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ON THE SIEVE OF ERATOSTHENES 

M. RAM MURTY AND N. SARADHA 

1. Introduction. Let v{n) denote the number of distinct prime factors of 
a natural number n. A classical theorem of Hardy and Ramanujan states 
that the normal order of v(n) is log log n. That is, given any e > 0, 
the number of natural numbers not exceeding x which fail to satisfy the 
inequality 

(1) \v(n) — log log n\ < € log log n 

is o(x) as x —» oo. A very simple proof of this was subsequently given by 
Turân. He showed that 

(2) 2 (y(n) ~ log log nf = x log log x + 0(x). 
n=x 

Then, (1) is an immediate consequence of (2). The methods of proof were 
subsequently generalised to treat other additive functions. The historical 
developments which ultimately led to the celebrated Erdos-Kac theorem 
are described in the monographs of Elliott [1]. 

In 1935, Erdôs [2] proved that the number of primes/? not exceeding x 
which fail to satisfy the inequality 

(3) \v(p - 1) - log log/>| < € log log/? 

is o(x/\og JC), for any given c > 0. His main tool to establish (3) was Brun's 
sieve. If <j> denotes the Euler <f> function, then recently, it was established in [4] 
and [3], that K<KW)) n a s normal order l/2(log log nf. In both papers, the 
Bombieri-Vinogradov theorem on primes in arithmetic progressions was 
invoked. In [4], it was shown that 

(4) 2 lv(<t>(n) ) - ^(log log n)2) = o(x(\og log x)4) 

as x —* oo. This theorem was a consequence of a general result concerning 
prime divisors of various sequences, with special reference to Fourier 
coefficients of modular forms. By utilizing a general theorem of Kubilius 
and Shapiro [3], Erdôs and Pomerance proved in [3] that if we let G(x, u) 
denote the number of n ^ x satisfying the inequality 
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(5) v(&n) ) < -(log log xf + -!J= (log log x)v\ 
2 y 3 

then 

(6) hm — = ——r / e l dt. 
*^oo x -\fhr J -°° 

The purpose of this paper is to establish (3) and (4) utilising nothing 
more than the sieve of Eratosthenes. In the course of the proof, we do not 
need any information on primes in arithmetic progressions, nor do we 
use the elementary estimate of Tchebycheff on the number of primes less 
than x. 

2. The sieve of Eratosthenes. Let A be any set of natural numbers =x 
and let P be a set of primes. To each prime/?, let there be u(p) distin
guished residue classes (mod/?). Let A denote the set of elements of A 
lying in at least one of these distinguished residue classes (mod p ) and set 
for any natural number d, 

Ad = n
P\d Ap-

As usual, we denote by S (A, P, z) the number of elements of 

Let 

<*(4) = YLP\d <*(p) 

for each squarefree number d. We suppose that there is an X such that 

We also set 

P(z) = 1 1 / » . 
p^z,p^P 

/A, as usual, will denote the Môbius function and we set 

W{z)= n ( i - ^ ) . 

We shall further suppose that there is a constant C > 0 such that \AJ = 0 
for d > Cx. For convenience, we write the iterated logarithms: 

logm x = log(logm_! x)9 log! x = log x. 

THEOREM 1. Let A be a set of natural numbers ^x, satisfying 
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(i) \RJ = 0(œ(d)) 

(ll) Z J ^ K log Z + 0 (1 ) . 
p^z,p^P P 

Then 

S(A, P, z) = XW(z) + o(jc(log zf ' J e x p ( " ] ^ f ))• 

We will require the following lemmas. 

LEMMA 1. Let 

FJt9 z) = 2 <d). 
d^t,d\P(z) 

Then, 

FJf, z) = o(/(log z)K e x p ( - j ^ ) ) . 

