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1. Introduction and survey

Arithmetic subgroups of reductive algebraic groups over number fields are finitely
presentable, but over global function fields this is not always true. All known
exceptions are "small" groups, which means that either the rank of the algebraic group
or the set 5 of the underlying S-arithmetic ring has to be small. There exists now a
complete list of all such groups which are not finitely generated, whereas we only have
a conjecture which groups are finitely generated but not finitely presented. The present
situation is as follows:

Let F denote a global function field, S = {vt,v2,...,vs} a finite non-empty set of
primes of' F; furthermore G is a linear algebraic group defined over F, which we can
assume to be absolutely almost-simple (the reductive case can be reduced to this one—
on the other hand the results become much easier) and which has rank r over F and r(

over the completion Fo. of F (u,eS); finally let F be a S-arithmetic subgroup of G(F).

Theorem, f is not finitely generated if and only if

The positive part (that means finite generation) is old (cf. [6]); the counter-examples
for classical groups are due to Keller (cf. [14]), whose proof is modelled after Serre's for
SL2 ([18]), so only one group of exceptional Lie-type was left, which was settled in
([14a]). According to Tits' classification in [21] there exist S-arithmetic subgroups F,
which are not finitely generated if G is equivalent up to central isogeny to exactly one of
the following groups, where all forms are non-degenerate and of Witt-index ( = rank) 1
over F and FD: = FBi:

(a) Special linear group SL2(D), where D is a central division algebra over F and
D ® Fv is also a division algebra.

(b) Special unitary group SUn(F',h) for n = 3 or 4, where F' is a quadratic extension
of F and h a hermitian form with respect to F'/F.

*This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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24 H. BEHR

(c) Special unitary group SU2(D,h), where D is a central division algebra over a
quadratic extension F' of F with an involution of the second kind, such that F'
splits over Fv (which implies SU2 ® FV~SL2).

(d) Special unitary group SUn(D,h) for n = 2, 3, where D is a quaternion skew-field
and h a hermitian form with respect to the standard-involution of D; provided

(e) Special unitary group SUn(D,s) for n = 4,5, where D is a quaternion skew-field
and s an antihermitian form with respect to the standard-involution of D,
provided char F =fc 2.

(f) G is of type 6Dl_ j and G ® Fv of type 2D4.

Remarks.

(1) In case (d) and (e) there is another description for charF = 2 (cf. [21]).
(2) Special orthogonal groups in 3, 5 or 6 variables are isogenous to groups in (a),

(d) or (e) respectively, for 4 variables they are not absolutely almost simple.

Conjecture. F is not finitely presentable if and only if

£ r,S2 and r>0.

This conjecture has been proved in the following cases:

(a) G = SL2 (Stuhler [20]);
(b) G split with constant root-length, s^ l , r = r , ^ 3 (Rehmann-Soule [17],

Splitthoff [19]);
(c) G split, not of type G2, r = G(F,[t,r1]), r = r , = r 2 ^ 2 (Hurrelbrink [13]) or

G = SLn, n^3 , s^2 (Splitthoff, loc. cit.);
(d) G arbitrary, s= 1, r = rl = 2 (Behr [7], [16a]; McHardy [16]);
(e) G arbitrary, r= 1, YA=I

 r . ^ 3 (see main theorem below).

Remarks.

(1) These are "positive results" (i.e. proving finite presentability) in case (a) for s^3,
case (b), (c) and (e) and "negative results" (i.e. giving counter-examples) in case
(a) for s = 2 and case (d).

(2) A positive result remains positive (for the same group) if one enlarges the set S:
This can be shown in the same way as Kneser did (in [15]) in the number field-
case.

(3) r is finitely presented if r = 0: For an anisotropic group G the quotient G(FV)/F
is compact by Godement's criterion (cf. Section 2) and since G(FV) is compactly
presented (look at the Bruhat-Tits-building), the assertion for s = 1 follows by
Reidemeister-Schreier.

(4) The result (d) can be translated into an explicit list of groups: As above—in the
case of nonfinitely generated groups—one obtains classical groups in low
dimensions and some exceptional types.
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(5) If the conjecture is true there should be further counterexamples with

(i) s= l , r = l , r , = 2: this is known only for some very special examples with
the same proof as in (d),

(ii) s = 2, r = ri=r2 = l: Stuhler's proof for SL2 can be generalized for these
groups.

