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Investigations about the role of nuclei and nucleation for the inception and formation
of cavitation have been part of cavitation research since Harvey et al. (J. Cell.
Physiol., vol. 24 (1), 1944, pp. 1–22) postulated the existence of gas filled crevices
on surfaces and particles in liquids. In a supersaturated liquid, surface nuclei produce
small gas bubbles due to mass transfer of gas or themselves work as weak spots
in the liquid that are necessary for a phase change under technically relevant static
pressures. Although various theories and models about nuclei and nucleation have
found their way into standard literature, there is a lack of experimentally validated
theories that describe the process of diffusion-driven nucleation in hydrodynamic
cavitation. In order to close this gap we give new theoretical insights into the physics
of this nucleation mechanism at technically relevant low supersaturations validated
with extensive experimental results. The nucleation rate, the number of produced
bubbles per second, is proportional to the supersaturation of the liquid and shows
a nonlinear dependence on the shear rate at the surface nucleus. A model for the
Strouhal number as dimensionless nucleation rate is derived allowing the estimation
of nucleation rates from surface nuclei in hydrodynamic cavitation. The model
provides three asymptotes, being a function of Péclet number, Weber number, the
supersaturation of the liquid ζ and gas solubility Λ for three different detachment
mechanisms, Sr ∝ ζΛWenPe1/3 with n = 1/3, 3/4, 1. The theoretical findings are in
good agreement with experimental results, leading to a new assessment of the role
of diffusion in cavitating flows.

Key words: cavitation, drops and bubbles, multiphase flow

1. Introduction
The occurrence of cavitation in hydraulic machines and maritime applications is

usually accompanied by negative aspects. Cavitation in pumps, turbines and nozzles,
as well as on propellers and rudders, influences the characteristic curves, is responsible
for noise and vibration, and causes damage of structural elements which is called
cavitation erosion (Brennen 1995; Pelz, Keil & Ludwig 2014). Furthermore, cavitation
is a research topic because of its useful application in life science, medicine and
process engineering. The cleaning of surfaces (Verhaagen & Fernandez Rivas 2015),
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Diffusion-driven nucleation from surface nuclei in hydrodynamic cavitation 139

the removal of bacteria and germs in water (Sarc, Oder & Dular 2016), the
fragmentation of kidney stones in the human body by acoustic cavitation called
lithotripsy, the targeted release of pharmacological agents (both Brennen 2015), and
the enhancement of the efficiency of mixing processes (Spiridonov 2015) are only
examples for the far-reaching application of hydrodynamic and acoustic cavitation. In
the present paper the focus is on hydrodynamic cavitation. The presented findings can
also be applied to other research fields in which bubble formation is of importance,
e.g. oil hydraulic devices, microfluidic devices or biofluidic systems.

Hydrodynamic cavitation occurs in diverse appearances – the so-called cavitation
regimes. As examples, the terms single bubble cavitation, streak cavitation, tip vortex
cavitation, sheet cavitation and cloud cavitation describe the macroscopic appearance
of cavitating flows. Regardless of the cavitation regime, there is one fundamental
similarity: the smallest elements of cavitating flows are cavitation nuclei. Without an
understanding of nucleation the picture of cavitation is incomplete. To motivate our
research there is a need to review the existent nuclei and nucleation theories shown
in figure 1. We distinguish between equilibrium and non-equilibrium theories with
respect to the solved gas content, i.e. supersaturation of the liquid. The supersaturation
of the liquid ζ is the relevant quantity that allows the quantification of gas being
solved in the liquid in relation to the equilibrium state and is important to describe
diffusion processes. ζ =0 is the equilibrium state. The definition of the supersaturation
is available later in (2.3). In cavitation research the focus is mainly on equilibrium
processes, whereas experiments indicate that non-equilibrium processes, i.e. diffusion
processes, are relevant as well (Pelz, Keil & Groß 2017).

1.1. General assessment of nuclei and nucleation theories
Basically, cavitation nuclei are small amounts of non-condensable gas that work as
weak spots in the liquid and allow its rupture under technical relevant pressures.
The well-known experiments of Briggs (1950) demonstrate the ability of liquids to
withstand high tensile stresses if the presence of such nuclei is avoided, e.g. a tensile
strength of 28 MPa in water at 10 ◦C. Theoretical considerations, for example, based
on the Van der Waals equation (Benson & Gerjuoy 1949), suggest that the tensile
strength is of the order of 100 MPa if the presence of nuclei is avoided. Mørch
(2007) gives a comprehensive overview of studies in which the dependence of the
tensile strength on the nuclei concentration are investigated. In technical flows one
only observes small tensile strengths, which leads to the conclusion that there is
always a large number of nuclei existing in the liquid.

In cavitation research a distinction is made between bubbles and particles that freely
float in the liquid and nuclei that are attached to walls, see figure 1. Bubbles and
particles in the bulk of the liquid are referred to as free-stream nuclei while nuclei
present in the walls bounding the flow are referred to as surface nuclei (Brennen
1995). In their works on bubble formation in animals, Harvey et al. (1944) postulated
the existence of minute gas nuclei attached to hydrophobic cracks in surfaces and
particles. A widespread opinion is that the onset of cavitation is mainly associated
with free-stream nuclei, and surface nuclei only play a minor role (cf. § 1.11 of
Brennen (1995)). This statement is true for some cavitation regimes (tip vortex
cavitation, single bubble cavitation), but indeed not generally valid for all cavitation
regimes, as our own experiments indicate (Pelz et al. 2017) and as we will see in
the following.

It is a known fact that the number density of free-stream nuclei, i.e. micro-bubbles
and particles, has to be considered as well as their long-term stability. In order to
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FIGURE 1. Schematic overview of nuclei and nucleation in liquids. Equilibrium and non-
equilibrium theories with respect to the solved gas content (supersaturation of the liquid)
are distinguished.

serve as cavitation nuclei permanently, both free-stream nuclei and surface nuclei
must be stabilised in some way. Dispersed bubbles are unstable since they grow or
shrink due to diffusion caused by the effect of surface tension. They are supposed
to be stabilised by skins that impede the diffusion of gas, and therefore limit growth
and shrinking, resulting in an equilibrium, cf. figure 1 I. Fox & Herzfeld (1954)
developed a theory of an organic skin while Yount’s theory implies the existence of a
skin of surface-active substances (Yount, Gillary & Hoffman 1984). The stabilisation
of nuclei in hydrophobic surfaces, the so-called Harvey nuclei, can be explained
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Diffusion-driven nucleation from surface nuclei in hydrodynamic cavitation 141

by the effect of surface tension as well (Harvey et al. 1944; Atchley & Prosperetti
1989), cf. figure 1 II: since the surface tension is acting on the convex curved
liquid–gas interface the pressure in the gas pockets is lower than the pressure in the
surrounding liquid. Because of the lower pressure the surface nuclei do not dissolve
in the surrounding liquid, unless it is strongly undersaturated. Nuclei on hydrophilic
surfaces are supposed to be unstable unless they are also stabilised by skins. It is
often assumed that the liquid is in a concentration equilibrium which usually applies
for quiescent liquids, e.g. in acoustic cavitation applications, but does not apply for
the low-pressure region in hydrodynamic cavitation where the liquid is supersaturated.

The theories of free-stream nuclei and surface nuclei have been well established and
can be found in the standard literature (e.g. Knapp, Daily & Hammitt 1970; Franc
& Michel 2004). Recent studies about nuclei on hydrophobic surfaces (Bremond
et al. 2005; Borkent et al. 2009), skin-stabilised surface nuclei (Andersen & Mørch
2015), the activation of roughness elements that serve as nucleation spots (van
Rijsbergen & van Terwisga 2011), vapour-bubble nucleation in Rayleigh–Bénard
turbulence (Guzman et al. 2016), vapour bubbles and the role of non-condensable
gas (Prosperetti 2017), and the broad field of nano-bubbles (Lohse & Zhang 2015)
underline the importance of research on cavitation nuclei as well as on (micro- and
nano-) bubbles.