Proof. We utilise a classical method of Rankin. Clearly, for any 8 > 0, 
we have 

FJt, z) ^ 2 co(d)(t/d)8. 
d\P(z) 

As co is multiplicative, we deduce that 

/<,(*, z) ^ expfs log / + 2 <o(/?)/?~ôl 
V p^z,p^P ' 

on applying the elementary inequality 1 + x ^ ex. Setting 5 = 1 — T7 and 
utilising the inequality ex ^ 1 + xex, which is valid for JC ^ 0, we find 

FJt, z) ^ t exp -7] log t + 2 
\ p^z,p£ 

<o(/>) log/? 
TJZ * 2 

p^z,p^P P 

By condition (ii) in Theorem 1, we find by partial summation that 

2 ^ ^ ^ K l o g 2 z + 0 ( l ) . 
p^z,p^P P 

Thus, 

FJit, z) < t exp( — ri log / + K log2 z + /o}(log z)zf]). 

Choosing i) = (log z ) _ 1 , gives the desired result. 
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Remark. Let G(x, z) denote the number of n ^ x all of whose prime 
factors are ^ÉZ. A similar method yields the estimate 

/ I02 x 
G(x, z) <C x(log z) exp — 

logz 

LEMMA 2. 

2 ^ = o ( ( l o g z ) - e x p ( - ^ 
d\P(z),d>Cx a \ \ log z 

Proof. Clearly, 

d\P(z),d>Cx d J Cx t 

and the result now easily follows from Lemma 1. 

Proof of Theorem 1. We have by the inclusion-exclusion principle, 

S(A, P9z)= 2 ii(d) \Ad\ 
d\P(z),d^Cx 

^ Xio(d) 
2 Kd)—--1 + OiFJCx^z)) 

d\P(z),d^Cx d 

by utilising (i). Thus, by Lemmas 1 and 2, we find easily 

S(A, P9 z) = XW(z) + o(x(log z)K + 1 e x p l - 1 ^ ^ ) l 

as desired. 

COROLLARY 1. Let IT(X) denote the number of primes p = x. Then, 

x 
7r(x) <C log log x. 

logx 
Proof Set 

log x 
logz 

3 log log x 

in Theorem 1. 

Remark. The elementary reasoning used above actually yields a better 
result than stated, but to keep the exposition simple we have chosen our 
parameters in the simplest possible manner. More precisely, if 

2/cz log z > log x, 
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then 

(f) S(A,P,z) = XW(z) + o(x(logz)K+l e x p ( - ^ l o g ( j ^ ) ) ) . 

This is obtained by setting 

1 / logx \ 
v = - — l o g h n — < l 

log z \2K log z! 

in Lemmas 1 and 2. This would then yield the result 

. x x log2 x 
7r(x) <C — 

log x log3 x 

for the choice 
log z = log3 x. 

log2 x 
This bound for 7T(X) is better than the estimate derived from the 
elementary Brun's sieve. 

COROLLARY 2. For any natural number m < x, denote by N(xy m) 
the number of solutions of 

p — 1 = qm, 

where p and q are prime numbers =x. Then for some absolute constant 
B > 0, we have 

Bx(log2(x/m) f 
N(x, m) ^ ~. 

<p(m)(\og(x/m)) 
Proof Let A denote the set of natural numbers ^x/m. Clearly, 

N(x, m) — z is less than the number of solutions of b — 1 = am, a e A, 
where a and b are free of prime factors =z . Thus we count the number of 
a e A such that a and am + 1 are free of prime factors =z. Let P denote 
the set of primesp ^ z. Then for each prime/? e P, (/?, m) = 1, we have 
<o(/?) = 2. If p\m, then <o(/?) = 1. For each d\P(z), 

œ(d)x 
\AJ = — + Rd> 

md 
where \Rd\ ^ co(d). Moreover, \Ad\ = 0 for d > x/ra. Thus, with X = x/ra, 
we apply Theorem 1 and obtain the desired result with 

log(x/m) 
logz = 

5 log2(x/ra) 
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COROLLARY 3. Let E > 0 and let vr(x, q) denote the number of primes 
p ^ x, p = 1 (mod q). Then 

x log2 x 
TT(X, q) <C — 

4>(q) log x 
uniformly for q ^ log x, where the implied constant depends only on E. 

