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Introduction. In the paper [5], Rema used the well-known fact that in a Boolean algebra
B =(B; v, A,';0, 1) the binary operationd : Bx B — Bdefinedbyd(a, b)) =(anb’)v(baa’)
is a “ metric "’ operation to show that, if D is any dual ideal of &, then the sets U, = {(x, y):
d(x, y) £ p}, where pe D, form a base for a uniformity of 4, the resulting topological space
{B; T[D]) being called an auto-topologized Boolean algebra. Recently, Kent and Atherton
[1, 4] exhibited a family of topologies on an arbitrary lattice £ defined in terms of ideals and
dual ideals. More specifically, if 7 and D are respectively an ideal and a dual ideal of .#, then
the T[I: D] topology on . is the topology defined by taking the sets of the form a*nb™, where
ael,beD,a*= {xe¥ :x 2 a} and b* = {xe ¥ : x < b}, as sub-base for the open sets. It
is these topologies that are studied in this paper.

1t is first shown that a T'[1: D] topology on a Boolean algebra & is an auto-topology if
and only if I is the *“ Boolean-complement ” of D. The property of a topology on & being a
T[I: D] (auto-)topology is shown to be * productive ”” as well as being * c-hereditary ” in
that, if S is a complete subalgebra of a Boolean algebra endowed with a T{Z: D](auto-)topology,
then the subspace topology on S is a T[I:D] (auto-)topology. Necessary and sufficient
conditions are then established for a T[/ : D] topology to be Hausdorff and employed to show
that a Hausdorff TI : D] topology is totally disconnected whereasanauto-topology is Hausdorff
if and only if it is totally disconnected. Various connectedness properties of T[/ : D] topologies
are studied in some detail and it is shown, in particular, that such a topology is connected if
and only if I is contained in the “ lower section” of D and that an auto-topology T[D] is
locally connected if and only if D is a principal dual ideal. Finally, we show that a Boolean
algebra admits a compact, Hausdorff T[7 : D] topology if and only if it is complete and atomic.

Notation and terminology. The topological concepts and results referred to throughout
the paper can be found in [3], while the lattice-theoretic results are to be found in [2]. If S
is a nonempty subset of a Boolean algebra 4, then we denote the set {a’;aeS} by S’ and
refer to it as the Boolean complement of S. The usual partial ordering of & will be denoted by
< and [q, b] will denote the interval {xe % : a < x < b}. For the sake of brevity we frequently
write a.b instead of a Ab for the lattice meet of @ and b and av b for the lattice join. The
symbols <, U, n will be reserved for set inclusion, union and intersection respectively.

1. THEOREM 1.1. T[I: D) is an auto-topology if and only if D = I' and, when this condition
is satisfied, T[I: D) = T[D].

Proof. Suppose that T[] : D] coincides with the auto-topology T [F] defined by the dual
ideal F of #; then the set {U/[a]:feF}, where U a]l = {x:d(x, a) £ f}, forms a base for
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the T[F] neighbourhood system of the point ae %, and the set {[ang,avp):peD,qel}
forms a base for the T{/: D] neighbourhood system of ae#B. Now d(x,a) < feranf' <
x S avf,sothat Udal = [anf’, avf], and it follows that Vae %, Vpe D, Vqel, 3feF such
that [anf’,avf]<[ang,avp]l. On taking a=0, we deduce that every element in D
contains some element in F and this implies that D = F. Furthermore, on taking a = 1, it
follows that Vge 1, 3fe F such that ¢ < f”, or equivalently £ < ¢’, and so q’ € F, which implies
that /< F’. Similarly Vae#YfeF, 3peD and gel such that [ang,avplslanf’,avf].
Taking a =0, we have that Yfe F, 3pe D such that p < f and so fe D, which shows that
F< D. Again, taking a = 1, we have that ¥V fe F, g€l such that f' < ¢ and this implies that
F'< 1. Insummary then, D= Fand I=F’; whence D=1'.

