ON SOME PROPERTIES OF QUASI-DISTANCE-BALANCED GRAPHS

ADEMIR HUJDUROVIĆ

(Received 28 July 2017; accepted 2 September 2017; first published online 30 January 2018)

Abstract

For an edge $u v$ in a graph $G, W_{u, v}^{G}$ denotes the set of all vertices of G that are closer to u than to v. A graph G is said to be quasi-distance-balanced if there exists a constant $\lambda>1$ such that $\left|W_{u, v}^{G}\right|=\lambda^{ \pm 1}\left|W_{v, u}^{G}\right|$ for every pair of adjacent vertices u and v. The existence of nonbipartite quasi-distance-balanced graphs is an open problem. In this paper we investigate the possible structure of cycles in quasi-distance-balanced graphs and generalise the previously known result that every quasi-distance-balanced graph is trianglefree. We also prove that a connected quasi-distance-balanced graph admitting a bridge is isomorphic to a star. Several open problems are posed.

2010 Mathematics subject classification: primary 05C12.
Keywords and phrases: distance-balanced graphs, quasi-distance-balanced graphs, bipartite graphs, bridge.

1. Introduction

Let G be a finite, undirected, connected graph with diameter d and let $V(G)$ and $E(G)$ be the vertex set and the edge set of G, respectively. For $u \in V(G)$, let $N_{G}(u)$ denote the set of neighbours of u in G. For $u, v \in V(G)$, let $d_{G}(u, v)$ denote the minimal pathlength distance between u and v. When the graph G is clear from the context, we will simply write $d(u, v)$. For a pair of adjacent vertices u, v of G, define the set $W_{u, v}^{G}$ by

$$
W_{u, v}^{G}=\{x \in V(G) \mid d(x, u)<d(x, v)\} .
$$

If the graph G is clear from the context, we write simply $W_{u, v}$. Observe that for a connected bipartite graph G, the sets $W_{u, v}$ and $W_{v, u}$ form a partition of its vertex set. The sets $W_{u, v}$ and $W_{v, u}$ are important in metric graph theory.

A subgraph G of a hypercube H that preserves distances, that is, the distance between any two vertices in G is the same as the distance between those vertices in H, is called a partial cube. A set of vertices $S \subseteq V(G)$ of a graph G is convex if, for any two points $a, b \in S$, all the points on any shortest path between a and b are contained

[^0]in S. Djoković [4] proved that a connected bipartite graph is a partial cube if and only if the sets $W_{u, v}$ and $W_{v, u}$ are convex for every edge $u v$ of G. These sets also occur in chemical graph theory, where the Szeged index of a graph G, introduced by Gutman in [5], is defined as $S z(G)=\sum_{u v \in E(G)}\left|W_{u, v}\right| \cdot\left|W_{v, u}\right|$.

A graph G is called distance-balanced (in short, DB) if the sets $W_{u, v}$ and $W_{v, u}$ are of the same size for arbitrary pairs of adjacent vertices u and v. Graphs having this property were first studied by Handa [6], who considered distance-balanced partial cubes. The term itself was introduced by Jerebic et al. [8], who gave some basic properties and characterised Cartesian and lexicographic products of distancebalanced graphs. Kutnar et al. [9] investigated this property for graphs having a certain type of symmetry and, among other results, proved that every vertex-transitive graph is distance-balanced. The problem of characterising distance-balanced graphs in the family of generalised Petersen graphs was studied in [10,13]. For more results on this and related concepts, see $[2,3,7,11,12]$.

Quasi-distance-balanced graphs, introduced by Abedi et al. in [1], generalise the concept of distance-balanced graphs. A graph G is quasi-distance-balanced (in short, quasi-DB) if there exists a positive rational number $\lambda>1$ such that, for any edge $u v$ of G, either $\left|W_{u, v}\right|=\lambda\left|W_{v, u}\right|$ or $\left|W_{v, u}\right|=\lambda\left|W_{u, v}\right|$. In this case, we set $Q D B(G)=\lambda$. From [1], every quasi-distance-balanced graph is triangle-free and the only quasi-distancebalanced graphs with diameter two are the complete bipartite graphs. Quasi-distancebalanced lexicographic and Cartesian products are characterised in [1, Theorems 1.4 and 1.5]. All known examples of quasi-distance-balanced graphs are bipartite, so the following question, which was posed in [1], is still open.