Proof Let A consist of n ^ x, n = 1 (mod q) and let P be the set of 
primes p ^ z where 

log x 
log z = . 

(E -f 3) log log x 
Then, 

«, , x * log9 * A x 

S(A, P9 z) « f2 + O F + 1 

<j>(q) log JC Vlog^ x 
But 

x logo * 
7T(JC, q) ^ z + S(,4, P, z) « ^ . 

<t>(q) log x 

COROLLARY 4. Uniformly for q ^ log£ x, 

y 1. ^ (log log x)2 

^ p <j>(q) 
p = \(modq) 

Proof This follows easily from Corollary 3 and partial summation. 

Remark. Both Corollaries 3 and 4 can be refined in view of our 
earlier remark concerning the choice of z. Indeed, it is clear that (f ) im
plies that 

x log2 x 
TT(X, q) <C — 

<H<?)(log x) log3 x 
r q ^ log£ x. Tr 

Corollary 4: 

uniformly for q ^ log£ x. This would yield the corresponding result in 

y 1 ^ (log log x)2 

P^X P <ï>(q) l o g 3 x ' 
p = \(modq) 

uniformly for q ^ log£ x. We will need this slight improvement of 
Corollary 4 in Section 4 to prove that v(<t>(n) ) has normal order 

1 1 

-(log log n) . 

It is interesting that crude estimates suffice for establishing the normal 
order of Q,((j>(n) ). 
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3. The normal order of v(p — 1). In this section, we shall show that the 
normal number of prime factors of p — 1 is log log p. In this, we essen
tially follow Erdôs [2], except in the use of Brun's sieve. Since we need a 
more refined version of his result, we state the results explicitly. 

LEMMA 3. For k = 1, let fk{x) denote the number of primes p = x such 
that v(p — 1) = k. Then, for any E > 0, 

f,(x) < — .(log, x + D)k+4 + o( X A 
JkK (k - l)!(log*)2V S 2 \(log*)£/' 

where B and D are constants and the constant implied by the O symbol does 
not depend on k. 

Remark. Let £l(n) denote the number of prime factors of n counted with 
multiplicity. Then, it will be apparent from the proof that the number of 
primes/? ^ x such that &(p — 1) = k satisfies a similar estimate. 

Proof Let Mx denote the set of all primes p ^ x such that all of the 
prime factors of p — 1 are less than 

/ logx 
y = exp 

\(E + l)loglogJcy 
Then, by the remark after Lemma 1, the number of such primes is 

o\ 
(log xf 

Thus, we can suppose that some prime factor of p — 1 is greater than y. 
If we let M2 denote the set of all primes p ^ x such that the square of 
the largest prime factor ofp — 1 divides/? — 1, and/? £ M b then the 
cardinality of M2 is bounded by 

2 4 = o 
m>y m2 \(log X)E 

Now let/? £ Mx U M2 and suppose that v(p — 1) = /c, then 

p l — P\ Pi • • • Pk ' 

where/?] < p2 < . . . < pk, ak, = 1. Thus, 

P - I = Pknh 

where nk is a natural number <x/y such that v{nk) = k — 1. For a 
fixed nk, the number of primes p < x9 satisfying p — \ = qnk, is by 
Corollary 2, 

Bx(\og\og{x/nk)f 

<t>(nk)(\og(x/nk))
2 
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and therefore, 

fi \ ^ x a. n V (log2C*/"))2 

Jk(x) < -p 4- Bx 2J 2 
(log x)J

 n<x/v <f>(n) log (x/n) 
v{n)=k-\ 

« x
 F + x(lo^x)4 2 ' 

( logx) £ log2 x n<x/v <$>(n) 
j , ( A 7 ) ^ A - l 

Since 

< -i 2 — 7 + cx 
„<: <K«) (k - \)\\p<:p ~ 1 

v(n)=k-\ 

for some constant c,, it follows by elementary estimates that 

fk(x)^x^x+ci+\-^ 
(k - 1)! log 2 * (logx)^ 

where the implied constant does not depend on k. This completes the 
proof of Lemma 3. 