The converse has been established by Atherton [1] who showed that, if this condition is
satisfied, then T'[I: D] = T [D].

A property 2 of a topology on a Boolean algebra is said to be productive if and only if
the product of any family of Boolean algebras, each being endowed with a topology possessing
the property 2, also possesses &.

THEOREM 1.2. The property of being a T[I : D] topology is productive.

Proof. Suppose that {{®B,; T[I,: D,I>}.ca is an arbitrary family of Boolean algebras
each endowed with a T'[/: D] topology. Let D be the subset of the direct product & of the
2,’s consisting of all functions fe # with the property that f(a) = 1,, YaeA, except when a
is in some finite subset {a,, &, ..., a,} of A, in which case f(«;)eD,,. Similarly, let I be the
subset of # consisting of all functions fe # with the property that f(«) =0,, VaeA, except
when o is in some finite subset {«,, a5, ..., ,} of A, in which case f(«;)€1,,. Then it is easily
shown that D is a dual ideal and I an ideal of 4%, and we prove that the product topology
[T T[I.: D.] on # coincides with the topology T'[I: D].

acA

To this end, let feUe [] T[I,: D,]; then, by definition of the product topology, there

acA

exist open sets U, € T[L,,: D, ] (¢;€ A, 1 £ j £ m) such that the corresponding sub-basic open
sets Uy, = {fe® : f(a)e U, } in T] T[1,: D] satisfy fe [} U2 < U, Now, since f())eU,,
acA j=1

and U, €T[l,,: D,}, it follows that 3p, € D, and g, €1, such that [f(a)Ap,, fla)Vq,] S
U, (15j<n). Let ge# be defined by g(x) =0,, VaeA except where a=a; when
9(a;) =g, (1 £j < m), and let pe # be defined by p(x) = 1,, Vac A except where a = a;, when
play) =p, (1 £j<m). Then peD,qel and [fagq,fvp]is a T[I: D]-open neighbourhood

of f which is contained in () U;';; for if ge[fAgq,fvp), then, in particular, f(a;) Ag(a))
j=1

9(e) S S @) v (). so that g(a) /@) Adey S@)vP,] (LSS m), whence ge ) UL,
Thus [] T[Z: D, < T[I: D). j_

aeA

Conversely, suppose that fe Ue T[I: D); thendpeD, gelsuchthatfe[faq,fvp] < U.
Now suppose that p(x) = 1, Vae A—J, p(a))e D,, Va;€J, where J is a finite subset of A, and
q(B) =0, Y BeA~K, q(B) el V¥ € K, where K 1s a finite subset of A. Let L = JUK and, for
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each ye L, consider the sub-basic ]_[ T[1,:D,]-openset U; = {beB: b(y)eU,}, where U, is
the basic T[/,: D,]-open set [f(y)/\q(y) S vp]. Now fe Y UF<[frq,fvplsU;
yel

for, if ge () Uy, then g(y)e U,,Vye L, or, equivalently, f(y) Aq(y) S g(¥) £ fP) vp(), VyeL,
vel

and, ifae A—L, so thatae A—J and ae A — K, then g(x) = 0, and p(«) = 1,, which implies that
J@)Aq(@) = gl@) £ f (@) vp), YaeA,ie, gelfag, fvp]. Hence T{I: D] < [] T{i,:D,]
acA

and therefore equality holds.
COROLLARY 1.3. The property of being an auto-topology is productive.

Proof. If each of the topologies T[I, : D,] in the theorem is an auto-topology, then, by
Theorem 1.1, D, = I, YVaeA, and it is easily shown that the associated ideal I and dual idea
D of & satisfy D = [’. Hence the product topology on £ is an auto-topology.

A property 2 of a topology on a Boolean algebra is said to be c-kereditary if and only if
the subspace topology on any complete subalgebra of a Boolean algebra endowed with a
topology possessing the property £ also possesses 2.

