}. In this way we obtain compactly presented groups (by Theorem $G(b)$), which we amalgamate in order to show that $\bar{T}^{0}\left(F_{v}\right) \cdot \bar{U}\left(F_{v}\right)$ has a compact presentation. But in general \bar{U} contains a subgroup \bar{U}_{0}, on which \bar{T}^{0} acts trivially. For those root groups $\bar{U}_{a} \subseteq \bar{U}_{0}$ we have to show that the elements of $\bar{U}_{a}\left(F_{v}\right)$ can be written as commutators of elements which are already contained in "good" subgroups, described above. This definition as a commutator may not be unique; so we have to prove that different commutators give the same element which can be done using an identity due to Philip Hall. In the last step we have to check that all commutator relations in \bar{U} are either valid in some good subgroup or follow from these relations, using a convenient definition for the elements in $\bar{U}_{0}\left(F_{v}\right)$ as a commutator.
(b) As an example we shall give the details for a group which is locally of type ${ }^{1} D_{4}$ with rank 4 and comes from a global group of type ${ }^{1} D_{4}$ or ${ }^{2} D_{4}$ with rank 1 . We may think of the local group as $G=\mathrm{SO}_{8}$, corresponding to the direct sum of four hyperbolic planes, the global group being $G=S U_{4}(D, s)$ for an anti-hermitian form s over a quaternion algebra D with standard involution.
(i) We need the list of positive roots of \bar{G} with respect to a maximal (split) torus \bar{T} (cf. [9], planche IV):
$a_{1}, a_{2}, a_{3}, a_{4} ; \quad a_{1}+a_{2}, a_{2}+a_{3}, a_{2}+a_{4} ; \quad a_{1}+a_{2}+a_{3}, a_{1}+a_{2}+a_{4}, a_{2}+a_{3}+a_{4} ;$
$a_{1}+a_{2}+a_{3}+a_{4} ; \quad a_{1}+2 a_{2}+a_{3}+a_{4}$.
The group G and its maximal split F-torus T is defined by $a_{1}\left|T=a_{3}\right| T=a_{4} \mid T=0$ (the unique positive F-root is $\alpha=a_{2} \mid T$), the proper parabolic F-subgroup of G is then given by its character $c:=a_{1}+2 a_{2}+a_{3}+a_{4}$ (the second fundamental weight $\bar{\omega}_{2} \approx \varepsilon_{1}+\varepsilon_{2}$: cf. [9], loc. cit.), therefore \bar{T}^{0} is defined by $c=0$.
(ii) We shall now construct subgroups H_{i} of $\bar{U}\left(F_{v}\right)$, which admit a contracting automorphism, induced by an element $t \in \bar{T}^{0}\left(F_{v}\right)$, such that $\bar{T}^{0} \cdot H_{i}$ is a compactly presented group. For such an element t we have to satisfy the condition $c=$ $a_{1}+2 a_{2}+a_{3}+a_{4}=0$. That is easy, if we have free choice for one root a_{j} : For each H_{i} we designate only the roots a for which \bar{U}_{a} belongs to H_{i}.

$$
\begin{array}{lll}
H_{1}: a_{1}, a_{2}, a_{3} ; & a_{1}+a_{2}, a_{2}+a_{3} ; & a_{1}+a_{2}+a_{3} . \\
H_{2}: a_{1}, a_{2}, a_{4} ; & a_{1}+a_{2}, a_{2}+a_{4} ; & a_{1}+a_{2}+a_{4} . \\
H_{3}: a_{2}, a_{3}, a_{4} ; & a_{2}+a_{3}, a_{2}+a_{4} ; & a_{2}+a_{3}+a_{4} . \\
H_{4}: a_{1}, a_{3}, a_{4} . &
\end{array}
$$

We have to add further groups H_{i}, for which we have to fix all values $\left|\alpha_{i}(t)\right|_{v}$ for $i=1, \ldots, 4$; it is more convenient to use the normalized additive valuation $v()=$ const. $\exp \left(-| |_{v}\right)$. By this means we define the groups H_{i} by denoting an integervalued valuation vector with components $v\left(\alpha_{i}(t)\right)$ for a contracting element t.