LEMMA 4. For 8 > 1, 

(i) 2 - ^ «-V" 
*>&/ &! 

and for 8 < 1, 

A<&/ A:! 

Proof. We have 

A->&/ A:! *>&/ k\ 

for S > 1. This proves (i). To prove (ii), we utilise the elementary 
inequality 

log k\ > / log tdt > k log k - k 

and the fact that a /k\ is an increasing function of k for k < 8a when 
8 < 1, to deduce that 

A<&, Ac! 

which establishes (ii). 
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THEOREM 2. Let 0 < e < 1. The number of primes p = x which fail to 
satisfy the inequality 

\v(p - 1) - log log/?| < € log log/? 

is 

<(log*)'+ < 

Proof We need to estimate the sums 

2 fk(x) 
k>(\+e)\og2x 

and 

k<(\-€)\og2X 

To estimate the first sum, we first note that fk(x) = 0 if k > log x, since 
v(n) < log «. Thus, by Lemmas 3 and 4, we obtain 

2 /*(*) « *(log
2
2 xf 2 (log2X + Cl)""' 

*>(l+£)log2JC log X k>(\+e)\og2x (k — l)\ 

^ x_(log2 x)4 

( log*) 1 + e 

The second sum is estimated similarly. 
In order to deduce that the normal order of v(p — 1) is log log/?, we 

need to show that 

/ X X 

TT(X) » . 
log x 

We have the following elementary result. 

LEMMA 5. 

x 
TT(X) » 

logx 

Proof Utilising 

2 - = log logx + c, + o ( — ^ - l 
p^x P UOgX; 

for some constant c b we deduce that for some 17 > 0, the inequality 

2J - » 
•nx<P<x p log x 
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holds. Thus, we obtain the inequality 

T?-X rix<p<x P lug X 

which gives us the desired inequality. 

Hence, Theorem 1 and Lemma 5 imply that for almost all primes, the 
number of prime factors of p — 1 is log log/?. We can proceed to obtain an 
estimate for the variance. As this is routine and straightforward, we 
suppress the details. The method is illustrated in the following lemma 
which we need in the next section. 

LEMMA 6. As x —* oo, 

(i) 2 KP - 1) ~ n(x) log log x, 
p=x 

(ii) 2 v\p - 1) « 97(x)(log log x)2 . 
pâx 

Proof. We have 

(7) 2 v(p - 1) « (1 + cMx) log log x 
p=x 

+ 2 v(P - i). 
p=x 

K/?-l)>(l+€)l0gl0g/7 

The latter sum is by the Cauchy-Schwartz inequality, Theorem 2, and 
Lemma 5, 

ffif^-»)" UOg' A/ Sp^X 

Moreover, 

2 *2(/> - 1) « 17(*)(l0g log X)2 + 2 ^2(/> " 1). 

K/?-i)>2/:iogiogx 

For K sufficiently large, we deduce by Lemmas 3 and 4 that 

x 
2 fk(x) « --Y-

k>2K\og\ogx log X 

so that 

»2(/> - i) « x 

p^x log* 2 X 
K/>-l)>2Arioglogx 
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since v(p — 1) = 0(\ogp). Again, we have used the fact that fk(x) = 0 if 
k > log x. Thus, 

2 v\p - 1) « 77(x)(log log x)\ 
p^x 

This proves (ii). Therefore, the second sum in (7) is found to be 

O(TT(X) log log x) 

as x —» oo. This completes the proof of Lemma 6, since the lower bound 
asymptotic formula is similarly deduced. 

Let Q(n) denote the total number of prime factors of n, counted with 
multiplicity, defined earlier. It is clear that the above methods yield a 
corresponding result for Q(p — 1). We state this for future reference. 