In contrast to the stabilisation theories, the process of bubble nucleation is
investigated much less in the context of hydrodynamic cavitation. In cavitation
research the term nucleation is used to denote the formation of a bubble that works
as a weak spot in the liquid and allows its rupture. Research on nucleation processes
are important for the understanding of the occurrence of the diverse cavitation
regimes and cavitation inception, especially regarding the origin of bubbles serving as
cavitation nuclei (Pelz et al. 2017). Usually a differentiation is made between bubble
formation within the liquid bulk (homogeneous nucleation) and bubble formation at
weak spots in the liquid, i.e. gas bubbles, pre-existing gas cavities, surfaces, particles
(heterogeneous nucleation).

In cavitation research the terms homogeneous nucleation and the classical nucleation
theory are used synonymously. The classical nucleation theory describes the formation
of bubbles within the liquid bulk due to thermal motion of gas molecules, cf.
figure 1 III. It is reasonable to assume that homogeneous nucleation requires high
levels of supersaturation, i.e. ζ > 100, because it is necessary to overcome the
tensile strength of the liquid to create the new phase, being known as the nucleation
energy barrier. It is common sense that homogeneous nucleation is not relevant for
hydrodynamic cavitation.

In cavitation research it is widely accepted that nucleation is triggered by the
growth of minute gas bubbles which are entrapped in crevices (surface nuclei)
when the pressure falls below a critical threshold pressure. This process is called
heterogeneous nucleation. The crevice model of bubble nucleation of Atchley &
Prosperetti (1989) contains both the initial growth of the interface in the crevice
and the process by which the interface moves out of the crevice. The theory has
been validated by Bremond et al. (2005) and is of particular importance for acoustic
cavitation. Even though the crevice model is widespread it is uncertain which role
it plays in hydrodynamic cavitation, since gas diffusion is neglected. Even Atchley
& Prosperetti (1989) stated that, in hydrodynamic cavitation, gas diffusion is of
importance and a different nucleation behaviour would be expected.

In the present paper the focus is on a nucleation process where gas diffusion is the
driving mechanism. Surface nuclei grow due to gas diffusion when a supersaturated
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142 T. F. Groß and P. F. Pelz

liquid flows over the surface where the nuclei are located, cf. figure 1 IV. When a
surface nucleus reaches a critical size a part of it detaches as a bubble. This process
repeats so that a periodical production of bubbles can be observed. Depending on
their size, the produced bubbles may then act as cavitation nuclei when entering a
low pressure region, cf. Blake’s critical radius Blake (1949). We call this process
diffusion-driven nucleation to relate it to the other mentioned nucleation theories
in cavitation research. The number of produced bubbles per second is called the
nucleation rate. Indeed, the terms bubble formation and bubble formation rate are
also correct descriptions of the process. As we will see in the following, the bubbles
produced at surface nuclei by diffusion-driven nucleation have a great impact on
cavitating flows.

1.2. Diffusion-driven nucleation in quiescent liquids and fluid flows
When speaking about diffusion in the context of cavitation, usually the work of
Epstein & Plesset (1950) is cited. In their work the authors investigate the time
a gas bubble needs for the dissolution in an undersaturated liquid as well as the
time needed to increase its radius by tenfold in a supersaturated liquid. Neglecting
relative translational motion of the bubble, a typical time for the solution of a bubble
with an initial radius of 10 µm is 2.5 s. This finding is often used to argue that
diffusion processes (and thus diffusion-driven nucleation) cannot be of importance
for cavitating flows since typical times, usually the bubble collapse time, are much
shorter (Rayleigh collapse time τ ∼ 1 µs–10 µs, see Franc & Michel (2004)). For
the bubble dynamics this conclusion is valid and diffusion only plays, if any, a minor
role. In the case of diffusion-driven nucleation from surface nuclei this argument
misses the point because the processes, i.e. nucleation and cavitation, are on different
time scales. In addition, Epstein & Plesset (1950) studied the growth and shrinkage
of bubbles in a quiescent liquid. Parkin & Kermeen (1963) and van Wijngaarden
(1967) investigated the influence of convection on the diffusion mass flux, and thus
on the growth of small bubbles. As one expects, a forced convection due to a fluid
flow intensifies the diffusion mass flux, and thus leads to larger growth rates of the
bubbles.

Only a few investigations allow a closer and direct look at diffusion-driven
nucleation from surface nuclei in hydrodynamic cavitation. Thus, it is worthwhile to
study the relevant literature on (diffusion-driven) bubble formation. Besides others,
Liger-Belair (2005) examines bubble formation in carbonated beverages. In a glass of
champagne, cellulose fibres with a diameter of 10 µm–20 µm, and thus not visible
to the naked eye, work as nucleation sites. The observed nucleation rates, i.e. number
of produced bubbles per second, depend on the size of the fibres so that different
frequencies can be observed at the same time at fibres of different sizes. Since the
nucleation rate depends on the supersaturation of the liquid, it decreases with time
as the champagne becomes stale and flat. These results appear to be unsuitable for
technically relevant issues at first glance, but even in this quiescent environment
nucleation rates up to 30 Hz are observable (Liger-Belair 2005). One has to keep
in mind that the solubility of water for carbon dioxide is approximately 50 times
higher than its solubility for air. Besides others, the contributions of Lubetkin (1989)
and Jones et al. (1997) are also important works on this topic. Lubetkin (1994)
and Jones, Evans & Galvin (1999) provide a good overview of relevant works on
bubble formation. Important to mention is the work of Bankoff (1958), who presented
theoretical considerations about the entrapment mechanism of gas on rough surfaces.
These gas entrapments work as nucleation sites.
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10 mm 10 mm

(a) (b)

Single picture Averaged picture

FIGURE 2. Streak cavitation on the NACA 0009 hydrofoil. The flow is from left to right
with a frequency of bubble generation of 1000 Hz. (a) Picture taken with an exposure
time of 55 µs. (b) Averaged picture of 50 single images. The cavitation number is 5.4
and the Reynolds number is 1.1× 105. The image was taken at the cavitation tunnel of
the Laboratory for Hydraulic Machines/École Polytechnique Fédérale de Lausanne by the
authors. Also see Guennoun et al. (2003), Guennoun (2006) and Pelz et al. (2017).

The previously mentioned studies about bubble formation have in common that the
process is studied in a quiescent liquid. It is to be expected that a fluid flow affects the
studied nucleation process, i.e. the growth of a surface nucleus and the detachment of
bubbles. A more appropriate flow condition is the flow around a hydrofoil. Guennoun
et al. (2003), Guennoun (2006) observed nucleation from surface nuclei and measured
nucleation rates of approximately 5 kHz on a NACA 0009 hydrofoil, cf. figure 2(a).
For the naked eye those bubbles create the appearance of a conical streak, figure 2(b).
One immediately recognises that the origin of the streak is a specific point on the
surface of the observed object. In the shown case the point of origin is a drilled
blind hole on the hydrofoil in which a pressure transducer is located (cf. Guennoun
et al. 2003; Guennoun 2006). Because of its temporal and spatial regularity this case
serves as a good example for the theoretical considerations presented in the following.
Guennoun et al. have not considered diffusion-driven nucleation as a cause for the
cyclic production of bubbles. In § 5 we will pick this case up again to prove the
practical applicability of the approach presented in this paper.

Peters & Honza (2014) systematically studied diffusion-driven nucleation from
surface nuclei in silicone oil using a laminar radial gap flow. Blind holes with
diameters of 0.6 mm and 0.8 mm served as nucleation sites. The investigated flow
velocities were relatively small (∼0.1 m s−1 and smaller). The authors noticed that
the nucleation rate depends on the shear stress at the wall. Due to a narrow gap,
shear rates of the order of magnitude 102 s−1–103 s−1 were realised, resulting in
nucleation rates of the order of magnitude 0.01 Hz–10 Hz. Groß, Ludwig & Pelz
(2016) improved the experimental set-up used by Peters & Honza and increased
the flow velocities up to 2 m s−1 and shear rates of the order of magnitude of
1 × 104 s−1. Furthermore, it was possible to vary flow velocity and supersaturation
separately. The authors observed nucleation rates of the order of 0.1 Hz–1000 Hz and
found that there is a linear dependence of the nucleation rate on the supersaturation
and a nonlinear dependence on the wall shear rate. The experiments were also carried
out with silicone oil.

