
2 Foundations of Probability ( )

This chapter covers the fundamental concepts of measure-theoretic probability, on which
the remainder of this book relies. Readers familiar with this topic can safely skip the chapter,
but perhaps a brief reading would yield some refreshing perspectives. Measure-theoretic
probability is often viewed as a necessary evil, to be used when a demand for rigour com-
bined with continuous spaces breaks the simple approach we know and love from high
school. We claim that measure-theoretic probability offers more than annoying technical
machinery. In this chapter we attempt to prove this by providing a non-standard introduction.
Rather than a long list of definitions, we demonstrate the intuitive power of the notation and
tools. For those readers with little prior experience in measure theory this chapter will no
doubt be a challenging read. We think the investment is worth the effort, but a great deal of
the book can be read without it, provided one is willing to take certain results on faith.

2.1 Probability Spaces and Random Elements

The thrill of gambling comes from the fact that the bet is placed on future outcomes that
are uncertain at the time of the gamble. A central question in gambling is the fair value of
a game. This can be difficult to answer for all but the simplest games. As an illustrative
example, imagine the following moderately complex game: I throw a dice. If the result is
four, I throw two more dice; otherwise I throw one dice only. Looking at each newly thrown
dice (one or two), I repeat the same, for a total of three rounds. Afterwards, I pay you the
sum of the values on the faces of the dice. How much are you willing to pay to play this
game with me?

Many examples of practical interest exhibit a complex random interdependency between
outcomes. The cornerstone of modern probability as proposed by Kolmogorov aims to
remove this complexity by separating the randomness from the mechanism that produces
the outcome.

Instead of rolling the dice one by one, imagine that sufficiently many dice were rolled
before the game has even started. For our game we need to roll seven dice, because this
is the maximum number that might be required (one in the first round, two in the second
round and four in the third round. See Fig. 2.1). After all the dice are rolled, the game can
be emulated by ordering the dice and revealing the outcomes sequentially. Then the value
of the first dice in the chosen ordering is the outcome of the dice in the first round. If we
see a four, we look at the next two dice in the ordering; otherwise we look at the single
next dice.
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X1 := throw()

X1 = 4?

X21 := throw() X21 := throw() X22 := throw()

YesNo

Figure 2.1 The initial phase of a gambling game with a random number of dice rolls. Depending on the
outcome of a dice roll, one or two dice are rolled for a total of three rounds. The number of dice used will
then be random in the range of three to seven.

Outcomes

Randomising device

all randomness
Mechanisms

Figure 2.2 A key idea in probability theory is the separation of sources of randomness from game
mechanisms. A mechanism creates values from the elementary random outcomes, some of which are
visible for observers, while others may remain hidden.

By taking this approach, we get a simple calculus for the probabilities of all kinds of
events. Rather than directly calculating the likelihood of each pay-off, we first consider
the probability of any single outcome of the dice. Since there are seven dice, the set of
all possible outcomes is Ω = {1, . . . , 6}7. Because all outcomes are equally probable, the
probability of any ω ∈ Ω is (1/6)7. The probability of the game pay-off taking value v can
then be evaluated by calculating the total probability assigned to all those outcomes ω ∈ Ω

that would result in the value of v. In principle, this is trivial to do thanks to the separation of
everything that is probabilistic from the rest. The set Ω is called the outcome space, and its
elements are the outcomes. Fig. 2.2 illustrates this idea. Random outcomes are generated
on the left, while on the right, various mechanisms are used to arrive at values; some of
these values may be observed and some not.

There will be much benefit from being a little more formal about how we come up with
the value of our artificial game. For this, note that the process by which the game gets its
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value is a function X that maps Ω to the reals (simply, X : Ω→ R). We find it ironic that
functions of this type (from the outcome space to subsets of the reals) are called random
variables. They are neither random nor variables in a programming language sense. The
randomness is in the argument that X is acting on, producing randomly changing results.
Later we will put a little more structure on random variables, but for now it suffices to think
of them as maps from the outcome space to the reals.

We follow the standard convention in probability theory where random variables
are denoted by capital letters. Be warned that capital letters are also used for other
purposes as demanded by different conventions.

Pick some number v ∈ N. What is the probability of seeing X = v? As described
above, this probability is (1/6)7 times the size of the set X−1(v) = {ω ∈ Ω : X(ω) = v}.
The set X−1(v) is called the preimage of v under X . More generally, the probability
that X takes its value in some set A ⊆ N is given by (1/6)7 times the cardinality of
X−1(A) = {ω ∈ Ω : X(ω) ∈ A}, where we have overloaded the definition of X−1 to
set-valued inputs.

Notice in the previous paragraph we only needed probabilities assigned to subsets of
Ω, regardless of the question asked. To make this a bit more general, let us introduce a
map P that assigns probabilities to certain subsets of Ω. The intuitive meaning of P is as
follows. Random outcomes are generated in Ω. The probability that an outcome falls into
a set A ⊂ Ω is P (A). If A is not in the domain of P, then there is no answer to the question
of the probability of the outcome falling in A. But let’s postpone the discussion of why P

should be restricted to only certain subsets of Ω later. In the above example with the dice,
the set of subsets in the domain ofP is not restricted and, in particular, for any subsetA ⊆ Ω,
P (A) = (1/6)7|A|.

The probability of seeingX taking the value of v is thusP
(
X−1(v)

)
. To minimise clutter,

the more readable notation for this is P (X = v). But always keep in mind that this familiar
form is just a shorthand for P

(
X−1(v)

)
. More generally, we also use

P (predicate(U ,V , . . . )) = P ({ω ∈ Ω : predicate(U(ω),V (ω), . . . ) is true})

with any predicate (an expression evaluating to true or false) where U ,V , . . . are functions
with domain Ω.

What properties should P satisfy? Since Ω is the set of all possible outcomes, it seems
reasonable to expect that P is defined for Ω and P(Ω) = 1 and since ∅ contains no outcomes,
P(∅) = 0 is also expected to hold. Furthermore, probabilities should be non-negative so
P(A) ≥ 0 for any A ⊂ Ω on which P is defined. Let Ac = Ω \A be the complement of A.
Then we should expect thatP is defined forA exactly when it is defined forAc andP(Ac) =

1−P(A) (negation rule). Finally, if A,B are disjoint so that A∩B = ∅ and P(A), P(B) and
P(A∪B) are all defined, then P(A∪B) = P(A)+P(B). This is called the finite additivity
property.

Let F be the set of subsets of Ω on which P is defined. It would seem silly if A ∈ F
and Ac /∈ F , since P(Ac) could simply be defined by P(Ac) = 1 − P(A). Similarly, if
P is defined on disjoint sets A and B, then it makes sense if A ∪ B ∈ F . We will also
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require the additivity property to hold (i) regardless of whether the sets are disjoint and (ii)
even for countably infinitely many sets. If {Ai}i is a collection of sets and Ai ∈ F for
all i ∈ N, then ∪iAi ∈ F , and if these sets are pairwise disjoint, P(∪iAi) =

∑
i P(Ai). A

set of subsets that satisfies all these properties is called a σ-algebra, which is pronounced
‘sigma-algebra’ and sometimes also called a σ-field (see Note 1).

Definition 2.1 (σ-algebra and probability measures). A set F ⊆ 2Ω is a σ-algebra if
Ω ∈ F and Ac ∈ F for all A ∈ F and ∪iAi ∈ F for all {Ai}i with Ai ∈ F for all i ∈ N.
That is, it should include the whole outcome space and be closed under complementation
and countable unions. A function P : F → R is a probability measure if P(Ω) = 1 and for
all A ∈ F , P(A) ≥ 0 and P(Ac) = 1− P(A) and P(∪iAi) =

∑
i P(Ai) for all countable

collections of disjoint sets {Ai}i with Ai ∈ F for all i. If F is a σ-algebra and G ⊂ F
is also a σ-algebra, then we say G is a sub-σ-algebra of F . If P is a measure defined on
F , then the restriction of P to G is a measure P|G on G defined by P|G(A) = P(A) for all
A ∈ G.

At this stage, the reader may rightly wonder about why we introduced the notion of
sub-σ-algebras. The answer should become clear quite soon. The elements of F are called
measurable sets. They are measurable in the sense that P assigns values to them. The
pair (Ω,F) alone is called a measurable space, while the triplet (Ω,F ,P) is called a
probability space. If the condition that P(Ω) = 1 is lifted, then P is called a measure. If
the condition that P(A) ≥ 0 is also lifted, then P is called a signed measure. For measures
and signed measures, it would be unusual to use the symbol P, which is mostly reserved
for probabilities. Probability measures are also called probability distributions, or just
distributions.