These are the only remaining cases for the negative part of the conjecture. For
the positive part it would be enough—according to (b), (c) and Remark 2—to
settle the cases
(iii) s= 1, r~§.2, rl'2:3;
(v) s = 2, r ^ 2

for non-split groups—or split groups excluded above.

(6) The proofs use very different methods: For (b) and (c) one applies pure group-
theory and algebraic K-theory, for (a) and (d) also topological methods come in
via the operation on Bruhat-Tits-buildings.

All examples dealt with in (a)-{d) are either split (or Chevalley) groups or at least the
global and local ranks of the group G coincide. For better support of the conjecture it is
therefore important to look at a situation, in which these ranks are different, this may
happen in case (e).

Main theorem. / / the absolutely almost simple algebraic group G has rank 1 over F, a
S-arithmetic subgroup T of G is finitely presentable in each of the following three cases;

(a) s = 3, r1=r2 = r 3 = l ;

(b) s = 2,r,£2orr2£2;

(c) 5=1,^3.

The proof uses old and new tools. In the next two sections we have to describe
reduction theory and the operation on products of Bruhat-Tits-buildings: In this way
we can pass from F to F n P(F) for a parabolic subgroup P (defined over F). If and only
if the global rank of G equals 1 we can translate the question of finite presentability of
Fr\P(F) to the problem of compact presentability of P°(FV) (for an appropriate
subgroup P° of P) and for the latter one we can dispose of Abels' new techniques like
contracting automorphisms and amalgamation of subgroups (cf. [4]), but unfortunately
we cannot apply his explicit criterion, because its proof is only valid for characteristic 0.
Then it is easy to show part (a) (which includes the positive part of Stuhler's result for
SL2), a little bit harder for (b), but part (c) can be settled only by a tedious and lengthy
case-by-case proof. Therefore we shall merely give the list of groups and carry out the
details for some example. But all these examples suggest that Abels' criterion remains
true in arbitrary characteristics.

We freely use the theory of reductive groups, especially over local fields and of their
corresponding buildings as it is given in [8], [10] and [22], only special results will be
cited precisely. To make things simpler we will assume that G is simply-connected: we
can do this because the image of an arithmetic subgroup f of the simply-connected
covering G of G has finite index in F (cf. [5], Satz 1).
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26 H. BEHR

2. Reduction theory of arithmetic groups

We describe the main results of reduction theory over global function fields in the
formulation of Harder in [12] together with some supplements due to [6]. For this
purpose we need the following list of notation:

Let be

F a global function field;
V the set of all primes of F;
A the ring of adeles over F;
G a connected reductive algebraic group, defined over F;
T a maximal F-split torus of G;
A = {a,,..., <xr} a system of simple roots of G with respect to T;
P a minimal parabolic subgroup of G, defined over F, which contains T and

corresponds to A;
P0 a F-parabolic subgroup of G of type 0 £ A, which contains P, i.e. 0 is a system of

simple roots of the semi-simple part of PB, in particular:
Qi the maximal parabolic subgroup of type A —{a,} above P;
Z the centre of G;
K the product f^e^K,, w ' t n °Pe n and compact subgroups Kv of G(FV) for all

completions Fv of F;
H°(A) = {heH{A)\\x{h)\ = \ for all /e//(F)} for a subgroup H of G and its group H of

characters, where | | denotes the idele-norm;
H« = g~lHg for HczG(A),geG(A);
S a finite non-empty set of primes of F;
Gs =Y\vesG{Fv) (for HzG(A) denote by Hs the projection of H on Gs);
F a S-arithmetic subgroup of G.

Remark. The roots a, are in general not contained in P, but it is possible to extend
the idele-norm of a, to a function on P(A) (cf. [12], page 47).

The numerical invariants v,(P, K) (i= l,...,r), defined by Harder, have the following
properties:

(1) v,.(Py,K") = v,.(P,.K)forr6r;

(2) vi(P,K") = vi(P,K)\oci(p)\-1 for peP(A);
(3) For two compact-open subgroups /( = ]"[„/£„ and X' = J~[I;/C^ there exist real

constants d and d' with dv,(P, K)^vt(P, K')^d'v,{P, K).

Theorem A. There exists a constant Cl>0, depending on K, such that for each
geG(A) there is a minimal parabolic F-subgroup of G with

v,(P, K3) ̂  Cj for all i = 1,..., r.