The study of the existing literature and current research activities shows that there is
a lack of experiments and validated theoretical investigations that describe the process
of diffusion-driven nucleation from surface nuclei in the context of hydrodynamic
cavitation. In order to close this gap we used the generic experiment designed for
silicone oil presented in Groß et al. (2016) and modified it to execute experiments
with water. The experimental findings support an extended understanding of diffusion-
driven nucleation as a self-excited cyclic process and help us to develop physical
models.
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saturation

Growth of surface
nucleus due to mass

diffusion of gas

Further growth
until critical size 

is reached

Detachment of 
a bubble and 

beginning of a 
new cycle

U U
d

U U

FIGURE 3. Principle sketch of the growth of a surface nucleus and the detachment of a
bubble in a fluid flow.

The paper is outlined as follows. In § 2 we provide theoretical considerations of
the described nucleation process, including the growth of surface nuclei and the
detachment of bubbles. The experimental set-up and the experimental procedure are
explained in § 3. In § 4 the experimental results are presented and compared with the
theoretical findings. In § 5 the results are applied to cases of technical relevance. The
paper closes with a conclusion in § 6.

2. Cycle frequency of diffusion-driven nucleation
We consider a crevice that is filled with non-condensable gas surrounded by a

flowing, supersaturated liquid, as sketched in figure 3. Due to the supersaturation
of the liquid there is a mass flux of gas out of the liquid into the surface nucleus.
According to Fick’s law (Fick 1855), the mass flux of gas that diffuses into the
surface nucleus, ṁ, is proportional to the concentration gradient at the liquid–gas
interface,

ṁ=−MD
∫

A
∇c · n dA, (2.1)

with concentration c measured in mol m−3, diffusion coefficient D, molar mass M,
surface area of the nucleus A and the surface normal vector n. In an equilibrium the
concentration of gas that is solved in the liquid increases linearly with the pressure,
as described by Henry’s law (Henry 1803),

c= pH, (2.2)

with pressure p and Henry coefficient H accordingly measured in mol (m3 Pa)−1.
Neglecting pressure differences due to surface tension, a surface nucleus that is
surrounded by a liquid in a concentration equilibrium will not show diffusion-driven
nucleation since the concentration gradient is zero. Taking surface tension into account
leads to the stability discussion referred to above.

In the case of a pressure decrease the liquid becomes supersaturated. The
supersaturation is defined as

ζ :=
c∞
cN
− 1. (2.3)

c∞ is the concentration of gas in the liquid and cN = pNH is the local saturation
concentration at the surface nucleus, which is determined by the partial pressure
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x

y

FIGURE 4. Sketch of the advection–diffusion problem at a surface nucleus. Evolution of
a concentration field with concentration boundary layer thickness δc.

of non-condensable gas inside the surface nucleus pN . A concentration distribution
develops.

The surface nucleus grows and when reaching a critical size a part of the surface
nucleus detaches as a bubble with mass mB and diameter dB, see figure 3. Depending
on its size, this bubble might serve as cavitation nucleus when carried into the low-
pressure region of the flow, cf. Blake (1949). A specific amount of gas, approximately
the same for every event, remains in the surface nucleus and the process repeats. From
daily life we know that this process will last as long as the liquid is supersaturated.
In technical flows where cavitation (or degassing) can be observed there is always
‘new’ liquid that flows past the surface nucleus. This keeps the process alive for an
arbitrarily long time since the average saturation concentration in the system is higher
than the saturation concentration in the low-pressure region. Hence, the liquid in the
low-pressure region is supersaturated. Active surface nuclei, i.e. surface nuclei that
produce bubbles, are an inexhaustible source for bubbles that might act as cavitation
nuclei. Then, stabilisation theories of free-stream nuclei (Fox & Herzfeld 1954; Yount
et al. 1984) fade into the background.

The growth of the surface nucleus is relatively slow while the bubble detachment
occurs rapidly. The nucleation rate f , the number of produced bubbles per second (see
figure 3), can therefore be calculated with

f =
ṁ
mB
. (2.4)

This relation will guide us in the following and helps us to derive a physical model
that describes the nucleation process based on axiomatic equations. The mass flux ṁ
is treated in § 2.1 and the mass of the detaching bubbles mB in § 2.2. In our analysis
we execute an elementary discussion rather than a full mathematical and physical
treatment of the problem. The focus of the paper is to identify the main influencing
variables and to draw general conclusions about diffusion-driven nucleation.

2.1. Growth phase of the nucleus
The mass flux ṁ that diffuses into a surface nucleus can be obtained by formulating a
plane generic problem, see figure 4. As already mentioned, the concentration gradient
at the liquid–gas interface is needed to calculate the mass flux. Solving the diffusion
problem for the growth phase will guide as to Sh ≈ 0.66Pe1/3 for the dimensionless
mass flux of gas that diffuses into the surface nucleus (definitions follow in (2.6)).
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In the most general case, the concentration field in the liquid satisfies the transient
advection–diffusion equation

∂c
∂t
+ u · ∇c=∇ · (D∇c), (2.5)

where u is the velocity field of the fluid flow. We assume a stationary process, a
negligible flow in the y direction, negligible diffusion in the x direction and a constant
diffusion coefficient D = const. Near the solid surface the velocity increases linearly
with the wall distance u= γ̇ y as long as the crevices are much smaller than the typical
length of the device (diameter of a pipe, height of a gap). The velocity profile u= γ̇ y
is also valid in turbulent flows if the typical size of the crevice d is smaller than the
viscous length lν := ν/

√
τw/%, with viscosity ν and density % of the fluid and wall

shear stress τw. The former approach is called the Lévêque approximation and is a
common practice for solving heat and mass transfer problems, e.g. the asymmetric
Graetz problem (Edwards & Newman 1985). If γ̇ is the relevant kinematic quantity
near the solid wall and near the crevice, the suitable definitions of Sherwood number
and Péclet number are

Sh :=
ṁ

cNζMDd
, Pe :=

γ̇ d2

D
. (2.6a,b)

The length d denotes the diameter of a circular crevice having the same surface area
as a hypothetical rectangular nucleus with side length dN = d

√
π/2. For Pe� 1 the

boundary layer approximation (Schlichting & Gersten 2006) applied to (2.5) gives

γ̇ y
∂c
∂x
=D

∂2c
∂y2

, (2.7)

with the boundary conditions c(x= 0, y)= c(x, y→∞)= c∞ and c(0< x< dN, y= 0)=
cN . Using c+ := (c− cN)/(c∞− cN), x+ := xD/(γ̇ d3

N), dN+ :=D/(γ̇ d2
N) and y+ := y/dN

yields the dimensionless formulation

y+
∂c+
∂x+
=
∂2c+
∂y2
+

, (2.8)

with c+(x+ = 0, y+) = c+(x+, y+→∞) = 1 and c+(0 < x+ < dN+, y+ = 0) = 0. With
the similarity variable η := y+/x

1/3
+ , i.e. c+ = c+(η), the boundary value problem is

equivalent to
d2c+
dη2
+

1
3
η2 dc+

dη
= 0, (2.9)

with c+(η = 0) = 0 and c+(η→∞) = 1. The transformation µ := η3/9 yields the
solution

c+(µ)=
0(1/3)− 0(1/3, µ)

0(1/3)
. (2.10)

The series expansion of the incomplete Gamma function 0(1/3, µ) gives the
expanded solution

c+(µ)=
3µ1/3

− 3/4µ4/3
+O(µ7/3)

0(1/3)
. (2.11)
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Considering only the leading term results in the approximate solution for the region
near to the surface nucleus,

c(x, y)
cN
≈ 1+ ζ

31/3

0(1/3)

(
γ̇ d2

N

D

)1/3 ( x
dN

)−1/3 y
dN
. (2.12)

As a result, for u= γ̇ y, the concentration field and the mass flux ṁ are proportional
to Pe1/3. The latter is given by the surface integral

ṁ=DMdN

∫ dN

0

∂c
∂y

∣∣∣∣
y=0

dx≈DMdζcN
34/3π5/6

28/30(1/3)
Pe1/3 (2.13)

or dimensionless
Sh≈ 0.66Pe1/3. (2.14)

In our derivation we assume the no-slip condition at the solid wall and expect
the velocity field to be unaffected when flowing over the surface nucleus. This
does not imply the no-slip condition at the liquid–gas interface, cf. § 2.2. If the
flow is better described by a uniform flow profile, u(y)= U∞, one gets the solution
Sh = π1/42−1/2(U∞d/D)1/2 ≈ 0.94Pe′1/2 with the velocity of the undisturbed flow
U∞ (Higbie 1935). This expression is an upper bound for the mass flux. Parkin &
Kermeen (1963) considered the growth of gas bubbles in the boundary layer of a
submerged body due to convective air diffusion and get a similar solution. They
additionally take diffusion in the flow direction into account. The work of Parkin and
Kermeen is one of the few works that consider the intensification of the diffusion
mass flux due to convective diffusion in the context of hydrodynamic cavitation.