Random variables lead to new probability measures. In particular, in the example above
PX(A) = P

(
X−1(A)

)
is a probability measure defined for all the subsetsA ofR for which

P
(
X−1(A)

)
is defined. More generally, for a random variable X , the probability measure

PX is called the law of X , or the push-forward measure of P under X .

The significance of the push-forward measure PX is that any probabilistic question
concerning X can be answered from the knowledge of PX alone. Even Ω and the
details of the map X are not needed. This is often used as an excuse to not even
mention the underlying probability space (Ω,F ,P).

If we keep X fixed but change P (for example, by switching to loaded dice), then the
measure induced by X changes. We will often use arguments that do exactly this, especially
when proving lower bounds on the limits of how well bandit algorithms can perform.

The astute reader would have noticed that we skipped over some details. Measures are
defined as functions from a σ-algebra to R, so if we want to call PX a measure, then its
domain {A ⊂ R : X−1(A) ∈ F} better be a σ-algebra. This holds in great generality. You
will show in Exercise 2.3 that for functions X : Ω → X with X arbitrary, the collection
{A ⊂ X : X−1(A) ∈ F} is a σ-algebra.

It will be useful to generalise our example a little by allowing X to take on values in
sets other than the reals. For example, the range could be vectors or abstract objects like
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sequences. Let (Ω,F) be a measurable space,X be an arbitrary set and G ⊆ 2X . A function
X : Ω→ X is called an F/G-measurable map if X−1(A) ∈ F for all A ∈ G. Note that
G need not be a σ-algebra. When F and G are obvious from the context, X is called a
measurable map. What are the typical choices for G? When X is real-valued, it is usual to
let G = {(a, b) : a < b with a, b ∈ R} be the set of all open intervals. The reader can verify
that ifX isF/G-measurable, then it is alsoF/σ(G)-measurable, where σ(G) is the smallest
σ-algebra that contains G. This smallest σ-algebra can be shown to exist. Furthermore, it
contains exactly those sets A that are in every σ-algebra that contains G (see Exercise 2.5).
When G is the set of open intervals, σ(G) is usually denoted by B or B(R) and is called the
Borel σ-algebra of R. This definition is extended to Rk by replacing open intervals with
open rectangles of the form

∏k
i=1(ai, bi), where a < b ∈ Rk. If G is the set of all such open

rectangles, then σ(G) is the Borel σ-algebra: B(Rk). More generally, the Borel σ-algebra
of a topological space X is the σ-algebra generated by the open sets of X .

Definition 2.2 (Random variables and elements). A random variable (random vector)
on measurable space (Ω,F) is a F/B(R)-measurable function X : Ω → R (respectively
F/B(Rk)-measurable function X : Ω → Rk). A random element between measurable
spaces (Ω,F) and (X ,G) is a F/G-measurable function X : Ω→ X .

Thus, random vectors are random elements where the range space is (Rk,B(Rk)), and
random vectors are random variables when k = 1. Random elements generalise random
variables and vectors to functions that do not take values in Rk. The push-forward measure
(or law) can be defined for any random element. Furthermore, random variables and vectors
work nicely together. If X1, . . . ,Xk are k random variables on the same domain (Ω,F),
then X(ω) = (X1(ω), . . . ,Xk(ω)) is an Rk-valued random vector, and vice versa (Exer-
cise 2.2). Multiple random variables X1, . . . ,Xk from the same measurable space can thus
be viewed as a random vector X = (X1, . . . ,Xk).

Given a map X : Ω→ X between measurable spaces (Ω,F) and (X ,G), we let σ(X) =

{X−1(A) : A ∈ G} be the σ-algebra generated by X . The map X is F/G-measurable
if and only if σ(X) ⊆ F . By checking the definitions one can show that σ(X) is a sub-
σ-algebra of F and in fact is the smallest sub-σ-algebra for which X is measurable. If
G = σ(A) itself is generated by a set systemA ⊂ 2X , then to check theF/G-measurability
of X , it suffices to check whether X−1(A) = {X−1(A) : A ∈ A} is a subset of F . The
reason this is sufficient is because σ(X−1(A)) = X−1(σ(A)), and by definition the latter
is σ(X). In fact, to check whether a map is measurable, either one uses the composition
rule or checks X−1(A) ⊂ F for a ‘generator’ A of G.

Random elements can be combined to produce new random elements by composition.
One can show that if f is F/G-measurable and g is G/H-measurable for σ-algebras
F ,G and H over appropriate spaces, then their composition g ◦ f is F/H-measurable
(Exercise 2.1). This is used most often for Borel functions, which is a special name
for B(Rm)/B(Rn)-measurable functions from Rm to Rn. These functions are also
called Borel measurable. The reader will find it pleasing that all familiar functions are
Borel. First and foremost, all continuous functions are Borel, which includes elementary
operations such as addition and multiplication. Continuity is far from essential, however.
In fact one is hard-pressed to construct a function that is not Borel. This means the usual
operations are ‘safe’ when working with random variables.
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Indicator Functions
Given an arbitrary set Ω and A ⊆ Ω, the indicator function of A is IA : Ω → {0, 1}
given by

IA(ω) =

{
1, if ω ∈ A;
0, otherwise.

SometimesA has a complicated description, and it becomes convenient to abuse notation by
writing I {ω ∈ A} instead of IA(ω). Similarly, we will often write I {predicate(X,Y , . . .)}
to mean the indicator function of the subset of Ω on which the predicate is true. It is easy
to check that an indicator function IA is a random variable on (Ω,F) if and only if A is
measurable: A ∈ F .

Why So Complicated?
You may be wondering why we did not defineP on the power set ofΩ, which is equivalent to
declaring that all sets are measurable. In many cases this is a perfectly reasonable thing to do,
including the example game where nothing prevents us from defining F = 2Ω. However,
beyond this example, there are two justifications not to have F = 2Ω, the first technical
and the second conceptual.

The technical reason is highlighted by the following surprising theorem according to
which there does not exist a uniform probability distribution on Ω = [0, 1] if F is chosen
to be the power set of Ω (a uniform probability distribution over [0, 1], if existed, would
have the property of assigning its length to every interval). In other words, if you want to
be able to define the uniform measure, thenF cannot be too large. By contrast, the uniform
measure can be defined over the Borel σ-algebra, though proving this is not elementary.

Theorem 2.3. Let Ω = [0, 1], and F be the power set of Ω. Then there does not exist a
measure P on (Ω,F) such that P([a, b]) = b− a for all 0 ≤ a ≤ b ≤ 1.

The main conceptual reason of why not to have F = 2Ω is because then we can use
σ-algebras represent information. This is especially useful in the study of bandits where
the learner is interacting with an environment and is slowly gaining knowledge. One useful
way to represent this is by using a sequence of nested σ-algebras, as we explain in the
next section. One might also be worried that the Borel σ-algebra does not contain enough
measurable sets. Rest assured that this is not a problem and you will not easily find a non-
measurable set. For completeness, an example of a non-measurable set will still be given
in the notes, along with a little more discussion on this topic.

A second technical reason to prefer the measure-theoretic approach to probabilities is that
this approach allows for the unification of distributions on discrete spaces and densities
on continuous ones (the uninitiated reader will find the definitions of these later). This
unification can be necessary when dealing with random variables that combine elements
of both, e.g. a random variable that is zero with probability 1/2 and otherwise behaves like
a standard Gaussian. Random variables like this give rise to so-called “mixed continuous
and discrete distributions”, which seem to require special treatment in a naive approach to
probabilities, yet dealing with random variables like these are nothing but ordinary under
the measure-theoretic approach.
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From Laws to Probability Spaces and Random Variables
A big ‘conspiracy’ in probability theory is that probability spaces are seldom mentioned in
theorem statements, despite the fact that a measure cannot be defined without one. State-
ments are instead given in terms of random elements and constraints on their joint proba-
bilities. For example, suppose that X and Y are random variables such that

P (X ∈ A,Y ∈ B) =
|A ∩ [6]|

6
· |B ∩ [2]|

2
for all A,B ∈ B(R), (2.1)

which represents the joint distribution for the values of a dice (X ∈ [6]) and coin (Y ∈
[2]). The formula describes some constraints on the probabilistic interactions between the
outputs of X and Y , but says nothing about their domain. In a way, the domain is an
unimportant detail. Nevertheless, one must ask whether or not an appropriate domain exists
at all. More generally, one may ask whether an appropriate probability space exists given
some constraints on the joint law of a collection X1, . . . ,Xk of random variables. For this
to make sense, the constraints should not contradict each other, which means there is a
probability measure μ on B(Rk) such that μ satisfies the postulated constraints. But then
we can choose Ω = Rk,F = B(Rk), P = μ and Xi : Ω→ R to be the ith coordinate map:
Xi(ω) = ωi. The push-forward of P under X = (X1, . . . ,Xk) is μ, which by definition
is compatible with the constraints.