We can reformulate Theorem A with respect to the action of T and sharpen it by
choosing a particular K: For each veV we take Kv to be the stabilizer of a "special
point" in the Bruhat-Tits-building, then we have the Iwasawa-decomposition G(FV) =
KVP'V(FV) with a minimal parabolic F^subgroup P'v (cf. [22], 3.2 and 3.3.2), which
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implies that there is only one conjugacy class of P^P'V relative to K=JTi ; /c^ thus we
have the

Corollary A'. There exists a maximal compact subgroup K of G{A), such that for a
fixed parabolic F-subgroup Po of G and each geG(A) there is a yeG(F) with
Vi(P0, K

9y) ^ Cj for all i=\,...,r (where Cl is the constant of Theorem A).

Theorem B. Let Ct>0 be a constant for which Theorem A holds: There is a second
constant C 2 > 0 (depending on Ct) with the following property:

If vi(P,K9)^.Cl for all i and some minimal parabolic F-subgroup P and even
v{(P,Ka)^.C2 for all i with a , e © £ A , then each minimal parabolic F-subgroup P' is
contained in P A _ e if vi(P',K9)^Cl for all i.

•Corollary B'. / / v,(P, A ^ C , and vf(P, K9V)^Cl for all i and yeG(F) and even
v,(P,KS)^C2 for all i with a,e@, then y is an element of PA-B.

Proof. According to Theorem B and property (1) we have P ' = P ' " ' c p A _ f t which
implies y eP4_e(cf. [9], 2.6).

Theorem C.

(a) M^G(A) is relatively compact modulo Z(A)G(F) if and only if for each geM
there exists a minimal parabolic F-subgroup P with Ct ^v,(P, Ka)^C for all i,
constant Cj from Theorem A and some constant C.

(b) "GodemenVs compactness criterion": G(A)°/G(F) is compact if and only if G is
anisotropic, i.e. there exists no proper parabolic subgroup defined over F.

(c) For a unipotent subgroup U of G the quotient U(A)/U(F) is compact.

For assertion (c) compare [6], Satz 3; it is valid for all groups, which can be
trigonalized over the separable closure of F.

We have to transfer these results on adelized groups to finite products Gs =
Y\vesG(Fv), which we consider as subgroups of G(A) (taking all components outside S1

to be 1) and which contain S-arithmetic groups as discrete subgroups. We assume that
G is concretely given as a matrix group defined over Os, the ring of S-integers in F.
Thus we have F = {geG(F)\geG(Ov) for all v£S}, where 0v denotes the ring of integers
in Fv. Moreover we fix Kv for v£S to be G(0u) and suppose that it is the stabilizer of a
special point—changing to a commensurable group F if necessary.

The Theorems A, B, C and Corollary B' remain true for the pair (Gs, F) instead of
(G(A), G(F)); the constants C, and C2 depend on the choice of the groups Kv, but only
for veS. The Corollary A' has to be weakened; we use

Theorem D. P(F)\G(F)/T is a finite set and therefore the number of T-conjugacy
classes of P is also finite.
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Corollary D'. Let Pu...,Ph be a complete set of representatives for the T-conjugacy
classes of minimal parabolic F-subgroups. For suitably chosen Ks there exist for each
geGs an element yeT and an index je{l,...,h} such that v , (P j ,K e y )^C\ for all i= \,...,r
and an appropriate constant C\^

For the proof compare [11], no. 12 and [6] nos. 8 and 9; for veS one has to choose
again Kv as stabilizer of a special point, because one needs Iwasawa's decomposition.

3. Action on products of Bruhat-Tits-buildings

For each v e S denote by Xv the Bruhat-Tits-building of the group G(FV) and define
X:=Y\V£S^v Henceforth we make the following

Assumption. G is semi-simple and simply-connected.

This implies that all Xv and also X are polysimplicial complexes with the following
properties (cf. [22], 3.1-3.2):

G(FV) is a group with BN-pair (or Tits-system), B being the stabilizer of an open
chamber Cv of Xv and N the normalizer of a maximal F^-split torus. The maximal
compact subgroups of G(FU) are precisely the stabilizers of the vertices of Xv, which are
uniquely determined by their stabilizers. There are finitely many conjugacy-classes with
respect to G(FV) and as a set of representatives we can choose the stabilizers of the
vertices of a fixed chamber C, we call it 5ROiC, such that SR: = {\~\vesK-v\Kve9iViC} is a
finite set of representatives for the conjugacy-classes of maximal compact groups in Gs.
In this way we can identify all vertices of X with the groups K9 for KeW and geGs.
Using property (3) of no. 2 we obtain a version of Theorem A which yields for all K e 91
the same parabolic subgroup P—of course for a smaller constant cx. We denote a
polysimplex by {K9}, K running through all K in 9?.