THEOREM 1.4. The property of being a T[I : D] topology is c-hereditary.

Proof. Let S be a complete subalgebra of the Boolean algebra #; for each pe D, let
t, = \/(p*nS)and form the dual ideal D in S generated by the set T, = {r,: pe D}. Observe
that, since Tp, is closed under finite meets, D, = {seS:s 2 ¢, for some peD}. For each
gel, let t, = N\(g*nS), form the ideal I, in S generated by the set T, = {z,: gel} and, once
again, observe that I, = {seS: s < 1, for some gel}. We show that the subspace topology
T{I: D)/S on S is identical with T[I,: D,). LetaeUeT][I: D)/S; then 3peD, gelsuch that
aclang,avplnSc U. Consider the interval [ant,avt), in S, ie, {seS:ant, s
av t,,}; then, since £, < p and 1, = q, it follows that [aAat,, avt,); = [ang, avplnS. Hence
TI:D)S<T[I,: D)

Conversely, let ae Ue T[I,: Dy]; then3p, €D, q, €l such that [ang,,avp,), = U. But
p€D,—p 21t, for some peD, and gq,el,—q, <t, for some gel. We show that
[ang,avplnS<s[ang,,avp].. Let sefang,avp]ns, so that seS and saa’ < p; then

it follows that saa’ < ¢, < p,, or, equivalently, s £ avp,. Similarly, since a'vs = q and
a'vses, it follows thata’' vs = ¢, = gy, or, equivalently, anq, <s. Henceselaagq,,avp,];
and therefore T[I,: D,] = T'[I: D]/S.

COROLLARY 1.5. The property of being an auto-topology is c-hereditary.

Proof. If the topology T'[/: D] of the theorem is an auto-topology, then D = I’ and it
suffices to show that D, = I;. To this end let se D,; then 3pe D such that s 2 1, = \/(p* NS).
Now, since p=gq’' for some gel, t, = A(p*nS) = AN(g*nS)=1¢, and so s’ <¢t,, which
implies that s'el,, or, equivalently, sel;. Hence D, < I;. Similarly, if sel;, so that s =r’
for some rel, then 3geIsuch thatt; £s. Nowg = p’ for some pe D, and so t; = [A(g*nS)]
=\(g*nS) = \/(p* nS) = 1, which implies that ¢, < s and therefore se D,. Hence I; < D,
completing the proof.
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2, Connectedness properties. Prior to establishing necessary and sufficient conditions for
T[I: D]to be Hausdorff, we recall that an ideal (dual ideal) in the pseudo-complemented lattice
£ of all ideals (dual ideals) of a Boolean algebra 2 is said to be (algebraically) dense if and
only if its pseudo-complement is the zero element of &, We remark that an ideal 7 of & is dense
if and only if its upper section I* = {xe B: x 2 q,Vqel} contains only the element 1, while
a dual ideal D is dense if and only if its lower section D* = {xe #: x < p, Vpe D} contains
only the element 0.

THEOREM 2.1. The topology T[I: D] is Hausdorff if and only if both I and D are dense.

Proof. Suppose that T[I: D] is Hausdorff and xel* but x# 1; then 3p,eD and
3q,, q;,€1 such that [q,, 1In[xAq,, xvp,]1 =0, which gives a contradiction on observing
that the element g = g, vg, €l satisfies ¢, S gand xAq, = ¢, £ ¢ £ x < xvp, and therefore
lies in the intersection. Hence I* = {1}. Similarly, suppose that xe D* but x # 0; then
dp,,p,€D and 3q,el such that [0, p,]n[xAq,,xvp,]1=0, which, on observing that
p=p,Ap €D satisfies p<p, and xAq, Sx<p < xvp,, gives a contradiction. Hence
D* = {0}.