A more specific question is whether for a particular set of constraints on the joint law
there exists a measure μ compatible with the constraints. Very often the constraints are
specified for elements of the cartesian product of finitely many σ-algebras, like in Eq. (2.1).
If (Ω1,F1), . . . , (Ωn,Fn) are measurable spaces, then the cartesian product ofF1, . . .Fn is

F1 × · · · × Fn = {A1 × · · · ×An : A1 ∈ F1, . . . ,An ∈ Fn} ⊆ 2Ω1×···×Ωn .

Elements of this set are known as measurable rectangles in Ω1 × · · · × Ωn.

Theorem 2.4 (Carathéodory’s extension theorem). Let (Ω1,F1), . . . , (Ωn,Fn) be mea-
surable spaces and μ̄ : F1 × · · · × Fn → [0, 1] be a function such that

(a) μ̄(Ω1 × · · · × Ωn) = 1; and
(b) μ̄(∪∞

k=1Ak) =
∑∞

k=1 μ̄(Ak) for all sequences of disjoint sets with Ak ∈ F1×· · ·×Fn.

Let Ω = Ω1×· · ·×Ωn and F = σ(F1×· · ·×Fn). Then there exists a unique probability
measure μ on (Ω,F) such that μ agrees with μ̄ on F1 × · · · × Fn.

The theorem is applied by letting Ωk = R andFk = B(R). Then the values of a measure
on all cartesian products uniquely determines its value everywhere.

It is not true that F1 × F2 = σ(F1 × F2). Take, for example, F1 = F2 = 2{1,2}.
Then, |F1 × F2| = 1 + 3 × 3 = 10 (because ∅ × X = ∅), while, since F1 × F2

includes the singletons of 2{1,2}×{1,2}, σ(F1 × F2) = 2{1,2}×{1,2}. Hence, six sets
are missing from F1 ×F2. For example, {(1, 1), (2, 2)} ∈ σ(F1 ×F2) \ F1 ×F2.

The σ-algebra σ(F1 × · · · × Fn) is called the product σ-algebra of (Fk)k∈[n] and is also
denoted by F1⊗ · · · ⊗Fn. The product operation turns out to be associative: (F1⊗F2)⊗

https://doi.org/10.1017/9781108571401.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108571401.004
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F3 = F1 ⊗ (F2 ⊗ F3), which justifies writing F1 ⊗ F2 ⊗ F3. As it turns out, things
work out well again with Borel σ-algebras: for p, q ∈ N+, B(Rp+q) = B(Rp) ⊗B(Rq).
Needless to say, the same holds when there are more than two terms in the product. The
n-fold product σ-algebra of F is denoted by F⊗n.

2.2 σ-Algebras and Knowledge

One of the conceptual advantages of measure-theoretic probability is the relationship be-
tween σ-algebras and the intuitive idea of ‘knowledge’. Although the relationship is useful
and intuitive, it is regrettably not quite perfect. Let (Ω,F), (X ,G) and (Y,H) be measur-
able spaces and X : Ω → X and Y : Ω → Y be random elements. Having observed
the value of X (‘knowing X’), one might wonder what this entails about the value of
Y . Even more simplistically, under what circumstances can the value of Y be determined
exactly having observed X? The situation is illustrated in Fig. 2.3. As it turns out, with
some restrictions, the answer can be given in terms of the σ-algebras generated by X

and Y . Except for a technical assumption on (Y,H), the following result shows that Y
is a measurable function of X if and only if Y is σ(X)/H-measurable. The technical
assumption mentioned requires (Y,H) to be a Borel space, which is true of all probability
spaces considered in this book, including (Rk,B(Rk)). We leave the exact definition of
Borel spaces to the next chapter.

Lemma 2.5 (Factorisation lemma). Assume that (Y,H) is a Borel space. Then Y is σ(X)-
measurable (σ(Y ) ⊆ σ(X)) if and only if there exists a G/H-measurable map f : X → Y
such that Y = f ◦X .

In this sense σ(X) contains all the information that can be extracted from X via measur-
able functions. This is not the same as saying that Y can be deduced from X if and only
if Y is σ(X)-measurable because the set of X → Y maps can be much larger than the
set of G/H-measurable functions. When G is coarse, there are not many G/H-measurable
functions with the extreme case occurring when G = {X , ∅}. In cases like this, the intuition
that σ(X) captures all there is to know about X is not true anymore (Exercise 2.6). The
issue is that σ(X) does not only depend on X , but also on the σ-algebra of (X ,G) and
that if G is coarse-grained, then σ(X) can also be coarse-grained and not many functions
will be σ(X)-measurable. If X is a random variable, then by definition X = R and
G = B(R), which is relatively fine-grained, and the requirement that f be measurable
is less restrictive. Nevertheless, even in the nicest setting where Ω = X = Y = R and

(Ω,F) (X ,G)

(Y,H)

X

f
Y

Figure 2.3 The factorisation problem asks whether there exists a (measurable) function f that makes the
diagram commute.
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F = G = H = B(R), it can still occur that Y = f ◦ X for some non-measurable f . In
other words, all the information about Y exists in X but cannot be extracted in a measurable
way. These problems only occur when X maps measurable sets in Ω to non-measurable
sets in X . Fortunately, while such random variables exist, they are never encountered in
applications, which provides the final justification for thinking of σ(X) as containing all
that there is to know about any random variable X that one may ever expect to encounter.

Filtrations
In the study of bandits and other online settings, information is revealed to the learner
sequentially. Let X1, . . . ,Xn be a collection of random variables on a common measurable
space (Ω,F). We imagine a learner is sequentially observing the values of these random
variables. First X1, then X2 and so on. The learner needs to make a prediction, or act,
based on the available observations. Say, a prediction or an act must produce a real-valued
response. Then, having observed X1:t

.
= (X1, . . . ,Xt), the set of maps f ◦ X1:t where

f : Rt → R is Borel, captures all the possible ways the learner can respond. By Lemma 2.5,
this set contains exactly the σ(X1:t)/B(R)-measurable maps. Thus, if we need to reason
about the set of Ω → R maps available after observing X1:t, it suffices to concentrate
on the σ-algebra Ft = σ(X1:t). Conveniently, Ft is independent of the space of possible
responses, and being a subset of F , it also hides details about the range space of X1:t. It is
easy to check that F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ F , which means that more and more
functions are becoming Ft-measurable as t increases, which corresponds to increasing
knowledge (note that F0 = {∅,Ω}, and the set of F0-measurable functions is the set of
constant functions on Ω).

Bringing these a little further, we will often find it useful to talk about increasing se-
quences of σ-algebras without constructing them in terms of random variables as above.
Given a measurable space (Ω,F), a filtration is a sequence (Ft)

n
t=0 of sub-σ-algebras of

F where Ft ⊆ Ft+1 for all t < n. We also allow n =∞, and in this case we define

F∞ = σ

( ∞⋃
t=0

Ft

)

to be the smallest σ-algebra containing the union of all Ft. Filtrations can also be defined
in continuous time, but we have no need for that here. A sequence of random variables
(Xt)

n
t=1 is adapted to filtration F = (Ft)

n
t=0 if Xt is Ft-measurable for each t. We also

say in this case that (Xt)t is F-adapted. The same nomenclature applies if n is infinite.
Finally, (Xt)t is F-predictable if Xt is Ft−1-measurable for each t ∈ [n]. Intuitively we
may think of an F-predictable process X = (Xt)t as one that has the property that Xt can
be known (or ‘predicted’) based on Ft−1, while a F-adapted process is one that has the
property that Xt can be known based on Ft only. Since Ft−1 ⊆ Ft, a predictable process
is also adapted. A filtered probability space is the tuple (Ω,F ,F,P), where (Ω,F ,P) is
a probability space and F = (Ft)t is filtration of F .