(A) For each polysimplex {KB} there exists a minimal parabolic F-subgroup
PofG with Vi(P,KB)^cl for i=l,...,r and all Ke9J.

The Corollary A' is only valid for a special K (in general there exist finitely many
K-conjugacy-classes of minimal parabolic subgroups), but if we use once more property
(3) of no. 2, we may assume this corollary for all Ke% provided we take a smaller
constant. Again we pass from G(A) to Gs and obtain the following generalization of the
Corollary D', observing that the representative Pj does not depend on K:

(D) Let Pu...,Ph denote a complete system of minimal parabolic F-subgroups
of G. There exists a constant c\>0 such that for each polysimplex {K9}
there is a T-equivalent polysimplex {K01} and an index je{l,...,h) with
the following property: v^Pj, Kgy) ^ c\ for all i = 1,. . . , r and all K 6 91.

Theorem B and its Corollary B' are true simultaneously for all K e 9? with a constant
c2 or c'2 corresponding to Cj or c\ respectively.
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We are going to construct a covering of X by subcomplexes.

Definition, (a) Let Q be a parabolic F-subgroup of type 0 (i.e. Q = Pe) and XQ(c2) a
subcomplex of X, defined by the following condition:

A polysimplex {K9} of X belongs to XQ(c2) if and only if there is a minimal parabolic
F-subgroup P of Q such that vt{P,K9)^Ci for all i and even vi(P,K9)Zc2 for all i with
a ,e0 and for all KeiR in both cases.

(b) The subcomplex Xo of X is given as follows:

A polysimplex {K9} of X belongs to Xo, if and only if for each minimal parabolic
F-subgroup P with v,(P, K9)^ct for all K e W and all ie{l r} there is no index i such
that v,.(P, K9) ^ c2 for all K e <R.

From the results of reduction theory and the definition above we deduce immediately
the following

Proposition 1. (a) X = Xou X' with X' = \jQXQ(c2), Q running over all proper
parabolic F-subgroups of G.

(b) Xo and X' are Y-invariant, X0modF is finite.

In statement (b) we consider the action of F on X, the invariance of Xo and X'
follows from property (1) in no. 2. For the second assertion we make use of Theorem C,
part (a), observing that the centre Z of a semi-simple group G is finite: If {Ks} belongs
to Xo, we have vi(P,KB)<c2 for each index i and some Ke^R; by property (3) of no. 2
this implies v£P,KB)^c2 for some constant c2^c2 and all /Ce5R. On the other hand
v.iP.K9);^, and Theorem C(a) shows that the set of all geGs with {K9}eX0 is
relatively compact modulo F, which means that Xo mod F is finite, because all K are
also open subgroups.

For the special case of a group G with F-rank 1 we may specialize these results: all
proper parabolic F-subgroups are minimal and there is only one invariant v. We
construct a subcomplex Y of X, which contains representatives modulo F. We have to
use statement (D) with constant c\ and choose a constant c'2>c\ such that Theorem B
and its Corollary B' are valid simultaneously for all KeiR. With the system {P,,...,Pfc}
from (D) we define for j = 1,..., h:

for Kett} and

_ f c, ^ v(Pj, K9) for some ; and all K e 5R but")

°: I v(p;>K") ^ C2 f o r a t l e a s t one /C e 9? ) '

Proposition 2. (a) For each polysimplex in X there exists a T-equivalent polysimplex in
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(b) Yo is a finite complex and the complexes Yj are mutually disjoint.

(c) / / there exists for given yjeYj and ykeYk with j>0, k^.0 an element yeT with
y] = yk, then we have j = k and y e P}{F) n r .

In addition we can assume that Y is connected by blowing up the finite complex Yo in
such a way that it becomes connected and meets all Y, (j=l,...,h), which are
themselves connected.

4. Reduction to parabolic subgroups

From the action of F on the complex X we deduce now a presentation of F using the
subcomplex Y of representatives modF given in Proposition 2. This presentation
contains—besides some finite set of generators and relations—the free product of the
groups F/. = Pj(F) n F with amalgamation of their mutual intersections. We use the
following principle:

Theorem E. The group F acts (on the right) on the poly-simplicial complex X with
simplicial operation on each factor of X. We suppose X to be connected and simply-
connected. Let Y be a subcomplex of X such that for each polysimplex xeX there exists a
polysimplex yeY and y e F with yy = x. Then E: = {yeF| Yyn Y=/=0} is a set of
generators for the group F and R: = {•>>! "y^1 ' (y2>'i~ X)| ^ 7 i n ^Ji1^ Yj=0} is a system of
defining relations in E.