Conversely, suppose that both I and D are dense, but T'[I: D] is not Hausdorff; then
there exist distinct points a, be & such that every open neighbourhood of a meets every open
neighbourhood of b. Hence [ang,avplnlbrg, bvp)#0,VYpeD,Yqel. But IxeR
satisfying

xefang,avplnlbagq,bvpleragvbg S x S (avp)bvp)
@ vb)p'xviavbgx' =0
(@ vbYavb)p'q=0
«d(a,bp'q=0
and so it follows that d(a, b)g < p, YpeD,Vqel. Whence
d(a, b)ge D* ={0},Vqel—q<d'(a, b),Vqel
od(a, byel* = {1}
o d(a, b)=0
—a=Db,
giving a contradiction and therefore proving that 7'(I: D] is Hausdorff.
COROLLARY 2.2. An auto-topology T[ D] is Hausdorff if and only if D is a dense dual ideal.
THEOREM 2.3. If T[I: D] is Hausdorff, then it is totally disconnected.

Proof. 1t is, of course, well known that a Hausdorff, zero-dimensional space is totally
disconnected and so, in proving the theorem, it suffices to show that each basic open set
[ang,avpl(peD,qel)isclopen. Now xeCl[angq,,a v p,], the closure of [anqy, av p,],
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if and only if every neighbourhood of x meets [@ Ag,,aVvp;] or, equivalently, S =
[xrnq,xvplnlang,avp,1#0,YpeD,Vgel. But

dyeferxqvaq, S y<(xvp)avp,)
e'p'va'p)yv(xqvag,)y =0
e (x'p'va'pi)(xqvagq,)=0
eraq,x'p’=0 and a'pixq=0
—ax'q; £p and qg=Zavx'vp;.

Hence # # 0,YpeD,Vgel—ax'q, Sp,YpeDandg<avx'vp,,Vgel—ax'q eD* = {0}
and avx'vp,el*={l}eax'q, =0 and a’p;x=0eanq, £x<avp,. It follows now
that [an gq,, av p,] is clopen and the theorem is proved.

COROLLARY 2.4. An auto-topology is Hausdorff if and only if it is totally disconnected.

Proof. 1t is well known that cinp (@), the component of q, is contained in the intersection
of all clopen sets containing the point a and so, since the T[D]-openssets [0, p](p € D)areclopen,
it follows that cmp(0) = () [0, p] =D*. We show that the subspace D* is indiscrete and

eD

p

therefore connected. To this end, let ¥ be an open set containing the element / in the subspace
D*, so that ¥ = UnD* for some T[D}-open set U containing /. Then 3peD such that
[[Ap',1vplnD* < V. Furthermore, D* = [IAnp’,Ivp]; for,if xe D*,sothatx < p,VpeD,
then d(x,!) S xvI< pand so xe[lAap',Ivp). It follows now that D* = ¥ and so the only
open sets in the subspace D™ are itself and the empty set. Hence D* is an indiscrete subspace.
Now cmp (0) is the largest connected set containing the element 0 and so, by the connectedness
of D*, cmp(0) = D*. Hence, if {B; T[D]) is totally disconnected, D* = cmp(0) = {0} and
it follows, by Corollary 2.2, that (B; T[D]) is Hausdorff.

THEOREM 2.5. The topology T[I : D] is connected if and only if I = D*.

Proof. Suppose that T{I: D)isconnected. Let 7, bean arbitrary maximal ideal in & and
let pe D, gel be given; then the set {[ang, avp):ael,} forms an open cover of I, and, by
a well-known property of maximal ideals, the set {[bAgq, bvp]: bel,} forms an open cover
of #—1,. Hence the open sets of U = U [arng,avpl,V = U [bAg, bvp]cover B and

acim

therefore cannot be disjoint. This implies that 3 a, ce ], such that [a Ag,avplnlc'ag,c’vpl#
@« 3xe P such that

(avcygsxgac’vpe@vep'xviavelgx' =0
opqdve)ave)=0
egp'da, c’)=0eqp’ £d(a, c)el,.