2.3 Conditional Probabilities

Conditional probabilities are introduced so that we can talk about how probabilities should
be updated when one gains some partial knowledge about a random outcome. Let (Ω,F ,P)
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be a probability space, and let A,B ∈ F be such that P (B) > 0. The conditional
probability P (A |B) of A given B is defined as

P (A |B) =
P (A ∩B)

P (B)
.

We can think about the outcome ω ∈ Ω as the result of throwing a many-sided dice.
The question asked is the probability that the dice landed so that ω ∈ A given that
it landed with ω ∈ B. The meaning of the condition ω ∈ B is that we focus on
dice rolls when ω ∈ B is true. All dice rolls when ω ∈ B does not hold are dis-
carded. Intuitively, what should matter in the conditional probability of A given B

is how large the portion of A is that lies in B, and this is indeed what the definition
means.

The importance of conditional probabilities is that they define a calculus of how
probabilities are to be updated in the presence of extra information.

The probability P (A |B) is also called the a posteriori (‘after the fact’) probability of A
given B. The a priori probability is P (A). Note that P (A |B) is defined for every A ∈ F
as long as P (B) > 0. In fact, A �→ P (A |B) is a probability measure over the measure
space (Ω,F) called the a posteriori probability measure given B (see Exercise 2.7). In a
way the temporal characteristics attached to the words ‘a posteriori’ and ‘a priori’ can be
a bit misleading. Probabilities are concerned with predictions. They express the degrees
of uncertainty one assigns to future events. The conditional probability of A given B is
a prediction of certain properties of the outcome of the random experiment that results in
ω given a certain condition. Everything is related to a future hypothetical outcome. Once
the dice is rolled, ω gets fixed, and either ω ∈ A,B or not. There is no uncertainty left:
predictions are trivial after an experiment is done.

Bayes rule states that provided events A,B ∈ F both occur with positive probability,

P (A |B) =
P (B |A)P (A)

P (B)
. (2.2)

Bayes rule is useful because it allows one to obtain P (A |B) based on information about
the quantities on the right-hand side. Remarkably, this happens to be the case quite often, ex-
plaining why this simple formula has quite a status in probability and statistics. Exercise 2.8
asks the reader to verify this law.

2.4 Independence

Independence is another basic concept of probability that relates to knowledge/information.
In its simplest form, independence is a relation that holds between events on a probability
space (Ω,F ,P). Two events A,B ∈ F are independent if

P (A ∩B) = P (A)P (B) . (2.3)
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How is this related to knowledge? Assuming that P (B) > 0, dividing both sides by P (B)

and using the definition of conditional probability, we get that the above is equivalent to

P (A |B) = P (A) . (2.4)

Of course, we also have that if P (A) > 0, (2.3) is equivalent to P (B |A) = P (B). Both
of the latter relations express that A and B are independent if the probability assigned
to A (or B) remains the same regardless of whether it is known that B (respectively, A)
occurred.

We hope our readers will find the definition of independence in terms of a ‘lack of
influence’ to be sensible. The reason not to use Eq. (2.4) as the definition is mostly for
the sake of convenience. If we started with (2.4), we would need to separately discuss the
case of P (B) = 0, which would be cumbersome. A second reason is that (2.4) suggests an
asymmetric relationship, but intuitively we expect independence to be symmetric.

Uncertain outcomes are often generated part by part with no interaction between the
processes, which naturally leads to an independence structure (think of rolling multiple
dice with no interactions between the rolls). Once we discover some independence structure,
calculations with probabilities can be immensely simplified. In fact, independence is often
used as a way of constructing probability measures of interest (cf. Eq. (2.1), Theorem 2.4
and Exercise 2.9). Independence can also appear serendipitously in the sense that a prob-
ability space may hold many more independent events than its construction may suggest
(Exercise 2.10).

You should always carefully judge whether assumptions about independence are really
justified. This is part of the modelling and hence is not mathematical in nature. Instead
you have to think about the physical process being modelled.

A collection of events G ⊂ F is said to be pairwise independent if any two distinct ele-
ments of G are independent of each other. The events in G are said to be mutually indepen-
dent if for any n > 0 integer and A1, . . . ,An distinct elements of G, P (A1 ∩ · · · ∩An) =∏n

i=1 P (Ai). This is a stronger restriction than pairwise independence. In the case of mutu-
ally independent events, the knowledge of joint occurrence of any finitely many events from
the collection will not change our prediction of whether some other event in the collection
happens. But this may not be the case when the events are only pairwise independent
(Exercise 2.10). Two collections of events G1,G2 are said to be independent of each other
if for any A ∈ G1 and B ∈ G2 it holds that A and B are independent. This definition is
often applied to σ-algebras.

When the σ-algebras are induced by random variables, this leads to the definition of
independence between random variables. Two random variables X and Y are indepen-
dent if σ(X) and σ(Y ) are independent of each other. The notions of pairwise and mutual
independence can also be naturally extended to apply to collections of random variables.
All these concepts can be and are in fact extended to random elements.

The default meaning of independence when multiple events or random variables are
involved is mutual independence.
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When we say that X1, . . . ,Xn are independent random variables, we mean that
they are mutually independent. Independence is always relative to some probability
measure, even when a probability measure is not explicitly mentioned. In such cases
the identity of the probability measure should be clear from the context.

2.5 Integration and Expectation

A key quantity in probability theory is the expectation of a random variable. Fix a prob-
ability space (Ω,F ,P) and random variable X : Ω → R. The expectation X is often
denoted by E [X]. This notation unfortunately obscures the dependence on the measure
P. When the underlying measure is not obvious from context, we write EP to indicate the
expectation with respect to P. Mathematically, we define the expected value of X as its
Lebesgue integral with respect to P:

E [X] =

∫
Ω

X(ω) dP(ω).

The right-hand side is also often abbreviated to
∫
X dP. The integral on the right-hand side

is constructed to satisfy the following two key properties:

(a) The integral of indicators is the probability of the underlying event. If X(ω) =

I {ω ∈ A} is an indicator function for some A ∈ F , then
∫
XdP = P (A).

(b) Integrals are linear. For all random variables X1,X2 and reals α1, α2 such that
∫
X1dP

and
∫
X2dP are defined,

∫
(α1X1 + α2X2)dP is defined and satisfies∫

Ω

(α1X1 + α2X2) dP = α1

∫
Ω

X1 dP+ α2

∫
Ω

X2 dP. (2.5)

These two properties together tell us that whenever X(ω) =
∑n

i=1 αiI {ω ∈ Ai} for some
n, αi ∈ R and Ai ∈ F , i = 1, . . . ,n, then∫

Ω

XdP =
∑
i

αiP (Ai) . (2.6)

Functions of the form X are called simple functions.
In defining the Lebesgue integral of some random variable X , we use (2.6) as the defi-

nition of the integral when X is a simple function. The next step is to extend the definition
to non-negative random variables. Let X : Ω → [0,∞) be measurable. The idea is to
approximate X from below using simple functions and take the largest value that can be
obtained this way:∫

Ω

XdP = sup

{∫
Ω

h dP : h is simple and 0 ≤ h ≤ X

}
. (2.7)

The meaning of U ≤ V for random variables U ,V is that U(ω) ≤ V (ω) for all ω ∈ Ω.
The supremum on the right-hand side could be infinite, in which case we say the integral
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of X is not defined. Whenever the integral of X is defined, we say that X is integrable or,
if the identity of the measure P is unclear, that X is integrable with respect to P.

Integrals for arbitrary random variables are defined by decomposing the random variable
into positive and negative parts. Let X : Ω → R be any measurable function. Then define
X+(ω) = X(ω)I {X(ω) > 0} and X−(ω) = −X(ω)I {X(ω) < 0} so that X(ω) =

X+(ω) − X−(ω). Now X+ and X− are both non-negative random variables called the
positive and negative parts of X . Provided that both X+ and X− are integrable, we define∫

Ω

XdP =

∫
Ω

X+dP−
∫
Ω

X−dP.

Note that X is integrable if and only if the non-negative-valued random variable |X| is
integrable (Exercise 2.12).

None of what we have done depends on P being a probability measure. The definitions
hold for any measure, though for signed measures it is necessary to split Ω into
disjoint measurable sets on which the measure is positive/negative, an operation that is
possible by the Hahn decomposition theorem. We will never need signed measures
in this book, however.