LEMMA 7. As x —> oo, 

(i) 2 ®(p ~ I) ~ ir(x) log log x, 
p=x 

(ii) 2 02(/> - 1) « 7r(x)(log log xf. 
p=x 

4. The normal order of v(<j>(n) ). We begin by showing that &(<t>(n) ) has 
normal order l/2(log log n) . 

LEMMA 8. 

v Q(p - 1) 1 2 

2J ~ "(log log Xf. 
p^x p 2 

Proof. By Lemma 7, the sum is by partial summation, 

fx 77(0 log log t 
~Jl J dL 

But 

y l og log p ^ fx 77(7) log log t 

p^x P J2 t2 

Moreover, 

v log log p 1 2 

2J — — "(log log X)\ 
p^x p 2 

which is derived by partial summation from the elementary result 
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2 - = log log x + c, + ol-^—). 
P^XP Uogx/ 

The desired result now follows immediately. 

THEOREM 3. As x —> oo, 

2 (2(«/i) ) - ^(log log x)2)2 = o(x(\og log x)4). 
n=x ^ 

Proof. Let us define 

f(n) = 2 «(/> - I)-

Then, 

/ ( « ) ^ Q ( ^ ) ) S / ( B ) + S2(„). 

In view of (2), it therefore suffices to show that 

2 I fin) - ^(log log x)2) = o(x(log log x)4), 
n^x \ 2 / 

since the inequality 

(a + ô 

implies that 

(a + 6)2 S 2(a2 + Z>2) 

2 («(*(«)) -^ ( log logx) 2 ) 2 

n^x 2 

« 2 [fin) ~ ^(loglogx)2) + 2 iQi«n)) - f(n))\ 

To this end, we note that 

2/(«) = * 2 ^ ^ - ^ + o(2 ad»-D). 

Since 

2 Q(/> - 1) < 2 Q(«) < A: log log x, 

by elementary estimates, we deduce from Lemma 8 that 

2 f(n)~ -A:(log logx)2 . 
n^x 2 
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Also, 

2 f\n) = 2 2 Q(/> - Wq ~ 1), 
n~x n=x p,q\n 

where p and g denote primes. Then, 

n^x pq^x pq p^x P 

Noting that 

/ ^ Q(p - 1)\2 ^ ^ S2(̂  - l)fl(g - 1) 

^ / 2 Q(P - m 2 

V^A Z7 ' 

we deduce from Lemma 8 that 

v Q(p - l)Q(g - 1) 1 4 

2a — -(log log X ) . 
pq^x pq 4 

Moreover, by Lemma 7 (ii) and partial summation, we deduce that 

^ &(P ~ 1) <<c fX 77(0(loglogQ2^ 

v (log log pf 3 
— Z < (log log x) . 

P^x P 

It therefore follows from the above that 

2 f\n) Ê ^x(log log x)4 + o(x(\og log x)4) 

as JC —-» oo. The assertion of the theorem follows immediately from this. 

We can now prove: 

THEOREM 4. v(<t>(n) ) /z<xs normal order l/2(log log n) . 

Proof. We first note that v(<t>(n)) = Q(<j*(n) ) and so 

K<K")) ^ 0 + c)-(log log n)2 

for almost all n. To establish the corresponding lower bound, we first note 
that if 
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then there must be a prime q such that q \<j>(n). If q > y, the number of 
n ^ x such that q\$(n) is 

(8) ^ 2 4 + 2 2 - + 2 2 ^ . 
q>V q q>y p^x P q>y p^x PP 

q2\p~\ q\p-\,q\p'-\ 

The first sum is clearly bounded by 

x 

7 
To handle the second sum, we write it as 

(9) 2 
</>log*\x y<q<\ogEx 

and handle the penultimate sum in a trivial way: 

2 2 - « 2 2 < 
q>\ogEx p^x P q>\ogHx t^x q t log ' X 

q2\p~\ 

For the last sum in (9), we use Corollary 4 of Theorem 1 to obtain that the 
two sums in (9) are 

x t *(log log x)2 

log^ ] x y 

Similarly, the third sum in (8) is seen to be 

<<: x x(log log xf 

\ogE~2 x y 

Choosing E = 3 and >> = (log log x)5, we deduce that for almost all n ^ x, 
cf\<$>(n) implies that q = y. Therefore, if we define fi (H) to be the number 
of prime powers cf dividing n such that q < y, then we have proved that 
for almost all n, 