Problem 1.1 [1, Problem 1.1]. Does there exist a nonbipartite quasi-distance-balanced graph?

Since a graph is bipartite if and only if it contains no odd cycle, Problem 1.1 naturally leads to the investigation of the possible structure of cycles in quasi-distancebalanced graphs. Edges of a quasi-distance-balanced graph G can be naturally oriented in the following way: for two adjacent vertices $u, v \in V(G)$, we define $u \rightarrow v$ if and only if $\left|W_{u, v}\right|=\lambda\left|W_{v, u}\right|$. (See Figure 1 for an example.) Let $Q(G)$ be the directed graph obtained in this way.

Let $C=v_{1}, \ldots, v_{n}$ be a cycle of length n in a quasi-DB graph G. Let C^{+}be the set of indices $i \in\{1, \ldots, n\}$ for which $v_{i} \rightarrow v_{i+1}$, that is, $C^{+}=\left\{i \in\{1, \ldots, n\} \mid v_{i} \rightarrow v_{i+1}\right\}$ (here we identify v_{n+1} with v_{1} and v_{0} with v_{n}. Similarly, let $C^{-}=\left\{i \in\{1, \ldots, n\} \mid v_{i+1} \rightarrow v_{i}\right\}$. (See Figure 2 for an example.)

The main focus of this paper is the investigation of the cycle structure in quasi-distance-balanced graphs. The main results are as follows.

Theorem 1.2. Let G be a quasi-DB graph and let $C=v_{1}, \ldots, v_{n}$ be a cycle in G. Then

$$
\sum_{i \in C^{+}}\left|W_{v_{i}, v_{i+1}}\right|=\sum_{i \in C^{-}}\left|W_{v_{i+1}, v_{i}}\right| .
$$

Figure 1. Orientation of edges in $P_{3} \square P_{3}$.

$C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}, C^{+}=\{1,2,3\}, C^{-}=\{4,5,6\}$
Figure 2. Example of C^{+}and C^{-}in a quasi-DB graph.

The following result generalises [1, Theorem 1.2], where it was proved that every quasi-DB graph is triangle-free.

Theorem 1.3. Let G be a quasi-DB graph and let $C=v_{1}, \ldots, v_{n}$ be a cycle of length n in G. Then $2 \leq\left|C^{+}\right| \leq n-2$ and $2 \leq\left|C^{-}\right| \leq n-2$.

For bipartite quasi-DB graphs, we have equality between the sizes of C^{+}and C^{-}.
Theorem 1.4. Let G be a bipartite quasi-DB graph and let $C=v_{1}, \ldots, v_{2 n}$ be a cycle of length $2 n$ in G. Then $\left|C^{+}\right|=\left|C^{-}\right|=n$.

Recall that a bridge in a graph is an edge whose removal increases the number of connected components of the graph. Quasi-DB graphs admitting a bridge are characterised in the following theorem.

Theorem 1.5. The only connected quasi-DB graphs having a bridge are stars.
This paper is organised as follows. In Section 2, we develop some important tools and obtain results about partitions of the vertex set defined by distance from a given closed walk in a graph (see Theorem 2.5). In Section 3, we prove Theorems 1.2, 1.3 and 1.4. In Section 4, we prove Theorem 1.5.

2. Preliminaries

In this section, we develop some important tools that will be useful later on. We first need to introduce some terminology.

Definition 2.1. Let G be a graph and let $C=v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}$ be a walk of length n in G. Define a mapping $\varphi_{C}: V(G) \rightarrow \mathbb{Z}^{n}$ by

$$
\varphi_{C}(v)=\left(x_{1}, \ldots, x_{n}\right), \quad \text { where } x_{i}=d_{G}\left(v, v_{i+1}\right)-d_{G}\left(v, v_{i}\right) \text { for } i \in\{1, \ldots, n\} .
$$

For $i \in\{1, \ldots, n\}$, let $A_{i}^{ \pm}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\{-1,0,1\}^{n} \mid x_{i}= \pm 1\right\}$.
For any walk C in a graph G and any vertex $v \in V(G)$, we have $\varphi_{C}(v) \in\{-1,0,1\}^{n}$ and hence the following observation.