Hence gp’ e I, so that, since I, is an arbitrary maximal ideal and the intersection of all maximal

ideals of @ contains only the element 0, it follows that g < p, Vpe D, Vqel. Therefore I < D*.

Conversely, suppose that I = D* and let C be any clopen subset of (B; T[I:D]). Then

either C =0 or 3aeC. In the latter case suppose that 3be#—C. Then 3p,eD, q, €l such
B
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that [bAg,, bvp] € #—-C. Also,since Cisopen,3p,eD, g,elsuchthat{ang,, avp,)cC
and so these intervals are disjoint. But /€ D* g < p,VpeD,Vgel and we observe that
the element s = bg, v aq, lies in their intersection, giving a contradiction. Therefore, if C is
clopen, then either C =0 or C = #; whence the space is connected.

THEOREM 2.6. An auto-topology T[D} is locally connected if and only if D is a principal
dual ideal.

Proof. Suppose that T[D] is a locally connected auto-topology on the Boolean algebra
4. Then there exists a base o for T[D] consisting of connected open sets. Let U be any
member of ¢ containing the least element of Z. Then I pe D such that p* = U, which, since
p* is a nonempty clopen set and therefore clopen in the subspace U of T[D], implies that
p¥ = U. Now suppose that D is non-principal. Then 3p, e D such that p, <p and so the
clopen set p; is properly contained in the connected set p*, giving a contradiction. Hence D
is a principal dual ideal of Z.

Conversely, suppose that T[D] is induced by the principal dual ideal D = p* generated
by p. Then itis is obvious that the set {[aAp’, av p]: ae #} forms a base for T[D]. Further-
more these intervals are connected sets; for otherwise there exists a nonempty clopen set
U,, containing the element g, in the subspace [aAp’, av p] and distinct from it, which, since
U, must be T'[D]-open, implies that [aAp’,avp]l<c U, 1t follows that T[D] is locally
connected.

The preceding theorem characterizes principal dual ideals of a Boolean algebra # in
terms of a property of the associated auto-topologies, while Corollary 2.2. may be regarded
as a characterization of dense dual ideals of 4. The following theorem characterizes, in the
same way, the maximal dual ideals of 4.

[ ]

THEOREM 2.7. If T[D] is an auto-topology on @B, induced by the dual ideal D, then D is
maximal if and only if { B; T [D}) is non-discrete and, for all ae %, either a* or a* is an open set.

Proof. If D is a maximal dual ideal of &, then it is proper, so that T'[D] is non-discrete;
and, furthermore, if ae %, then either ae D or a’eD. In the first case the set U,fa] =a®* is
open, while in the second the set U [a] = a* is open.

Conversely, suppose that T[D] is a non-discrete auto-topology on & with the property
that, for all ae 4, either a* or a* is open. Then D is proper and, furthermore, if a* is open,
3peD such that U,[a] = [anp’, avp) < a®, which implies that avp < g, or, equivalently,
p=<a,andsoaeD. Intheevent that a* is open, 3pe D such that U [a] = [aAp’, aVp] < a*,
which implies that aAp’ = a, or, equivalently, p < a’, and so a’eD. Hence D is a proper
dual ideal possessing the property that, for all ae 4, either ae D or a’e D and D is therefore

maximal.

3. Compact Hausdorff T'[/; D] topologies.

THEOREM 3.1. If a Boolean algebra admits a compact, Hausdorff T{I : D] topology, then it
is complete.