A particularly interesting case is when Ω = R is the real line, F = B(R) is the Borel
σ-algebra and the measure is the Lebesgue measure λ, which is the unique measure on
B(R) such that λ((a, b)) = b − a for any a ≤ b. In this scenario, if f : R → R is a
Borel-measurable function, then we can write the Lebesgue integral of f with respect to
the Lebesgue measure as ∫

R

f dλ.

Perhaps unsurprisingly, this almost always coincides with the improper Riemann integral
of f , which is normally written as

∫∞
−∞ f(x)dx. Precisely, if |f | is both Lebesgue integrable

and Riemann integrable, then the integrals are equal.

There exist functions that are Riemann integrable and not Lebesgue integrable, and
also the other way around (although examples of the former are more exotic than the
latter).

The Lebesgue measure and its relation to Riemann integration is mentioned because
when it comes to actually calculating the value of an expectation or integral, this is often
reduced to calculating integrals over the real line with respect to the Lebesgue measure. The
calculation is then performed by evaluating the Riemann integral, thereby circumventing the
need to rederive the integral of many elementary functions. Integrals (and thus expectations)
have a number of important properties. By far the most important is their linearity, which
was postulated above as the second property in (2.5). To practice using the notation with
expectations, we restate the first half of this property. In fact, the statement is slightly more
general than what we demanded for integrals above.
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Proposition 2.6. Let (Xi)i be a (possibly infinite) sequence of random variables on the
same probability space and assume that E [Xi] exists for all i and furthermore that X =∑

i Xi and E [X] also exist. Then

E [X] =
∑
i

E [Xi] .

This exchange of expectations and summation is the source of much magic in probability
theory because it holds even ifXi are not independent. This means that (unlike probabilities)
we can very often decouple the expectations of dependent random variables, which often
proves extremely useful (a collection of random variables is dependent if they are not
independent). You will prove Proposition 2.6 in Exercise 2.14. The other requirement for
linearity is that if c ∈ R is a constant, then E [cX] = cE [X] (Exercise 2.15).

Another important statement is concerned with independent random variables.

Proposition 2.7. If X and Y are independent, then E [XY ] = E [X]E [Y ].

In general E [XY ] �= E [X]E [Y ] (Exercise 2.18). Finally, an important simple result
connects expectations of non-negative random variables to their tail probabilities.

Proposition 2.8. If X ≥ 0 is a non-negative random variable, then

E [X] =

∫ ∞

0

P (X > x) dx.

The integrand in Proposition 2.8 is called the tail probability function x �→ P (X > x)

of X . This is also known as the complementary cumulative distribution function of X .
The cumulative distribution function (CDF) of X is defined as x �→ P (X ≤ x) and is
usually denoted by FX . These functions are defined for all random variables, not just non-
negative ones. One can check that FX : R → [0, 1] is increasing, right continuous and
limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1. The CDF of a random variable captures
every aspect of the probability measure PX induced by X , while still being just a function
on the real line, a property that makes it a little more human friendly than PX . One can also
generalise CDFs to random vectors: if X is an Rk-valued random vector, then its CDF is
defined as the FX : Rk → [0, 1] function that satisfies FX(x) = P (X ≤ x), where, in
line with our conventions, X ≤ x means that all components of X are less than or equal to
the respective component of x. The pushforward PX of a random element is an alternative
way to summarise the distribution of X . In particular, for any real-valued, f : X → R

measurable function,

E [f(X)] =

∫
X
f(x)dPX(x)

provided that either the right-hand side, or the left-hand side exist.

2.6 Conditional Expectation

Conditional expectation allows us to talk about the expectation of a random variable given
the value of another random variable, or more generally, given some σ-algebra.
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Example 2.9. Let (Ω,F ,P) model the outcomes of an unloaded dice: Ω = [6], F = 2Ω

and P(A) = |A|/6. Define two random variables X and Y by Y (ω) = I {ω > 3} and
X(ω) = ω. Suppose we are interested in the expectation of X given a specific value of
Y . Arguing intuitively, we might notice that Y = 1 means that the unobserved X must be
either 4, 5 or 6, and that each of these outcomes is equally likely, and so the expectation of
X given Y = 1 should be (4+ 5+ 6)/3 = 5. Similarly, the expectation of X given Y = 0

should be (1 + 2 + 3)/3 = 2. If we want a concise summary, we can just write that ‘the
expectation of X given Y ’ is 5Y + 2(1− Y ). Notice how this is a random variable itself.

The notation for this conditional expectation is E [X |Y ]. Using this notation, in Exam-
ple 2.9 we can concisely write E [X |Y ] = 5Y + 2(1 − Y ). A little more generally, if
X : Ω→ X and Y : Ω→ Y with X ,Y ⊂ R and |X |, |Y| <∞, then E[X |Y ] : Ω→ R is
the random variable given by E[X |Y ](ω) = E[X |Y = Y (ω)], where

E[X |Y = y] =
∑
x∈X

xP (X = x |Y = y) =
∑
x∈X

xP (X = x,Y = y)

P (Y = y)
. (2.8)

This is undefined when P(Y = y) = 0 so that E[X |Y ](ω) is undefined on the measure
zero set {ω : P(Y = Y (ω)) = 0}.

Eq. (2.8) does not generalise to continuous random variables because P (Y = y) in the
denominator might be zero for all y. For example, let Y be a random variable taking values
on [0, 1] according to a uniform distribution and X ∈ {0, 1} be Bernoulli with bias Y .
This means that the joint measure on X and Y is P (X = 1,Y ∈ [p, q]) =

∫ q

p
xdx for

0 ≤ p < q ≤ 1. Intuitively it seems like E[X |Y ] should be equal to Y , but how to
define it? The mean of a Bernoulli random variable is equal to its bias so the definition of
conditional probability shows that for 0 ≤ p < q ≤ 1,

E[X = 1 |Y ∈ [p, q]] = P (X = 1 |Y ∈ [p, q])

=
P (X = 1,Y ∈ [p, q])

P (Y ∈ [p, q])

=
q2 − p2

2(q − p)

=
p+ q

2
.

This calculation is not well defined when p = q because P (Y ∈ [p, p]) = 0. Nevertheless,
letting q = p+ ε for ε > 0 and taking the limit as ε tends to zero seems like a reasonable
way to argue that P (X = 1 |Y = p) = p. Unfortunately this approach does not generalise
to abstract spaces because there is no canonical way of taking limits towards a set of measure
zero, and different choices lead to different answers.

Instead we use Eq. (2.8) as the starting point for an abstract definition of conditional
expectation as a random variable satisfying two requirements. First, from Eq. (2.8) we see
that E[X |Y ](ω) should only depend on Y (ω) and so should be measurable with respect to
σ(Y ). The second requirement is called the ‘averaging property’. For measurable A ⊆ Y ,
Eq. (2.8) shows that
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E[IY −1(A)E[X |Y ]] =
∑
y∈A

P (Y = y)E[X |Y = y]

=
∑
y∈A

∑
x∈X

xP (X = x,Y = y)

= E[IY −1(A)X].

This can be viewed as putting a set of linear constraints on E[X |Y ] with one constraint for
each measurable A ⊆ Y . By treating E[X |Y ] as an unknown σ(Y )-measurable random
variable, we can attempt to solve this linear system. As it turns out, this can always be done:
the linear constraints and the measurability restriction on E [X |Y ] completely determine
E[X |Y ] except for a set of measure zero. Notice that both conditions only depend on
σ(Y ) ⊆ F . The abstract definition of conditional expectation takes these properties as the
definition and replaces the role of Y with a sub-σ-algebra.

Definition 2.10 (Conditional expectation). Let (Ω,F ,P) be a probability space and X :
Ω→ R be random variable andH be a sub-σ-algebra of F . The conditional expectation of
X given H is denoted by E[X |H] and defined to be any H-measurable random variable
on Ω such that for all H ∈ H, ∫

H

E[X |H]dP =

∫
H

XdP. (2.9)

Given a random variable Y , the conditional expectation of X given Y is E [X |Y ] =

E [X | σ(Y )].

Theorem 2.11. Given any probability space (Ω,F ,P), a sub-σ-algebra H of F and a P-
integrable random variable X : Ω→ R, there exists anH-measurable function f : Ω→ R

that satisfies (2.9). Further, any two H-measurable functions f1, f2 : Ω → R that satisfy
(2.9) are equal with probability one: P(f1 = f2) = 1.