The results Sh≈0.66Pe1/3 and Sh≈0.94Pe′1/2 can be compared to the academic case
studied by Epstein & Plesset (1950) mentioned before. The steady state solution for
the mass flux that diffuses into a resting spherical bubble with surface area πd2/4 is
Sh=π. A comparison of the three solutions shows that advection of course intensifies
the mass flux of gas into the surface nucleus. It may be observed that the constant
value for the steady case can be larger than the results of the convective approaches
in the case of small Péclet numbers. The reason is that the previous assumption of
negligible diffusion in the x direction is only valid for Pe� 1 or Pe′� 1, respectively.
Thus, a comparison of the three cases only makes sense for large Péclet numbers,
which usually is fulfilled in cavitating flows.

In the following we use the derived relation Sh∝ Pe1/3, which implies ṁ∝ γ̇ 1/3 in
dimensional quantities. Following equation (2.4), both factors ṁ and 1/mB determine
the nucleation rate. As will be seen later, 1/mB also follows a power law with the
shear rate, showing an exponent even greater than 1/3. Thus, the influence of the shear
rate on the mass of the bubbles is greater than its influence on the mass flux. An upper
bound for the nucleation rate can be determined by using the relation Sh∝ Pe1/2 and
thus ṁ∝ γ̇ 1/2.

The analysis of the diffusion mass flux has to be understood as an elementary
discussion of the problem rather than an in-depth examination of all aspects.
By assuming a flat interface we neglect the influence of surface tension on the
concentration at the liquid–gas interface (smaller mass flux) and the increase of
the surface area of the nucleus during its growth (larger mass flux). These effects
counteract each other. We also neglect the interaction of the growing surface nucleus
with the concentration boundary layer that probably leads to a smaller concentration
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FIGURE 5. Sketch of three types of bubble detachment.

boundary layer thickness and thus to higher mass fluxes. In total we expect the
model equation (2.14) to be a lower bound for the actually occurring diffusion mass
flux. A quantification of the mentioned effects is hardly possible on the basis of
our approach. A numerical solution of the transient advection–diffusion equation
coupled with calculations of the bubble growth and the velocity profile could deliver
more detailed results in the future. Nevertheless, our approach captures the relevant
physical content of the problem, as the comparison with experimental results in § 4
demonstrates.

2.2. Bubble detachment
A surface nucleus sitting in the wall of a container in a quiescent liquid, e.g. drinking
glass or at a particle in the liquid bulk, grows until it reaches a critical size and a
bubble detaches. The buoyancy force overcomes the capillary force. This case has
been investigated extensively, cf. Fritz (1935), Jones et al. (1999), Liger-Belair (2005).
In the present paper we consider the detachment of bubbles from micro crevices in a
fluid flow and investigate the influence of the related forces.

We investigate three different cases and end up with three relations for the
dimensionless bubble diameter of the form

δ :=
dB

d
, δ = δ(We), (2.15a,b)

with Weber number

We :=
%γ̇ 2d3

S
. (2.16)

In contrast to the static case, the buoyancy force only plays a minor role, especially
when crevices on a microscale are considered. The capillary force is balanced
by a dynamic force proportional to %U2b2 with a characteristic velocity U and a
characteristic length b. The dynamic force is made up of two effects: form drag and
shear lift due to an unsymmetrical flow around the surface nucleus. Depending on
the flow situation, the characteristic length b is the characteristic length of the device
L (e.g. diameter of a pipe or height of a gap), the diameter of the crevice d, the
bubble diameter dB or a typical length of a surface roughness element k describing
the microscopic geometry of the edge of the crevice, see figure 5. The detaching
bubbles are characterised by their diameter dB. In the case of spherical bubbles dB
is the bubble diameter. In the case of non-spherical bubbles dB is the equivalent
diameter of a sphere with the same volume, dB = (6VB/π)

1/3 with bubble volume
VB. We further assume that the surface nucleus has a mobile surface, resulting in
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negligible friction at the liquid–gas interface. Thus, the viscous force acting on the
surface nucleus is considered to be small. The concept of mobile surfaces has been
studied extensively in the context of rising gas bubbles (Lochiel & Calderbank 1964;
Clift, Grace & Weber 1978; Duineveld 1995; Peters & Els 2012). If the liquid–gas
interface is immobilised, e.g. by surfactants or organic material, the viscous force has
to be taken into account.

Our analysis of bubble detachment from surface nuclei is based on two competing
forces, the dynamic force and the capillary force. It should be noted that there are
other major research areas in which the detachment of bubbles is of importance: (i)
bubble detachment from wall orifices in liquid cross-flows due to gas injection (e.g.
Clift et al. 1978; Nahra & Kamonati 2003; Duhar & Colin 2006) and (ii) bubble
detachment in flow boiling (e.g. Chen, Pan & Ren 2012). The main difference to our
approach is the need to consider additional forces in the above-mentioned cases, see
cited works. In the case of bubble detachment from wall orifices an additional force
proportional to the squared gas injection flow rate, called the momentum flux force,
has to be considered. In the case of flow boiling a growth force of the surface nucleus
as well as an added-mass force have to be taken into account. Both forces come into
play because of the rapid expansion of the surface nucleus due to the evaporation of
the liquid. Especially the growth force can be dominant, cf. Chen et al. (2012). In our
case the growth rate of the surface nucleus is relatively small and can be neglected.

To complete our picture of the diffusion-driven nucleation we consider the three
cases sketched in figure 5.

Case I: The size of the detaching bubble is of the same order of magnitude as
the surface nucleus and the characteristic length of the device, dB ∼ d ∼ L. Thus
dB depends on both the size of the surface nucleus and the characteristic length of
the device. This case has been investigated by Peters & Honza (2014) and Groß,
Ludwig & Pelz (2015) in a laminar radial gap flow. In laminar flows the typical
velocity is proportional to the product of wall shear rate and gap height, U∝ γ̇L. The
cross-section area, where the dynamic force is acting, is b2

∝ dL. The volume of the
detaching bubble is d3

B ∝ d2L. Thus the dynamic force is proportional to %γ̇ 2d3d9
B/d

8.
With the capillary force being proportional to Sd one obtains the specific form of
equation (2.15)

δ3
= (εIWe)−1/3, (2.17)

where εI is a dimensionless constant.
Case II: The size of detaching bubble is of the same order of magnitude as the

size of the crevice, and both are significantly smaller than the characteristic length of
the device, dB ∼ d� L. Thus the size of the bubble only depends on the size of the
crevice. With the typical velocity U ∝ γ̇ dB, the cross-section area b2

∝ d2
B, and the

capillary force being proportional to Sd, one gets

δ3
= (εIIWe)−3/4, (2.18)

with the dimensionless constant εII . As we will show later, this case describes the
most frequently observed mechanism in our experiments with water.

Case III: The detaching bubble is smaller than the surface nucleus and the
characteristic length of the device, dB � d and dB � L. In this case the bubble
diameter dB cannot be a function of these lengths. The bubble size depends on the
microscopic characteristics of the crevice represented by length k, see figure 5. We
observed this detachment mechanism only at crevices with relatively large diameters.
For example, this detachment mechanism has been observed in a previous study
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with silicone oil (Groß et al. 2016) as well as in the streak cavitation experiments
conducted in Lausanne, cf. figure 2 and Guennoun et al. (2003), Guennoun (2006).
The typical velocity and the cross-section area are the same as in case II. However, the
capillary force does not act over the hole crevice but rather on a length proportional
to dB. Hence we find

δ3
= (εIIIWe)−1, (2.19)

with the dimensionless constant εIII .
For cavitating flows in pumps, turbines, nozzles or on propellers, cases II and III

are of particular importance, whereas case I could be of importance for cavitation in
journal bearings, narrow gaps of seals, as well as in microfluidic devices or biofluidic
situations.