Proof. Let X be any nonempty subset of a Boolean algebra # admitting a compact,
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Hausdorff T'[I: D] topology and let &, be the set of all lower bounds of X; then %, is an
ideal of & and consequently the identity map n:. %y - %, is a net in %, which, since
{B; T[I:D]) is compact, has a cluster point ¢. Let peD, gel be given; then, since n is
frequently in the open neighbourhood [c A g, ¢ v p), it follows that Vae @y, be Ly such that
bza and be[cag,cvp). Whence cAg <b < cvp, from which it follows that cAge £y
and a S cvp,Vae¥Ly. Hence, since p and g were arbitrarily chosen, it follows that

cAqSx,VxeX,VgelogScdvx,VxeX,Vgelocvxel*, Yxe¥Py..
Also
ascvpVaeLy,VpeDeoancd £p,Vae¥Ly,VpeD—anceD,

But T'[I: D] is Hausdorff, or, equivalently, I* = {1}, D* = {0}, and so ¢’vx =1,VxeX,
and anc' =0,Vae Py, ie., ce Ly and a £ ¢, Vae Ly, so that c is the greatest lower bound
on the set X. It follows that & is complete.

THEOREM 3.2. A Boolean algebra admits a compact, Hausdorff T[I: D] topology if and
only if it is complete and atomic.

Proof. Let & be a Boolean algebra and suppose that {B; T[I: D]) is compact and
Hausdorff. Then, by the preceding theorem, £ is complete and it remains only to show that
4% is atomic. To this end, let p be an arbitrary element in the dual ideal D distinct from the
element 1. Then 3ge[ such that ¢ £ p; otherwise p = ¢,V gel, so that peI* = {1}, whence
p=1. Let I, be any prime ideal of & such that pe I, but g¢ 1, the existence of such an ideal
being well known. Now

¢={lang,avp),[brg,bvp]:acl, beB—1,}
is an open cover of & and so, since T[I : D] is compact, 3 a finite sub-cover
€* = {laing,a;vpl,[bjrg, b;vpl:1Zism 1 << n}

of 8. We assert that €** = {[a;Aq, a;vp]: 1 i< m} is an open cover of I,; for, if not,
Jael, such that ae[b;An g, b;v p] for some j. Butael,and b;Aq < aimplies that b;Agel,
which, since I, is prime, implies that either b;€I, or g€, both of which give a contradiction.

Hence I, <= | [a;7q, a;v p] so that xel,»x< \/ (a;vp)=pv \ a;€l, Therefore I,
i=1 i=1 i=1

is a principal ideal of & generated by m, say. But an ideal in & is prime if and only if it is
maximal and so it follows that m is a maximal element in . Furthermore, since the comple-
ment of a maximal element in 4 is an atom, we have shown that Vpe D (p #1), 3 an atom
asp'.

Let a, be the join of all atoms contained in p’, which exists since & is complete; we show
that p’ = a,. For, if p' > a, > 0, let x be the relative complement of a,, in the Boolean interval
[0,p'), sothat 0 < x < p’ and a,Ax =0. Then p < x’, which implies that x'e D and x" # 1.
Therefore 3 an atom b < x"" = x, whence b < p’, so that b is an atom contained in p’, which
implies that b < a,. Then 0 <b <a,Ax =0, so that b =0, giving a contradiction. Hence
VpeD, p’ is the join of all atoms it contains. Now we show that every element of # contains
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an atom. Since T[I: D] is Hausdorff, D* = {0} and therefore, since A peD?, it follows

peD

that A p =0, which implies that V p’' = 1. Each p’ is, as we have shown, a join of atoms
peD

of # and therefore the element 1 is the join of all atoms of #. Let &/ be the set of all atoms
of # and suppose that some element xe# contains no member of &f. Thenaax=0,Vacs/

and so 0= \/ (aAx)=xA \J a=xAl1=x. Therefore every nonzero element of %
aest aesd

contains an atom and so & is atomic.

Conversely, if & is complete and atomic, or, equivalently, & = 2" for some cardinal N,
then, since each two-element Boolean algebra endowed with the discrete topology is a T[I: D]
topologized Boolean algebra and the property of being such a topology is productive, it
follows that & admits a compact, Hausdorff T[] : D] topology.
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