Theorem E is proved in [2], Example 4.6 for simplicial complexes.

We apply this theorem to F, X and Y from Section 3 (denoted in the same way):

A Bruhat-Tits-building and therefore X is contractible and we can assume that y is
connected. The operation of F on X is simplicial on each factor of X: if S contains more
than one prime, the operation is defined on each factor Xu (veS) separately; if G is
semi-simple the simple factors of G are acting only on one simplicial factor of the
building.

Corresponding to the decomposition of Y we divide E and R into the following parts:

is a finite set, because Yo is a finite complex and all stabilizers of vertices are finite as
intersections of a compact and a discrete group;

is contained in r ^ P j F J n F (cf. Proposition 2(c));
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is finite;

= y3 with yxe Y} for some Ae 1,2, 3}.

Rj consists only of relations in the group F,, because we have the following implications
from Proposition 2(c):

Moreover we have to take into consideration that the same generator may belong to
different sets £ 0 or E3 whereas our relations are products in a fixed set; therefore we
must add identifying relations:

is finite for all j ;

identifies the intersection F^nF^ with subgroups of Tj and F t respectively.

We sum up these considerations in

Proposition 3. F is finitely presentable if all subgroups FJ = FnP J (F) are finitely
presented and all intersections Fj n F t are finitely generated.

5. Compact presentability

We start with the observation that F, is not contained in (Pj)s = Y[vesPj{F») but
even in (Pj)s, since |x(y)|,,= l for v$S and we have the product formula PI^eK|z(y)|u= 1.

By application of the Reidemeister-Schreier-principle we are now able to translate our
problem of finite presentability into a question of compact presentability—several
definitions of this notion are given in [1]—using the following

Theorem F. Let F be a S-arithmedc subgroup of the algebraic group H and suppose
that Hg/F is compact; then we have:

F is finitely generated or finitely presented if and only if H° is compactly generated or
respectively finitely presented.

Theorem F is proved in [15] in the more difficult situation of number fields where
one has to reduce the problem to the finite generation (presentation) of an ordinary
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arithmetic group (defined for 8 = 8^, the set of archimedean primes); we can replace this
group by the finite group H(F), where F denotes the field of constants in F. Furthermore
we have to use H° instead of the product fLes^., #»> according to the fact that the
quotient f lues^ "eCO/F is always compact for a number field k and a S-arithmetic
group T.

In our case we have to show that P%/rP for r P = T n P ( f ) is compact, if P denotes a
minimal parabolic F-subgroup. But P is a semi-direct product of a reductive group ZP

and its unipotent radical UP and we have the decomposition P% = (ZP)^(l)P)s. For the
second factor we have part (c) of Theorem C and for the first one we can apply part (b)
of the same theorem since a minimal parabolic group has "semi-simple rank 0", which
means that P° is anisotropic. Thus we obtain the following consequence of Proposition 3:

Proposition 4. F is finitely presentable if for minimal parabolic F-subgroups P and P'
of G the group P° (and also (P')s) is compactly presentable and the intersection P£n(P')£
is compactly generated.

For the proof of compact presentability we dispose of the following results due to
Abels:

Theorem G. (a) Let 1—*A—»B—>C-»1 be an exact sequence of locally compact
topological groups.

(i) / / B has a compact presentation and A contains a compact subset K, such that A is
the smallest closed normal subgroup of B containing K, then C has a compact
presentation too.

(ii) / / A and C are compactly presentable, the same is true for B.

(b) Let H be the semi-direct product of a torus T and a unipotent subgroup U, both
defined over the local field Fv. If T(FV) contains an element, which acts on U(FV) as a
contracting automorphism, then H(FV) has a compact presentation.

Remark. An automorphism a of a locally compact topological group N is called
contracting if the sequence a.", neM converges to the map N->{e} uniformly on compact
subsets.