Observation 2.2. Let G be a graph and let $C=v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}$ be a walk of length n in G. The set $\left\{\varphi_{C}^{-1}\left(\left(x_{1}, \ldots, x_{n}\right)\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in\{-1,0,1\}^{n}\right\}$ is a partition of $V(G)$.

The next lemma gives a connection between the sets $W_{u v}$ and the mapping φ_{C}.
Lemma 2.3. Let G be a graph and let $C=v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}$ be a walk of length n in G. Then $W_{v_{i}, v_{i+1}}=\varphi_{C}^{-1}\left(A_{i}^{+}\right)$and $W_{v_{i+1}, v_{i}}=\varphi_{C}^{-1}\left(A_{i}^{-}\right)$for every $i \in\{1, \ldots, n\}$.
Proof. Let $v \in V(G)$. Suppose first that $v \in W_{v_{i}, v_{i+1}}$. Then $d\left(v, v_{i}\right)<d\left(v, v_{i+1}\right)$. Moreover, since $v_{i} v_{i+1} \in E(G)$, it follows that $d\left(v, v_{i+1}\right)=d\left(v, v_{i}\right)+1$. Therefore, $d\left(v, v_{i+1}\right)-d\left(v, v_{i}\right)=1$ and hence $\varphi_{C}(v) \in A_{i}^{+}$. Conversely, let v be a vertex such that $\varphi_{C}(v) \in A_{i}^{+}$. By the definition of the mapping φ_{C}, it follows that $d\left(v, v_{i+1}\right)-d\left(v, v_{i}\right)=1$ and hence $v \in W_{v_{i}, v_{i+1}}$. This proves that $W_{v_{i}, v_{i+1}}=\varphi_{C}^{-1}\left(A_{i}^{+}\right)$. Similarly, $W_{v_{i+1}, v_{i}}=\varphi_{C}^{-1}\left(A_{i}^{-}\right)$.

Lemma 2.4. Let G be a graph and let $C=v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}$ be a walk of length n in G Let $v \in V(G)$ and let $\varphi_{C}(v)=\left(x_{1}, \ldots, x_{n}\right)$. Then $\sum_{i=1}^{n} x_{i}=d\left(v, v_{n+1}\right)-d\left(v, v_{1}\right)$.

Proof. By the definition of the mapping φ, it follows that $x_{i}=d\left(v, v_{i+1}\right)-d\left(v, v_{i}\right)$. Hence, $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n}\left(d\left(v, v_{i+1}\right)-d\left(v, v_{i}\right)\right)=d\left(v, v_{n+1}\right)-d\left(v, v_{1}\right)$.

Theorem 2.5. Let $v_{1}, \ldots, v_{n}, v_{1}$ be a closed walk in a graph G. Then

$$
\sum_{i=1}^{n}\left|W_{v_{i}, v_{i+1}}\right|=\sum_{i=1}^{n}\left|W_{v_{i+1}, v_{i}}\right| .
$$

Proof. Let $C=v_{1}, \ldots, v_{n}, v_{1}$ be a closed walk in G and let v be an arbitrary vertex of G. Let $\varphi_{C}(v)=\left(x_{1}, \ldots, x_{n}\right)$. Suppose that v contributes k to the sum $\sum_{i=1}^{n}\left|W_{v_{i}, v_{i+1}}\right|$, that is, there exist k indices $i \in\{1, \ldots, n\}$ such that $v \in W_{v_{i}, v_{i+1}}$. Lemma 2.3 implies that there are exactly k coordinates of $\varphi_{C}(v)$ equal to 1 . By Lemma 2.4, it follows that $\sum_{i=1}^{n} x_{i}=0$. Since $x_{i} \in\{-1,0,1\}$, there are also exactly k coordinates of $\varphi_{C}(v)$ equal to -1 . Therefore, v contributes k to the sum $\sum_{i=1}^{n}\left|W_{v_{i+1}, v_{i}}\right|$. Since this is true for every $v \in V(G)$, the result follows.