To complete the analysis, the bubble mass is required. For an ideal gas with the
constitutive equation pB = %BRTB one obtains

mB =
π

6
pBd3

B

RTB
=

π

6
pBd3

RT
δ3, (2.20)

with the temperature of the bubble being equal to the temperature of the surrounding
liquid, TB=T . The initial relation f = ṁ/mB together with (2.13), Henry’s law c= pH
and the ideal gas constant R= RM yields the Strouhal number relation

Sr :=
fd2

D
≈ 1.26Λ

c∞/H− pN

pB
Pe1/3δ−3, (2.21)

with
Λ :=RTH (2.22)

being the dimensionless solubility of gas in the liquid. For pB ≈ pN this reduces to

Sr≈ 1.26ΛζPe1/3δ−3, (2.23)

with

δ3(We)=


(εIWe)−1/3 for case I,
(εIIWe)−3/4 for case II, and
(εIIIWe)−1 for case III.

(2.24)

The absolute values of the dimensionless constants εI , εII and εIII , and the limits of
validity are not known. One has to keep in mind that our analysis is based on simple
concepts for the capillary force and the dynamic force. We do not consider contact
line dynamics, the influence of contact angles and the role of the edge of the crevices
for the detachment process. The length over which the capillary force is acting might
differ from the length we assume. For a case II detachment the capillary force is
calculated with the circumference of the crevice, which refers to an ideal situation,
i.e. a symmetrical surface nucleus adhered to the edge of the crevice. To completely
solve these issues, more experimental and numerical investigations on contact line
dynamics, the role of the contact angles and the micro-structure of the crevices are
needed, especially for large shear rates. In other research fields, e.g. heterogeneous
nucleation in acoustic cavitation (Atchley & Prosperetti 1989; Borkent et al. 2009),
the growth of surface nano-bubbles (Lohse & Zhang 2015) and detachment of vapour

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

58
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.587


Diffusion-driven nucleation from surface nuclei in hydrodynamic cavitation 151

bubbles of smooth surfaces in flow boiling (Klausner et al. 1993; Chen et al. 2012),
the role of contact line dynamics and contact angle are understood far more and ought
to be applied to the situation discussed here. In addition we do not consider the effect
of the shape of the surface nucleus on the drag and lift coefficients, which are hidden
in the dimensionless constants as well. Taking all these issues into account, we cannot
yet specify the values of the dimensionless constant in advance. In the following we
validate the asymptotic relations of (2.23) experimentally.

2.3. Summary of key findings so far
The nucleation rate can be described by developing two models for the diffusion mass
flux and the mass of the detaching bubbles. The diffusion mass flux is derived using
boundary layer theory. The bubble mass is derived using a simplified balance of forces.
The following list summarises the most important findings of our analysis. (i) There is
a linear dependency of the nucleation rate on the supersaturation of the liquid. (ii) The
nucleation rate depends on the Péclet number being relevant for the mass flux as well
as on the Weber number being relevant for the mass of the detaching bubbles. We
provide three asymptotic expressions that allow the calculation of the Strouhal number
depending on the detachment mechanism. With equation (2.23) one can determine how
the nucleation rate depends on the shear rate for the three detachment mechanisms.
One obtains the relations f ∝ γ̇ , f ∝ γ̇ 11/6 and f ∝ γ̇ 7/3, respectively, for the three
cases. Using the dimensionless mass flux relation Sh ∝ Pe′1/2 for a bulk flow allows
the calculation of upper bounds for the nucleation rate. With the results of §§ 2.1
and 2.2, i.e. ṁ∝ γ̇ 1/3 and mB ∝ γ̇

−2/3, mB ∝ γ̇
−3/2 or mB ∝ γ̇

−2, it is obvious that the
influence of the shear rate on the mass of the bubbles is much greater than on the
diffusion mass flux into the surface nucleus. (iii) The nucleation rate is proportional to
Λ :=RTH, which is a dimensionless quantity describing the capability of the liquid to
dissolve gas. It can be interpreted as the ratio between the volume occupied by a given
mass of gas at a given pressure and the volume of liquid that could be saturated with
that given mass. This factor is varied only marginally in cavitation experiments, e.g.
due to temperature variations, and can be set to a constant value if the experiments
are conducted with the same liquid. Of course, Λ may vary over several orders of
magnitude when switching from water to oil or when different gases are investigated,
e.g. carbon dioxide in water. (iv) The mass of the non-condensable gas inside of a
detaching spherical bubble is proportional to the pressure pB = p∞ + 4S/dB − pv with
surrounding pressure p∞, vapour pressure pv and surface tension S. In the case of
small bubbles or low surrounding pressures the influence of surface tension and vapour
pressure cannot be neglected. The effect of surface tension increases the bubble mass,
resulting in a decrease of the nucleation rate. In the case of low surrounding pressures
the vapour pressure has to be taken into account, leading to a decrease of the bubble
mass and thus to an increase of the nucleation rate. (v) The effects of hydrophobic
and hydrophilic surfaces are not considered so far. Contact line dynamics and different
contact angles may influence the detachment mechanism and can be taken into account
by a variation of the dimensionless constants εI , εII and εIII . In the end, we expect
that the microscopic geometry of the edge of the crevices plays a dominant role and
surface energy is only of secondary importance.

3. Experimental set-up
Experiments on cavitation are often carried out in complex test facilities since the

results are to be applied on likewise complex machines such as pumps, propellers or
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FIGURE 6. Sketch of experimental set-up.

valves. Due to the complexity and size of these test facilities, i.e. cavitation tunnels,
there often is a limited accessibility to the working section, resulting in extensive
experimental procedures and time-consuming conversion work. Usually the focus
is on large-scale cavitation phenomena such as sheet and cloud cavitation, cf. Pelz
et al. (2014, 2017). Without a doubt, small-scale phenomena such as nucleation are
difficult to study in these experimental set-ups. The experimental set-up we use for
our nucleation experiments is kept simple so that a good accessibility (mechanical
and optical) is ensured and we can easily control the experimental parameters. In
technical applications a bubble might show an exponential growth (cavitation) right
after its detachment from a surface nucleus. The almost simultaneous occurrence
of diffusion-driven nucleation and cavitation, cf. figure 2, complicates both the
execution of the experiments and the analysis of the collected data. For this reason
it is advantageous to separate these two phenomena. In fact, in our experiments the
pressure is way above vapour pressure so that cavitation cannot be observed. The
formation of bubbles can only be caused by diffusion.

The focus of the experiment is on the measurement of the nucleation rates, the
growth of the surface nuclei and the detachment process by means of high-speed
visualisation. Figure 6 shows a sketch of the experimental set-up, consisting of two
tanks with a capacity of 50 l each, the test section, piping, gas supply, various
measuring instruments, the high-speed camera system and a submicron filtering unit
to filter out small particles (not shown in the sketch). The fluid flow is driven by
a pressure difference between the two tanks that can be adjusted using compressed
air. The liquid, usually tap water, flows from tank 1 through the piping and the test
section, where the surface nuclei are located, into tank 2. We measure the pressure in
both tanks, the pressure in the test section, the oxygen content and the temperature of
the liquid in tank 1. The flow rate is measured with a magneto-inductive flow meter.
High-speed visualisations are conducted using an IDT Motion Pro Y7 S3 camera
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Detail A
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FIGURE 7. Sketch of pipe with rectangular cross-section. Blind holes etched in silicon
wafer work as surface nuclei. The high-speed camera is mounted either in the top (x–z-
plane) or the side view (x–y-plane) perspective.

with a resolution of 1920 × 1080 pixels and a maximum frame rate of 10 600 f.p.s
and stroboscopic lighting. It is essential to use a long-distance microscope to visualise
the micrometre-sized crevices and the detaching bubbles. To eliminate motion blur of
the moving bubbles it is necessary to use exposure times of microseconds, which is
in conflict with sufficient lighting. Thus, the measurement of the nucleation rate is
much easier and more precise than the measurement of the diameters of the moving
bubbles. In order to make a statement about the bubble size possible, the size of the
surface nuclei is analysed immediately prior to the detachment.