Statement (a) is part of the "diagram-lemma" of [1]. Assertion (b) is proved in [4], for
the case of a semi-direct product <t> xJV with <t>~Z and N locally compact, but this
is enough in view of (a) and the fact that T(FV) is compactly presentable. We shall use
part (a) of this theorem in the following way: We assume for simplicity that G is
absolutely almost-simple and simply connected of F-rank 1 and we consider P° for a
minimal parabolic F-subgroup P of G. P is the semi-direct product of Z(T) and U,
where Z(T) is the centralizer of a maximal F-split torus T of G, which has dimension 1
and U denotes the unipotent radical of P. Moreover Z(T) is an almost-direct product of
T and an anisotropic group M; it follows that MSTS has finite index in Z(T)S since
there is an isogeny of reductive groups from MxT on MT. Furthermore T% is
contained in P%, because the character group P(F) has finite index in T(F) and of course
Us and Ms are subgroups of P°. According to Reidemeister-Schreier it is enough to
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prove compact presentability for the product MsTsUs in order to prove it for P°.
Before doing this in three different situations we can make two general remarks:

(1) The intersections P%n(P')% (for parabolic subgroups P and P') are always
compactly generated: From the properties of a BN-pair ([9], 2.6) we have that
PnP' = Z(T), the centralizer of a suitable maximal F-split torus T'; now T'(FV)
is compactly presented and the anisotropic part of Z(T) is a reductive group—
but we have

(2) For a reductive group H, defined over F, H(FV) and Hs are compactly
presentable: Considering the action on the Bruhat-Tits-building we see, that
H(FV) is the amalgamated sum of the stabilizers of the vertices of a fundamental
chamber (by an amalgamated sum of a family of groups {G,}ie/—where all G,
are contained in some group G—we understand the direct limit of these groups
and their intersections Gtj = G{ n Gj with respect to the injections Gfj- c> G,- for all
ijel).

6. The case r = 1 and s>\

Now we have all the tools to prove the main theorem; in this section we shall settle
the first two cases.

(a) s = 3, r = r , = r 2 = r 3 = l

From the last section we know that it is enough to show the compact presentability
of TgUs (in this case Ms is even compact, since M remains anisotropic over F,: =FV for
(=1,2,3).

We define three subgroups

H.-rSn^cTjl/s for ije {1,2,3},

to which we shall apply Theorem G(b).
V is the semi-direct product UJJ2aL, where {a} or {a, 2a} denotes the set of positive

roots with respect to T (V2x = {\) in the first case). Then T acts on U by inner
automorphisms, which means by multiplication with <x(t,) or <x2(f,) respectively on the F,-
vector space l/(F,-) for t,eT(F,). Therefore we can find an element t = fl?=i *ie^s> which
induces contracting automorphisms on U(Fi) and U(F2), if we choose |a(ti)|!<l and
| | a n d w e n a v e e v e n teTg by defining t3 in such a way that |a(t3)|3 =

^ " 1 - So we have a contracting element for the group H3 =
and we can do the same for the groups Hx and H2. Observe that the

third component, where the automorphism would be expanding, is trivial! By Theorem
G(b) we conclude that all three groups H, are compactly presented and also that their
intersections are compactly generated. Thus the amalgamated sum of Hu H2 and H3 is
compactly presented, but this product is nothing else than the whole group T<;l/S, since
all relations, which define this group as a semidirect product or give the commutability
of the three factors l/(F,) are relations in one of the three groups H(.
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(b) s = 2, r= 1, rt > 1 (without loss of generality)

In analogy with case (a) we define the following groups:

H1: = M s r ° t / ( F 1 ) and H2:=MST°SU(F2).

In the same way we obtain that T%- {/(Fj) and 7°- U(F2) are compactly presentable; on
account of the last remark of Section 5 this is also true for Ms and therefore by
Theorem G-(a) for Hx and H2. But this time the amalgamated sum of // , and H2 gives
not P°, since l^F,) and V(F2) do not commute in this sum. So we need further factors:

We take a maximal Fj-split torus T" in M, which is not trivial by the assumption
rl>l. 7" normalizes U and therefore we can split up U into root-subgroups with
respect to 7" and the intersection of U with the centralizer of 7" (cf. [8], 3.11). Let
R = R + u /? _ be the system of all roots with respect to T", then we have the following
decomposition (defined over Fj): [/ = [/+ • Uo-1/_, where l/ + is the product of all
unipotent subgroups l/a with ae/?+, L/_ the same for <xeR_ and U0 = UnZ{T).

Now we consider the groups H+ : = T(Fl)-U+(Fi) and //_: = 7 " ^ ) - [ / ^ F ^ , which
are compactly presentable, because we find contracting elements t'eTXF^, choosing
|oe(r')jj < 1 for all aeR+ or txeR- respectively—and are able to apply again Theorem G(b).