HMn)) s Q(<K#I)) - n(i) - 2 QY(P - i). 
p\n 

Since £l(n) has normal order log log n, to prove the theorem, it suffices to 
show that for 17 > 0, 

2 2av(/> - i) ^rKiogiogfl) 
p\n 

for almost all n. To this end, we have 
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n=x p\n p=x P 

« x 2 2 -

«JC 2 2 - + * 2 2 -• 
q<y p=x P q<y p=x P 

</<log3A qa\p-\ qa^\og3x (f\p~\ 

The last sum is estimated in a trivial way, as before, and is seen to be 
0(x). By the remark after Corollary 4, the penultimate sum is seen 
to be 

(log log x)2 

<Cx log4 v. 
log3 x 

Thus, the inequality 

2 Qv(p - 1) > rKlog log «)2 

can hold for at most o(x) numbers n ^ x. Hence, for almost all n, 

0«<w) ) - T](log log «)2 ^ v(<j>(n) ) ^ Q(*(i) )-

Theorem 3 now completes the proof. 

5. Concluding remarks. In proving (6), Erdôs and Pomerance [3] utilise 
a general theorem of Kubilius and Shapiro (see [1] ). This theorem 
states that for any strongly additive real-valued function / , (that is, 

/(/>") = /</>)), 

1 fu _ 1 

lim Gf(x, u) = —^= J e r/2dt 
A'—>0O A •' ^ , / 2 ^ ./ -oo 

where 

(y(x, w) = card{« ^ x:f(n) — A(x) ^ uB(x) }, 

P^x P 

f2, 
D/ \2 V -[API 

/ > = £ * 

provided that for each e > 0, 
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V (Ail (V?~l n 
2J = 0(B (X)) 

P^x P 
J\p)>eB(.x) 

as x —> oo. It is possible to verify the above condition utilising only the 
sieve of Eratosthenes (Theorem 1) following the methods of the previous 
sections. This would then give a proof of (6) independent of the Bombieri-
Vinogradov theorem. 

It would be highly interesting to derive the "modular analogues" of 
these results. For instance, in [4], it was proved that 

2 ( , ( T ( / > ) ) - 1 0 g l O g / > ) 2 « ^ A 
p^x log X 

where r denotes the Ramanujan T function, assuming a non-abelian ana
logue of the Bombieri-Vinogradov theorem. This latter hypothesis is a 
consequence of the generalised Riemann hypothesis for the Dedekind zeta 
functions. The "modular analogue" was established in [5]. Therefore, it 
would be of exceeding importance if the methods of this paper could be 
extended to treat Fourier coefficients of modular forms. 

Acknowledgements. We would like to thank E. Fouvry and the referee 
for their comments on an earlier version of this paper. 

R E F E R E N C E S 

1. P. D. T. A. Elliott, Probabilistic number theory I and II (Springer Verlag, New York, 

1980). 

2. P. Erdos , On the normal number oj prime factors of p — \ and some related problems 

concerning the Ruler's <$> function, Quarter ly Journal of Mathemat ics 6 (1935), 

205-213. 

3. P. Erdos and C. Pomerance , On the normal number of prime factors of 4>(n ), Rocky 

Mounta in Journal 75 (1985), 343-352. 

4. M. R a m Mur ty and V. Kumar Murty , Prime divisors of Rourier coefficients of modular 

forms, Duke Math . Journal 51 (1984), 57-76. 

5. An analogue of the Rrdos-Kac theorem for Rourier coefficients of modular forms, 

Indian Journal of Pure and App . Math. 15 (1984), 1090-1101. 

McGUI University, 
Montréal, Québec; 
Concordia University, 
Montréal, Québec 

https://doi.org/10.4153/CJM-1987-056-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-056-8