The test section we use is a pipe with a rectangular cross-section, see figure 7. The
rectangular pipe has a width of w= 30 mm and an adjustable gap height L. Distance
plates are inserted into the test section to change the gap height between 1.8 and
3.8 mm in discrete steps. We achieve flow rates of up to 10 l min−1. By closing a
control valve the flow rate can be set to zero. We expect the velocity profile to be
laminar. Thus, the shear rate at the wall is γ̇ = 6Q/L2w, with flow rate Q. We achieve
shear rates of the order of magnitude of 102 s−1–103 s−1 and supersaturations of the
order of magnitude of 0.1–1. In comparison to technical relevant flows in pumps,
turbines, propellers or valves, the shear rates are still relatively small.

Since the lid and the sidewalls are made of acrylic glass, high-speed visualisations
from the top and side view perspective are possible. The observed crevices are
cylindrical blind holes with diameters of 25 µm, 50 µm and 100 µm etched into
square-shaped silicon wafers with a edge length of 10 mm. The depth of the blind
holes is approximately 20 µm, while the silicon wafer has a thickness of 0.5 mm. The
silicon wafers were produced and kindly given to us by Dr David Fernandez Rivas
from the Mesoscale Chemical Systems group at University of Twente, Netherlands.
See Fernandez Rivas et al. (2010) and Zijlstra et al. (2015) for further information
about the production. The ratio of gap height of the test section to diameter of
the surface nuclei is at least 18. The maximum ratio is 152. Thus, we expect the
nucleation process not to be influenced by the height of the gap. The silicon wafers
are mounted on a specimen that is inserted into the test section.

Before starting a series of measurements one has to ensure that the silicon wafers
are very clean and dust particles have been removed. The crevices are filled with gas
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by simply filling the test section with liquid, cf. Bankoff (1958). Small amounts of
gas are entrapped in the crevices and work as surface nuclei. The saturation of the
liquid in tank 1 is adjusted by injecting compressed air at the bottom of the tank.
The measurement of the oxygen content is used to ensure that the liquid is saturated
at a specific pressure. One of the most important qualities of the set-up is that the
supersaturation in the test section can be varied while the other parameters can be
kept constant. The pressure in the test section is used to determine the pressure of non-
condensable gas in the surface nuclei (pN), while the pressure in tank 1 corresponds
to the saturation pressure of the liquid (p∞), which is controlled with an oxygen
sensor. The supersaturation of the liquid in the test section can be determined with
ζ := p∞/pN − 1, cf. equation (2.3). Increasing the pressure level of the set-up and
keeping the pressure difference between the tanks constant, leads to a constant flow
rate (for a given gap height) while the supersaturation changes. On the other hand
it is possible to keep the supersaturation constant while the flow rate changes. If
the pressure level is changed rapidly, the liquid in tank 1 is still saturated at the
saturation pressure that has been adjusted before. Keeping the pressure in the test
section constant results in a constant supersaturation and a variable flow rate that
depends on the pressure difference between the tanks.

4. Experimental results and discussion
To get an extended understanding of the nucleation process we investigate the

nucleation rates and the volume of detaching bubbles by means of high-speed
visualisation. It will be seen that the model for a case II bubble detachment,
equation (2.18), and the Strouhal number relation, equation (2.23), are well validated
by the experimental findings.

By way of example figure 8 shows a sequence of the growth of a surface nucleus
in water and the detachment of a bubble at a micro crevice with a diameter of d =
25 µm in a fluid flow with a shear rate of 2026 s−1. During its growth the surface
nuclei forms a spherical cap that bends over the edge of the crevice with increasing
size. Prior to its detachment the surface nucleus is obviously larger than the crevice.
After the detachment (not visible in the pictures) the process repeats. For the shown
experiment the nucleation rate is 0.22 Hz. The figure is a typical recording that is
used for the evaluation and analysis of nucleation rates and bubble detachment.

Using the recordings from the side view perspective, it is possible to determine
the volume of the surface nucleus immediately prior to the bubble detachment.
Assuming that the volume of the detached bubble equals the part of the surface
nucleus that protrudes into the water prior to the detachment, cf. figure 8, frame 9,
allows the determination of the dimensionless bubble volume δ3. The measurement
of the bubble size of course may suffer from measurement uncertainties. The bubble
volume is determined using a two-dimensional projection of the surface nucleus.
Deformations in the third dimension cannot be considered. Prior to the detachment
the surface nucleus is in motion and shows deformations of the shape, which makes
the determination of the bubble volume difficult in some cases, especially in the case
of large shear rates. Furthermore, the resolution of the images complicates an exact
determination of the bubble volume. Based on our evaluation, measuring uncertainties
of 10 %–15 % of the bubble diameter δ are reasonable values. In addition, large
fluctuations between the individual measurements have to be considered. So far, it is
not known which parameters are responsible for the scattering of the data.

The grey symbols in figure 9 represent the measured dimensionless bubble volume
δ3 plotted against Weber number We := %γ̇ 2d3/S for different crevice diameters. The
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FIGURE 8. Growth of a surface nucleus and detachment of a bubble at a crevice with
d = 25 µm in water from the side view perspective. The flow is from left to right. The
time interval between the images is 500 ms. The surface nucleus mirrors in the silicon
wafer.

different symbols mark different crevice diameters that have been evaluated. As one
expects, the dimensionless bubble volume decreases with increasing Weber number,
and thus increasing shear rate. In the measurements we observed case II detachments.
The measured bubble volumes are in the range of δ3

= 1–1 × 103, i.e. a range of
δ = 1–10 for the bubble diameter.

In addition to size measurements, we also measured the nucleation rate f . Our
experiments showed that there is a nonlinear dependence of the nucleation rate
on the shear γ̇ and a linear dependence on the supersaturation ζ . We observed
that the nucleation rate is very constant over time. We recorded at least 15 bubble
detachments at each operation point so that we can calculate a reasonable standard
error. Our measurements show that the 95 % confidence interval of the nucleation
rate is smaller than 10 % of the measured value of the nucleation rate, usually better.

In figure 9 an additional and independent representation of the dimensionless bubble
volume δ3 is presented. The black symbols in figure 9 are deduced from measurements
of the nucleation rate f (or Strouhal number Sr) which can be measured with smaller
measuring uncertainty than the bubble size. We rearrange equation (2.23), calculate

δ3
=

1.26ζΛPe1/3

Sr
, (4.1)

and plot it against Weber number We = %γ̇ 2d3/S. As one expects, the calculated
dimensionless bubble volume also decreases with increasing Weber number. Together,
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Calculation with equation (4.1)

Bubble size measurements
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FIGURE 9. Dimensionless bubble volume δ3 versus Weber number We := %γ̇ 2d3/S.
The solid lines are calculated with equation (2.18). Grey symbols are based on
measurements of the size of the detaching bubbles. Black symbols are calculated with
equation (4.1) based on nucleation rate measurements. Different symbols mark different
crevice diameters: 25 µm filled circle, 50 µm open circle, 100 µm square. The ratio of
crevice diameter to gap height is always smaller than 1/18. The liquid is water with
the properties % = 998 kg m−3, D = 2 × 10−9 m2 s−1, S = 70 × 10−3 kg s−2 and H =
7.4× 10−6 mol (m3 Pa)−1.

both data sets, i.e. bubble size and nucleation rate measurements, underline that our
model is a reasonable approach describing diffusion-driven nucleation from surface
nuclei.

The graph shows that the data of the calculated dimensionless bubble volume
approach the relation δ3

= (εIIWe)−3/4 with εII = 5 × 102. Based on the bubble
size measurements, εII = 5 × 101 is a more reliable value. The main reason for
the discrepancies between the two data sets are (i) large (systematic) measurement
uncertainties of the bubble size measurements, which cannot be determined further so
far (assumption that bubble size equals size of protruding part of surface nucleus, size
measurement based on two-dimensional projection, moving surface nucleus) and (ii)
uncertainties in the mass flux model. As discussed in § 2.1, the calculated diffusion
mass flux can be interpreted as a lower bound. The surface area of the surface nuclei
is obviously larger than the surface area of the crevices, cf. figure 8. Furthermore,
the influence of the protruding surface nucleus on the thickness of the concentration
boundary layer is neglected. An underestimation of the diffusion mass flux leads to
smaller values of the calculated dimensionless bubble diameter, and thus to a higher
value of εII , cf. equation (4.1). Both mentioned aspects could easily sum up to an
order of magnitude in the mass flux, and thus in the calculated dimensionless bubble
volume. It should be noted that for a constant Weber number a factor of ten in the
dimensionless constants leads to a reduction of the bubble volume by a factor of 0.17
and to a reduction of the bubble diameter by a factor of 0.56.