As a next step we define semi-direct products L+ of H+ and T°- U(F2) and L_ of //_
and T°[/(F2), H+ and H_ being normal. According to Theorem G(a) these groups
L+ and L_ have compact presentations; inside L+ the commutability of C/+(F1) and
U(F2) is defined and the same is true for (/.(Fj) and U(F2) within L_. If we can show
that this implies that even t/0(F1) commutes with U(F2), we are finished, because
Ms-Tg-Us is the amalgamated sum of Hu H2, L+ and L_, which are all compactly
presentable and it is easy to see that all their intersections are at least compactly
generated.

For this purpose we choose a maximal F,-split torus T in G, that contains T and
7"—which is possible since TnT' is finite; on the other hand TV is of finite index in
T. Uo can be given as the product of groups Ua with roots a corresponding to T and
obviously we have a\T=cc or a\T=2a and a\T' = 0. If there exists a root b (with respect
to T and defined over Fx) with b\ T=0, it is possible to select b in such a way that a + b
is also a root (here we have to suppose that G is absolutely almost-simple: for this
statement and the following conclusions see [6], no. 15-18). Since [T:T• 7"] is finite we
must have b|7"fO, which implies either Ua+b(F1)^L+ and t / . ^ F ^ s L . or the
converse, the same is true for all groups U^+^+^^^F,} with r,seN. Now we have to
use Chevalley's commutator formula in order to compute [_Ua+b, t /_b], which shows
that each element in VJ^F^) is a product of elements contained either in U +(Fi) or
U _(F,); this is valid for all a and therefore also for U0(F1). We know already that all
these factors commute with U(F2) and conclude that t/0(Fj) and U(F2) are commutable
too.

But it may happen that there is no root b with b\T=0; looking at the classification
tables in [21] we see that there is only one such case, namely the type 2An. This means
that we have G = SU3(D,h) with a skew-field D and a hermitian from h with respect to
an involution of the second kind of D. For this group we have the following
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decomposition (defined over Ft): U = Ua-Ub-Ua+b with a\T=b\T and a\T' = (-b)\T,
which implies U0 = Ua+b = [Ua, l/ft]; since l / a£ t / + and £/,,£[/_ we have the same
argument as before.

7. The case r = 1 and s = 1

(a) For that case I am not able to give a unified proof; so we have to consider all
groups G with global rank 1 and local rank at least 3 (i.e. r/cfG=l and rkFG^.3 with
S = {t>})—as before we assume G to be absolutely almost simple but not necessarily
simply connected. In order to classify these groups we have to use the diagrams given in
[21], but there is no specification for global fields of finite characteristic, but Professor
Tits has communicated to me the following supplement:

The set of diagrams for global function fields is contained in the set for number fields,
but the anisotropic part has to be of inner or outer type An. Thus we have the following
list of types with global rank 1 and local rank ^ 3 (written "global -»local"):

1AH-*1Am (n^3) 2Dn-+
lDn (n = 3,4,5)

2 l 2Dn^
2Dn (n = 4,5)

^ , 1 ^ 1 D 4 or 2£>4

2r-35 . 2p2 - _ lc-0

lDn^
lDn (n = 4,5)

Since we have to prove the compact presentability of a group over Fv, we should start
with G = G® Fv and identify in such a group the proper parabolic subgroup P of G,
defined over F, as well as the character / which defines P°. For this purpose we imbed
the maximal F-split torus T of G into a maximal F^-split torus T of G and extend % to
a character on T, which gives us T°. Moreover let P be a minimal F,,-parabolic
subgroup, which is contained in P and has the decomposition P = Z(T)U (0 the
unipotent radical of P). Since the quotient G(FV)/P(FV) is compact, the same is true for
P°(FV)/P°(FO) and we can restrict ourselves to P°. Z(T) contains an anisotropic group
M, such that M(FV) is compact, and the torus T 2 T°. Thus it remains to prove that
T°(FV)- U(FV) has a compact presentation—using again Theorem G(a).

We decompose V into root groups with respect to T and look for elements in T°(FV)
which provide us with contracting homomorphisms for appropriate subgroups of U(FV),
given as products of root groups Ua. In this way we obtain compactly presented groups
(by Theorem G(b)), which we amalgamate in order to show that T°(F0) • V(FV) has a
compact presentation. But in general 0 contains a subgroup 00, on which T° acts
trivially. For those root groups Va £ Uo we have to show that the elements of 0a(Fv)
can be written as commutators of elements which are already contained in "good"
subgroups, described above. This definition as a commutator may not be unique; so we
have to prove that different commutators give the same element which can be done
using an identity due to Philip Hall. In the last step we have to check that all
commutator relations in 0 are either valid in some good subgroup or follow from these
relations, using a convenient definition for the elements in V0{FD) as a commutator.
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(b) As an example we shall give the details for a group which is locally of type 1D4.
with rank 4 and comes from a global group of type JD4 or 2D4 with rank 1. We may
think of the local group as G = SOS, corresponding to the direct sum of four hyperbolic
planes, the global group being G = SU4(D,s) for an anti-hermitian form s over a
quaternion algebra D with standard involution.