When random variables X and Y agree with P-probability one, we say they are P-almost
surely equal, which is often abbreviated to ‘X = Y P-a.s.’, or ‘X = Y a.s.’ when the
measure is clear from context. A related useful notion is the concept of null sets: U ∈ F
is a null set of P, or a P-null set if P(U) = 0. Thus, X = Y P-a.s. if and only if X = Y

agree except on a P-null set.

The reader may find it odd that E[X |Y ] is a random variable on Ω rather than
the range of Y . Lemma 2.5 and the fact that E[X | σ(Y )] is σ(Y )-measurable
shows there exists a measurable function f : (R,B(R)) → (R,B(R)) such that
E[X | σ(Y )](ω) = (f ◦Y )(ω) (see Fig. 2.4). In this sense E[X |Y ](ω) only depends
on Y (ω), and occasionally we write E[X |Y ](y).

Returning to Example 2.9, we see that E [X |Y ] = E [X | σ(Y )] and σ(Y ) =

{{1, 2, 3}, {4, 5, 6}, ∅,Ω}. Denote this set-system by H for brevity. The condition that
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(Ω,F)

(R,B(R)) (R,B(R))

Y E[X |Y ]

f

Figure 2.4 Factorisation of conditional expectation. When there is no confusion, we occasionally write
E[X | Y](y) in place of f (y).

E[X |H] isH-measurable can only be satisfied if E[X |H](ω) is constant on {1, 2, 3} and
{4, 5, 6}. Then (2.9) immediately implies that

E [X |H] (ω) =

{
2, if ω ∈ {1, 2, 3};
5, if ω ∈ {4, 5, 6}.

While the definition of conditional expectations given above is non-constructive and
E[X |H] is uniquely defined only up to events of P-measure zero, none of this should be
of a significant concern. First, we will rarely need closed-form expressions for conditional
expectations, but we rather need how they relate to other expectations, conditional or not.
This is also the reason why it should not be concerning that they are only determined up to
zero probability events: usually, conditional expectations appear in other expectations or
in statements that are concerned with how probable some event is, making the difference
between the different ‘versions’ of conditional expectations disappear.

We close the section by summarising some additional important properties of conditional
expectations. These follow from the definition directly, and the reader is invited to prove
them in Exercise 2.20.

Theorem 2.12. Let (Ω,F ,P) be a probability space, G,G1,G2 ⊂ F be sub-σ-algebras of
F and X,Y integrable random variables on (Ω,F ,P). The following hold true:

1 If X ≥ 0, then E [X | G] ≥ 0 almost surely.
2 E [1 | G] = 1 almost surely.
3 E [X + Y | G] = E [X | G] + E [Y | G] almost surely.
4 E [XY | G] = Y E [X | G] almost surely if E [XY ] exists and Y is G-measurable.
5 If G1 ⊂ G2, then E [X | G1] = E [E [X | G2] | G1] almost surely.
6 If σ(X) is independent of G2 given G1, then E [X | σ(G1 ∪ G2)] = E [X | G1] almost

surely.
7 If G = {∅,Ω} is the trivial σ-algebra, then E [X | G] = E [X] almost surely.

Properties 1 and 2 are self-explanatory. Property 3 generalises the linearity of expectation.
Property 4 shows that a measurable quantity can be pulled outside of a conditional expec-
tation and corresponds to the property that for constants c, E [cX] = cE [X]. Property 5 is
called the tower rule or the law of total expectations. It says that the fineness of E[X | G2]
is obliterated when taking the conditional expectation with respect to G1. Property 6 relates
independence and conditional expectations, and it says that conditioning on independent
quantities does not give further information on expectations. Here, the two event systems
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A and B are said to be conditionally independent of each other given a σ-algebra F if
for all A ∈ A and B ∈ B, P (A ∩B | F) = P (A | F)P (B | F) holds almost surely.
We also often say that A is conditionally independent of B given F , but of course, this
relation is symmetric. This property is often applied with random variables: X is said to
be conditionally independent of Y given Z, if σ(X) is conditionally independent of σ(Y )

given σ(Z). In this case, E [X |Y ,Z] = E [X |Z] holds almost surely. Property 7 states
that conditioning on no information gives the same expectation as not conditioning at all.

The above list of abstract properties will be used over and over again. We encourage
the reader to study the list carefully and convince yourself that all items are intuitive.
Playing around with discrete random variables can be invaluable for this. Eventually
it will all become second nature.

2.7 Notes

1 The Greek letter σ is often used by mathematicians in association with countable infinities. Hence
the term σ-algebra (and σ-field). Note that countable additivity is often called σ-additivity. The
requirement that additivity should hold for systems of countably infinitely many sets is made so
that probabilities of (interesting) limiting events are guaranteed to exist.

2 Measure theory is concerned with measurable spaces, measures and with their properties. An
obvious distinction between probability theory and measure theory is that in probability theory,
one is (mostly) concerned with probability measures. But the distinction does not stop here. In
probability theory, the emphasis is on the probability measures and their relations to each other.
The measurable spaces are there in the background, but are viewed as part of the technical toolkit
rather than the topic of main interest. Also, in probability theory, independence is often at the
center of attention, while independence is not a property measure-theorists care much about.

3 In our toy example, instead ofΩ = [6]7, we could have chosenΩ = [6]8 (considering rolling eight
dice instead of seven, one dice never used). There are many other possibilities. We can consider
coin flips instead of dice rolls (think about how this could be done). To make this easy, we could
use weighted coins (for example, a coin that lands on heads with probability 1/6), but we don’t
actually need weighted coins (this may be a little tricky to see). The main point is that there are
many ways to emulate one randomisation device by using another. The difference between these
is the set Ω. What makes a choice of Ω viable is if we can emulate the game mechanism on the
top of Ω so that in the end the probability of seeing any particular value remains the same. But the
main point is that the choice of Ω is far from unique. The same is true for the way we calculate the
value of the game! For example, the dice could be reordered, if we stay with the first construction.
This was noted already, but it cannot be repeated frequently enough: the biggest conspiracy in all
probability theory is that we first make a big fuss about introducing Ω, and then it turns out that
the actual construction of Ω does not matter.

4 All Riemann-integrable functions on a bounded domain are Lebesgue integrable. Difficulties only
arise when taking improper integrals. A standard example is

∫∞
0

sin(x)dx
x

, which is an improper
Riemann integrable function, but is not Lebesgue integrable because

∫
(0,∞)

| sin(x)/x|dx =

∞. The situation is analogous to the difference between conditionally and absolutely convergent
series, with the Lebesgue integral only defined in the latter case.
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5 Can you think of a set that is not Borel measurable? Such sets exist, but do not arise naturally in
applications. The classic example is the Vitali set, which is formed by taking the quotient group
G = R/Q and then applying the axiom of choice to choose a representative in [0, 1] from each
equivalence class in G. Non-measurable functions are so unusual that you do not have to worry
much about whether or not functions X : R → R are measurable. With only a few exceptions,
questions of measurability arising in this book are not related to the fine details of the Borel σ-
algebra. Much more frequently they are related to filtrations and the notion of knowledge available
having observed certain random elements.

6 There is a lot to say about why the sum, or the product of random variables are also random
variables. Or why infn Xn, supn Xn, lim infn Xn, lim supn Xn are measurable when Xn are.
The key point is to show that the composition of measurable maps is a measurable map and that
continuous maps are measurable and then apply these results (Exercise 2.1). For lim supn Xn,
just rewrite it as limm→∞ supn≥m Xn; note that supn≥m Xn is decreasing (we take suprema of
smaller sets as m increases), hence lim supn Xn = infm supn≥m Xn, reducing the question to
studying infn Xn and supn Xn. Finally, for infn Xn note that it suffices if {ω : infn Xn ≥ t}
is measurable for any t real. Now, infn Xn ≥ t if and only if Xn ≥ t for all n. Hence, {ω :
infn Xn ≥ t} = ∩n{ω : Xn ≥ t}, which is a countable intersection of measurable sets, hence
measurable (this latter follows by the elementary identity (∩iAi)

c = ∪iA
c
i ).

7 The factorisation lemma, Lemma 2.5, is attributed to Joseph Doob and Eugene Dynkin. The
lemma sneakily uses the properties of real numbers (think about why), which is another reason
why what we said about σ-algebras containing all information is not entirely true. The lemma has
extensions to more general random elements [Taraldsen, 2018, for example]. The key requirement
in a way is that the σ-algebra associated with the range space of Y should be rich enough.