3. Cycles in quasi-distance-balanced graphs

Let G be a quasi-DB graph with $Q D B(G)=\lambda>1$. As explained in the introduction, there is a natural orientation of the edges of G defined by $u \rightarrow v$ if and only if $\left|W_{u, v}\right|=\lambda\left|W_{v, u}\right|$. Again, from the introduction, for a cycle $C=v_{1}, \ldots, v_{n}$, we defined $C^{+}=\left\{i \in\{1, \ldots, n\} \mid v_{i} \rightarrow v_{i+1}\right\}$ and $C^{-}=\left\{i \in\{1, \ldots, n\} \mid v_{i+1} \rightarrow v_{i}\right\}$, where $v_{n+1}=v_{1}$ and $v_{0}=v_{n}$.

Proof of Theorem 1.2. It is clear that $C^{+} \cap C^{-}=\emptyset$ and $C^{+} \cup C^{-}=\{1, \ldots, n\}$. By Theorem 2.5,

$$
\sum_{i \in C^{+}}\left|W_{v_{i}, v_{i+1}}\right|+\sum_{i \in C^{-}}\left|W_{v_{i}, v_{i+1}}\right|=\sum_{i \in C^{+}}\left|W_{v_{i+1}, v_{i}}\right|+\sum_{i \in C^{-}}\left|W_{v_{i+1}, v_{i}}\right|
$$

and consequently

$$
\begin{equation*}
\sum_{i \in C^{+}}\left|W_{v_{i}, v_{i+1}}\right|-\sum_{i \in C^{-}}\left|W_{v_{i+1}, v_{i}}\right|=\sum_{i \in C^{+}}\left|W_{v_{i+1}, v_{i}}\right|-\sum_{i \in C^{-}}\left|W_{v_{i}, v_{i+1}}\right| . \tag{3.1}
\end{equation*}
$$

By the definition of the sets C^{+}and C^{-},

$$
\begin{array}{ll}
\left|W_{v_{i}, v_{i+1}}\right|=\lambda\left|W_{v_{i+1}, v_{i}}\right| & \left(\text { for all } i \in C^{+}\right), \\
\left|W_{v_{i+1}, v_{i}}=\lambda\right| W_{v_{i}, v_{i+1}} \mid & \text { (for all } \left.i \in C^{-}\right) . \tag{3.3}
\end{array}
$$

By combining (3.2) and (3.3), it is easy to see that

$$
\begin{equation*}
\sum_{i \in C^{+}}\left|W_{v_{i}, v_{i+1}}\right|-\sum_{i \in C^{-}}\left|W_{v_{i+1}, v_{i}}\right|=\lambda\left(\sum_{i \in C^{+}}\left|W_{v_{i+1}, v_{i}}\right|-\sum_{i \in C^{-}}\left|W_{v_{i}, v_{i+1}}\right|\right) . \tag{3.4}
\end{equation*}
$$

The result now follows from (3.1), (3.4) and the fact that $\lambda>1$.
Proof of Theorem 1.3. Suppose first that $\left|C^{-}\right|=0$. Then it is clear that $C^{+}=\{1, \ldots, n\}$ and that $\sum_{i \in C^{-}}\left|W_{v_{i+1}, v_{i}}\right|=0$. By Theorem 1.2, $\sum_{i \in C^{+}}\left|W_{v_{i}, v_{i+1}}\right|=0$. However, since $v_{i} \in W_{v_{i}, v_{i+1}}$, it follows that $\left|W_{v_{i}, v_{i+1}}\right| \geq 1$ for every $i \in\{1, \ldots, n\}$, which contradicts the fact that $\sum_{i \in C^{+}}\left|W_{v_{i}, v_{i+1}}\right|=0$. Thus, $\left|C^{-}\right| \geq 1$.