$$
\begin{aligned}
& H_{5} \leftrightarrow(2,-3,2,2): a_{1}, a_{3}, a_{4} ; \quad a_{1}+a_{2}+a_{3}, a_{1}+a_{2}+a_{4}, a_{2}+a_{3}+a_{4} ; \\
& a_{1}+a_{2}+a_{3}+a_{4} . \\
& H_{6} \leftrightarrow(2,-1,0,0): a_{1}+a_{2} ; \quad a_{1}+a_{2}+a_{3}+a_{4} ; \text { et al. } \\
& H_{7} \leftrightarrow(0,-1,2,0): a_{2}+a_{3} ; \quad a_{1}+a_{2}+a_{3}+a_{4} ; \text { et al. } \\
& H_{8} \leftrightarrow(0,-1,0,2): a_{2}+a_{4} ; \quad a_{1}+a_{2}+a_{3}+a_{4} ; \text { et al. }
\end{aligned}
$$

It is easy to check that within these groups $H_{i}(i=1, \ldots, 8)$ all commutation relations between root groups are defined-with the exception of those commutators which produce an element in U_{c}.
(iii) Our next tool is P. Hall's identity for commutators $[x, y]=x^{-1} y^{-1} x y$ with $x^{y}:=$ $y^{-1} x y$:

$$
\left[x^{y},[y, z]\right] \cdot\left[y^{z},[z, x]\right] \cdot\left[z^{x},[x, y]\right]=1,
$$

from which we deduce

$$
[[x, y], z]=[x,[y, z]] \quad \text { if } \quad[x, z]=1 \text { and }[x, y] \text { commutes with } x \text { and }[y, z] .(*)
$$

In our group \bar{G} the following relations are valid:

$$
\begin{align*}
\bar{U}_{c}=\bar{U}_{a_{1}+2 a_{2}+a_{3}+a_{4}} & =\left[\bar{U}_{a_{2}}, \bar{U}_{a_{1}+a_{2}+a_{3}+a_{4}}\right] \tag{1}\\
& =\left[\bar{U}_{a_{1}+a_{2}}, \bar{U}_{a_{2}+a_{3}+a_{4}}\right] \tag{2}\\
& =\left[\bar{U}_{a_{1}+a_{2}+a_{3}}, \bar{U}_{a_{2}+a_{4}}\right] \tag{3}\\
& =\left[\bar{U}_{a_{1}+a_{2}+a_{4}}, \bar{U}_{a_{2}+a_{3}}\right] \tag{4}
\end{align*}
$$

For the required presentation of $\bar{T}^{0}\left(F_{v}\right) \cdot \bar{U}\left(F_{v}\right)$ we define an element of \bar{U}_{c} by equation (2) and we obtain as a consequence of (*) that the other formulas (1), (3) and (4) are also true.
(iv) To get the missing commutation relations for \bar{U}_{c} we can now use the various descriptions (1)-(4) and we have to show that \bar{U}_{c} is contained in the centre of \bar{U}; it is enough to prove that \bar{U}_{c} commutes with $\bar{U}_{a_{i}}$ for $i=1, \ldots, 4$.

For $\bar{U}_{a_{2}}$ we use equation (2) and the fact that it commutes with $\bar{U}_{a_{1}+a_{2}}$ and $\bar{U}_{a_{2}+a_{3}+a_{4}}$, which takes place in H_{1} and H_{3} respectively.

For $\bar{U}_{a_{i}}$ with $i=1,3$ or 4 we use equation (1) and have to compute e.g. for $i=1$ the following commutator:

$$
\left[\bar{U}_{a_{1}},\left[\bar{U}_{a_{2}}, \bar{U}_{a_{1}+a_{2}+a_{3}+a_{4}}\right]\right] \ni[x,[y, z]]
$$

with $[x, z]=1$ and $[x, y]$ commuting with all other terms, thus we have:

$$
\begin{aligned}
{[x,[y, z]] } & =x^{-1} y^{-1} z^{-1} y z x z^{-1} y^{-1} z y=x^{-1} y^{-1} z^{-1}\left(y x y^{-1} x^{-1}\right) x z y \\
& =x^{-1} y^{-1} x y\left(y x y^{-1} x^{-1}\right)=[x, y]\left[x^{-1}, y^{-1}\right]^{-1}
\end{aligned}
$$

but this product equals one according to the formulas $\left[\bar{u}_{a}(r), \bar{u}_{b}(s)\right]=\bar{u}_{a+b}(r s)$ and $\bar{u}_{a}(r)^{-1}=\bar{u}_{a}(-r)$ for arbitrary roots a, b and $a+b$ of \bar{G} and $r, s \in F_{v}$.