8 We did not talk about basic results like Lebesgue’s dominated/monotone convergence theorems,
Fatou’s lemma or Jensen’s inequality. We will definitely use the last of these, which is explained in
a dedicated chapter on convexity (Chapter 26). The other results can be found in the texts we cite.
They are concerned with infinite sequences of random variables and conditions under which their
limits can be interchanged with Lebesgue integrals. In this book we rarely encounter problems
related to such sequences and hope you forgive us on the few occasions they are necessary (the
reason is simply because we mostly focus on finite time results or take expectations before taking
limits when dealing with asymptotics).

9 You might be surprised that we have not mentioned densities. For most of us, our first exposure
to probability on continuous spaces was by studying the normal distribution and its density

p(x) =
1√
2π

exp(−x2/2), (2.10)

which can be integrated over intervals to obtain the probability that a Gaussian random variable
will take a value in that interval. The reader should notice that p : R → R is Borel measurable
and that the Gaussian measure associated with this density is P on (R,B(R)) defined by

P(A) =

∫
A

p dλ.

Here the integral is with respect to the Lebesgue measure λ on (R,B(R)). The notion of a density
can be generalised beyond this simple setup. LetP andQ be measures (not necessarily probability
measures) on arbitrary measurable space (Ω,F). The Radon–Nikodym derivative of P with
respect to Q is an F -measurable random variable dP

dQ
: Ω→ [0,∞) such that
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P (A) =

∫
A

dP

dQ
dQ for all A ∈ F . (2.11)

We can also write this in the form
∫
IAdP =

∫
IA

dP
dQ

dQ, A ∈ F , from which we may realise
that for any X P -integrable random variable,

∫
XdP =

∫
X dP

dQ
dQ must also hold. This is often

called the change-of-measure formula. Another word for the Radon–Nikodym derivative dP
dQ

is
the density of P with respect to Q. It is not hard to find examples where the density does not exist.
We say that P is absolutely continuous with respect to Q if Q(A) = 0 =⇒ P (A) = 0 for
all A ∈ F . When dP

dQ
exists, it follows immediately that P is absolutely continuous with respect

to Q by Eq. (2.11). Except for some pathological cases, it turns out that this is both necessary
and sufficient for the existence of dP/dQ. The measure Q is σ-finite if there exists a countable
covering {Ai} of Ω with F -measurable sets such that Q(Ai) <∞ for each i.

Theorem 2.13. Let P ,Q be measures on a common measurable space (Ω,F) and assume that

Q is σ-finite. Then the density of P with respect to Q, dP
dQ

, exists if and only if P is absolutely

continuous with respect to Q. Furthermore, dP
dQ

is uniquely defined up to a Q-null set so that for

any f1, f2 satisfying (2.11), f1 = f2 holds Q-almost surely.

Densities work as expected. Suppose thatZ is a standard Gaussian random variable. We usually
write its density as in Eq. (2.10), which we now know is the Radon–Nikodym derivative of the
Gaussian measure with respect to the Lebesgue measure. The densities of ‘classical’ continuous
distributions are almost always defined with respect to the Lebesgue measure.

10 In line with the literature, we will use P 
 Q to denote that P is absolutely continuous with re-
spect to Q. When P is absolutely continuous with respect to Q, we also say that Q dominates P .

11 A useful result for Radon–Nikodym derivatives is the chain rule, which states that if P 
 Q

S, then dP

dQ
dQ
dS

= dP
dS

. The proof of this result follows from our earlier observation that
∫
fdQ =∫

f dQ
dS

dS for anyQ-integrable f . Indeed, the chain rule is obtained from this by taking f = IA
dP
dQ

with A ∈ F and noting that this is indeed Q-integrable and
∫
IA

dP
dQ

dQ =
∫
IAdQ. The chain

rule is often used to reduce the calculation of densities to calculation with known densities.

12 The Radon–Nikodym derivative unifies the notions of distribution (for discrete spaces) and
density (for continuous spaces). Let Ω be discrete (finite or countable) and let ρ be the counting
measure on (Ω, 2Ω), which is defined by ρ(A) = |A|. For any P on (Ω,F), it is easy to see
that P 
 ρ and dP

dρ (i) = P ({i}), which is sometimes called the distribution function of P .

13 The Radon–Nikodym derivative provides another way to define the conditional expectation. Let
X be an integrable random variable on (Ω,F ,P) and H ⊂ F be a sub-σ-algebra and P|H be
the restriction of P to (Ω,H). Define measure μ on (Ω,H) by μ(A) =

∫
A
XdP|H. It is easy

to check that μ 
 P|H and that E[X |H] =
dμ

dP|H
satisfies Eq. (2.9). We note that the proof of

the Radon–Nikodym theorem is nontrivial and that the existence of conditional expectations are
more easily guaranteed via an ‘elementary’ but abstract argument using functional analysis.

14 The Fubini–Tonelli theorem is a powerful result that allows one to exchange the order of
integrations. This result is needed for example for proving Proposition 2.8 (Exercise 2.19). To state
it, we need to introduce product measures. These work as expected: given two probability spaces,
(Ω1,F1,P1) and (Ω2,F2,P2), the product measure P of P1 and P2 is defined as any measure
on (Ω1 ×Ω2,F1 ⊗F2) that satisfies P(A1,A2) = P1(A1)P2(A2) for all (A1,A2) ∈ F1 ×F2

(recall that F1 ⊗ F2 = σ(F1 × F2) is the product σ-algebra of F1 and F2). Theorem 2.4
implies that this product measure, which is often denoted by P1 × P2 (or P1 ⊗ P2) is uniquely
defined. (Think about what this product measure has to do with independence.) The Fubini–
Tonelli theorem (often just ‘Fubini’) states the following: let (Ω1,F1,P1) and (Ω2,F2,P2)
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be two probability spaces and consider a random variable X on the product probability space
(Ω,F ,P) = (Ω1 × Ω2,F1 ⊗ F2,P1 × P2). If any of the three integrals

∫
|X(ω)| dP(ω),∫

(
∫
|X(ω1,ω2)| dP1(ω1)) dP2(ω2),

∫
(
∫
|X(ω1,ω2)| dP2(ω2)) dP1(ω1) is finite, then∫

X(ω) dP(ω) =
∫ (∫

X(ω1,ω2) dP1(ω1)
)

dP2(ω2)

=

∫ (∫
X(ω1,ω2) dP2(ω2)

)
dP1(ω1).

15 For topological space X , the support of a measure μ on (X,B(X)) is

Supp(μ) = {x ∈ X : μ(U) > 0 for all neighborhoods U of x}.

When X is discrete, this reduces to Supp(μ) = {x : μ({x}) > 0}.
16 Let X be a topological space. The weak* topology on the space of probability measures P(X)

on (X,B(X)) is the coarsest topology such that μ →
∫
fdμ is continuous for all bounded

continuous functions f : X → R. In particular, a sequence of probability measures (μn)
∞
n=1

converges to μ in this topology if and only if limn→∞
∫
fdμn =

∫
fdμ for all bounded

continuous functions f : X → R.

Theorem 2.14. When X is compact and Hausdorff and P(X) is the space of regular probability

measures on (X,B(X)) with the weak* topology, then P(X) is compact.

17 Mathematical terminology can be a bit confusing sometimes. Since E maps (certain) functions
to real values, it is also called the expectation operator. ‘Operator’ is just a fancy name for a
function. In operator theory, the study of operators, the focus is on operators whose domain is
infinite dimensional, hence the distinct name. However, most results of operator theory do not
hinge upon this property. If the image space is the set of reals, we talk about functionals. The
properties of functionals are studied in yet another subfield of mathematics, functional analysis.
The expectation operator is a functional that maps the set of P-integrable functions (often denoted
by L1(Ω,P) or L1(P)) to reals. Its most important property is linearity, which was stated as a
requirement for integrals that define the expectation operator (Eq. (2.5)). In line with the previous
comment, when we use E, more often than not, the probability space remains hidden. As such,
the symbol E is further abused.