Suppose now that $\left|C^{-}\right|=1$. Without loss of generality, we may assume that $C^{-}=\{n\}$ and $C^{+}=\{1, \ldots, n-1\}$. We claim that

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left|W_{v_{i}, v_{i+1}}\right|-\left|W_{v_{1}, v_{n}}\right|>0 \tag{3.5}
\end{equation*}
$$

We are first going to prove that

$$
W_{v_{1}, v_{n}} \subseteq \bigcup_{i=1}^{n-1} W_{v_{i}, v_{i+1}} .
$$

Let $v \in W_{v_{1}, v_{n}}$ and $\varphi_{C}(v)=\left(x_{1}, \ldots, x_{n}\right)$. By Lemma 2.3, $x_{n}=-1$ and, by Lemma 2.4, $\sum_{i=1}^{n} x_{i}=0$. Since $x_{i} \in\{-1,0,1\}$ and $x_{n}=-1$, there exists $j \in\{1, \ldots, n-1\}$ such that $x_{j}=1$. By Lemma 2.3, $v_{j} \in W_{v_{j}, v_{j+1}}$. Therefore, $W_{v_{1}, v_{n}} \subseteq \bigcup_{i=1}^{n-1} W_{v_{i}, v_{i+1}}$. Now observe that $v_{n-1} \in W_{v_{n-1}, v_{n}}$ and $v_{n-1} \notin W_{v_{1}, v_{n}}$. This proves that $W_{v_{1}, v_{n}}$ is a proper subset of $\bigcup_{i=1}^{n-1} W_{v_{i}, v_{i+1}}$, which gives (3.5). However, (3.5) contradicts Theorem 1.2. Thus, $\left|C^{-}\right| \geq 2$ and similarly $\left|C^{+}\right| \geq 2$.

Corollary 3.1. Let G be a quasi-DB graph and let $C=v_{1}, v_{2}, v_{3}, v_{4}$ be a 4 -cycle in G. Then $\left|C^{+}\right|=\left|C^{-}\right|=2$.

We now show that in a bipartite quasi-DB graph, $\left|C^{+}\right|=\left|C^{-}\right|$for every cycle C.
Proof of Theorem 1.4. Let G be a bipartite quasi-DB graph. Recall that for any edge $u v$ in G, the sets $W_{u, v}$ and $W_{v, u}$ form a partition of $V(G)$. Hence, there exists some constant M with $|V(G)| / 2<M<|V(G)|$ such that

$$
\left|W_{v_{i}, v_{i+1}}\right|=M, \quad\left|W_{v_{i+1}, v_{i}}\right|=|V(G)|-M \quad\left(\text { for all } i \in C^{+}\right)
$$

and

$$
\left|W_{v_{i}, v_{i+1}}\right|=|V(G)|-M, \quad\left|W_{v_{i+1}, v_{i}}\right|=M \quad\left(\text { for all } i \in C^{-}\right) .
$$

By Theorem 2.5,

$$
\left|C^{+}\right| \cdot M+\left|C^{-}\right| \cdot(|V(G)|-M)=\left|C^{+}\right| \cdot(|V(G)|-M)+\left|C^{-}\right| \cdot M,
$$

which implies that

$$
2\left(\left|C^{+}\right|-\left|C^{-}\right|\right) \cdot M=\left(\left|C^{+}\right|-\left|C^{-}\right|\right) \cdot|V(G)| .
$$

If $\left|C^{+}\right|-\left|C^{-}\right| \neq 0$, then $M=|V(G)| / 2$, which is a contradiction. Thus, $\left|C^{+}\right|=\left|C^{-}\right|$.
Remark 3.2. Since all known examples of quasi-DB graphs are bipartite, it follows that in all known quasi-DB graphs, $\left|C^{+}\right|=\left|C^{-}\right|$for every cycle C.

We now consider the existence of cycles of length 5 in quasi-DB graphs. A 5-cycle $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ in a graph G is said to be central if every vertex in G is at distance at most 2 from every vertex on the 5 -cycle, that is, $d\left(v, v_{i}\right) \leq 2$ for all $i \in\{1,2,3,4,5\}$ and for all $v \in V(G)$. The following result shows that there is no central 5 -cycle in a quasi-DB graph.