For a symmetrical surface nucleus that is adhered to the edge of the crevice one
would expect εII to be of the order of unity, since it represents the detachment
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criterion, which says that the dynamic force has to overcome the capillary force,
which is calculated with the circumference of the crevice. This refers to an ideal
situation. As mentioned in § 2.2, our detachment model does not contain all aspects
of the detachment process, i.e. contact line dynamics, surface energy issues, the role
of the edge of the crevice for bubble detachment, as well as the shape-dependent
drag and lift coefficients. The detachment model has to be understood as a rough
approach. High-speed visualisations of the growth of surface nuclei show that the
surface nucleus bends over the edge of the crevice and is far from being symmetrical,
cf. figure 8. The deformation of the surface nucleus depends on both its size and
the shear rate at the wall. Large values of εII as shown in figure 9 indicate an
overestimation of the capillary force. The length over which the capillary force is
acting might differ from the length we assume, i.e. the diameter of the crevice. If
this length can be determined somehow, εII can be scaled with ε∗II = εIId∗/d, with d∗
being the relevant length.

In our experiments we observe nucleation rates of the order of magnitude of
0.1 Hz–1 Hz in the investigated range of shear rates. At first glance, these frequencies
seem to be very low. One has to keep in mind that shear rates in cavitating flows
can be substantially higher, i.e. 104 s−1–105 s−1, cf. § 5. On the other hand, crevices
in technical applications can be at least one order of magnitude smaller than in
our experiments, depending on the production process (turning, milling, grinding,
casting). Diameters of d ≈ 1 µm are reasonable in technical applications. If the
model assumptions hold true also for higher shear rates, the results can be used
to make statements on the nucleation rate also for these cases. On the basis of
figure 9 one can evaluate a Strouhal number of Sr = 0.1 for a Weber number of
approximately We ≈ 10−3. In the case of a moderate supersaturation of ζ = 1 and
D= 2× 10−9 m2 s−1, this is related to a nucleation rate of f = 200 Hz for a crevice
diameter of d= 1 µm. The required shear rate for this to happen is γ̇ = 2.6× 105 s−1.

This example shows that the results presented can indeed be applied to technical
flow problems. Of course, the transfer of the model to higher shear rates might be
crucial since it has been validated only for smaller shear rates. So far, we see now
restrictions that the model holds true for these cases. This has to be discussed in future
investigations. In § 5 the model is applied to two cases of practical interest.

4.1. Bubble detachment as a Plateau–Rayleigh instability
In Groß et al. (2016) we presented experimental results gained in a similar
experimental set-up using the same test section. In these experiments we used
silicone oil with a kinematic viscosity of 20 × 10−6 m2 s−1 instead of water. The
surface tension of the used silicone oil is 21 × 10−3 kg s−2 and the density is
945 kg m−3. Relatively large blind holes with a diameter of 0.8 mm worked as
nucleation sites. The ratios of gap height to the diameter of the surface nucleus are
L/d = 1.25 and 3.75, respectively. Due to these small ratios, the fluid flow and thus
the bubble detachment mechanism are influenced strongly. Nevertheless, we observed
a detachment mechanism that might be of particular importance for some applications.

Figure 10 shows twelve high-speed images of the detachment of a bubble from a
surface nucleus in the side view perspective, cf. Groß et al. (2016). The images
illustrate that the detachment process is a consequence of a Plateau–Rayleigh
instability (Rayleigh 1879). The detachment works as follows. The initial situation is
a surface nucleus that expands over the edge of the bore and forms a cylindrical body.
Small perturbations with different wavelengths that occur due to the fluid flow deform
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FIGURE 10. Detachment of a bubble with volume VB from a surface nucleus as a
consequence of a Plateau–Rayleigh instability from the side view perspective. The time
interval between the images is 2 ms. The flow is from left to right. The liquid is
silicone oil with a kinematic viscosity of 20 × 10−6 m2 s−1 and a capillary constant of
21 × 10−3 kg s−2. The surface nucleus and the detached bubble mirrors in the polished
surface of the specimen.

the cylindrical part of the nucleus. Deformations with wavelengths smaller than a
critical wavelength increase the surface of the nucleus. Wavelengths larger than the
critical wavelength lead to a reduction of the surface. Regarding to Rayleigh’s work
principle, the nucleus is stable to deformations that increase the surface since work
would have to be done. Deformations that decrease the surface will not be damped
but increased because the system attempts to reach an energetically favourable state.
For a cylindrical body with diameter dc with an infinite length the critical wavelength
is its circumference πdc (Rayleigh 1879).

The largest wavelength that occurs approximately equals the length of the
cylindrical part of the nucleus. The length of the nucleus, and thus the largest
wavelength, increases while the surface nucleus is growing. The nucleus starts to
oscillate up and down as soon as the critical length is reached. Since the perturbations
are not attenuated, the cylindrical part of the surface nucleus deforms so strongly that
it constricts and a bubble detaches. The Plateau–Rayleigh instability is a geometrical
criterion. Of course, the bubble shape and the expansion over the edge of the bore
are results of the acting forces.

Figure 11 shows how the volume of the detached bubbles depends on the shear
rate (graph a) as well as on the cylindrical part of the surface nucleus (graph c). As
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FIGURE 11. (a) Volume of detached bubble versus shear rate. (b) Dimensionless bubble
volume δ3 versus Weber number. The solid line is calculated with equation (2.19) and
εIII = 0.01. (c) Volume of detached bubble versus diameter of the cylindrical part of the
surface nucleus. The solid line marks the critical volume VB = π2d3

c/4. The open circles
mark measurements with a gap height of 3 mm. The filled circles mark measurements
with a gap height of 1 mm. The liquid is silicone oil with the properties %= 945 kg m−3

and S= 21× 10−3 kg s−2.

one expects, the volume of the detached bubbles decreases with increasing shear rate.
The graphs illustrate that the detachment process depends only marginally on the gap
height. Figure 11(a) also confirms the validity Sr∝WePe1/3, equation (2.23) case III.
The model implies mB ∝ VB ∝ γ̇

−2, which can also be found in the graph. At first
glance this finding is somehow surprising, since the detachment mechanism described
here is not driven by forces but rather a stability limit based on surface energy. In fact,
the growth of the nucleus and the formation of the shape follow the same physical law
as the detachment mechanism described in § 2.2. The only difference is the trigger that
causes the detachment (balance of forces or Rayleigh–Plateau instability). To underline
this finding, figure 11(b) shows the dimensionless bubble volume δ3 plotted against
Weber number. The solid line is calculated with equation (2.19) and the dimensionless
constant is determined as εIII = 0.01. One clearly sees that the experimental results are
well described by the asymptote δ3

= (εIIIWe)−1.
It should be noted that the value of εIII is very small compared to the values of

εII discussed in the previous section. This is due to an overestimation of the dynamic
force in the present case. The surface nucleus shows an ‘streamlined’ shape leading
to a reduction of drag. Hence, it is not surprising that εIII has a relatively small value.
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Figure 11(c) illustrates how the volume of the detached bubbles increases with
increasing diameter of the cylindrical part of the nucleus. As mentioned before, the
surface nucleus becomes unstable when it reaches a critical size, and perturbations
with wavelengths larger than its diameter occur. The straightforward approach to
calculate the volume of the detached bubbles is to calculate the volume of a cylinder
whose length equals its circumference, VB = π2d3

c/4. The solid line in figure 11(c)
represents this calculation. The volume of the detached bubble is proportional to the
cube of the diameter of the cylindrical part. The measured values lie only slightly
above the solid line.