2.8 Bibliographic Remarks

Much of this chapter draws inspiration from David Pollard’s A user’s guide to measure theoretic

probability [Pollard, 2002]. We like this book because the author takes a rigourous approach, but still
explains the ‘why’ and ‘how’ with great care. The book gets quite advanced quite fast, concentrating
on the big picture rather than getting lost in the details. Other useful references include the book
by Billingsley [2008], which has many good exercises and is quite comprehensive in terms of its
coverage of the ‘basics’. These books are both quite detailed. For an outstanding shorter introduction
to measure-theoretic probability, see the book by Williams [1991], which has an enthusiastic style
and a pleasant bias towards martingales. We also like the book by Kallenberg [2002], which is
recommended for the mathematically inclined readers who already have a good understanding of the
basics. The author has put a major effort into organising the material so that redundancy is minimised
and generality is maximised. This reorganisation resulted in quite a few original proofs, and the book
is comprehensive. The factorisation lemma (Lemma 2.5) is stated in the book by Kallenberg [2002]
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(Lemma 1.13 there). Kallenberg calls this lemma the ‘functional representation’ lemma and attributes
it to Joseph Doob. Theorem 2.4 is a corollary of Carathéodory’s extension theorem, which says that
probability measures defined on semi-rings of sets have a unique extension to the generated σ-algebra.
The remaining results can be found in either of the three books mentioned above. Theorem 2.14
appears as theorem 8.9.3 in the two-volume book by Bogachev [2007]. Finally, for something older
and less technical, we recommend the philosophical essays on probability by Pierre Laplace, which
was recently reprinted [Laplace, 2012].

2.9 Exercises

2.1 (Composing random elements) Show that if f is F/G-measurable and g is G/H-measurable
for sigma algebras F ,G and H over appropriate spaces, then their composition, g ◦ f (defined the
usual way: (g ◦ f)(ω) = g(f(ω)), ω ∈ Ω), is F/H-measurable.

2.2 Let X1, . . . ,Xn be random variables on (Ω,F). Prove that (X1, . . . ,Xn) is a random vector.

2.3 (Random variable induced σ-algebra) Let U be an arbitrary set and (V,Σ) a measurable
space and X : U → V an arbitrary function. Show that ΣX = {X−1(A) : A ∈ Σ} is a σ-algebra
over U .

2.4 Let (Ω,F) be a measurable space and A ⊆ Ω and F|A = {A ∩B : B ∈ F}.

(a) Show that (A,F|A) is a measurable space.

(b) Show that if A ∈ F , then F|A = {B : B ∈ F ,B ⊆ A}.

2.5 Let G ⊆ 2Ω be a non-empty collection of sets and define σ(G) as the smallest σ-algebra that
contains G. By ‘smallest’ we mean that F ∈ 2Ω is smaller than F ′ ∈ 2Ω if F ⊂ F ′.

(a) Show that σ(G) exists and contains exactly those sets A that are in every σ-algebra that con-
tains G.

(b) Suppose (Ω′,F) is a measurable space and X : Ω′ → Ω be F/G-measurable. Show that X
is also F/σ(G)-measurable. (We often use this result to simplify the job of checking whether a
random variable satisfies some measurability property).

(c) Prove that if A ∈ F where F is a σ-algebra, then I {A} is F -measurable.

2.6 (Knowledge and σ-algebras: a pathological example) In the context of Lemma 2.5, show
an example where Y = X and yet Y is not σ(X) measurable.

Hint As suggested after the lemma, this can be arranged by choosing Ω = Y = X = R, X(ω) =

Y (ω) = ω, F = H = B(R) and G = {∅,R} to be the trivial σ-algebra.

2.7 Let (Ω,F ,P) be a probability space, B ∈ F be such that P (B) > 0. Prove that A → P (A |B)

is a probability measure over (Ω,F).

2.8 (Bayes law) Verify (2.2).

2.9 Consider the standard probability space (Ω,F ,P) generated by two standard, unbiased, six-sided
dice that are thrown independently of each other. Thus, Ω = {1, . . . , 6}2, F = 2Ω and P(A) =

|A|/62 for any A ∈ F so that Xi(ω) = ωi represents the outcome of throwing dice i ∈ {1, 2}.
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(a) Show that the events ‘X1 < 2’ and ‘X2 is even’ are independent of each other.

(b) More generally, show that for any two events, A ∈ σ(X1) and B ∈ σ(X2), are independent of
each other.

2.10 (Serendipitous independence) The point of this exercise is to understand independence more
deeply. Solve the following problems:

(a) Let (Ω,F ,P) be a probability space. Show that ∅ and Ω (which are events) are independent of
any other event. What is the intuitive meaning of this?

(b) Continuing the previous part, show that any event A ∈ F with P (A) ∈ {0, 1} is independent of
any other event.

(c) What can we conclude about an event A ∈ F that is independent of its complement, Ac = Ω\A?
Does your conclusion make intuitive sense?

(d) What can we conclude about an event A ∈ F that is independent of itself? Does your conclusion
make intuitive sense?

(e) Consider the probability space generated by two independent flips of unbiased coins with the
smallest possible σ-algebra. Enumerate all pairs of events A,B such that A and B are indepen-
dent of each other.

(f) Consider the probability space generated by the independent rolls of two unbiased three-sided
dice. Call the possible outcomes of the individual dice rolls 1, 2 and 3. Let Xi be the random
variable that corresponds to the outcome of the ith dice roll (i ∈ {1, 2}). Show that the events
{X1 ≤ 2} and {X1 = X2} are independent of each other.

(g) The probability space of the previous example is an example when the probability measure is
uniform on a finite outcome space (which happens to have a product structure). Now consider any
n-element, finite outcome space with the uniform measure. Show that A and B are independent
of each other if and only if the cardinalities |A|, |B|, |A ∩B| satisfy n|A ∩B| = |A| · |B|.

(h) Continuing with the previous problem, show that if n is prime, then no non-trivial events are
independent (an event A is trivial if P (A) ∈ {0, 1}).

(i) Construct an example showing that pairwise independence does not imply mutual independence.

(j) Is it true or not that A,B,C are mutually independent if and only if P (A ∩B ∩ C) =

P (A)P (B)P (C)? Prove your claim.

2.11 (Independence and random elements) Solve the following problems:

(a) Let X be a constant random element (that is, X(ω) = x for any ω ∈ Ω over the outcome space
over which X is defined). Show that X is independent of any other random variable.

(b) Show that the above continues to hold if X is almost surely constant (that is, P (X = x) = 1 for
an appropriate value x).

(c) Show that two events are independent if and only if their indicator random variables are indepen-
dent (that is, A,B are independent if and only if X(ω) = I {ω ∈ A} and Y (ω) = I {ω ∈ B}
are independent of each other).

(d) Generalise the result of the previous item to pairwise and mutual independence for collections of
events and their indicator random variables.

2.12 Our goal in this exercise is to show that X is integrable if and only if |X| is integrable. This
is broken down into multiple steps. The first issue is to deal with the measurability of |X|. While a
direct calculation can also show this, it may be worthwhile to follow a more general path:

(a) Any f : R→ R continuous function is Borel measurable.
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(b) Conclude that for any random variable X , |X| is also a random variable.
(c) Prove that for any random variable X , X is integrable if and only if |X| is integrable. (The

statement makes sense since |X| is a random variable whenever X is).

Hint For (b) recall Exercise 2.1. For (c) examine the relationship between |X| and (X)+ and (X)−.

2.13 (Infinite-valued integrals) Can we consistently extend the definition of integrals so that for
non-negative random variables, the integral is always defined (it may be infinite)? Defend your view
by either constructing an example (if you are arguing against) or by proving that your definition is
consistent with the requirements we have for integrals.

2.14 Prove Proposition 2.6.

Hint You may find it useful to use Lebesgue’s dominated/monotone convergence theorems.

2.15 Prove that if c ∈ R is a constant, then E [cX] = cE [X] (as long as X is integrable).

2.16 Prove Proposition 2.7.

Hint Follow the ‘inductive’ definition of Lebesgue integrals, starting with simple functions, then
non-negative functions and finally arbitrary independent random variables.

2.17 Suppose that G1 ⊂ G2 and prove that E[X | G1] = E[E[X | G1] | G2] almost surely.

2.18 Demonstrate using an example that in general, for dependent random variables, E [XY ] =

E [X]E [Y ] does not hold.

2.19 Prove Proposition 2.8.

Hint Argue that X(ω) =
∫
[0,∞)

I {[0,X(ω)]} (x) dx and exchange the integrals. Use the Fubini–
Tonelli theorem to justify the exchange of integrals.

2.20 Prove Theorem 2.12.
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