Remarks. (1) I have to admit that this example is one of the easiest, in general the computations are much longer.
(2) The proof is modelled after Abels' example of a finitely presented solvable group with a non-finitely presented quotient, given in [3].
(3) If we could use Abels' main theorem in [4] (5.6.1 is proven only for characteristic 0 and formulated for Lie algebras), parts (ii) and (iv) from (b) were unnecessary.

REFERENCES

1. H. Abels, Kompakt definierbare topologische Gruppen, Math. Ann. 197 (1972), 221-233.
2. H. Abels, Generators and relations for groups of homeomorphisms, in: Transformation groups, Proceedings Newcastle 1976 (London Mathematical Society Lecture Notes 26, 3-20).
3. H. Abels, An example of a finitely presented solvable group, in: Homological Group Theory, Proceedings Durham 1977 (London Mathematical Society Lecture Notes 36, 205-211).
4. H. Abels, Finite presentability of S-arithmetic groups-compact presentability of solvable groups, to appear.
5. B. Beнr, Zur starken Approximation in algebraischen Gruppen über globalen Körpern, J. Reine Angew. Math. 229 (1968), 107-116.
6. H. Behr, Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern, Invent. Math. 7 (1969), 1-32.
7. H. Behr, $S L_{3}\left(\mathbb{F}_{q}[t]\right)$ is not finitely presentable, in: Homological Group Theory, Proceedings Durham 1977 (London Mathematical Society Lecture Notes 36, 213-224).
8. A. Borel and J. Tits, Groupes réductifs, Publ. Math. I.H.E.S. 27 (1965), 55-152.
9. N. Bourbakı, Groupes et algèbres de Lie, chap. IV; Elements de mathematique XXXIV, Paris 1968.
10. F. Bruhat and J. Tits, Groupes réductifs sur en corps local I, Publ. Math. I.H.E.S. 41 (1972), 5-252.
11. R. Godement, Domaines fondamentaux des groupes arithmétiques, Seminaire Bourbaki, vol. 15, exp. 257, Paris 1962-63.
12. G. Harder, Minkowskische Reduktionstheorie in Funktionenkörpern, Invent. Math. 7 (1969), 33-54.
13. J. Hurrelbrink, Endlich präsentierte arithmetische Gruppen und K_{2} über LaurentPolynomringen, Math. Ann. 225 (1977), 123-129.
14. K. Keller, Nicht endlich erzeugbare arithmetische Gruppen über Funktionenkörpern, Dissertation Frankfurt a.M. 1980.

14a. H. Behr, Addendum to [14], preprint 1981.
15. M. Kneser, Erzeugende und Relationen verallgemeinerter Einheitengruppen, J. Reine Angew. Math. 214/15 (1964), 345-349.
16. G. McHardy, Endliche und fast-endliche Präsentierbarkeit einiger arithmetischer Gruppen, Dissertation Frankfurt a.M. 1982.

16a. H. Behr, Addendum to [16], preprint 1982.
17. U. Rehmann and C. Soule, Finitely presented groups of matrices, Algebraic K-theory, Evanston 1976 (Springer Lecture Notes 551 (1976), 164-169).
18. J. P. Serre, Trees (Springer-Verlag, Berlin-Heidelberg-New York, 1980).
19. S. Splitthoff, Finite presentability of Steinberg groups and related Chevalley groups, Dissertation Bielefeld (1985).
20. U. Stuhler, Zur Frage der endlichen Präsentierbarkeit gewisser arithmetischer Gruppen im Funktionenkörperfall, Math. Ann. 224 (1976), 217-232.
21. J. Tits, Classification of algebraic semisimple groups, Proc. Sympos. Pure Math. IX (1966), 33-62.
22. J. Tits, Reductive groups over local fields, Proc. Sympos. Pure Math. XXXIII, part 1 (1979), 29-69.

Universität Frankfurt am Main
West Germany

[^0]: *This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.