Proposition 3.3. Let G be a graph having a central 5-cycle. Then G is not quasi-DB.
Proof. Suppose on the contrary that G is quasi-DB and that $C=v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ induces a central 5-cycle in G. We claim that $W_{v_{i+1}, v_{i}} \backslash\left\{v_{i+2}\right\}=W_{v_{i+1}, v_{i+2}} \backslash\left\{v_{i}\right\}$ for every $i \in\{1,2,3,4,5\}$. Let $v \in W_{v_{i+1}, v_{i}} \backslash\left\{v_{i+2}\right\}$. If $v=v_{i+1}$, then clearly $v \in W_{v_{i+1}, v_{i+2}} \backslash\left\{v_{i}\right\}$. If $v \neq v_{i+1}$, then since C is a central 5 -cycle in G, it follows that $d\left(v, v_{i+1}\right)=1$. Since G is triangle-free by [1, Theorem 1.2], it follows that $d\left(v, v_{i}\right)=d\left(v, v_{i+2}\right)=2$. It is now clear that $v \in W_{v_{i+1}, v_{i+2}} \backslash\left\{v_{i}\right\}$, which proves that $W_{v_{i+1}, v_{i}} \backslash\left\{v_{i+2}\right\} \subseteq W_{v_{i+1}, v_{i+2}} \backslash\left\{v_{i}\right\}$. It is easy to see that the reverse inclusion also holds. It is now clear that

$$
\begin{equation*}
\left|W_{v_{i+1}, v_{i}}\right|=\left|W_{v_{i+1}, v_{i+2}}\right| \quad(\text { for all } i \in\{1,2,3,4,5\}) . \tag{3.6}
\end{equation*}
$$

Since G is quasi-DB, $\left|W_{v_{i}, v_{i+1}}\right|=\lambda^{e_{i}}\left|W_{v_{i+1}}, v_{i}\right|$, where $e_{i}= \pm 1$. By multiplying these equalities and using (3.6),

$$
\prod_{i=1}^{5}\left|W_{v_{i}, v_{i+1}}\right|=\lambda^{e_{1}+e_{2}+e_{3}+e_{4}+e_{5}} \cdot \prod_{i=1}^{5}\left|W_{v_{i}, v_{i+1}}\right| .
$$

Since $\left|W_{v_{i}, v_{i+1}}\right| \geq 1$ for each $i \in\{1,2,3,4,5\}$, it follows that $\lambda^{e_{1}+e_{2}+e_{3}+e_{4}+e_{5}}=1$. But this is impossible, since $\lambda>1$ and $e_{1}+e_{2}+e_{3}+e_{4}+e_{5} \neq 0$.
Problem 3.4. Does there exist a quasi-DB graph admitting a 5-cycle?

4. Bridges in quasi-DB graphs

For a graph G, the minimum degree of G, denoted by $\delta(G)$, is the minimum degree of vertices in G. The following lemma characterises quasi-DB graphs with $\delta=1$.

Lemma 4.1. Let G be a connected quasi-DB graph. If $\delta(G)=1$, then G is isomorphic to a star.

Proof. Let G be a connected quasi-DB graph and let u be a vertex of degree 1 in G. Let v be the unique neighbour of u. It is easy to see that $\left|W_{u, v}\right|=1$ and $\left|W_{v, u}\right|=|V(G)|-1$, which implies that $Q D B(G)=|V(G)|-1$. Let w be a neighbour of v different from u. Since $\left|W_{v, w}\right| \geq 2$, it follows that $\left|W_{v, w}\right|=|V(G)|-1$ and $\left|W_{w, v}\right|=1$. This shows that every neighbour of v is a leaf in G and hence G is isomorphic to a star.

We are now going to characterise quasi-DB graphs admitting a bridge. Recall that a bridge (or cut edge) in a graph G is an edge whose removal increases the number of connected components of G.

Proof of Theorem 1.5. Let G be a connected quasi-DB graph and let $v_{1} v_{2}$ be a bridge in G. Let $\lambda=Q D B(G)$. For $i \in\{1,2\}$, let G_{i} be the component containing v_{i} after removing the bridge $v_{1} v_{2}$. We assume, without loss of generality, that $\left|V\left(G_{1}\right)\right| \geq\left|V\left(G_{2}\right)\right|$. It is clear that $W_{v_{1}, v_{2}}^{G}=V\left(G_{1}\right)$ and $W_{v_{2}, v_{1}}^{G}=V\left(G_{2}\right)$. It follows that $\lambda=\left|V\left(G_{1}\right)\right| /\left|V\left(G_{2}\right)\right|$. If $V\left(G_{2}\right)=\left\{v_{2}\right\}$, then $\delta(G)=1$ and hence by Lemma 4.1 it follows that G is isomorphic to a star. Let $x \in V\left(G_{2}\right) \backslash\left\{v_{2}\right\}$. It is now easy to see that $\left|W_{v_{2}, x}^{G}\right| \geq\left|V\left(G_{1}\right)\right|+1$ and that $\left|W_{x, v_{2}}^{G}\right| \leq\left|V\left(G_{2}\right)\right|-1$. It is also clear that $\left|W_{v_{2}, x}^{G}\right| \geq\left|W_{x, v_{2}}^{G}\right|$, implying that $\left|W_{v_{2}, x}^{G}\right|=\lambda\left|W_{x, v_{2}}^{G}\right|$, that is,