(i) We need the list of positive roots of G with respect to a maximal (split) torus T
(cf. [9], planche IV):

aua2,a3,a^ ai + a2, a2 + a3, a2 + a4; at + a2 + a3, a^+a2 + a

The group G and its maximal split F-torus T is defined by ai\T=a3\T = a4\T=0
(the unique positive F-root is a = a2\T), the proper parabolic F-subgroup of G is
then given by its character c:=al+2a2 + a3 + a4 (the second fundamental weight
a>2XEl + e2: cf. [9], loc. cit), therefore T° is defined by c=0.

(ii) We shall now construct subgroups Ht of U(FV), which admit a contracting
automorphism, induced by an element t e T°(FV), such that T° • Ht is a compactly
presented group. For such an element t we have to satisfy the condition c =
al + 2a2 + a3 + a4 = 0. That is easy, if we have free choice for one root a/. For each
Ht we designate only the roots a for which Ua belongs to //,.

Hiidi, a2, a3; ai+a2,

H2:aua2,a4; at+a2,

H3:a2,a3,aA; a2 + a3,

H4:at, a3, a4.

We have to add further groups Hh for which we have to fix all values |a,-(t)|B for
i= l , . . . , 4 ; it is more convenient to use the normalized additive valuation v( ) =
const. exp( — | \v). By this means we define the groups Ht by denoting an integer-
valued valuation vector with components u(a,(t)) for a contracting element t.

Hs*-*{2, —3,2,2):ai, a3, a4; ai+a2 + a3, al+a2 + a4, a2 + a3+a4;

H6*^>{2, -l,0,0):ai+a2; al+a2-\-a3 + aA; et al.

H7*-*(0, -1,2,0):a2 + a3; ay+a2 + a3 + a4, et al.

H8*->(0, — l,0,2):a2 + aA; al+a2 + a3 + a4.; et al.
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It is easy to check that within these groups Ht (i = l,...,8) all commutation
relations between root groups are defined—with the exception of those
commutators which produce an element in Uc.

(iii) Our next tool is P. Hall's identity for commutators [x,y~\=x~1y~xxy with x": =

[*', [y, z]] • If, [z, x]] • [z*, [x, yj] = 1,

from which we deduce

[[x, y], z] = [x, O, z]] if [x, z] = 1 and [x, y] commutes with x and [y, z]. (*)

In our group G the following relations are valid:

0c= ^f l l+2a2+a3+a4
 = [^a2> Ual+a2+ai+a4J U)

= L^a,+a2> ^o2+03+04.] (2)

For the required presentation of T°(FV) • U(FV) we define an element of Uc by
equation (2) and we obtain as a consequence of (*) that the other formulas (1),
(3) and (4) are also true.

(iv) To get the missing commutation relations for Uc we can now use the various
descriptions (l)-(4) and we have to show that Uc is contained in the centre of U;
it is enough to prove that Uc commutes with Ua. for i= 1,..., 4.

For Ua2 we use equation (2) and the fact that it commutes with Uai+B2 and
<̂.2+a3+<i4> which takes place in Hv and H3 respectively.

For Ua. with i= 1, 3 or 4 we use equation (1) and have to compute e.g. for i= 1
the following commutator:

Was Wa2, 0., +*2+a3 + J

with [x, z] = 1 and [x, y] commuting with all other terms, thus we have:

[x, [y,zj]= x~ly~lz~lyzxz~ly~1zy = x~ly~lz~l(yxy~lx~l)xzy

but this product equals one according to the formulas \ua(r), ub(s)~\ = ua+b(rs) and
ua(r)~l=ua( — r) for arbitrary roots a,b and a + b of G and r,seFv.
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Remarks. (1) I have to admit that this example is one of the easiest, in general the
computations are much longer.

(2) The proof is modelled after Abels' example of a finitely presented solvable group
with a non-finitely presented quotient, given in [3].

(3) If we could use Abels' main theorem in [4] (5.6.1 is proven only for characteristic
0 and formulated for Lie algebras), parts (ii) and (iv) from (b) were unnecessary.
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