Our experiments with water and silicone oil demonstrate that there are a variety
of detachment mechanisms that might occur, cf. figures 8 and 10. At first sight, the
Plateau–Rayleigh instability seems not to be of practical importance, especially for
water flows. However, there is experimental evidence that this detachment mechanism
also occurs in hydrodynamic cavitation. Guennoun (2006) observed the detachment of
bubbles from a surface nucleus attached to a surface irregularity (see figure 4.7 of his
work). The detachment behaviour looks very similar to the behaviour described here
(Martijn van Rijsbergen, personal communication, February 2, 2016).

5. Application to technical flow problems
In the previous sections we demonstrated that nucleation rates can be calculated

on the basis of the approach f = ṁ/mB. We showed that the three correlations Sr ∝
ζWe1/3Pe1/3, Sr ∝ ζWe3/4Pe1/3 and Sr ∝ ζWePe1/3 are useful to calculate nucleation
rates occurring at micro crevices. To underline the importance of our findings we
discuss our approach using examples of practical interest.

First, we want to take a look on the streak cavitation experiments conducted in
Lausanne, cf. figure 2. The theoretical findings indicate that the shear rate plays a
crucial role in the described nucleation process. The shear rate on a hydrofoil can be
determined using the theory for the evolution of the boundary layer thickness on a flat
plate, δU = 5x/Re1/2

x with coordinate x, Reynolds number Rex = U∞x/ν and velocity
of the undisturbed flow U∞ (Schlichting & Gersten 2006). Using γ̇ ≈ U∞/δU we
get γ̇ ≈ 1/5

√
U3
∞
/(xν). Guennoun et al. (2003) conducted experiments with U∞ =

20 m s−1 and observed nucleation at x= 1 mm. At the nucleation site the shear rate
has a value of 5.7 × 105 s−1, and is thus two orders of magnitude larger than the
shear rates observed in our experiments. Guennoun observed nucleation rates of up
to 5 kHz. Using f = ṁ/mB and the correlation for the mass flux equation (2.13) one
obtains a bubble diameter of dB ≈ 18.1 µm for a moderate supersaturation of ζ = 1.
The bubble diameter increases with ζ 1/3 (R= 8.314 J (mol K)−1, T = 293.15 K, H=
7.4×10−6 mol (m3 Pa)−1). On the basis of (2.23) and assuming a case III detachment
we obtain εIII = 3.67× 10−2 with We= 4.6× 106. This value is surprisingly close to
the value of εIII = 10−2 determined in the previous section. In the light of this finding
a case III detachment seems to be unlikely in the case of micro crevices, due to the
large required shear rates.

A second practical application of our model is a plausibility check of Euler–
Lagrange simulations of cavitating flows where surface nucleation is considered.
Recent computational fluid dynamics (CFD) studies on sheet and cloud cavitation
underline the relevance of nucleation in the context of hydrodynamic cavitation.
Chahine and his group (e.g. Hsiao, Ma & Chahine 2014; Chahine 2015; Ma, Hsiao
& Chahine 2015) investigated sheet and cloud cavitation using an Euler–Lagrange
model where cavitation nuclei and their bubble dynamics are considered. The nuclei
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are created at nucleation spots on the surface of the investigated objects. The authors
used a nucleation rate of 22 kHz in their simulations. The model works without
any empirical mass exchange models that are non-physical and need to be calibrated.
Although this approach is computationally expensive in comparison to other cavitation
models (e.g. Schnerr & Sauer 2001; Singhal et al. 2001), it is physically more
consistent for representing the processes of sheet and cloud cavitation. Since there is
only a little influence of the bubble radius on the numerical results, the predefined
initial bubble radius is set to be 10 µm. The nucleation rate and the initial nuclei
radius used in the simulations are not experimentally validated. One has to keep
in mind that the size of the nucleation spots are of the order of magnitude of the
surface roughness or the size of surface irregularities (e.g. shrinkage cavities), and
thus of orders of magnitude from 0.1 to 10 µm. It would be very unlikely that the
diameters of the detaching bubbles are orders of magnitude larger than the size of
the nucleation spots for the large shear rates and large nucleation rates occurring in
cavitating flows. We can use our model to check the predefined bubble diameter on
plausibility.

Assuming a nucleation spot with d= 10 µm we can use equation (2.13) to calculate
a shear rate of 1.2× 1018 s−1 for a moderate supersaturation of 1. This shear rate is
unphysically large. We now use equation (2.23) with εII = 5× 102, cf. figure 9, and
calculate the shear rate for a case II detachment to be γ̇ ≈ 1.3 × 106 s−1, which is
still large (the properties of the liquid are listed above). The Weber number then is
We ≈ 25.3. Equation (2.18) then gives a bubble diameter of dB ≈ 0.9 µm, which is
small but a more reliable value than 20 µm. In summary, diffusion-driven nucleation
of bubbles with a diameter of 20 µm with a frequency of 22 kHz seems implausible
in the light of our findings.

In our model we only consider single surface nuclei sitting in a well-defined
crevice. In technical applications there are an uncountable number of nucleation
spots located on a surface with a variety of geometries, e.g. steps (Pelz et al. 2014),
surface irregularities or roughness elements (van Rijsbergen & van Terwisga 2011).
In Pelz et al. (2017) we discussed the nucleation process in the context of sheet and
cloud cavitation originating from an artificial roughness. Taking into consideration
that free-stream nuclei ‘activate’ the artificial roughness and form a large liquid–gas
interface, one can conclude that diffusion-driven nucleation is responsible for the
production of the vast number of bubbles forming the sheet cavity. Large shear rates
together with a sufficiently large liquid–gas interface are the key elements here.

Of course, the process of diffusion-driven nucleation in technical flows is a very
complex phenomenon. Different nucleation sites on surfaces could interact with
each other, and could combine and form a larger surface nucleus. In addition,
detaching bubbles could influence each other or could cause the bubble detachment
at surface nuclei further downstream. The nucleation process is influenced by an
usually unknown local supersaturation and might be affected by the wettability of the
surface. Furthermore, the surface tension and the vapour pressure of the liquid could
play an important role as well as turbulence and vortex formation. This work can
serve as a first step for further investigations on diffusion-driven nucleation in the
context of hydrodynamic cavitation. In the light of the findings presented, the role of
diffusion must be reassessed.

6. Conclusion
There is no doubt that free-stream nuclei and surface nuclei play an important

role for the inception and appearance of cavitating flows. Cavitation nuclei work as
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weak spots in the liquid and allow its rupture under technically relevant pressures.
The theories and models of nuclei and their stabilisation are well established and
recognised in the cavitation community. Nevertheless, there is a lack of knowledge
about the principles of diffusion-driven nucleation from surface nuclei in the context
of hydrodynamic cavitation. In the present paper we investigate the formation of
bubbles that might serve as cavitation nuclei at pre-existing gas cavities (surface
nuclei) in a supersaturated liquid due to gas diffusion. The produced bubbles might
act as cavitation nuclei when entering a low-pressure region.

The self-excited cyclic process of diffusion-driven nucleation is analysed and new
theoretical considerations are presented and validated with experimental results. The
nucleation rate is expressed as the ratio of the mass flux that diffuses into the surface
nucleus and the mass of the detaching bubbles, f = ṁ/mB. Therefore, it is expedient
to treat these two aspects, i.e. the two phases of the cyclic process, separately. The
mass transfer is modelled by solving an advection–diffusion equation while the bubble
detachment is treated with a balance of forces. The first model shows that the mass
transfer is intensified by the fluid flow, as one expects. The dimensionless mass
transfer (Sherwood number) is proportional to the Péclet number to the power of
one third and depends linearly on the supersaturation of the liquid ζ . The second
model shows that the size of the detaching bubbles is a function of the Weber
number. Depending on the detachment mechanism one obtains three asymptotes
Sr ∝ ζΛWenPe1/3 with n= 1/3, 3/4, 1 for the nucleation rate with dimensionless gas
solubility Λ. The results of the calculation are in good agreement with experimental
findings gained in generic experiments. The models serve well for the analysis
of streak cavitation. In addition, the models can be used to check the plausibility
of nucleation rates and bubble diameters used in Euler–Lagrange simulations of
cavitating flows. The transfer of the findings to other cavitation regimes such as sheet
and cloud cavitation is conceivable. The discussion about diffusion-driven nucleation
leads to a new assessment of the role of diffusion in hydrodynamic cavitation.
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