$$
\lambda=\frac{\left|W_{v_{2}, x}^{G}\right|}{\left|W_{x, v_{2}}^{G}\right|} \geq \frac{\left|V\left(G_{1}\right)\right|+1}{\left|V\left(G_{2}\right)\right|-1}>\frac{\left|V\left(G_{1}\right)\right|}{\left|V\left(G_{2}\right)\right|}=\lambda,
$$

which is a contradiction, showing that a quasi-DB graph with a bridge is isomorphic to a star.

The next natural question is the characterisation of quasi-DB graphs with a cut vertex. As shown in [1, Proposition 3.4], there are infinitely many examples of such graphs. The examples constructed in [1, Proposition 3.4] are formed from bipartite DB graphs with the same number of vertices, glued along a vertex. All the graphs constructed in this way are bipartite. We conclude with the following problem.

Problem 4.2. Characterise quasi-DB graphs having a cut vertex.

References

[1] A. Abedi, M. Alaeiyan, A. Hujdurović and K. Kutnar, 'Quasi- λ-distance-balanced graphs', Discrete Appl. Math. 227 (2017), 21-28.
[2] K. Balakrishnan, M. Changat, I. Peterin, S. Špacapan, P. Šparl and A. R. Subhamathi, 'Strongly distance-balanced graphs and graph products', European J. Combin. 30 (2009), 1048-1053.
[3] S. Cabello and P. Lukšič, 'The complexity of obtaining a distance-balanced graph', Electron. J. Combin. 18(1) (2011), Article ID \#P49, 10 pages.
[4] D. Ž. Djoković, 'Distance-preserving subgraphs of hypercubes', J. Combin. Theory Ser. B 14 (1973), 263-267.
[5] I. Gutman, 'A formula for the Wiener number of trees and its extension to graphs containing cycles', Graph Theory Notes N. Y. 27 (1994), 9-15.
[6] K. Handa, 'Bipartite graphs with balanced (a,b)-partitions', Ars Combin. 51 (1999), 113-119.
[7] A. Ilić, S. Klavžar and M. Milanović, 'On distance-balanced graphs', European J. Combin. 31 (2010), 733-737.
[8] J. Jerebic, S. Klavžar and D. F. Rall, 'Distance-balanced graphs', Ann. Comb. 12 (2008), 71-79.
[9] K. Kutnar, A. Malnič, D. Marušič and Š. Miklavič, 'Distance-balanced graphs: symmetry conditions', Discrete Math. 306 (2006), 1881-1894.
[10] K. Kutnar, A. Malnič, D. Marušič and Š. Miklavič, 'The strongly distance-balanced property of the generalized Petersen graphs', Ars Math. Contemp. 2 (2009), 41-47.
[11] K. Kutnar and Š. Miklavič, 'Nicely distance-balanced graphs', European J. Combin. 39 (2014), 57-67.
[12] Š. Miklavič and P. Šparl, 'On the connectivity of bipartite distance-balanced graphs', European J. Combin. 33 (2012), 237-247.
[13] R. Yang, X. Hou, N. Li and W. Zhong, 'A note on the distance-balanced property of generalized Petersen graphs', Electron. J. Combin. 16(1) (2009), Article ID \#N33, 3 pages.

ADEMIR HUJDUROVIĆ, University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia
and
University of Primorska, IAM, Muzejski trg 2, 6000 Koper, Slovenia e-mail: ademir.hujdurovic@upr.si

[^0]: This work is supported in part by the Slovenian Research Agency (research program P1-0285 and research projects N1-0032, N1-0038, N1-0062 and J1-7051).
 (C) 2018 Australian Mathematical Publishing Association Inc.

